CN116271263A - 一种复合增强可降解材料及其制备方法和应用 - Google Patents

一种复合增强可降解材料及其制备方法和应用 Download PDF

Info

Publication number
CN116271263A
CN116271263A CN202310096985.1A CN202310096985A CN116271263A CN 116271263 A CN116271263 A CN 116271263A CN 202310096985 A CN202310096985 A CN 202310096985A CN 116271263 A CN116271263 A CN 116271263A
Authority
CN
China
Prior art keywords
composite reinforced
degradable material
reinforced degradable
polylactic acid
octadecenoic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310096985.1A
Other languages
English (en)
Other versions
CN116271263B (zh
Inventor
欧阳阅翰
陈志琪
郑皙月
阳范文
卓志宁
赵珊
周鑫怡
蒙俊涛
陈睿
吴晓朝
朱继翔
田秀梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Medical University
Original Assignee
Guangzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Medical University filed Critical Guangzhou Medical University
Priority to CN202310096985.1A priority Critical patent/CN116271263B/zh
Publication of CN116271263A publication Critical patent/CN116271263A/zh
Application granted granted Critical
Publication of CN116271263B publication Critical patent/CN116271263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/127Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing fillers of phosphorus-containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/129Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/41Anti-inflammatory agents, e.g. NSAIDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种复合增强可降解材料及其制备方法和应用。本发明的复合增强可降解材料包括以下组分:外消旋聚乳酸31.2~65.2份、纳米羟基磷灰石20~40份、MPEG‑PLA 0.5~3份、环氧化十八碳烯酸0.2~0.8份、左旋聚乳酸纤维15~25份;所述环氧化十八碳烯酸中含有环氧基和羧基,且环氧值≥4.0。该复合增强可降解材料以环氧化十八碳烯酸与纳米羟基磷灰石、MPEG‑PLA共聚物相结合,与左旋聚乳酸纤维搭配后,不仅能够有效提高复合增强可降解材料的强度,还可以促进纳米羟基磷灰石均匀分散,增强纳米羟基磷灰石对聚乳酸体内降解所产生酸性物质的中和效果,避免局部酸性太高引发无菌性炎症反应。

Description

一种复合增强可降解材料及其制备方法和应用
技术领域
本发明涉及高分子化合物的组合物技术领域,更具体地,涉及一种复合增强可降解材料及其制备方法和应用。
背景技术
由于外伤等暴力因素破坏了骨的连续性或完整性称为外伤性骨折,临床骨折固定方法主要有外固定法和内固定法,特别是内固定法主要为切开复位,使用骨螺钉和接骨板等内固定物进行固定,通过局部加压作用将骨折端用解剖复位方式予以固定,是目前骨科临床使用的常规手术。
骨科外科手术中经常使用的骨固定系统包括骨螺钉和接骨板等,主要由金属材料或高分子材料制备得到,而且在临床应用中还发现不锈钢及钛合金金属骨螺钉,存在以下问题:(1)硬度高、强度大易产生应力遮挡效应,导致骨质疏松以及术后愈合不良;(2)由于其化学成分与天然骨成分不同,与骨结合力较差,部分患者出现排异反应和炎症等不良后果需二次手术取出;(3)对处于生长发育阶段的儿童和青少年必须二次手术取出,增加了患者的痛苦和手术负担。
为克服金属骨螺钉的不足,人们开始采用高分子材料代替金属材料来制备骨螺钉,例如以PLA(聚乳酸)为原料制备具有生物可降解性能的骨螺钉,该骨螺钉可在术后6个月内保存性能基本不变,随后逐渐降解生成乳酸、二氧化碳和水等低分子产物,通过体液循环排除体外,无需二次手术取出,在非承重骨折固定领域日益受到青睐。然而,PLA骨螺钉仍然存在如下不足:(1)弯曲强度和模量偏低,无法用于需承重部位的骨折固定;(2)纯PLA降解产物呈酸性,局部乳酸堆积量过大容易引发炎症反应;(3)骨螺钉降解后,打钉部位残留孔洞,容易产生应力集中引发二次骨折;(4)左旋聚乳酸的降解时间长,与骨折修复时间匹配不佳。
为解决PLA降解后酸性产物易引起体内局部炎症反应问题,人们将羟基磷灰石与聚乳酸搭配使用,例如,专利CN110962318A中公开了一种3D打印聚乳酸/纳米羟基磷灰石复合材料骨螺钉的制备方法,以纳米级羟基磷灰石粉末和医用级PLA粉末为原料,利用3D打印制得PLA/nHA复合骨螺钉,但该骨螺钉的强度较低。专利CN102406967A公布了一种人体可吸收纤维/聚己内酯可降解骨钉及其制备方法,该可降解骨钉为人体可吸收纤维与聚己内酯熔融共混制成的复合材料钉状物,其中聚己内酯为骨钉基体,聚乳酸等可吸收纤维分散在聚己内酯中,专利中没有测试材料强度,由于聚己内酯强度不高,可以推测用其制备的骨螺钉强度不可能太高。专利CN110170074A公开了一种熔融共混法制备的柠檬酸钙/聚乳酸骨修复材料及其应用,柠檬酸钙降解偏碱性环境可以抵消聚乳酸单独降解所带来的酸性环境,提供一个稳定适宜的钙离子环境,创造局部高钙环境,以促进新生骨组织的生长,但其采用的聚乳酸分子量为10~20万,拉伸强度为14~29MPa、弹性模量为449~683MPa。专利CN101209355A公开了一种用于骨板、骨钉、骨块的材料的制备方法,采用熔融共混改性制备改性材料,然后注塑成型或者热压成型制备产品,该方法采用两次热加工,聚乳酸对热敏感,在一定程度上会损害其力学性能和稳定性。
发明内容
本发明的目的是克服现有3D打印聚乳酸/纳米羟基磷灰石复合材料骨螺钉的强度较差的不足,提供一种复合增强可降解材料,以环氧化十八碳烯酸与纳米羟基磷灰石、MPEG-PLA共聚物相结合,利用环氧化十八碳烯酸中的羧基与纳米羟基磷灰石产生氢键结合,同时利用环氧化十八碳烯酸中的环氧基在熔融共混过程中与MPEG-PLA共聚物中的羟基发生化学键合,进而提高纳米羟基磷灰石与聚乳酸基体的界面结合力,与左旋聚乳酸纤维相结合后,不仅能够有效提高材料的强度;还可以促进纳米羟基磷灰石均匀分散,增强纳米羟基磷灰石对聚乳酸体内降解所产生酸性物质的中和效果,避免局部酸性太高引发无菌性炎症反应。
本发明的另一目的是提供一种复合增强可降解材料的制备方法。
本发明的又一目的是提供上述复合增强可降解材料在骨螺钉或骨板中的应用。
本发明的又一目的是提供一种由上述复合增强可降解材料制得的骨螺钉。
本发明上述目的通过以下技术方案实现:
一种复合增强可降解材料,按重量份数计,包括以下组分:
Figure BDA0004072057920000021
Figure BDA0004072057920000031
所述环氧化十八碳烯酸中含有环氧基和羧基,且环氧值≥4.0。
本发明的复合增强可降解材料以环氧化十八碳烯酸与纳米羟基磷灰石、MPEG-PLA共聚物相结合,利用环氧化十八碳烯酸中的羧基与纳米羟基磷灰石产生氢键结合,同时利用环氧化十八碳烯酸中的环氧基在熔融共混过程中与MPEG-PLA共聚物中的羟基发生化学键合,进而提高纳米羟基磷灰石与聚乳酸基体的界面结合力,与左旋聚乳酸纤维相结合后,不仅能够有效提高材料的强度;还可以促进纳米羟基磷灰石均匀分散,增强纳米羟基磷灰石对聚乳酸体内降解所产生酸性物质的中和效果,避免局部酸性太高引发无菌性炎症反应。
优选地,所述复合增强可降解材料,按重量份数计,包括以下组分:
Figure BDA0004072057920000032
更优选地,所述复合增强可降解材料,按重量份数计,包括以下组分:
外消旋聚乳酸48.2份,纳米羟基磷灰石30份,MPEG-PLA共聚物1.5份,环氧化十八碳烯酸0.3份,左旋聚乳酸纤维20份。
在具体实施方式中,所述环氧化十八碳烯酸可以由以下制备方法制得:
将9-十八碳烯酸、去离子水和聚乙二醇充分搅拌均匀后逐滴加入双氧水,然后在15~20℃条件下反应48~72h,然后抽滤,减压旋转蒸发除去水分,控制水分含量≤0.05%,即可获得环氧化十八碳烯酸;
其中,所述9-十八碳烯酸、去离子水、聚乙二醇和双氧水的质量比(60~70):(19.9~24.98):(0.02~0.1):(15~20)。
具体地,所述聚乙二醇的数均聚合度为400。
在具体实施方式中,所述外消旋聚乳酸采用酯基封端且其特性粘度为4~6dl/g。
在具体实施方式中,所述MPEG-PLA共聚物中PEG嵌段为2000~3000,PEG在共聚物的摩尔比为2%~5%。
在具体实施方式中,所述左旋聚乳酸纤维的直径为1~5μm;所述纳米羟基磷灰石的直径为15~25μm。
本发明还保护一种复合增强可降解材料的制备方法,包括以下步骤:
先将纳米羟基磷灰石与环氧化十八碳烯酸混合均匀,再加入外消旋聚乳酸、MPEG-PLA共聚物和左旋聚乳酸纤维混合均匀后熔融共混挤出,即可获得复合增强可降解材料。
一种上述复合增强可降解材料在骨螺钉或骨板中的应用,也在本发明的保护范围之内。
本发明还保护一种由上述复合增强可降解材料制备得到的骨螺钉。
与现有技术相比,本发明的有益效果是:
本发明的复合增强可降解材料以环氧化十八碳烯酸与纳米羟基磷灰石、MPEG-PLA共聚物相结合,利用环氧化十八碳烯酸中的羧基与纳米羟基磷灰石产生氢键结合,同时利用环氧化十八碳烯酸中的环氧基在熔融共混过程中与MPEG-PLA共聚物中的羟基发生化学键合,进而提高纳米羟基磷灰石与聚乳酸基体的界面结合力,与左旋聚乳酸纤维相结合后,不仅能够有效提高材料的强度;还可以促进纳米羟基磷灰石均匀分散,增强纳米羟基磷灰石对聚乳酸体内降解所产生酸性物质的中和效果,避免局部酸性太高引发无菌性炎症反应。
附图说明
图1为本发明的骨螺钉3D模型;
图2为本发明的骨板3D模型;
图3为本发明实施例1中采用数字化技术制备骨螺钉样品照片;
图4为本发明实施例1中采用数字化技术制备骨板样品照片。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,但实施例并不对本发明做任何形式的限定。除非另有说明,本发明实施例采用的原料试剂为常规购买的原料试剂。
1、原料试剂
外消旋聚乳酸(DL-PLA),型号为DG-DL500(特性黏度4.0~5.0dl/g,重均分子量73~102万)、DG-DL600(特性黏度5.0~6.0dl/g,重均分子量102~137万),购自济南岱罡生物工程有限公司;
左旋聚乳酸(PLLA),型号DG-L400(特性黏度3.0~4.0dl/g,重均分子量48~73万),购自济南岱罡生物工程有限公司;
MPEG-PLA为PEG与PLLA的共聚物,PEG嵌段质量百分比5%,购自济南岱罡生物工程有限公司;
纳米羟基磷灰石(nHA),医用级,平均粒径20nm,上海阿拉丁公司;
9-十八碳烯酸,药用注射级,购自西安晋湘药用辅料有限公司;
PEG-400,药用级,西安泰华医药科技有限公司;
双氧水,3%医用级,河南六鹤药业集团。
2、性能测试
(1)外观
目测观察骨螺钉和骨板,螺纹清晰、孔洞完整、无毛刺现象判断为优;螺纹清晰、孔洞完整,但是有毛刺判断为良;出现螺纹不清晰或者毛刺,孔洞不完整或者变形判断为差。
(2)弯曲强度和弯曲模量
采用电子万能试验机进行测试,按照GB/T 1043-2008标准所述的方法进行。跨距20mm,在试件中点加力直至试件破坏,加载速度为2mm/min,记录并计算试件破坏的弯曲性能。每个样品测试5次,结果取平均值。
(3)降解性能
采用试管将矩形样条、骨螺钉和骨板浸泡在PBS溶液中,然后置入50℃的水浴恒温摇床中进行加速降解性能测试,每7天更换一次新的PBS溶液,于第14天、28天、56天取出样品测试弯曲强度和弯曲模量,并采用pH计测试PBS溶液的pH值。
环氧化十八碳烯酸
将9-十八碳烯酸、去离子水和PEG-400充分搅拌均匀后逐步滴加双氧水,控制反应温度15~20℃之间持续反应48~72h,然后抽滤,减压蒸发排出分水,控制水分含量≤0.05%,即可获得环氧化十八碳烯酸;其中,9-十八碳烯酸、去离子水、PEG-400和双氧水的质量比(60~70):(19.9~24.98):(0.02~0.1):(15~20)。
环氧化十八碳烯酸1:环氧值为4.8;
环氧化十八碳烯酸2:环氧值为4.5;
环氧化十八碳烯酸3:环氧值为4.0;
环氧化十八碳烯酸4:环氧值为2。
将左旋聚乳酸加入熔体静电纺丝机器中,然后在温度190℃、氮气保护下进行熔融纺丝,并控制纤维的直径为1~5μm,在80℃热处理24后自然冷却放置24h以上,即可获得左旋聚乳酸纤维,可根据实际需求切成不同的纤维长度(例如5~10mm)。
实施例1~8
实施例1~8中复合增强可降解材料的各组分的重量份数如表1所示。
表1实施例1~8中复合增强可降解材料
Figure BDA0004072057920000061
上述复合增强可降解材料通过如下制备方法制备得到:
S1.按照配方称取各组分,将纳米羟基磷灰石在温度120℃、2mmHg的真空干燥箱中干燥24h后加入混合机中,在200rpm的转速下一边搅拌一边缓慢滴加环氧化十八碳烯酸,滴加完毕后继续混合10分钟,然后采用三头研磨机研磨2h后出料,得到预处理材料A;
S2.将外消旋聚乳酸和MPEG-PLA用塑料磨粉机磨成100目以上的粉末,真空干燥后制得预处理材料B;
S3.将预处理材料A、预处理材料B和左旋聚乳酸纤维混合均匀后,加入挤出机在温度150~160℃、转速100rpm的条件下分别挤出圆柱形棒材D1和矩形片材E1。
个性化的骨螺钉和骨板3D模型可以采用以下制备方法得到:
S1.根据患者骨折部位的CT图像设计骨螺钉和骨板的3D模型(如图1和图2所示);
S2.设计进刀路线,设定进刀速度0.1um/s和转速3000rpm,将D1和E1采用数字雕刻机制备骨螺钉和骨板(如图3和图4所示);
S3.将雕刻好的骨螺钉和骨板采用医用纯水冲洗3遍,然后用超声波清洗5分钟,在50℃、2mmHg真空干燥8h制得产品;
其中,骨板雕刻参数:吃刀深度设置为0mm,主轴转速8000r/min,进给速度为3mm/min,路径间距0.05mm,下刀角度0.5°;骨螺钉雕刻参数:走刀方式为螺旋、主轴转速16000r/min、进给速度1.2mm/min,路径间距0.03mm,采用旋转精加工的方式。
对比例1~3
对比例1~3中复合增强可降解材料的各组分的重量份数如表2所示
表2对比例1~3中复合增强可降解材料
Figure BDA0004072057920000071
上述复合增强可降解材料通过如下制备方法制备得到:
S1.按照配方称取各组分,将纳米羟基磷灰石在温度120℃、2mmHg的真空干燥箱中干燥24h后加入混合机中,在200rpm的转速下一边搅拌一边缓慢滴加环氧化十八碳烯酸,滴加完毕后继续混合10分钟,然后采用三头研磨机研磨2h后出料,得到预处理材料A;
S2.将外消旋聚乳酸和MPEG-PLA用塑料磨粉机磨成100目以上的粉末,真空干燥后制得预处理材料B;
S3.将预处理材料A、预处理材料B和左旋聚乳酸纤维混合均匀后,加入挤出机在温度150~160℃、转速100rpm的条件下分别挤出圆柱形棒材D2和矩形片材E2。
个性化的骨螺钉和骨板3D模型可以采用以下制备方法得到:
S1.根据患者骨折部位的CT图像设计骨螺钉和骨板的3D模型;
S2.设计进刀路线,设定进刀速度0.1um/s和转速3000rpm,将D2和E2采用数字雕刻机制备骨螺钉和骨板;
S3.将雕刻好的骨螺钉和骨板采用医用纯水冲洗3遍,然后用超声波清洗5分钟,在50℃、2mmHg真空干燥8h制得产品;
其中,骨板雕刻参数:吃刀深度设置为0mm,主轴转速8000r/min,进给速度为3mm/min,路径间距0.05mm,下刀角度0.5°;骨螺钉雕刻参数:走刀方式为螺旋、主轴转速16000r/min、进给速度1.2mm/min,路径间距0.03mm,采用旋转精加工的方式。
按照上述提及的方法对各实施例和对比例中复合增强可降解材料的性能测试及采用其雕刻的骨螺钉和骨板外观结果如表3所示。
表3各实施例和对比例的测试结果
Figure BDA0004072057920000081
本发明复合增强可降解材料降解56天后的弯曲强度达到102~143MPa,弯曲模量达到1227~1902MPa,pH值为5.9~6.5,说明不仅具备高强度(高弯曲强度和高弯曲模量),还可以有效避免局部酸性太高引发无菌性炎症反应。由对比例1可知,当环氧化十八碳烯酸的环氧值过低时,难以有效提高纳米羟基磷灰石与聚乳酸基体的界面结合力,即便与左旋聚乳酸纤维相结合后,对复合材料的强度提升有限;从对比例2和对比例3可发现,当环氧化十八碳烯酸添加量太低时无法对纳米羟基磷灰石表面进行有效包覆,故力学性能不佳;当添加量太高时,部分环氧化十八碳烯酸在熔融共混过程发生自聚,同时可能与MPEG-PLA发生化学反应影响增容效果,故添加量过多或过少时,都会降低复合增强可降解材料的强度和降解性能。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种复合增强可降解材料,其特征在于,按重量份数计,包括以下组分:
Figure FDA0004072057890000011
所述环氧化十八碳烯酸中含有环氧基和羧基,且环氧值≥4.0。
2.如权利要求1所述复合增强可降解材料,其特征在于,按重量份数计,包括以下组分:
Figure FDA0004072057890000012
3.如权利要求1所述复合增强可降解材料,其特征在于,所述环氧化十八碳烯酸由以下制备方法制得:
将9-十八碳烯酸、去离子水和聚乙二醇充分搅拌均匀后逐滴加入双氧水,然后在15~20℃条件下反应48~72h,再抽滤、减压旋转蒸发除去水分,控制水分含量≤0.05%,即可获得环氧化十八碳烯酸;
其中,所述9-十八碳烯酸、去离子水、聚乙二醇和双氧水的质量比(60~70):(19.9~24.98):(0.02~0.1):(15~20)。
4.如权利要求3所述复合增强可降解材料,其特征在于,所述聚乙二醇的数均聚合度为400。
5.如权利要求1所述复合增强可降解材料,其特征在于,所述外消旋聚乳酸采用酯基封端且其特性粘度为4~6dl/g。
6.如权利要求1所述复合增强可降解材料,其特征在于,所述MPEG-PLA共聚物中PEG嵌段为2000~3000,PEG在共聚物的摩尔比为2%~5%。
7.如权利要求1所述复合增强可降解材料,其特征在于,所述左旋聚乳酸纤维的直径为1~5μm;所述纳米羟基磷灰石的平均粒径为15~25μm。
8.一种权利要求1~7任一项所述复合增强可降解材料的制备方法,其特征在于,包括以下步骤:
先将纳米羟基磷灰石与环氧化十八碳烯酸混合均匀,再加入外消旋聚乳酸、MPEG-PLA共聚物和左旋聚乳酸纤维混合均匀后熔融共混挤出,即可获得复合增强可降解材料。
9.一种权利要求1~7任一项所述复合增强可降解材料在骨螺钉或骨板的应用。
10.一种骨螺钉,其特征在于,所述骨螺钉由权利要求1~7任一项所述复合增强可降解材料制备得到。
CN202310096985.1A 2023-02-07 2023-02-07 一种复合增强可降解材料及其制备方法和应用 Active CN116271263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310096985.1A CN116271263B (zh) 2023-02-07 2023-02-07 一种复合增强可降解材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310096985.1A CN116271263B (zh) 2023-02-07 2023-02-07 一种复合增强可降解材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116271263A true CN116271263A (zh) 2023-06-23
CN116271263B CN116271263B (zh) 2024-09-13

Family

ID=86791461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310096985.1A Active CN116271263B (zh) 2023-02-07 2023-02-07 一种复合增强可降解材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116271263B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159971A (ja) * 2002-11-14 2004-06-10 Hideki Yoshikawa 骨形成用部材およびその製造方法
JP2005330640A (ja) * 2004-04-22 2005-12-02 Ngk Spark Plug Co Ltd 有機−無機複合多孔体、繊維状有機物の製造方法、及び有機−無機複合多孔体の製造方法
WO2007065359A1 (fr) * 2005-12-09 2007-06-14 Tsinghua University Materiau hemocompatible et procede de preparation correspondant
US20130244942A1 (en) * 2011-12-23 2013-09-19 Cerapedics, Inc. Implantable materials for bone repair
CN106421928A (zh) * 2016-09-20 2017-02-22 上海理工大学 人体内可降解的羟基磷灰石/聚乳酸复合材料及制备方法
CN111671981A (zh) * 2020-06-24 2020-09-18 杭州锐健马斯汀医疗器材有限公司 一种界面螺钉鞘用可吸收复合材料及其制备方法
KR20210070523A (ko) * 2019-12-05 2021-06-15 부산대학교 산학협력단 골조직 재생 지지체 및 이의 제조 방법
CN113797395A (zh) * 2021-09-17 2021-12-17 北京爱康宜诚医疗器材有限公司 纳米羟基磷灰石/嵌段共聚物的复合材料及其制备方法
CN115252906A (zh) * 2022-07-29 2022-11-01 佛山仙湖实验室 一种三明治结构支架及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159971A (ja) * 2002-11-14 2004-06-10 Hideki Yoshikawa 骨形成用部材およびその製造方法
JP2005330640A (ja) * 2004-04-22 2005-12-02 Ngk Spark Plug Co Ltd 有機−無機複合多孔体、繊維状有機物の製造方法、及び有機−無機複合多孔体の製造方法
WO2007065359A1 (fr) * 2005-12-09 2007-06-14 Tsinghua University Materiau hemocompatible et procede de preparation correspondant
US20130244942A1 (en) * 2011-12-23 2013-09-19 Cerapedics, Inc. Implantable materials for bone repair
CN106421928A (zh) * 2016-09-20 2017-02-22 上海理工大学 人体内可降解的羟基磷灰石/聚乳酸复合材料及制备方法
KR20210070523A (ko) * 2019-12-05 2021-06-15 부산대학교 산학협력단 골조직 재생 지지체 및 이의 제조 방법
CN111671981A (zh) * 2020-06-24 2020-09-18 杭州锐健马斯汀医疗器材有限公司 一种界面螺钉鞘用可吸收复合材料及其制备方法
CN113797395A (zh) * 2021-09-17 2021-12-17 北京爱康宜诚医疗器材有限公司 纳米羟基磷灰石/嵌段共聚物的复合材料及其制备方法
CN115252906A (zh) * 2022-07-29 2022-11-01 佛山仙湖实验室 一种三明治结构支架及其制备方法和应用

Also Published As

Publication number Publication date
CN116271263B (zh) 2024-09-13

Similar Documents

Publication Publication Date Title
AU2008206383B2 (en) Novel biodegradable bone plates and bonding systems
Ji Yin et al. Preparation and characterization of hydroxyapatite/chitosan–gelatin network composite
EP1862186A1 (en) Adhesion-preventive film
DE69626996T2 (de) Unter gewebebedingungen abbaubares material und verfahren zu seiner herstellung
CN110935069B (zh) 一种复合材料、原料组合物、骨修复体、制备方法和应用
Senatov et al. Polyhydroxybutyrate/hydroxyapatite highly porous scaffold for small bone defects replacement in the nonload-bearing parts
Coskun et al. Hydroxyapatite reinforced poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) based degradable composite bone plate
EP2852417B1 (en) Resorbable bioceramic compositions of poly-4-hydroxybutyrate and copolymers
Lin et al. Calcium phosphate cement reinforced by polypeptide copolymers
JP2016534210A (ja) バイオエラストマー及びその用途
Montanheiro et al. Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds
CN116271263B (zh) 一种复合增强可降解材料及其制备方法和应用
Krtička et al. Ex-vivo biomechanical testing of pig femur diaphysis B type fracture fixed by novel biodegradable bone glue
CN110665056B (zh) 一种具备组织自粘结性能的可注射骨水泥及制备方法与应用
Dauner et al. Resorbable continuous-fibre reinforced polymers for osteosynthesis
KR20150112349A (ko) Pla와 인산칼슘을 이용한 생분해성 골접합용 복합체 그리고 이의 제조방법
KR101176793B1 (ko) 실크 피브로인 가수분해물과 pmma를 함유하는 생체적합성 골 시멘트 조성물
Demina et al. Biodegradable nanostructured composites for surgery and regenerative medicine
CN110975015A (zh) 聚芳醚酮复合材料、骨科植入材料及制备方法和应用
Ma’ruf et al. EFFECT OF GLUTARALDEHYDE AS A CROSSLINKER ON MECHANICAL CHARACTERISTICS OF CATGUT REINFORCED POLYVINYL ALCOHOL–HYDROXYAPATITE COMPOSITE AS BONE–FRACTURE FIXATION MATERIAL
Nguyen et al. Graft copolymers of methyl methacrylate and poly ([R]‐3‐hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: compression testing
JP2021040796A (ja) 骨接合用ねじ
Gogoi et al. Experimental investigation of PCL‐based composite material fabricated using solvent‐cast 3D printing process
Śmiga-Matuszowicz et al. Novel crosslinkable polyester resin–based composites as injectable bioactive scaffolds
Suprihanto et al. Effect of Sintering Temperature on PolylactidAcid/Polycaprolactone/Nano-Hydroxyapatite Biocomposites Prepared by The Cold Isostatic Pressing Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant