CN116275699A - A kind of sintering flux for submerged arc girth welding of duplex pipes and preparation method thereof - Google Patents
A kind of sintering flux for submerged arc girth welding of duplex pipes and preparation method thereof Download PDFInfo
- Publication number
- CN116275699A CN116275699A CN202111495973.3A CN202111495973A CN116275699A CN 116275699 A CN116275699 A CN 116275699A CN 202111495973 A CN202111495973 A CN 202111495973A CN 116275699 A CN116275699 A CN 116275699A
- Authority
- CN
- China
- Prior art keywords
- flux
- content
- mesh
- welding
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 title claims abstract description 102
- 238000003466 welding Methods 0.000 title claims abstract description 101
- 238000005245 sintering Methods 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 74
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 32
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 29
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 28
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims abstract description 26
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 25
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 24
- 239000011572 manganese Substances 0.000 claims abstract description 23
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims abstract description 22
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910001570 bauxite Inorganic materials 0.000 claims abstract description 22
- 239000010436 fluorite Substances 0.000 claims abstract description 22
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 22
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910000863 Ferronickel Inorganic materials 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 16
- 239000004579 marble Substances 0.000 claims abstract description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 14
- 229910004261 CaF 2 Inorganic materials 0.000 claims abstract description 11
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 claims abstract description 9
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 31
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 11
- 239000011707 mineral Substances 0.000 claims description 11
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 229910000676 Si alloy Inorganic materials 0.000 claims description 4
- 238000007605 air drying Methods 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 4
- 235000019353 potassium silicate Nutrition 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 229910000691 Re alloy Inorganic materials 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 3
- 238000005469 granulation Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 239000002893 slag Substances 0.000 abstract description 48
- 229910000831 Steel Inorganic materials 0.000 abstract description 18
- 239000010959 steel Substances 0.000 abstract description 18
- 239000011324 bead Substances 0.000 abstract description 11
- 230000000052 comparative effect Effects 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 230000008018 melting Effects 0.000 description 16
- 238000002844 melting Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 238000004021 metal welding Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000009659 non-destructive testing Methods 0.000 description 2
- 230000007096 poisonous effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/40—Making wire or rods for soldering or welding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
本发明涉及油气管道焊接技术领域,特别涉及一种用于双联管埋弧环焊的烧结焊剂及其制备方法。一种用于双联管埋弧环焊的烧结焊剂,所述烧结焊剂的化学成分按质量百分比为:CaF2:5~15%、MgO:15~20%、Al2O3:15~20%、CaO:2~5%、MnO:3~10%、BaCO3:5~10%、TiO2:3~10%、Ni:1~5%、B:0.8~1.5%、Re:1~0.05%、SiO2:15~20%、铁粉:10~30%、S≤0.015%,P≤0.020%。本发明通过萤石、电熔镁砂、铝矾土、大理石、碳酸钡、锰矿、金红石、稀土硅铁、镍铁、硼铁、铁粉的形式加入烧结焊剂所需的化学成分,本发明在20mm以上大壁厚X80埋弧钢管埋弧焊接过程中,焊缝熔渣不流失、脱渣容易,焊道平整、规则。The invention relates to the technical field of welding of oil and gas pipelines, in particular to a sintered flux for submerged arc girth welding of duplex pipes and a preparation method thereof. A kind of sintering flux for submerged arc welding of duplex pipes, the chemical composition of said sintering flux is: CaF 2 : 5-15%, MgO: 15-20%, Al 2 O 3 : 15-20% %, CaO:2~5%, MnO:3~10%, BaCO 3 :5~10%, TiO 2 :3~10%, Ni:1~5%, B:0.8~1.5%, Re:1~ 0.05%, SiO 2 : 15~20%, Iron powder: 10~30%, S≤0.015%, P≤0.020%. In the present invention, the chemical components required for sintering flux are added in the form of fluorite, fused magnesia, bauxite, marble, barium carbonate, manganese ore, rutile, rare earth ferrosilicon, ferronickel, ferroboron, and iron powder. During the submerged arc welding process of X80 submerged arc steel pipe with a wall thickness of more than 20mm, the weld slag will not be lost, the slag is easy to remove, and the weld bead is smooth and regular.
Description
技术领域technical field
本发明涉及油气管道焊接技术领域,特别涉及一种用于双联管埋弧环焊的烧结焊剂及其制备方法。The invention relates to the technical field of welding of oil and gas pipelines, in particular to a sintered flux for submerged arc girth welding of duplex pipes and a preparation method thereof.
背景技术Background technique
双连管是作为一种采用现场预制方式将两根钢管组焊在一起的钢管。通过“双连管”的方法,可充分有效的缩短管道建设施工工时,极大的满足工程“短、平、快”的预期目标。埋弧焊接工艺具有生产效率高、工艺稳定性好,且所得焊缝组织均匀,焊接接头性能优异,成为双连管焊接主要采用工艺,长期以来在国内外长输管道施工中得到了广泛应用。The double-connected pipe is a steel pipe in which two steel pipes are assembled and welded together by on-site prefabrication. Through the method of "double-connected pipes", the construction time of pipeline construction can be fully and effectively shortened, and the project's expected goal of "short, flat and fast" can be greatly met. The submerged arc welding process has high production efficiency, good process stability, uniform weld structure and excellent performance of welded joints. It has become the main process for double-connected pipe welding and has been widely used in long-distance pipeline construction at home and abroad for a long time.
不同于常规的螺旋和直缝埋弧螺旋线和水平位置的焊接,双联管为环向焊接。该工艺内外焊施焊平面较小,焊点位置变化受限较大,且大多采用小线能量埋弧焊接工艺,其焊接速度不足1m/min,多采用多层焊,线能量一般不超过15KJ/cm。而常规焊剂更多的注重于焊接速度和效率,焊接速度较大,最大可达到1.8m/min以上,且为单层一次性焊接,其熔渣在1000-1300℃阶段的熔化区间过短,结晶速率较大,冷速过大,使夹杂物及体气无法有效的从焊缝中及时排出,极易造成焊缝的洁净度不良,有效组元无法充分反应,不利于焊缝熔敷金属的自由流动和有益合金的有效过渡,无法得到优异的焊接接头的组织;特别是用于低速焊接时,焊接熔敷金属较为有限,极易出现过渡不良,填充不利的质量缺陷,由此而严重影响了X70钢级以上双联管环焊缝质量和性能,特别是无法保证焊缝的断裂韧性性能,往往对管道现场安全造成不利的影响。Unlike the conventional spiral and LSAW helical and horizontal position welding, the duplex pipe is welded in a circumferential direction. The internal and external welding welding plane of this process is small, and the position of the welding point is greatly limited, and most of them adopt the small heat input submerged arc welding process, and the welding speed is less than 1m/min. Multi-layer welding is mostly used, and the heat input generally does not exceed 15KJ /cm. The conventional flux pays more attention to the welding speed and efficiency, the welding speed is relatively high, the maximum can reach more than 1.8m/min, and it is single-layer one-time welding, and the melting range of the slag at 1000-1300℃ is too short. The crystallization rate is high, and the cooling rate is too high, so that the inclusions and gas cannot be effectively discharged from the weld in time, which can easily cause poor cleanliness of the weld, and the effective components cannot fully react, which is not conducive to the weld deposited metal The free flow of the alloy and the effective transition of the beneficial alloy cannot obtain an excellent structure of the welded joint; especially when it is used for low-speed welding, the welding deposited metal is relatively limited, and it is very easy to have poor transition and unfavorable filling quality defects, which are serious. It affects the quality and performance of the double pipe girth weld above X70 steel grade, especially the fracture toughness of the weld cannot be guaranteed, which often has an adverse impact on the safety of the pipeline site.
发明内容Contents of the invention
针对上述问题,本发明的目的是提供一种用于双联管埋弧环焊的烧结焊剂及其制备方法,本发明烧结焊剂适用于X70钢级以上双联管埋弧焊接,可实现焊接熔渣在1000~1300℃内具有较大的熔化区间、较低的结晶速率,保证焊接过程中焊缝的纯净度,有效组元充分反应,有利于焊缝熔敷金属的自由流动和有益合金的有效过渡,从而得到优异的焊接接头组织,既具备较高强韧性,又具备优良的CTOD断裂韧性。In view of the above problems, the object of the present invention is to provide a sintered flux for submerged arc welding of double pipes and a preparation method thereof. The sintered flux of the present invention is suitable for submerged arc welding of double pipes above X70 steel grade, and can realize welding melting The slag has a large melting range and a low crystallization rate at 1000-1300 ° C, which ensures the purity of the weld during the welding process, and the effective components react fully, which is conducive to the free flow of weld deposit metal and the formation of beneficial alloys. Effective transition, so as to obtain excellent welded joint structure, which not only has high strength and toughness, but also has excellent CTOD fracture toughness.
本发明的技术方案在于:一种用于双联管埋弧环焊的烧结焊剂,所述烧结焊剂的化学成分按质量百分比为:CaF2:5~15%、MgO:15~20%、Al2O3:15~20%、CaO:2~5%、MnO:3~10%、 BaCO3:5~10%、TiO2:3~10%、Ni:1~5%、B:0.8~1.5%、Re:1~0.05%、SiO2:15~20%、铁粉: 10~30%、S≤0.015%、P≤0.020%。The technical solution of the present invention is: a kind of sintered flux used for submerged arc girth welding of duplex pipes, the chemical composition of said sintered flux is: CaF 2 : 5-15%, MgO: 15-20%, Al 2 O 3 : 15-20%, CaO: 2-5%, MnO: 3-10%, BaCO 3 : 5-10%, TiO 2 : 3-10%, Ni: 1-5%, B: 0.8- 1.5%, Re: 1-0.05%, SiO 2 : 15-20%, iron powder: 10-30%, S≤0.015%, P≤0.020%.
所述CaF2以萤石矿物质粉形式加入,CaF2含量不低于95%,P≤0.003%;所述MgO以电熔镁砂形式加入,MgO含量不低于97%,S≤0.003%、P≤0.05%;所述Al2O3以铝矾土形式加入,Al2O3不低于84%,S、P≤0.03%;所述CaO以大理石的形式加入,CaO含量不低于40%;所述MnO以进行焙烧、风干及水浸处理后的富锰矿的形式加入,MnO含量不低于30%,S≤0.05%、P≤0.05%;所述BaCO3以碳酸钡的形式加入,含量不低于70%;所述 SiO2通过锰矿、铝矾土、萤石、电熔镁砂、稀土硅铁及粘结剂水玻璃带入,SiO2总含量控制20%以下,S、P≤0.03%;所述TiO2以天然金红石形式加入,TiO2含量在58%以上;所述Re和Si合金通过稀土硅铁形式加入,Re含量30%以上,Si含量45%以上;所述Ni合金通过电解镍铁形式加入,Ni含量90%以上,P、S≤0.03%;所述B铁合金通过电解镍铁形式加入,B含量20%以上,P≤0.03%,S≤0.03%;所述铁粉是氧含量为0.5%以下的雾化还原铁粉,相对于铁粉总量,Fe含量为40%以上。The CaF2 is added in the form of fluorite mineral powder, the CaF2 content is not less than 95%, P≤0.003%; the MgO is added in the form of fused magnesia, the MgO content is not less than 97%, S≤0.003% , P≤0.05%; the Al 2 O 3 is added in the form of bauxite, and the Al 2 O 3 is not less than 84%, and S, P≤0.03%; the CaO is added in the form of marble, and the CaO content is not less than 40%; the MnO is added in the form of manganese-rich ore after roasting, air-drying and water immersion treatment, the MnO content is not less than 30%, S≤0.05%, P≤0.05%; the BaCO 3 is in the form of barium carbonate Added, the content is not less than 70%; the SiO 2 is brought in through manganese ore, bauxite, fluorite, fused magnesia, rare earth ferrosilicon and binder water glass, the total content of SiO 2 is controlled below 20%, S , P≤0.03%; the TiO 2 is added in the form of natural rutile, and the TiO 2 content is more than 58%; the Re and Si alloys are added in the form of rare earth ferrosilicon, and the Re content is more than 30%, and the Si content is more than 45%; The Ni alloy is added in the form of electrolytic nickel iron, the Ni content is more than 90%, P and S≤0.03%; the B iron alloy is added in the form of electrolytic nickel iron, the B content is more than 20%, P≤0.03%, S≤0.03%; The iron powder is an atomized reduced iron powder with an oxygen content of less than 0.5%, and an Fe content of more than 40% relative to the total iron powder.
所述萤石矿物质粉的粒度为100目以上;所述电熔镁砂的粒度为80~100目;所述铝矾土的粒度为80~100目;所述SiO2的粒度为80~100目;所述天然金红石的粒度为100目以上;所述稀土硅铁的粒度为80~120目;所述镍铁的粒度:80~120目;所述镍铁的粒度:80~120目;所述雾化还原铁粉的粒度在200目以下。The particle size of the fluorite mineral powder is above 100 mesh; the particle size of the fused magnesia is 80-100 mesh; the particle size of the bauxite is 80-100 mesh; the particle size of the SiO2 is 80-100 mesh. 100 mesh; the particle size of the natural rutile is above 100 mesh; the particle size of the rare earth ferrosilicon is 80-120 mesh; the particle size of the ferronickel: 80-120 mesh; the particle size of the ferronickel: 80-120 mesh ; The particle size of the atomized reduced iron powder is below 200 mesh.
通过萤石、电熔镁砂、铝矾土、大理石、碳酸钡、锰矿、金红石、稀土硅铁、镍铁、硼铁、铁粉的形式加入烧结焊剂所需的化学成分时,烧结焊剂中矿物质组分及合金重量百分比为:萤石:8~18%、电熔镁砂:18~22%、铝矾土:20~25%、大理石:5~10%、碳酸钡:7~15%、锰矿:8~15%、金红石:8~15%、稀土硅铁:0.2~1%、镍铁:1~5%;硼铁:0.8~1.5%、铁粉:10~30%。When the chemical components required for sintering flux are added in the form of fluorite, fused magnesia, bauxite, marble, barium carbonate, manganese ore, rutile, rare earth ferrosilicon, ferronickel, ferroboron, and iron powder, the minerals in the sintering flux Material components and alloy weight percentages are: fluorite: 8-18%, fused magnesia: 18-22%, bauxite: 20-25%, marble: 5-10%, barium carbonate: 7-15% , Manganese ore: 8-15%, rutile: 8-15%, rare earth ferrosilicon: 0.2-1%, nickel-iron: 1-5%, boron iron: 0.8-1.5%, iron powder: 10-30%.
上述用于双联管埋弧环焊的烧结焊剂的化学成分的选择依据为:The basis for the selection of the chemical composition of the above-mentioned sintered flux for submerged arc girth welding of duplex pipes is as follows:
(1)CaF2作为造渣剂,与SiO2及液态金属表面的H2O反应可生成不溶于钢液的HF 体气,可降低电弧中氢分压,减小氢在金属中的溶解度,但该体气对人身体具有毒害作用;同时,CaF2对液态熔渣具有稀释作用,提高熔渣的流动性,降低熔渣粘度,有利于熔渣的快速凝固,CaF2过高会严重降低电弧的稳定性,影响焊缝成形性,同时对操作人员的毒害作用加大,过低起不到所需的效果。根据以上,将CaF2的含量控制在5~15%。(1) As a slagging agent, CaF 2 reacts with SiO 2 and H 2 O on the surface of liquid metal to generate HF gas insoluble in molten steel, which can reduce the partial pressure of hydrogen in the arc and reduce the solubility of hydrogen in the metal. However, this gas has a poisonous effect on the human body; at the same time, CaF 2 has a dilution effect on the liquid slag, which improves the fluidity of the slag, reduces the viscosity of the slag, and is conducive to the rapid solidification of the slag. If the CaF 2 is too high, it will seriously reduce The stability of the arc affects the formability of the weld, and at the same time increases the poisonous effect on the operator, if it is too low, the desired effect cannot be achieved. According to the above, the content of CaF 2 is controlled at 5-15%.
(2)MgO属于碱性材料,与CaO共同对焊剂碱度起着调节作用,并对改善熔渣熔点、熔化区间温度有明显作用,可调节焊缝金属熔点及存在时间,保证有害物质的有效析出,为了保证焊缝金属流动性和铺展性其含量不宜大于20%,含量过高时,将导致熔渣熔点升高,致使熔渣的流动性变差,焊缝成形性变差,严重出现咬边及脱渣困难的问题,根据上述,将MgO的含量控制在15~20%。(2) MgO is an alkaline material, which together with CaO can regulate the alkalinity of the flux, and has a significant effect on improving the melting point of slag and the temperature of the melting range, and can adjust the melting point and existence time of the weld metal to ensure the effective removal of harmful substances. Precipitation, in order to ensure the fluidity and spreadability of the weld metal, its content should not be greater than 20%. If the content is too high, the melting point of the slag will increase, resulting in poor fluidity of the slag and poor weld formability. For the problems of undercutting and difficult slag removal, according to the above, the content of MgO should be controlled at 15-20%.
(3)Al2O3作为主要的造渣剂,其在高温下具有很好的稳定性,与MgO一起对于熔渣的熔点、黏度与熔化区间温度起着很好的调节作用,从而起到焊缝形貌的改善与调整。在一定含量时,可使焊缝的鱼鳞纹更加细密,焊缝表面更加光滑,在本发明中,当Al2O3含量超过25%时,熔渣的熔点过高,粘度增大,会使熔渣流动性明显减弱,由此而严重恶化焊道外观形貌。根据此,将Al2O3的含量为15~20%。(3) As the main slagging agent, Al 2 O 3 has good stability at high temperature. Together with MgO, it plays a very good role in regulating the melting point, viscosity and melting temperature of slag, thus playing a role in Improvement and adjustment of weld seam morphology. At a certain content, the fish scale pattern of the weld seam can be made finer and denser, and the weld seam surface is smoother. In the present invention, when the Al2O3 content exceeds 25 %, the melting point of the molten slag is too high and the viscosity increases, which will make the The fluidity of the slag is obviously weakened, which seriously deteriorates the appearance of the weld bead. According to this, the content of Al 2 O 3 is 15-20%.
(4)CaO作为碱性渣系的一种主要成分,其具有直线膨胀系数小,结晶相变温度低等特点,可增加熔渣的表面张力和熔渣与金属的界面张力,提高脱渣能力,可以极大地改善焊缝的工艺性能。能提高熔渣的碱度,并可增加熔渣的脱硫、脱磷能力;若含量过高,熔渣会形成3CaO.SiO2复合物,增加熔渣熔点,对焊缝金属流动性造成不利影响,根据此将 Al2O3的含量控制在2~5%。(4) As a main component of alkaline slag system, CaO has the characteristics of small linear expansion coefficient and low crystallization phase transition temperature, which can increase the surface tension of slag and the interfacial tension between slag and metal, and improve the slag removal ability , can greatly improve the process performance of the weld. It can increase the basicity of slag, and can increase the desulfurization and dephosphorization ability of slag; if the content is too high, slag will form 3CaO.SiO 2 compound, increase the melting point of slag, and adversely affect the fluidity of weld metal According to this, the content of Al 2 O 3 is controlled at 2-5%.
(5)BaCO3具有稳弧和造渣作用,可替代部分SiO2,起到调整熔渣熔点、粘度、表面张力和流动性作用,提高电弧稳定性,并减少焊缝咬边,改善焊缝成形性;同时,一定含量的BaCO3,但含量过高时易分解与TiO2结合生成BaO.TiO2,恶化脱渣性。根据此将BaCO3的含量控制在5~10%。(5) BaCO 3 has the functions of arc stabilization and slag formation, and can replace part of SiO 2 , adjust the melting point, viscosity, surface tension and fluidity of slag, improve arc stability, reduce weld undercut, and improve weld seam Formability; at the same time, a certain content of BaCO 3 , but when the content is too high, it is easy to decompose and combine with TiO 2 to form BaO.TiO 2 , which deteriorates the deslagging property. According to this, the content of BaCO 3 is controlled at 5-10%.
(6)TiO2具有稳弧和造渣作用。可调整熔渣的熔点,黏度、表面张力和流动性,特别适合于环向施焊,改善焊道形貌,减少咬边;同时,Ti过渡道焊缝中,在焊缝结晶和冷却过程中析出碳化物、氮化物及金属间化合物等第二相质点,能细化奥氏体晶粒,从而使转变后的铁素体晶粒得到细化,保证焊缝具有较好强度和韧性,一般超过才能达到所需的效果,而大于10%以上,会减小熔渣的凝固温度区间,对焊剂熔渣流动性不利,因此,将TiO2的含量确定在3~10%。(6) TiO 2 has the functions of arc stabilization and slagging. The melting point, viscosity, surface tension and fluidity of the slag can be adjusted, especially suitable for circumferential welding, improving the shape of the weld bead and reducing undercut; at the same time, in the Ti transition bead weld, in the process of weld crystallization and cooling Precipitation of second phase particles such as carbides, nitrides and intermetallic compounds can refine the austenite grains, so that the transformed ferrite grains can be refined, ensuring that the weld has good strength and toughness. If it exceeds 10%, it will reduce the solidification temperature range of slag, which is unfavorable to the fluidity of flux slag. Therefore, the content of TiO 2 is determined at 3-10%.
(7)MnO在本项目中以锰矿的形式加入,可以降低熔渣表面张力,改善流动性,有利于焊缝成形,同时具有提高焊接电流的承载能力。但由于锰矿中含有S、P等杂质较多,本发明采用了富锰矿,并通过高温焙烧、风干处理及水浸降低了锰矿中的P、S含量到0.05%以下,所以对MnO含量大概控制在5~10%。(7) MnO is added in the form of manganese ore in this project, which can reduce the surface tension of slag, improve fluidity, and be beneficial to weld formation, and at the same time, it can increase the carrying capacity of welding current. However, since the manganese ore contains many impurities such as S and P, the present invention uses manganese-rich ore, and reduces the P and S content in the manganese ore to below 0.05% through high-temperature roasting, air-drying treatment and water immersion, so the MnO content is roughly controlled. In 5 ~ 10%.
(8)SiO2作为脱氧剂而存在,可对熔渣的碱度及粘度、软化温度等起到一定的调节作用,其能与熔渣中大部分的碱性氧化物结合形成复合物,可增大熔渣的黏度,保证钢管在高速旋转过程不淌渣,焊缝金属溶液不流失,使焊道具有良好的外观形貌。采用的硅灰石、铝矾土、萤石及电熔镁砂几种原料中除含有主要成分之外均另含有大量的SiO2,所以在本项目中不直接加入SiO2,通过其他原料的调配将其控制在15~20%;(8) SiO 2 exists as a deoxidizer, which can regulate the alkalinity, viscosity, and softening temperature of the slag to a certain extent. It can combine with most of the basic oxides in the slag to form a compound, which can Increase the viscosity of slag to ensure that the steel pipe does not flow slag during high-speed rotation, and the weld metal solution does not lose, so that the weld bead has a good appearance. The raw materials of wollastonite, bauxite, fluorite and fused magnesia all contain a large amount of SiO 2 in addition to the main components. Therefore, in this project, SiO 2 is not directly added. Deploy and control it at 15-20%;
(9)稀土是由硅、稀土等经熔融配置而成的合金,是一种良好的球化剂,明显改善条带状分布的硫化物夹杂的数量及形态,并具有较明显地降低焊缝中的硫含量作用,提高焊缝洁净度,保证焊缝整体的质量稳定性和组织均匀性,由于单一稀土加入量极小,焊剂配制十分困难,因此本项目选用经硅合金和稀土熔融而成的合金组元。稀土对焊缝中影响作用是通过焊剂过渡进入焊缝中改变组织形态来达到焊缝性能改进的,含量过少起不到应有的作用,含量过多则会污染晶界,失去预期的效果,同时过多的硅元素易于增大熔渣黏度,因此,本项目将稀土的含量确定为0.05~1%。(9) Rare earth is an alloy formed by melting silicon, rare earth, etc. It is a good nodularizer, which can significantly improve the number and shape of sulfide inclusions distributed in strips, and can significantly reduce the welding seam. The effect of the sulfur content in the solder can improve the cleanliness of the weld and ensure the overall quality stability and uniformity of the weld. Due to the extremely small amount of single rare earth added, it is very difficult to prepare the flux. Therefore, this project uses silicon alloy and rare earth fusion. alloy components. The effect of rare earth on the weld is to improve the performance of the weld through the transition of flux into the weld to change the microstructure. If the content is too small, it will not have the desired effect, and if the content is too large, it will pollute the grain boundary and lose the expected effect. , At the same time too much silicon is easy to increase the viscosity of slag, therefore, this project will determine the content of rare earth as 0.05 ~ 1%.
(10)Ni及B合金具有过渡系数较高,活泼性较强,本项目通过镍铁、锰铁、稀土硅铁形式加入,在焊接过程中起着降低熔渣氧活度的作用,并可弥补焊接过程中焊缝金属中烧损的Ni及B,并同时保护焊缝中的有益合金元素不被烧损,有效的发挥形成和稳定奥氏体的作用,并达到增加奥氏体向铁素体转变的过冷度,提高形核率,减小晶粒长大时间,起到良好的晶粒细化效果;同时,还可有效地控制焊接熔池中的夹杂物,对于低温下获得高韧性的焊接接头起着至关重要的作用,细小均匀的焊缝组织并确保焊缝得到优异的低温断裂韧性。因此,将加入Ni合金含量确定在1~5%左右,加入B的含量确定在0.8~1.5%。(10) Ni and B alloys have high transition coefficients and strong activity. This project is added in the form of ferronickel, ferromanganese, and rare earth ferrosilicon, which plays a role in reducing the oxygen activity of slag during the welding process, and can Make up for the Ni and B burned in the weld metal during the welding process, and at the same time protect the beneficial alloying elements in the weld from being burned, effectively play the role of forming and stabilizing austenite, and achieve the increase of austenite to iron The supercooling degree of element body transformation improves the nucleation rate, reduces the grain growth time, and has a good grain refinement effect; at the same time, it can also effectively control the inclusions in the welding pool, which is suitable for obtaining at low temperature. The high-toughness welded joint plays a vital role, and the fine and uniform weld structure ensures excellent low-temperature fracture toughness of the weld. Therefore, the Ni alloy content is determined to be about 1-5%, and the B content is determined to be 0.8-1.5%.
(11)铁粉作为高速焊接增加焊丝熔敷率高效埋弧焊中必须的添加成分,加入铁粉能起到改善和提高焊接工艺性能的作用,如提高电弧稳定性、改善脱渣性能、使焊缝成形平整美观。当铁粉含量低于10%时,起不到改善焊接效率的效果,若使铁粉含有超过30%,则在熔融/凝固中的焊剂内,铁粉容易凝集,过多的铁粉容易附着在焊道表面,降低焊道的铺展性。对于低氢型焊剂,铁粉中含氧量过大会使焊接熔渣变稀,影响焊剂的保护效果,不利于合金元素的过渡,本发明中需对铁粉中的含氧量严格限制在小于0.5%以下,因此,铁粉的含量确定在10~30%。(11) Iron powder is an essential additive in high-speed welding to increase welding wire deposition rate and high-efficiency submerged arc welding. Adding iron powder can improve and improve welding process performance, such as improving arc stability, improving slag removal performance, and using The welding seam is smooth and beautiful. When the iron powder content is less than 10%, the effect of improving the welding efficiency cannot be achieved. If the iron powder content exceeds 30%, the iron powder is easy to agglomerate in the melting/solidifying flux, and too much iron powder is easy to adhere On the surface of the weld bead, the spreadability of the weld bead is reduced. For low-hydrogen type flux, the excessive oxygen content in the iron powder will thin the welding slag, affect the protective effect of the flux, and be unfavorable for the transition of alloying elements. In the present invention, the oxygen content in the iron powder must be strictly limited to less than 0.5% or less, therefore, the content of iron powder is determined at 10-30%.
上述一种用于双联管埋弧环焊的烧结焊剂的制备方法,包括以下步骤:Above-mentioned a kind of preparation method of the sintered flux that is used for submerged arc girth welding of duplex pipe, comprises the following steps:
S1:按重量份,将8~18份萤石、18~22份电熔镁砂、20~25份铝矾土、5~10份大理石、7~15份碳酸钡、8~15份锰矿、8~15份金红石、0.2~1份稀土硅铁、1~5份镍铁、0.8~1.5 份硼铁、10~30份铁粉,均匀混合;S1: By weight, 8-18 parts of fluorite, 18-22 parts of fused magnesia, 20-25 parts of bauxite, 5-10 parts of marble, 7-15 parts of barium carbonate, 8-15 parts of manganese ore, 8-15 parts of rutile, 0.2-1 part of rare earth ferrosilicon, 1-5 parts of ferronickel, 0.8-1.5 parts of ferroboron, 10-30 parts of iron powder, and mix evenly;
S2:在步骤S1中得到的混合物中加入15.48~31.5份粘结剂,将粘结成形的湿料用簸箕或造粒机震动、摇晃进行造粒;S2: Add 15.48 to 31.5 parts of binder to the mixture obtained in step S1, vibrate and shake the bonded wet material with a dustpan or a granulator to granulate;
S3:造粒过程中,通过10~20目的筛子将造粒成形的焊剂粒度控制在10~60目之间;S3: During the granulation process, the particle size of the granulated flux is controlled between 10-60 mesh through a 10-20 mesh sieve;
S4:通过高温炉对成型后的焊剂在200~350℃温度范围内进行烘干处理;S4: drying the molded flux in a temperature range of 200-350°C in a high-temperature furnace;
S5:将烘干后的焊剂通过烧结炉在800~900℃温度范围内烧结;S5: sintering the dried flux through a sintering furnace at a temperature range of 800-900°C;
S6:对烧结后的焊剂通过10~60目的筛选后进行包装。S6: Packaging the sintered flux after passing through 10-60 mesh screening.
所述步骤S2中的粘结剂为钠水玻璃,所述钠水玻璃作为粘结剂的波美度为41.9~43.9,模数为2.5~2.7。The binder in the step S2 is sodium silicate, and the Baume degree of the sodium silicate as binder is 41.9-43.9, and the modulus is 2.5-2.7.
实际制备过程中,所述钠水玻璃作为粘结剂的波美度为41.9~43.9,模数为2.5~2.7,可以有效降低焊剂中的水分含量及氢含量,并提高焊剂的碱度,确保焊剂颗粒度具备良好的强度。In the actual preparation process, the Baume degree of the sodium silicate as a binder is 41.9-43.9, and the modulus is 2.5-2.7, which can effectively reduce the moisture content and hydrogen content in the flux, and increase the alkalinity of the flux to ensure The flux particle size has good strength.
所述步骤S5中,烧结时通入流量为0.1~1升/分钟的惰性气体对焊剂进行保护。In the step S5, during sintering, an inert gas with a flow rate of 0.1-1 liter/min is introduced to protect the flux.
实际制备过程中,采用惰性气体对焊剂进行保护,可以有效防止焊剂高温条件下发生氧化。In the actual preparation process, inert gas is used to protect the flux, which can effectively prevent the flux from being oxidized under high temperature conditions.
本发明的有益效果在于:The beneficial effects of the present invention are:
1.本发明在烧结焊剂的化学成分中引入TiO2及BaCO3,保证熔渣在1000~1300℃内具有较大的熔化区间,较低的结晶速率,保证焊接过程中焊缝的纯净度和焊缝工艺性能。1. The present invention introduces TiO 2 and BaCO 3 into the chemical composition of the sintered flux to ensure that the slag has a larger melting range and a lower crystallization rate within 1000-1300 °C, ensuring the purity and purity of the weld seam during the welding process. weld process performance.
2.本发明在烧结焊剂的化学成分中引入酸碱物质MgO、CaO,相比普通焊剂,保证本发明焊剂有更高的碱度值,降低熔渣的氧化能力,减少熔渣中的有害气体和杂质,保证有益合金的更有效过渡。2. The present invention introduces acid-base substances MgO and CaO into the chemical composition of the sintered flux, which ensures that the flux of the present invention has a higher alkalinity value, reduces the oxidation ability of the molten slag, and reduces the harmful gas in the molten slag compared with the ordinary flux and impurities, ensuring a more efficient transition of beneficial alloys.
3.本发明在烧结焊剂的化学成分中引入铁粉,可以进一步提升小热输入量焊接过程中金属的熔敷速率,保证焊缝金属填充量,并同步减少焊接道次达到提升焊接效率的目的。3. The present invention introduces iron powder into the chemical composition of the sintered flux, which can further increase the metal deposition rate during the welding process with small heat input, ensure the filling amount of weld metal, and simultaneously reduce the number of welding passes to achieve the purpose of improving welding efficiency .
4.本发明在烧结焊剂的化学成分中引入B、Ni合金及稀土微合金物质,对焊缝晶粒起到细化和均匀性处理作用的同时,保证的到更多的针状铁素体组织,以此来确保焊缝在具备较高强韧性的基础上,具备优良的CTOD断裂韧性。4. The present invention introduces B, Ni alloys and rare earth microalloys into the chemical composition of the sintered flux to refine and uniformize the weld grains while ensuring more acicular ferrite Organization, in order to ensure that the weld has excellent CTOD fracture toughness on the basis of high strength and toughness.
5.采用本发明焊剂与相应的焊丝对钢管进行了环向位置埋弧焊接,线能量大于15KJ/cm,焊缝熔渣不流失,焊道规则,焊缝表面光滑,金属光泽明显,熔渣易于脱落。5. Using the flux of the present invention and the corresponding welding wire to carry out submerged arc welding on the steel pipe in the circumferential position, the line energy is greater than 15KJ/cm, the weld slag does not flow, the weld bead is regular, the weld surface is smooth, the metal luster is obvious, and the slag Easy to fall off.
6.采用本发明焊剂匹配相应焊丝进行焊接后,环焊缝金属Rm=695-750MPa,X80Φ1422×21.4mm钢管焊接后,可适用于较宽的焊接工艺参数范围,采用本发明,在20mm 以上大壁厚X80埋弧钢管埋弧焊接过程中,焊缝熔渣不流失、脱渣容易,焊道平整、规则。6. After using the flux of the present invention to match the corresponding welding wire for welding, the girth weld metal R m =695-750MPa, after welding the X80Φ1422×21.4mm steel pipe, can be applied to a wider range of welding process parameters. Using the present invention, the welding process is more than 20mm During the submerged arc welding process of X80 submerged arc steel pipe with large wall thickness, the weld slag will not be lost, the slag is easy to remove, and the weld bead is smooth and regular.
7.采用本发明焊剂与相应的焊丝对两根X80钢级钢管进行环向焊接后,依据天然气输送管道焊接标准进行无损检测后,焊缝未出现裂纹与超标气孔、夹渣满足标准要求,同时焊缝具有优异的断裂韧性。7. After using the flux of the present invention and the corresponding welding wire to carry out circumferential welding of two X80 steel grade steel pipes, after carrying out non-destructive testing according to the welding standards of natural gas transmission pipelines, no cracks and excessive pores and slag inclusions in the welds meet the standard requirements, and at the same time The weld has excellent fracture toughness.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步详细描述:Below in conjunction with embodiment the present invention is described in further detail:
实施例1Example 1
一种用于双联管埋弧环焊的烧结焊剂,所述烧结焊剂的化学成分按质量百分比为: CaF2:5~15%、MgO:15~20%、Al2O3:15~20%、CaO:2~5%、MnO:3~10%、BaCO3:5~10%、 TiO2:3~10%、Ni:1~5%、B:0.8~1.5%、Re:1~0.05%、SiO2:15~20%、铁粉:10~30%、S≤0.015%、 P≤0.020%。A sintered flux for submerged arc welding of double pipes, the chemical composition of the sintered flux is: CaF 2 : 5-15%, MgO: 15-20%, Al 2 O 3 : 15-20 %, CaO: 2~5%, MnO: 3~10%, BaCO 3 : 5~10%, TiO 2 : 3~10%, Ni: 1~5%, B: 0.8~1.5%, Re: 1~ 0.05%, SiO 2 : 15-20%, iron powder: 10-30%, S≤0.015%, P≤0.020%.
所述CaF2以萤石矿物质粉形式加入,CaF2含量不低于95%,P≤0.003%;所述MgO以电熔镁砂形式加入,MgO含量不低于97%,S≤0.003%、P≤0.05%;所述Al2O3以铝矾土形式加入,Al2O3不低于84%,S、P≤0.03%;所述CaO以大理石的形式加入,CaO含量不低于40%;所述MnO以进行焙烧、风干及水浸处理后的富锰矿的形式加入,MnO含量不低于30%,S≤0.05%、P≤0.05%;所述BaCO3以碳酸钡的形式加入,含量不低于70%;所述SiO2通过锰矿、铝矾土、萤石、电熔镁砂、稀土硅铁及粘结剂水玻璃带入,不专门进行添加,SiO2总含量控制20%以下,S、P≤0.03%;所述TiO2以天然金红石形式加入,TiO2含量在58%以上;所述Re和Si合金通过稀土硅铁形式加入,Re含量30%以上,Si含量45%以上;所述Ni合金通过电解镍铁形式加入,Ni含量90%以上,P、S≤0.03%;所述B铁合金通过电解镍铁形式加入,B含量20%以上,P≤0.03%,S≤0.03%;所述铁粉是氧含量为 0.5%以下的雾化还原铁粉,相对于铁粉总量,Fe含量为40%以上。The CaF2 is added in the form of fluorite mineral powder, the CaF2 content is not less than 95%, P≤0.003%; the MgO is added in the form of fused magnesia, the MgO content is not less than 97%, S≤0.003% , P≤0.05%; the Al 2 O 3 is added in the form of bauxite, and the Al 2 O 3 is not less than 84%, and S, P≤0.03%; the CaO is added in the form of marble, and the CaO content is not less than 40%; the MnO is added in the form of manganese-rich ore after roasting, air-drying and water immersion treatment, the MnO content is not less than 30%, S≤0.05%, P≤0.05%; the BaCO 3 is in the form of barium carbonate Added, the content is not less than 70%; the SiO 2 is brought in through manganese ore, bauxite, fluorite, fused magnesia, rare earth ferrosilicon and binder water glass, not specially added, and the total content of SiO 2 is controlled 20% or less, S, P≤0.03%; the TiO 2 is added in the form of natural rutile, and the TiO 2 content is above 58%; the Re and Si alloy is added in the form of rare earth ferrosilicon, the Re content is more than 30%, and the Si content More than 45%; the Ni alloy is added in the form of electrolytic nickel-iron, the Ni content is more than 90%, P, S≤0.03%; the B iron alloy is added in the form of electrolytic nickel-iron, the B content is more than 20%, P≤0.03%, S≤0.03%; the iron powder is an atomized reduced iron powder with an oxygen content of less than 0.5%, and the Fe content is more than 40% relative to the total iron powder.
所述萤石矿物质粉的粒度为100目以上;所述电熔镁砂的粒度为80~100目;所述铝矾土的粒度为80~100目;所述SiO2的粒度为80~100目;所述天然金红石的粒度为100目以上;所述稀土硅铁的粒度为80~120目;所述镍铁的粒度:80~120目;所述镍铁的粒度:80~120目;所述雾化还原铁粉的粒度在200目以下。The particle size of the fluorite mineral powder is above 100 mesh; the particle size of the fused magnesia is 80-100 mesh; the particle size of the bauxite is 80-100 mesh; the particle size of the SiO2 is 80-100 mesh. 100 mesh; the particle size of the natural rutile is above 100 mesh; the particle size of the rare earth ferrosilicon is 80-120 mesh; the particle size of the ferronickel: 80-120 mesh; the particle size of the ferronickel: 80-120 mesh ; The particle size of the atomized reduced iron powder is below 200 mesh.
通过萤石、电熔镁砂、铝矾土、大理石、碳酸钡、锰矿、金红石、稀土硅铁、镍铁、硼铁、铁粉的形式加入烧结焊剂所需的化学成分时,烧结焊剂中矿物质组分及合金重量百分比为:萤石:8~18%、电熔镁砂:18~22%、铝矾土:20~25%、大理石:5~10%、碳酸钡:7~15%、锰矿:8~15%、金红石:8~15%、稀土硅铁:0.2~1%、镍铁:1~5%;硼铁:0.8~1.5%、铁粉:10~30%。When the chemical components required for sintering flux are added in the form of fluorite, fused magnesia, bauxite, marble, barium carbonate, manganese ore, rutile, rare earth ferrosilicon, ferronickel, ferroboron, and iron powder, the minerals in the sintering flux Material components and alloy weight percentages are: fluorite: 8-18%, fused magnesia: 18-22%, bauxite: 20-25%, marble: 5-10%, barium carbonate: 7-15% , Manganese ore: 8-15%, rutile: 8-15%, rare earth ferrosilicon: 0.2-1%, nickel-iron: 1-5%, boron iron: 0.8-1.5%, iron powder: 10-30%.
实施例2Example 2
一种用于双联管埋弧环焊的烧结焊剂的制备方法,包括以下步骤:A preparation method for sintered flux for submerged arc girth welding of duplex pipes, comprising the following steps:
S1:按重量份,将8~18份萤石、18~22份电熔镁砂、20~25份铝矾土、5~10份大理石、7~15份碳酸钡、8~15份锰矿、8~15份金红石、0.2~1份稀土硅铁、1~5份镍铁、0.8~1.5 份硼铁、10~30份铁粉,均匀混合;S1: By weight, 8-18 parts of fluorite, 18-22 parts of fused magnesia, 20-25 parts of bauxite, 5-10 parts of marble, 7-15 parts of barium carbonate, 8-15 parts of manganese ore, 8-15 parts of rutile, 0.2-1 part of rare earth ferrosilicon, 1-5 parts of ferronickel, 0.8-1.5 parts of ferroboron, 10-30 parts of iron powder, and mix evenly;
S2:在步骤S1中得到的混合物中加入15.48~31.5份粘结剂,将粘结成形的湿料用簸箕或造粒机震动、摇晃进行造粒;S2: Add 15.48 to 31.5 parts of binder to the mixture obtained in step S1, vibrate and shake the bonded wet material with a dustpan or a granulator to granulate;
S3:造粒过程中,通过10~20目的筛子将造粒成形的焊剂粒度控制在10~60目之间;S3: During the granulation process, the particle size of the granulated flux is controlled between 10-60 mesh through a 10-20 mesh sieve;
S4:通过高温炉对成型后的焊剂在200~350℃温度范围内进行烘干处理;S4: drying the molded flux in a temperature range of 200-350°C in a high-temperature furnace;
S5:将烘干后的焊剂通过烧结炉在800~900℃温度范围内烧结;S5: sintering the dried flux through a sintering furnace at a temperature range of 800-900°C;
S6:对烧结后的焊剂通过10~60目的筛选后进行包装。S6: Packaging the sintered flux after passing through 10-60 mesh screening.
所述步骤S2中的粘结剂为钠水玻璃,所述钠水玻璃作为粘结剂的波美度为41.9~43.9,模数为2.5~2.7。The binder in the step S2 is sodium silicate, and the Baume degree of the sodium silicate as binder is 41.9-43.9, and the modulus is 2.5-2.7.
所述步骤S5中,烧结时通入流量为0.1~1升/分钟的惰性气体对焊剂进行保护。In the step S5, during sintering, an inert gas with a flow rate of 0.1-1 liter/min is introduced to protect the flux.
实施例3Example 3
根据上述实施例1所述的一种用于双联管埋弧环焊的烧结焊剂,采用实施例2所述的一种用于双联管埋弧环焊的烧结焊剂的制备方法,进行烧结焊剂制备。具体过程如下:According to a kind of sintering flux for double pipe submerged arc welding described in above-mentioned embodiment 1, adopt the preparation method of a kind of sintering flux for double pipe submerged arc welding described in embodiment 2, carry out sintering Flux preparation. The specific process is as follows:
(1)焊剂组分(wt%)(1) Flux components (wt%)
通过萤石、电熔镁砂、铝矾土、大理石、碳酸钡、锰矿、金红石、稀土硅铁、镍铁、硼铁、铁粉的形式加入烧结焊剂所需的化学成分时,烧结焊剂中矿物质组分及合金重量百分比为:萤石10,电熔镁砂18.5,铝矾土21.5,大理石6,碳酸钡8.5,锰矿12,金红石6,稀土硅铁0.2,镍铁3,硼铁1、铁粉12。When the chemical components required for sintering flux are added in the form of fluorite, fused magnesia, bauxite, marble, barium carbonate, manganese ore, rutile, rare earth ferrosilicon, ferronickel, ferroboron, and iron powder, the minerals in the sintering flux Material components and alloy weight percentages are: fluorite 10, fused magnesia 18.5, bauxite 21.5, marble 6, barium carbonate 8.5, manganese ore 12, rutile 6, rare earth ferrosilicon 0.2, nickel iron 3, boron iron 1, iron powder12.
(2)烧结焊剂制备(2) Preparation of sintered flux
将上述矿物质组分及合金混合搅拌均匀后,加入粘接剂钾钠水玻璃进行湿混,然后用簸箕或造粒机进行造粒,将焊剂粒度控制在10~60目之间,之后进行200~250℃低温烘干,再在800~900℃进行高温烧结后,经过10~60目的筛选后使用具有防潮性能的包装袋进行包装。After the above mineral components and alloys are mixed and stirred evenly, the binder potassium sodium water glass is added for wet mixing, and then granulated with a dustpan or a granulator to control the particle size of the flux between 10 and 60 mesh, and then carry out Low-temperature drying at 200-250°C, high-temperature sintering at 800-900°C, screening of 10-60 meshes, and packaging in moisture-proof packaging bags.
(3)将本发明焊剂与相应的低温焊丝匹配进行熔敷金属焊接,按照相关的焊接材料标准要求,试板采用Q235,厚度为25mm,坡口角度20°,根部间隙为15mm。焊接规范为电流480A,电压30V,焊接速度26m/h,道间温度150±15℃,焊接后熔敷金属力学性能如表 1所示。(3) The flux of the present invention is matched with the corresponding low-temperature welding wire to carry out deposited metal welding. According to the relevant welding material standard requirements, the test plate adopts Q235, the thickness is 25mm, the groove angle is 20°, and the root gap is 15mm. The welding specification is current 480A, voltage 30V, welding speed 26m/h, interpass temperature 150±15°C, and the mechanical properties of the deposited metal after welding are shown in Table 1.
表1熔敷金属力学性能Table 1 Mechanical properties of deposited metal
从表1可以看出,采用本发明焊剂与相应的低温焊丝匹配进行熔敷金属焊接,相比标准要求,焊缝在具备较高强韧性的基础上,同时具备优良的CTOD断裂韧性。It can be seen from Table 1 that when the flux of the present invention is matched with the corresponding low-temperature welding wire for deposited metal welding, compared with the standard requirements, the weld seam has excellent CTOD fracture toughness on the basis of higher strength and toughness.
(4)本发明焊剂与相应的低温焊丝匹配进行两根钢管的环向位置焊接,钢管钢级X80,钢管规格Φ1422×21.4mm,化学成分C:0.05,Si:0.25,Mn:1.68,P:0.011,S:0.0016,Cu:0.17,Ni:0.37,Cr:0.22,Mo:0.22,Ti:0.018,V:0.05,Al:0.03,B:0.0004,其余为铁。采用的工艺为:环向位置坡口角度为内表面60°,内表面80°,根部间隙为2mm,钝边为6~8mm;焊接顺序为先采用内对口器对两根钢管进行组对,并采用CO2气体保护自动焊进行预焊,再行采用埋弧焊接依次完成组对钢管的内外焊接。其中,埋弧焊工艺采用內焊单丝,外焊单丝打底和填充盖面的组合工艺,內焊电流850A,电压30V;外焊打底规范:打底焊电流680A,电压31.5V,焊接速度为0.7m/min;盖面、填充焊前丝电流700A,电压30V,焊接速度为,1m/min,道间温度150±15℃,焊接后金属力学性能如表2所示。(4) The flux of the present invention is matched with the corresponding low-temperature welding wire to carry out welding in the circumferential position of two steel pipes. The steel pipe steel grade is X80, the steel pipe specification is Φ1422×21.4mm, and the chemical composition C: 0.05, Si: 0.25, Mn: 1.68, P: 0.011, S: 0.0016, Cu: 0.17, Ni: 0.37, Cr: 0.22, Mo: 0.22, Ti: 0.018, V: 0.05, Al: 0.03, B: 0.0004, and the rest are iron. The process used is: the groove angle at the circumferential position is 60° on the inner surface, 80° on the inner surface, the root gap is 2mm, and the blunt edge is 6-8mm; And use CO 2 gas shielded automatic welding for pre-welding, and then use submerged arc welding to complete the internal and external welding of the paired steel pipes in sequence. Among them, the submerged arc welding process adopts the combination process of internal welding single wire, external welding single wire bottoming and filling cover, internal welding current 850A, voltage 30V; external welding bottoming specification: bottoming welding current 680A, voltage 31.5V, The welding speed is 0.7m/min; the current of the welding wire before covering and filling is 700A, the voltage is 30V, the welding speed is 1m/min, and the interpass temperature is 150±15°C. The mechanical properties of the metal after welding are shown in Table 2.
表2环焊缝金属力学性能Table 2 Mechanical properties of girth weld metal
从表2可以看出,采用本发明焊剂与相应的低温焊丝匹配进行两根钢管的环向位置焊接,焊缝具备较高强韧性,焊接过程中焊缝熔渣不流失,焊道规则,焊缝表面光滑,金属光泽明显,熔渣易于脱落,环焊缝金属抗拉强度远高于标准值,采用本发明焊剂与相应的焊丝对两根X80钢级钢管进行环向焊接后,依据天然气输送管道焊接标准进行无损检测后,焊缝未出现裂纹与超标气孔、夹渣满足标准要求,同时焊缝具有优异的断裂韧性。As can be seen from Table 2, the weld flux of the present invention is matched with the corresponding low-temperature welding wire to carry out the circumferential position welding of two steel pipes. The surface is smooth, the metallic luster is obvious, the slag is easy to fall off, and the tensile strength of the girth weld metal is much higher than the standard value. After the non-destructive testing of welding standards, there are no cracks, excessive pores, and slag inclusions in the welds to meet the standard requirements, and the welds have excellent fracture toughness.
根据上述实施例1所述的一种用于双联管埋弧环焊的烧结焊剂,采用实施例2所述的一种用于双联管埋弧环焊的烧结焊剂的制备方法,进行烧结焊剂制备,并采用实施例3中相同的焊剂使用过程,具体情况如实施例4、实施例5、实施例6、实施例7所述,对比例为对比例1、对比例2、对比例3、对比例4。According to a kind of sintering flux for double pipe submerged arc welding described in above-mentioned embodiment 1, adopt the preparation method of a kind of sintering flux for double pipe submerged arc welding described in embodiment 2, carry out sintering Flux preparation, and adopt the same flux use process in embodiment 3, specific situation is as described in embodiment 4, embodiment 5, embodiment 6, embodiment 7, comparative example is comparative example 1, comparative example 2, comparative example 3 , comparative example 4.
实施例4~7、对比例1~4中烧结焊剂的化学元素成分按重量百分比如表3所示。The chemical element components of the sintered flux in Examples 4-7 and Comparative Examples 1-4 are shown in Table 3 by weight percentage.
表3实施例4~7、对比例1~4中烧结焊剂的化学元素成分按重量百分比(wt%)The chemical element composition of sintered flux in table 3 embodiment 4~7, comparative example 1~4 is by weight percentage (wt %)
实施例4~7、对比例1~4中烧结焊剂的制备参数见表4所示。The preparation parameters of the sintered flux in Examples 4-7 and Comparative Examples 1-4 are shown in Table 4.
表4实施例4~7、对比例1~4中烧结焊剂的制备参数The preparation parameters of sintered flux in table 4 embodiment 4~7, comparative example 1~4
采用实施例4~7、对比例1~4烧结焊剂焊接环焊缝的力学性能结果见表5所示。Table 5 shows the mechanical property results of the sintered flux welded girth welds of Examples 4-7 and Comparative Examples 1-4.
表5实施例4~7、对比例1~4烧结焊剂检测情况及环焊缝的力学及工艺性能结果Table 5 Examples 4 to 7, comparative examples 1 to 4 sintered flux detection and the mechanical and process performance results of the girth weld
结合表3和表4,对比例1~4套管中某些组分的重量百分比(wt%)超出本发明技术方案所涉及的范围,例如:对比例1中,其中的TiO2的重量百分高于本发明焊剂中TiO2的重量百分比,对比例3中,其中的BaCO3、Fe粉及Re的重量百分高于本发明焊剂中TiO2、Fe及Re的重量百分比;对比例1~4中烧结焊剂的某些制备工艺参数超出本发明技术方案所涉及的范围,例如对比例1中焊剂烘干温度低于本发明技术方案烘干温度;从表5可以看出对比例1~4中焊剂,各项性能指标中至少有一项低于标准设计要求,例如:对比例1 中CTOD性能不满足标准要求,且焊接后工艺性能无法达到要求,对比例2中冲击韧性值及CTOD均不能满足标准要求,因此,对比例1~4中焊剂不适应于埋弧双联管的应用要求。In conjunction with Table 3 and Table 4, the percentage by weight (wt %) of some components in comparative examples 1~4 bushing exceeds the scope involved in the technical solution of the present invention, for example: in comparative example 1 , the TiO wherein The weight percent The percentage by weight of TiO 2 in the flux of the present invention is higher than that of TiO 2 in the flux of the present invention. In Comparative Example 3, the percentage by weight of BaCO 3 , Fe powder and Re is higher than that of TiO 2 , Fe and Re in the flux of the present invention; Comparative Example 1 Some preparation process parameters of the sintered flux in ~ 4 exceed the range involved in the technical solution of the present invention, for example, the drying temperature of the flux in the comparative example 1 is lower than the drying temperature of the technical solution of the present invention; as can be seen from Table 5, the comparative example 1 ~ For flux 4, at least one of the performance indicators is lower than the standard design requirements. For example, the CTOD performance in Comparative Example 1 does not meet the standard requirements, and the process performance after welding cannot meet the requirements. The impact toughness value and CTOD in Comparative Example 2 are both Can not meet the standard requirements, therefore, the flux in Comparative Examples 1 to 4 is not suitable for the application requirements of the submerged arc double pipe.
从表5可以看出,相比对比例1~4,采用实施例4~7中埋弧烧结焊剂焊接后的焊缝的抗拉强度695~715MPa,焊剂中水分含量<0.1%,焊剂中机械夹杂物<0.3%,-10℃环焊缝冲击功≥150J,且韧性转变温度在-40℃以下,-10℃CTOD断裂韧性σm≥0.254mm。同时,几种焊剂焊接后均能够实现渣壳的自动脱落,并保证焊道表面的光滑、美观,因此,采用实施例4~7中焊剂进行双联管环焊后具有较高强度、高韧性及优异的抗断裂性能,尤其是环焊接后焊道形貌相比普通焊剂得到了明显的改良,各项性能大大优于目前同类产品,本发明可以满足于埋弧焊接双联管环焊性能的要求。As can be seen from Table 5, compared with Comparative Examples 1 to 4, the tensile strength of the weld seam after submerged arc sintering flux welding in Examples 4 to 7 is 695 to 715 MPa, the moisture content in the flux is <0.1%, and the mechanical strength in the flux is Inclusions <0.3%, -10°C girth weld impact energy ≥150J, and ductile transition temperature below -40°C, -10°C CTOD fracture toughness σm≥0.254mm. At the same time, several kinds of fluxes can realize the automatic shedding of the slag crust after welding, and ensure the smooth and beautiful appearance of the weld bead surface. Therefore, the fluxes in Examples 4 to 7 are used for double pipe girth welding to have high strength and high toughness And excellent fracture resistance performance, especially the weld bead morphology after ring welding has been significantly improved compared with ordinary flux, and the performance is much better than the current similar products. The present invention can meet the performance of submerged arc welding double pipe ring welding requirements.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111495973.3A CN116275699A (en) | 2021-12-09 | 2021-12-09 | A kind of sintering flux for submerged arc girth welding of duplex pipes and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111495973.3A CN116275699A (en) | 2021-12-09 | 2021-12-09 | A kind of sintering flux for submerged arc girth welding of duplex pipes and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116275699A true CN116275699A (en) | 2023-06-23 |
Family
ID=86817244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111495973.3A Pending CN116275699A (en) | 2021-12-09 | 2021-12-09 | A kind of sintering flux for submerged arc girth welding of duplex pipes and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116275699A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116690027A (en) * | 2023-08-08 | 2023-09-05 | 苏州思萃熔接技术研究所有限公司 | Submerged arc welding flux for welding 304 austenitic stainless steel and preparation method thereof |
-
2021
- 2021-12-09 CN CN202111495973.3A patent/CN116275699A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116690027A (en) * | 2023-08-08 | 2023-09-05 | 苏州思萃熔接技术研究所有限公司 | Submerged arc welding flux for welding 304 austenitic stainless steel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105798485B (en) | X80 pipe line steel self-protection flux-cored wire and preparation method thereof | |
CN109623193B (en) | Low-hydrogen high-toughness seamless flux-cored wire for low-temperature steel and preparation method thereof | |
CN103192196B (en) | A kind of fast sintered flux of high tenacity height weldering being applicable to the submerged arc welding of X90/X100 ultra high-strength pipeline steel pipe | |
CN108296667B (en) | Flux-cored wire for underwater welding and preparation method | |
CN106514055A (en) | Ship steel submerged-arc horizontal welding flux and preparation method thereof | |
CN111660038B (en) | Sintered flux for welding high-manganese low-temperature steel and preparation method thereof | |
CN103273222B (en) | High-strength high-tenacity sintered flux for afterheat-free welding | |
CN104400250A (en) | Low-temperature steel flux-cored wire | |
JP2010125509A (en) | Flux-cored wire for submerged arc welding of low-temperature steel, and welding method using the same | |
CN104741816A (en) | Flux-cored welding wire for X120 pipeline steel welding and manufacturing method thereof | |
CN113695788B (en) | Amorphous state smelting flux and preparation method and application thereof | |
CN102642100A (en) | Submerged arc sintered flux for X100 pipeline steel and preparation method of submerged arc sintered flux | |
CN106736049A (en) | A kind of good seamless flux-cored wire of the capability of welding vertically upwards | |
CN115990728B (en) | A 5Y grade 460MPa high toughness rutile seamless flux-cored welding wire | |
CN111360451A (en) | Sintered flux suitable for welding X80 low-temperature thick-wall submerged arc steel pipe | |
CN116275699A (en) | A kind of sintering flux for submerged arc girth welding of duplex pipes and preparation method thereof | |
CN104741834A (en) | Flux-cored wire for welding X90 pipeline steel and preparing method thereof | |
CN114346515B (en) | Copper-nickel-based welding wire for titanium-steel arc additive transition layer and preparation method thereof | |
CN108637527B (en) | Submerged arc automatic welding and sintering welding flux for 1000MPa high-strength steel and preparation method | |
CN104588916B (en) | Double-slag-system high toughness high speed submerged-arc welding sintered flux for X100 pipeline steel and preparation method | |
CN114850724A (en) | High-alkaline sintered flux for submerged-arc welding of austenitic low-temperature steel and preparation method thereof | |
CN112222682A (en) | High-fluorine-alkali type powder, preparation method and self-shielded flux-cored wire | |
JP2010234429A (en) | Coated arc welding rod for duplex stainless steel welding to refine solidified crystal grains | |
CN112809244B (en) | High-toughness high-efficiency welding rod | |
CN110385546A (en) | A kind of the X80 pipe line steel submerged-arc welding flux-cored wire and preparation method of good low temperature performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 100007 Oil Mansion, 9 North Avenue, Dongcheng District, Beijing, Dongzhimen Applicant after: CHINA NATIONAL PETROLEUM Corp. Applicant after: China Petroleum Group Gemstone Pipe Industry Co.,Ltd. Applicant after: CNPC National Petroleum and natural gas pipe Engineering Technology Research Center Co.,Ltd. Address before: 100007 Oil Mansion, 9 North Avenue, Dongcheng District, Beijing, Dongzhimen Applicant before: CHINA NATIONAL PETROLEUM Corp. Country or region before: China Applicant before: BAOJI PETROLEUM STEEL PIPE Co.,Ltd. Applicant before: CNPC National Petroleum and natural gas pipe Engineering Technology Research Center Co.,Ltd. |