CN116260179B - 一种直流母线变结构双馈强励变换器 - Google Patents

一种直流母线变结构双馈强励变换器 Download PDF

Info

Publication number
CN116260179B
CN116260179B CN202211593064.8A CN202211593064A CN116260179B CN 116260179 B CN116260179 B CN 116260179B CN 202211593064 A CN202211593064 A CN 202211593064A CN 116260179 B CN116260179 B CN 116260179B
Authority
CN
China
Prior art keywords
current
voltage
series
parallel
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211593064.8A
Other languages
English (en)
Other versions
CN116260179A (zh
Inventor
徐峻涛
赵仁德
宣丛丛
刘元兵
张成义
苏恒
侯振
尹骁
何金奎
严庆增
胡慧慧
韩长忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202211593064.8A priority Critical patent/CN116260179B/zh
Publication of CN116260179A publication Critical patent/CN116260179A/zh
Application granted granted Critical
Publication of CN116260179B publication Critical patent/CN116260179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2103/00Controlling arrangements characterised by the type of generator
    • H02P2103/10Controlling arrangements characterised by the type of generator of the asynchronous type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公布了一种直流母线变结构双馈强励变换器,由网侧两电平变换器、4组DAB变换器、2组串并联切换电路和转子侧NPC型三电平逆变器构成,其中4组DAB及2组串并联切换电路共输入直流电压构成两组能够串并联切换的输出电压,并将其连接至NPC型三电平逆变器的正负直流母线,转子侧NPC型三电平逆变器对DFIG转子电流进行闭环控制。本发明强励变换器利用双有源桥变换器以及串并联切换电路构建了变结构直流母线,可在电网电压跌落时使转子侧直流母线电压瞬时升压,提升对双馈风机转子电流的控制能力,实现双馈风机的低电压穿越;采用单移相控制实现了双有源桥输出电压闭环控制,有效避免了变压器的偏磁和饱和现象。

Description

一种直流母线变结构双馈强励变换器
技术领域
本发明涉强励变换器技术领域,特别涉及一种直流母线变结构双馈强励变换器。
背景技术
随着风电的大力发展,为保证电网的安全运行,国家制定了严格的风电并网标准,其中一项要求为风电场的低电压穿越(Low Voltage Ride Though,LVRT)。
风电场不脱网运行要求为:(1)风电场内的风电机组应在风电场并网点电压标幺值U T跌至0.2 p.u.时保证至少连续并网运行625 ms;(2)风电场并网点电压在发生跌落后2s内能够恢复到0.9 p.u.时,风电场内的风电机组应保证不脱网连续运行。
目前风力发电系统的主要风机类型为永磁同步发电机(Permanent MagnetSynchronous Generator,PMSG)和双馈感应发电机(Doubly-Fed Induction Generator,DFIG)。PMSG风力发电系统中因其转子极对数较高,PMSG转子可直接与风机轴相连,无需机械齿轮箱,其定子需要背靠背式全功率变换器来实现风机与电网之间的能量交互,受电网电压跌落的影响小,但其永磁体需要使用稀土资源,并且存在失磁等问题;DFIG风力发电系统转子采用电励磁,受加工难度的限制,转子的极对数较少,需要变速箱来匹配发电机和风力机之间的转速差,DFIG定子直接与电网相连,转子励磁系统由网侧变换器和转子侧变换器组成,网侧变换器与电网相连,将电网的三相交流电整流为直流电,为转子侧变换器提供稳定的直流母线电压,转子侧变换器连接到DFIG转子,为DFIG转子提供交流励磁,同时实现变速恒频,转子绕组连接的背靠背式变换器的容量通常只有系统容量的1/3左右。
由于DFIG定子侧直接与电网相连,电网电压跌落时,DFIG定子电压也随之改变,根据楞次定律,定子磁链不能发生突变,所以定子磁链会产生直流分量,当电网发生不对称故障时还会出现负序分量。若电网电压角速度为ω s,转子转差率为s,则在电网电压不对称跌落时,DFIG定子磁链中会产生暂态直流分量和负序分量,其相对于转子的旋转角速度分别为(1-s)ω s和(2-s)ω s,转子绕组会出现较高的感应电压,当感应电压远大于直流母线电压时,会造成转子绕组过电流和转子侧变换器直流母线过电压,对DFIG转子励磁系统以及电网的安全运行产生威胁。随着风电的不断发展,双馈风机的LVRT问题成为阻碍其发展的一个重要瓶颈。
由于双馈风力发电系统受电网波动的影响较大,迫切需要一套坚强的励磁系统来使双馈风机满足风电场并网标准,并保证自身以及电网的安全稳定运行。
发明内容
为了弥补现有技术的不足,本发明提供了一种直流母线变结构双馈强励变换器。
本发明是通过如下技术方案实现的:一种直流母线变结构双馈强励变换器,由网侧两电平变换器、4组DAB变换器、2组串并联切换电路和转子侧NPC型三电平逆变器构成,其中4组DAB及2组串并联切换电路共输入直流电压构成两组能够串并联切换的输出电压,并将其连接至NPC型三电平逆变器的正负直流母线,转子侧NPC型三电平逆变器对DFIG转子电流进行闭环控制;
直流母线变结构双馈强励变换器具有两种运行模式:
并联模式
DAB工作在并联运行模式,S 1S 3S 4S 6导通,S 2S 5关断,NPC型三电平逆变器直流链电压为U dc=U o1+U o3,此为正常运行模式,可实现能量的双向流动,同时可以降低稳态运行损耗;
串联模式
DAB工作在串联运行模式,S 1S 3S 4S 6关断,S 2S 5导通,NPC型三电平逆变器直流链电压为U dc=U o1+U o2+U o3+U o4,此为电压跌落后的应对措施,可实现在电网电压跌落时瞬间提升直流母线电压,提高转子侧变换器对转子电流的控制能力,避免电网电压跌落带来的转子过电流和直流母线过电压现象。
进一步地,两组DAB输入端并联,输入电压为U i,输出端U o1U o2连接至串并联切换电路的电源输入端,经过串并联切换电路实现两个DAB输出端的串并联切换,构成变结构直流母线。
进一步地,串并联切换电路有两个电压输入端U o1U o2,其由开关管S1~3组成,其输出电压为U o,负载电流为i o
进一步地,串并联切换电路具有两种工作状态:并联运行和串联运行,并联运行时,开关管S 1S 3导通,S 2关断,此时输入电压U o1U o2并联,即U o=U o1=U o2,当处于放电状态时,U o1U o2经过开关管S 1S 3的寄生二极管向外放电,当处于充电状态时,U o经过开关管S 1S 3U o1U o2充电;串联运行时,开关管S 2导通,S 1S 3关断,此时输入电压U o1U o2串联,即U o=U o1+U o2,此时两DAB输出电压U o1U o2之间无相互关联,可采取分别闭环控制,实现输出电压U o1U o2的恒定;当处于放电状态时,U o1U o2经过开关管S 2向外放电,当处于充电状态时,U o经过开关管S 2的寄生二极管向U o1U o2充电。
进一步地,为防止直通现象,在串联和并联切换过程中插入死区,死区时间为2us。
进一步地,串并联切换电路中,当U o1U o2的电压差绝对值小于2.7 V时,允许U o1U o2由串联运行切换为并联运行,可有效避免切换时的电容电流冲击。
进一步地,DAB电路原边直流母线电压为U i,直流母线输出电流为i i,H桥开关管为S 1~4,二极管为D 1~4,副边直流母线电压为U o,H桥开关管为S 5~8,二极管为D 5~8,原副边H桥输出经串联电感L以及变压器T相连,其中电感L的电压v L和电流i L为关联参考方向,变压器的变比为n:1,移相比为0.25,插入死区,死区时间T D T hs=2 us。
进一步地,DAB电路中每个周期由原边输出电流的有效值:
其中,φ为原副边H桥之间的移相比,L为电感,f为DAB开关频率;
移相角φ的值:
依据式(2),代入期望的I rms即可得到相应的移相角即可得到DAB的实际电流;
同时,根据式(1)可以得到原边输出电流有效值的最大值I max,如式(3)所示,当DAB电路参数确定后,电流最大值I max也被确定;
进一步地,为了消除死区影响,加入了死区补偿项,当0<φ<T D时,无论移相比变化,电感电流始终为0,补偿方法为跳过移相比φ小于死区比T D区域,此时,电感电流存在无响应时间;
T D<φ<2T D时,实际电感电流有效值与指令值不符,重新计算电流有效值,求解移相比φ,此时,不能跟随指令值,死区存在使电流复位;
加入了死区补偿项后,移相比为:
为避免电感电流暂态和稳态偏置,采用单移相控制加副边占空比调制的预测电流控制,在无死区时,电流峰值I p为:
当原副边电压满足U i=nU o时,可通过对电流上升时间φ 1 T hs以及下降时间φ 2 T hs进行单独控制即可实现单周期内电流正负对称,消除电流偏置,其中移相时间φ 1 T hs
移相时间φ 2 T hs为:
占空比D的解析表达式:
其中TDThs为死区时间,i L为电感电流,I p *为电流峰值指令。
进一步地,三电平逆变器共有27种电压矢量,分为5类,其中零矢量3个,适量长度为0,小矢量12个,适量长度为Udc/3,中矢量6个,适量长度为Udc/√3,长矢量6个,适量长度为2Udc/3;
60°坐标变换为:
当待输出电压的U αU β值满足下式时,输出电压发生越界:
其中,U dc为正负直流母线电压差,即
当越限以后应按照相位不变原则对输出电压进行限幅,此时待输出电压的U αU β的修正值U αfU βf为:
与现有技术相比,本发明的有益之处为:
1、本发明强励变换器利用双有源桥变换器以及串并联切换电路构建了变结构直流母线,可在电网电压跌落时使转子侧直流母线电压瞬时升压,提升对双馈风机转子电流的控制能力,实现双馈风机的低电压穿越;
2、本发明采用单移相控制实现了双有源桥输出电压闭环控制,有效避免了变压器的偏磁和饱和现象,对双有源桥和串并联切换电路构成的变结构直流母线进行了介绍,并给出了控制策略,可有效避免并联运行环流和串并联切换时的电流冲击;
3、将三电平逆变器与变结构直流母线结合,构成直流母线变结构双馈强励变换器,并进行了仿真研究,研究表明,该强励变换器拓扑能够在电网电压跌落时对双馈风机转子电流进行有效控制,向电网注入有功和无功电流,实现双馈风机的低电压穿越。
附图说明
下面结合附图对本发明作进一步的说明。
图1为直流母线变结构双馈强励变换器拓扑结构;
图2为DFIG定子电压定向转子电流闭环控制框图;
图3为DFIG变速恒频运行图;
图4为为双馈风机低电压穿越(s=0.2,d=0.2)图;
图5为DAB电路拓扑图;
图6为双有源桥单移相控制图;
图7为DAB的闭环传递框图;
图8为单移相控制死区补偿后仿真波形图;
图9为双有源桥闭环控制仿真图;
图10为预测电流控制框图;
图11为串并联切换电路图;
图12为串并联切换电路串联和并联工作状态图;
图13为变结构直流母线电路拓扑图;
图14为变结构直流母线控制框图;
图15为中点箝位型三电平拓扑结构图;
图16为三电平电压空间矢量图;
图17为NPC型三电平逆变器仿真图。
具体实施方式
下面通过实施例进一步阐述本发明的技术方案。
实施例1
一种直流母线变结构双馈强励变换器,由网侧两电平变换器、4组DAB(双有源桥Dual Active Bridge)变换器、2组串并联切换电路和转子侧NPC(中点箝位Neutral PointClamped)型三电平逆变器构成,其拓扑结构如图1所示。其中4组DAB及2组串并联切换电路共输入直流电压构成两组能够串并联切换的输出电压,并将其连接至NPC型三电平逆变器的正负直流母线,转子侧NPC型三电平逆变器采用图2所示的控制方式,对DFIG转子电流进行闭环控制。
变结构直流母线对网侧变换器和转子侧变换器互联的直流母线进行改进,为适应变结构直流母线高电压,转子侧变换器采用三电平逆变器。
变结构直流母线电路拓扑如图13-14所示,两组DAB输入端并联,输入电压为U i,输出端U o1U o2连接至串并联切换电路的电源输入端,经过串并联切换电路实现两个DAB输出端的串并联切换,构成变结构直流母线。
直流母线变结构双馈强励变换器具有两种运行模式:
并联模式
DAB工作在并联运行模式,S 1S 3S 4S 6导通,S 2S 5关断,NPC型三电平逆变器直流链电压为U dc=U o1+U o3,此为正常运行模式,可实现能量的双向流动,同时可以降低稳态运行损耗;
串联模式
DAB工作在串联运行模式,S 1S 3S 4S 6关断,S 2S 5导通,NPC型三电平逆变器直流链电压为U dc=U o1+U o2+U o3+U o4,此为电压跌落后的应对措施,可实现在电网电压跌落时瞬间提升直流母线电压,提高转子侧变换器对转子电流的控制能力,避免电网电压跌落带来的转子过电流和直流母线过电压现象。
实施例2
在电网正常情况下,直流母线变结构双馈强励变换器驱动双馈风机并网发电仿真结果如图3所示。
在0 s时,DFIG转子转速为次同步0.8 p.u.,在0~0.1 s内稳定运行,在0.1 s时,风机转匀速上升,在0.3 s时到达1.2 p.u.,DFIG由次同步运行转换为超同步运行,转速变化过程中,定子电流依然为正弦,DFIG定子向电网输送的有功功率和无功功率始终保持不变,定子向电网输送的有功功率和无功功率为:P out=1.84 MW,Q out=0 Mvar,可见直流母线变结构双馈强励变换器能够实现DFIG的次同步与超同步运行,即功率能够双向流动,在次同步运行时由电网向DFIG转子输送有功功率,在超同步运行时由DFIG转子向电网输送有功功率。
在转差率s=0.2,d=0.2时,双馈风机LVRT仿真结果如图4所示。
在0 s时,DFIG转子转速为0.8 p.u.,向电网发出功率为:P sout=1.84 MW,Q sout=0Mvar。
在0.1 s时,电网电压跌落至0.2 p.u.,DFIG控制系统检测到电网电压跌落后,启动电网故障应对策略,由并联运行模式转换为串联运行模式,直流母线电压U dcU dc=U dc++U dc-)瞬间由1.2 kV抬升至2.4 kV,启动DFIG强励措施,由于电网电压跌落,此时DFIG不需要向电网发出有功功率,应按照LVRT标准向电网注入动态无功支撑,因此,修改DFIG转子电流指令I d *的值,使有功功率输出P sout=0 MW,可以看到,在电网电压跌落时,DFIG定子和转子均无过电流出现,在此后60 ms内,DFIG向电网注入的动态无功电流增大至1.05 p.u.,以支撑电网电压恢复,此后维持此状态,在电网电压跌落期间转子电流时钟处于可控状态,跟随电流指令值,但是在电网电压跌落时,定子产生的不断衰减的直流分量仍然存在,转子提供与转差倍的交流分量,加上转子自身转速,因此在定子电流中感应出了与电网频率相同且不断衰减的的感应电势,与电网相互作用,故定子电流中存在衰减的直流分量,因此DFIG向电网输送的有功功率和无功功率存在与电网频率相同的波动,造成注入电网的无功电流存在误差。
在0.7 s时,电网电压恢复为正常值,DFIG控制系统检测到电网电压恢复后,停止向电网注入动态无功电流,修改转子电流指令I q *,使DFIG定子向电网注入的无功电流为0,并在此后60 ms内,有功功率输出不断增长,在0.76 s时,有功功率恢复至电网电压跌落前的额定值。在电网电压恢复过程中,DFIG定子磁链未到达新的稳态,处于过渡状态,当电网电压恢复后,定子磁链仍然会产生直流暂态磁链,因此在有功功率恢复过程中,定子电流仍存在衰减的直流分量,DFIG向电网注入的功率存在与电网频率相同的功率波动。
在0.9 s时,DFIG已基本恢复电网电压跌落前的状态,并且已基本稳定,此时由串联运行模式切换为并联运行模式,降低转子侧变换器直流链电压,提高运行效率,可见在运行模式切换过程中转子电流无明显冲击,切换较为平滑,至此,DFIG风力发电系统完成一次LVRT,此后一直运行直到下一次电网电压跌落时重复上述步骤。
实施例3
DAB电路拓扑如图5所示。其原边直流母线电压为U i,直流母线输出电流为i i,H桥开关管为S 1~4,二极管为D 1~4,副边直流母线电压为U o,H桥开关管为S 5~8,二极管为D 5~8,原副边H桥输出经串联电感L以及变压器T相连,其中电感L的电压v L和电流i L为关联参考方向,变压器的变比为n:1。
DAB的电路工作情况为:原边开关管S 1S 2S 3S 4互补,副边开关管S 5S 6S 7S 8互补,且有S 1S 3S 5S 7互补,原副边开关管的占空比均为0.5,且原副边H桥之间的移相比为φ,其取值范围为−1~1,移相时间为φT hs,其中开关周期为T sT hs为开关周期T s的一半。在忽略开关管压降与动作死区,变压器饱和以及寄生参数后,DAB在稳态运行时的开关管动作以及电压电流波形如图6所示。
传输功率除以输入电压U i,可以得到每个周期由原边输出电流的有效值:
同时根据式(1),I rms同样是关于移相角φ的一元二次函数,当给定I rms后可通过求根公式得到φ的值:
依据式(2),代入期望的I rms即可得到相应的移相角即可得到DAB的实际电流。
同时,根据式(1)可以得到原边输出电流有效值的最大值I max,如式3所示,当DAB电路参数确定后,电流最大值I max也被确定。
实施例4
将负载电流i o看作扰动,以电流有效值为中间控制变量,移相角为直接控制对象,则DAB的闭环传递框图如7所示。将输出电压指令U o *与电压反馈值做差得到误差值err,经过PI调节后得到电流指令值I rms,计算得到移相角φ,加载至DAB经过延迟后,可得到响应电流输出。最终实现输出电压闭环控制。
由于死区影响了电感电流指令值与实际有效值的对应关系,在负载电流阶跃增大时,电感电流存在暂态和稳态偏置,该现象会造成变压器存在暂态和稳态磁偏,在负载电流较小时,电感电流不存在偏置现象。考虑到开关管的实际工作情况,必须插入死区,死区时间T D T hs=2 us。
若给定电流有效值I rms,可求得移相比φ,有:
加入死区补偿后仿真结果如图8所示。与图9对比可得:当加入死区补偿后,DAB的启动过程更加迅速,电感电流从初始时刻便开始跟踪电流有效值指令I rms,电流迅速增加,输出电压波动减小;在功率换向t=6 ms和t=12 ms时刻,DAB的直流母线波动减小且无电流为零的区间;在加减载响应过程中,DAB动态响应不变,与死区补偿前相同。另一方面,死区补偿后,在负载电流为±150 A时,电感电流有效值指令I rms明显更接近于电感电流有效值±75 A,即死区补偿优化了电感电流有效值指令I rms与电感电流实际有效值之间的对应关系。
由此可知,死区补偿可以改善DAB的单移相控制输出电压变换控制的响应速度,尤其是对启动和功率换向过程中的响应速度,优化了电感电流有效值指令Irms与电感电流实际有效值之间的对应关系。
实施例5
为避免电感电流暂态和稳态偏置,采用单移相控制加副边占空比调制的预测电流控制,在无死区时,电流峰值I p为:
当原副边电压满足U i=nU o时,可通过对电流上升时间φ 1 T hs以及下降时间φ 2 T hs进行单独控制即可实现单周期内电流正负对称,消除电流偏置;在第1个周期,电流初始值为i L(t 0)=0,电流峰值指令为I p *(此时电流指令为负半周期采样时刻电流值),移相时间φ 1 T hs
采用上式计算的移相时间φ 1 T hs可使电流正半轴到达I p *,若期望电流i L正负半周对称,则移相时间φ 2 T hs为:
占空比D的解析表达式:
其中TDThs为死区时间,i L为电感电流,I p *为电流峰值指令。
在第2个开关周期开始时对电流值进行采样,采样值为−I 1 *,PI调节后,电流指令变为I 2 *,修改式(6)中I 1 *I 2 *i L(0)为−I 1 *,则可通过式(6)和(7)求得新的φ 1 T hsφ 2 T hs,通过式(8)可求得新的占空比D,实现对电流的预测控制。
控制框图如图10所示。与单移相控制相比,不同点在于PI调节后得到电流指令值I rms,经过式(2)、(8)可计算得到移相角φ 1和占空比D,加载至DAB经过延迟后,可得到响应电流输出,最终实现输出电压闭环控制。
由于式(2)、(8)中计算得到的为移相时间φ 1 T hsφ 2 T hs,当DAB开关频率f变化时,对应的T hs也随之变化,且有T hs=0.5/f,代入式(2)、(7)、(8)中同样可求得占空比D,故开关频率可根据实际情况需要进行调整。
在采用预测电流控制加死区补偿后,除了DAB固有电流波动外,直流母线暂态输出电流波动明显减小,且在稳态时,直流输出电流无明显波动现象。预测电流控制通过对电感电流的优化控制,实现了对直流母线输出电流的优化。
实施例6
如图11所示,串并联切换电路有两个电压输入端U o1U o2,其由开关管S1~3组成,其输出电压为U o,负载电流为i o
如图12所示,串并联切换电路具有两种工作状态:并联运行和串联运行,并联运行时,开关管S 1S 3导通,S 2关断,此时输入电压U o1U o2并联,即U o=U o1=U o2,当处于放电状态时,U o1U o2经过开关管S 1S 3的寄生二极管向外放电,当处于充电状态时,U o经过开关管S 1S 3U o1U o2充电;串联运行时,开关管S 2导通,S 1S 3关断,此时输入电压U o1U o2串联,即U o=U o1+U o2,此时两DAB输出电压U o1U o2之间无相互关联,可采取分别闭环控制,实现输出电压U o1U o2的恒定;当处于放电状态时,U o1U o2经过开关管S 2向外放电,当处于充电状态时,U o经过开关管S 2的寄生二极管向U o1U o2充电。
为防止直通现象,在串联和并联切换过程中插入死区,死区时间为2 us。
当输入电压U o1U o2不一致时,在由串联转换为并联时必然存在电流冲击,即U o1U o2放电或U o2U o1放电,由于电路中仅有IGBT和二极管两个元件,且二者均为恒压降模型,当U o1U o2电压差越大,产生的冲击电流也越大,可能导致二极管或者IGBT开关管的损坏,因此在由串联切换为并联时,必须检测U o1U o2电压差,考虑到IGBT的压降一般为2 V,二极管压降一般为0.7 V,因此当U o1U o2的电压差绝对值小于2.7 V时,允许U o1U o2由串联运行切换为并联运行,可有效避免切换时的电容电流冲击。另一方面,电网电压恢复为跌落前的电压后稳定一定时间后,DAB由串联运行切换为并联运行,因此对切换迅速性要求较小,同时由于闭环调节作用,U o1U o2可在很短的时间内达到切换要求,因此可满足控制要求。
综上所述,电流I o为正时,在串并联切换的死区时间内输出电压U o=U o1=U o2;电流I o为负时,在串并联切换的死区时间内输出电压U o=U o1+U o2。无论电流为何种状态,串并联切换电路均能够保证在串并联切换过程中电流连续,且在切换过程中无电流冲击。
实施例7
由于转子侧变换器需要瞬时升压,且直流母线需要较高的耐压值,因此转子侧变换器采用NPC型三电平逆变器,其电路拓扑如图15所示。
设开关函数S AS BS C为三相开关函数,各有三种状态:−1、0和1,可使每相输出−U dc−、0和U dc+三种电压,根据三相电压空间位置关系,可构成27种电压空间矢量,其电压空间矢量图如图16所示。
如下表可以看出:三电平逆变器共有27种电压矢量,分为5类,其中零矢量3个,适量长度为0,小矢量12个,适量长度为Udc/3,中矢量6个,适量长度为Udc/√3,长矢量6个,适量长度为2Udc/3;
三电平逆变器电压矢量划分
为简化程序,可将第1和第3~6扇区经过坐标变换变换到第2扇区,顺(逆)时针旋转60°坐标,60°坐标变换为:
当待输出电压的U αU β值满足下式时,输出电压发生越界:
其中,U dc为正负直流母线电压差,即U dc=U dc++U dc−
当越限以后应按照相位不变原则对输出电压进行限幅,此时待输出电压的U αU β的修正值U αfU βf为:
经过坐标变换后大大简化计算程序,具有实用性。
为验证闭环控制效果,搭建了仿真模型,仿真结果如图17所示。NPC型三电平逆变 器正负直流母线电压均为600 V,三相输出端经电感L f接至负载R L,其中电感L L=400 uH,电 感电阻L R=3 mΩ,R L=2 Ω,为明显反应出频率变化,使用f作为频率指令,其与 关系为:
在0 ms时,直流母线电压U i=1.2 kV,dq轴电流指令值I d *=250 A,I q *=0 A;在20 ms时,电流指令值阶跃为:I d *=0 A,I q *=−250 A,从图中可以看到在电流指令阶跃后,电流反馈值i Ldi Lq均能够快速跟踪指令值,负载电流i Labc依然为三相对称交流;在40~60 ms内,频率指令f由50 Hz变为−50 Hz,可以电感电流i Labc相序变化,且在频率变化过程中电流反馈值i Ldi Lq与指令值I d *I q *相同;在80 ms时,直流母线电压由1.2 kV阶跃为2.4 kV,可以看到由于直流母线电压升高,而输出电流与负载均不变,电感电流i L纹波变大,同时电流反馈值i Ldi Lq波动增大,但仍保持稳定;在100~120 ms内,频率指令f由−50 Hz变为50 Hz,电流相序变化,在变化过程中电流反馈值i Ldi Lq与指令值I d *I q *相同;在140 ms时,电流指令值阶跃为:I d *=250 A,I q *=0 A,可以看到反馈电流i L快速响应,很快到达稳态值,i Ldi Lq均能够快速跟踪指令值。以上分析结果证明了闭环控制的有效性,在直流母线阶跃上升时依然能够对负载电流进行有效控制。
上述对本发明的具体实施方式进行了描述,但对发明的范围未进行限制,所以对于本领域的技术人员在技术方案的基础上进行的进一步的修改和变性,这些变动仍在本发明的保护范围之内。

Claims (5)

1.一种直流母线变结构双馈强励变换器,其特征在于:由网侧两电平变换器、4组DAB变换器、2组串并联切换电路和转子侧NPC型三电平逆变器构成,其中4组DAB及2组串并联切换电路共输入直流电压构成两组能够串并联切换的输出电压,并将其连接至NPC型三电平逆变器的正负直流母线,转子侧NPC型三电平逆变器对DFIG转子电流进行闭环控制;
直流母线变结构双馈强励变换器具有两种运行模式:
并联模式
DAB工作在并联运行模式,S1、S3、S4、S6导通,S2、S5关断,NPC型三电平逆变器直流链电压为Udc=Uo1+Uo3,此为正常运行模式,可实现能量的双向流动,同时可以降低稳态运行损耗;
串联模式
DAB工作在串联运行模式,S1、S3、S4、S6关断,S2、S5导通,NPC型三电平逆变器直流链电压为Udc=Uo1+Uo2+Uo3+Uo4,此为电压跌落后的应对措施,可实现在电网电压跌落时瞬间提升直流母线电压,提高转子侧变换器对转子电流的控制能力,避免电网电压跌落带来的转子过电流和直流母线过电压现象;
两组DAB输入端并联,输入电压为Ui,输出端Uo1,Uo2连接至串并联切换电路的电源输入端,经过串并联切换电路实现两个DAB输出端的串并联切换,构成变结构直流母线;
串并联切换电路有两个电压输入端Uo1、Uo2,其由开关管S1~3组成,其输出电压为Uo,负载电流为io,其中Uo1、Uo2、Uo3、Uo4为电压输入端;
为了消除DAB中H桥控制的死区影响,加入了死区补偿项,当时,无论移相比变化,电感电流始终为0,补偿方法为跳过移相比/>小于死区比TD区域,此时,电感电流存在无响应时间;
时,实际电感电流有效值与指令值不符,重新计算电流有效值,求解移相比/>此时,不能跟随指令值,死区存在使电流复位;
加入了死区补偿项后,移相比为:
为避免电感电流暂态和稳态偏置,采用单移相控制加副边占空比调制的预测电流控制,在无死区时,电流峰值Ip为:
当原副边电压满足Ui=nUo时,可通过对电流上升时间以及下降时间/>进行单独控制即可实现单周期内电流正负对称,消除电流偏置,其中移相时间/>
移相时间为:
占空比D的解析表达式:
其中TD为死区占空比,即死区在—个周期占的比例,TDThs为死区时间,iL为电感电流,Ip *为电流峰值指令,Irms为电流指令值,f为DAB开关频率,n为变压器的变比,为iL(t0)为电流初始值,Ths为开关周期Ts的一半。
2.根据权利要求1所述的一种直流母线变结构双馈强励变换器,其特征在于:串并联切换电路具有两种工作状态:并联运行和串联运行,并联运行时,开关管S1、S3导通,S2关断,此时输入电压Uo1与Uo2并联,即Uo=Uo1=Uo2,当处于放电状态时,Uo1和Uo2经过开关管S1和S3的寄生二极管向外放电,当处于充电状态时,Uo经过开关管S1和S3向Uo1和Uo2充电;串联运行时,开关管S2导通,S1、S3关断,此时输入电压Uo1与Uo2串联,即Uo=Uo1+Uo2,此时两DAB输出电压Uo1和Uo2之间无相互关联,可采取分别闭环控制,实现输出电压Uo1和Uo2的恒定;当处于放电状态时,Uo1和Uo2经过开关管S2向外放电,当处于充电状态时,Uo经过开关管S2的寄生二极管向Uo1和Uo2充电,其中Uo1、Uo2、Uo3、Uo4为电压输入端。
3.根据权利要求1所述的一种直流母线变结构双馈强励变换器,其特征在于:为防止直通现象,在串联和并联切换过程中插入死区,死区时间为2us。
4.根据权利要求1所述的一种直流母线变结构双馈强励变换器,其特征在于:串并联切换电路中,当Uo1和Uo2的电压差绝对值小于2.7V时,允许Uo1和Uo2由串联运行切换为并联运行,可有效避免切换时的电容电流冲击,其中Uo1、Uo2、Uo3、Uo4为电压输入端。
5.根据权利要求1所述的一种直流母线变结构双馈强励变换器,其特征在于:DAB电路原边直流母线电压为Ui,直流母线输出电流为ii,H桥开关管为S1~4,二极管为D1~4,副边直流母线电压为Uo,H桥开关管为S5~8,二极管为D5~8,原副边H桥输出经串联电感L以及变压器T相连,其中电感L的电压vL和电流iL为关联参考方向,变压器的变比为n:1,移相比为0.25,插入死区,死区时间TDThs=2us。
CN202211593064.8A 2022-12-13 2022-12-13 一种直流母线变结构双馈强励变换器 Active CN116260179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211593064.8A CN116260179B (zh) 2022-12-13 2022-12-13 一种直流母线变结构双馈强励变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211593064.8A CN116260179B (zh) 2022-12-13 2022-12-13 一种直流母线变结构双馈强励变换器

Publications (2)

Publication Number Publication Date
CN116260179A CN116260179A (zh) 2023-06-13
CN116260179B true CN116260179B (zh) 2023-12-08

Family

ID=86686994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211593064.8A Active CN116260179B (zh) 2022-12-13 2022-12-13 一种直流母线变结构双馈强励变换器

Country Status (1)

Country Link
CN (1) CN116260179B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658905A (zh) * 2017-10-31 2018-02-02 长沙理工大学 一种基于双馈风电场的电网故障穿越系统和方法
CN110401350A (zh) * 2019-07-01 2019-11-01 中南大学 双有源全桥双向dc-dc变换器的全负载范围zvs的移相控制方法
CN110504688A (zh) * 2019-08-12 2019-11-26 上海交通大学 具备交直流故障不间断运行能力的固态变压器及控制方法
CN112803776A (zh) * 2021-01-11 2021-05-14 北京四方继保自动化股份有限公司 一种适用于直流变压器的逆死区直接功率控制系统和方法
CN113271029A (zh) * 2021-05-28 2021-08-17 青岛大学 一种低电压应力宽输出范围dab型单级双向ac/dc变换器
CN113630012A (zh) * 2020-06-15 2021-11-09 株洲中车时代电气股份有限公司 一种双有源桥变换器及变流器
CN114696625A (zh) * 2022-03-21 2022-07-01 西安交通大学 一种适用于单移相控制的双有源桥电感范围确定方法
CN115133776A (zh) * 2022-06-06 2022-09-30 合肥工业大学 双有源桥dc-dc变换器自适应控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658905A (zh) * 2017-10-31 2018-02-02 长沙理工大学 一种基于双馈风电场的电网故障穿越系统和方法
CN110401350A (zh) * 2019-07-01 2019-11-01 中南大学 双有源全桥双向dc-dc变换器的全负载范围zvs的移相控制方法
CN110504688A (zh) * 2019-08-12 2019-11-26 上海交通大学 具备交直流故障不间断运行能力的固态变压器及控制方法
CN113630012A (zh) * 2020-06-15 2021-11-09 株洲中车时代电气股份有限公司 一种双有源桥变换器及变流器
CN112803776A (zh) * 2021-01-11 2021-05-14 北京四方继保自动化股份有限公司 一种适用于直流变压器的逆死区直接功率控制系统和方法
CN113271029A (zh) * 2021-05-28 2021-08-17 青岛大学 一种低电压应力宽输出范围dab型单级双向ac/dc变换器
CN114696625A (zh) * 2022-03-21 2022-07-01 西安交通大学 一种适用于单移相控制的双有源桥电感范围确定方法
CN115133776A (zh) * 2022-06-06 2022-09-30 合肥工业大学 双有源桥dc-dc变换器自适应控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Novel Rotor-side Converter Topology of Doubly-fed Wind Turbine Based on H-Bridge;Chao Meng et al;《2020 IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE)》;全文 *
Non-linear Dead-time Error Compensation Method of Dual Active Bridge DC-DC Converter for Variable DC-bus Voltage;Jun-ichi Itoh;《2018 International Conference on Smart Grid (icSmartGrid)》;全文 *

Also Published As

Publication number Publication date
CN116260179A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
EP2400619B1 (en) Low cost current source converters for power generation application
Yuan et al. A transformer-less high-power converter for large permanent magnet wind generator systems
Debnath et al. A new hybrid modular multilevel converter for grid connection of large wind turbines
EP2481139B1 (en) Method for controlling a power converter in a wind turbine generator
CN104113077A (zh) 一种双馈异步风力发电机高电压穿越的协调控制方法
CN108879773B (zh) 一种六相风力发电机直流并网结构的控制方法
Chen et al. Current source thyristor inverter and its active compensation system
CN111971885A (zh) 具有有源滤波器的dfig转换器
Müller et al. Medium-voltage power converter interface for Wave Dragon wave energy conversion system
Chou et al. A reactive current injection technique for renewable energy converters in low voltage ride-through operations
Yuan et al. A transformerless modular permanent magnet wind generator system with minimum generator coils
Vattuone et al. Open-end-winding PMSG for wind energy conversion system with dual boost NPC converter
CN108539779A (zh) 基于mmc的全功率可变速抽水蓄能系统
CN116260179B (zh) 一种直流母线变结构双馈强励变换器
Chomat et al. Extended vector control of doubly fed machine under unbalanced power network conditions
Yuan et al. A modular direct-drive permanent magnet wind generator system eliminating the grid-side transformer
Hang et al. 5L full‐scale converter with a dc‐link flying‐capacitor auxiliary bridge leg for large direct‐drive wind turbines
Behrouzian et al. Individual capacitor voltage balancing in H-bridge cascaded multilevel STATCOM at zero current operating mode
Saad et al. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator
CN207410046U (zh) 一种基于双馈风电场的电网故障穿越系统
Gao et al. Variable switching frequency PWM for three-level NPC converter in DFIG wind turbines
Yamashita et al. Experimental Studies on a Current-source Converter-based Wind Power Plant Composed of Series-connected Wind Turbine Generators and Synchronous-compensator-commutated Thyristor Inverter
CN116154845B (zh) 一种基于dab的h桥串并切换型强励变换器的控制方法
Dewangan et al. Performance improvement with fuzzy logic controller for generator control in wind energy system
Cui et al. Phase-Selection Control Rectifier Technology of Multi-phase Synchronous Generator for Wide Speed Range Operation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant