CN111971885A - 具有有源滤波器的dfig转换器 - Google Patents

具有有源滤波器的dfig转换器 Download PDF

Info

Publication number
CN111971885A
CN111971885A CN201980024484.4A CN201980024484A CN111971885A CN 111971885 A CN111971885 A CN 111971885A CN 201980024484 A CN201980024484 A CN 201980024484A CN 111971885 A CN111971885 A CN 111971885A
Authority
CN
China
Prior art keywords
rotor
side converter
converter
power
active filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980024484.4A
Other languages
English (en)
Inventor
G·贾尼雷迪
H·R·施内茨卡
R·G·瓦戈纳
A·M·赖德诺尔
K·扎
Y·Y·科尔哈特卡
A·K·蒂瓦里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN111971885A publication Critical patent/CN111971885A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

提供用于操作具有双馈感应发电机的功率系统的系统和方法。在示例性实施中,连接于电力网(190)的电功率系统(100)可包括:发电机(120),其包括定子和转子,定子经由定子功率路径连接于电力网;和功率转换器(130)。功率转换器(130)可包括:线路侧转换器(134),其经由转换器功率路径联接于电力网(190);和转子侧转换器(132),其联接于转子的转子母线(124)并且经由DC链路联接于线路侧转换器(134),转子侧转换器(132)配置成将DC链路上的DC功率转换成用于转子母线(124)的AC信号。功率系统(100)还可包括有源滤波器(250),该有源滤波器(250)包括一个或多个有源受控构件,有源滤波器(250)与转子侧转换器(132)并联联接,以减少电功率系统(100)的谐波。

Description

具有有源滤波器的DFIG转换器
技术领域
本公开大体上涉及用于从例如风力涡轮向电力网提供功率的电功率系统。
背景技术
风力涡轮作为可再生能量源受到越来越多的关注。风力涡轮使用风来生成电。风使连接于转子的多个叶片转动。由风引起的叶片的自旋使转子的轴自旋,该轴连接于生成电的发电机。某些风力涡轮包括双馈感应发电机(DFIG),以将风能转换成适合于输出到电网的电功率。DFIG典型地连接于转换器,该转换器调节DFIG和电网之间的电功率的流。更特别地,转换器允许风力涡轮以电网频率输出电功率,而不管风力涡轮叶片的旋转速度。
典型的DFIG系统包括具有转子和定子的风力驱动的DFIG。DFIG的定子通过定子母线联接于电网。功率转换器用于将DFIG的转子联接于电网。功率转换器可为两级功率转换器,其包括转子侧转换器和线路侧转换器两者。转子侧转换器可经由转子侧母线从转子接收交流(AC)功率,并且可将AC功率转换成DC功率。接着,线路侧转换器可将DC功率转换成具有合适输出频率(诸如电网频率)的AC功率。AC功率经由线路侧母线提供至电网。
发明内容
本公开的实施例的方面和优点将在以下描述中部分地阐述,或者可从描述学习,或者可通过实施例的实践学习。
本公开的一个示例性方面涉及一种电功率系统。系统可包括具有定子和转子的发电机。定子可经由定子功率路径连接于电力网。系统可包括功率转换器。功率转换器可包括经由转换器功率路径联接于电力网的线路侧转换器。功率转换器可包括转子侧转换器,该转子侧转换器联接于转子的转子母线并且经由DC链路联接于线路侧转换器。转子侧转换器可配置成将DC链路上的DC功率转换成用于转子母线的AC信号。功率系统还可包括有源滤波器,该有源滤波器包括一个或多个有源受控构件。有源滤波器可与转子侧转换器并联联接,以减少电功率系统的谐波。
本公开的其它示例性方面可包括用于转换器调制和/或过调制的设备、系统、方法、控制系统和其它技术。
附图说明
在参照附图的说明书中阐述针对本领域技术人员的实施例的详细论述,在该附图中:
图1是根据本公开的示例性实施例的风力涡轮的透视图。
图2示出根据本公开的示例性实施例的电功率系统。
图3示出根据本公开的示例性实施例的、可包括在风力涡轮和/或电功率系统的控制器和/或功率转换器的控制器内的合适构件的示意图。
图4示出根据本公开的示例性实施例的、适合于与风力涡轮系统一起使用的示例性功率转换器的示意图。
图5示出根据本公开的示例性实施例的、用于控制一个或多个控制装置的示例性过调制机制。
图6示出根据本公开的示例性实施例的、可提供给转子的示例性准方波信号。
图7示出根据本公开的示例性实施例的、可提供给转子的示例性方波信号。
图8示出根据本公开的示例性实施例的、适合于与风力涡轮系统一起使用的示例性有源滤波器。
图9示出根据本公开的示例性实施例的、包括有源滤波器的示例性电功率系统。
图10示出根据本公开的示例性实施例的、包括有源滤波器的附加示例性电功率系统。
图11示出根据本公开的示例性实施例的、包括有源滤波器的附加示例性电功率系统。
图12示出根据本公开的示例性实施例的、包括有源滤波器的附加示例性电功率系统。
图13是根据本公开的示例性实施例的、操作双馈感应发电机系统的电功率转换器的示例性方法的流程图。
具体实施方式
现在将详细参照实施例,其一个或多个实例在附图中示出。每个实例经由实施例的解释,而非本公开的限制来提供。事实上,对本领域技术人员而言将显而易见的是,可在不脱离本公开的范围或精神的情况下对实施例作出各种修改和变型。例如,示出或描述为一个实施例的部分的特征可与另一个实施例一起使用,以产生又一个实施例。因此,意图是本公开的方面涵盖此类修改和变型。
本公开的示例性方面涉及用于操作双馈感应发电机(DFIG)系统中的功率转换器的系统和方法。DFIG系统可包括具有线路侧转换器和转子侧转换器的功率转换器。DC链路可联接在线路侧转换器和转子侧转换器之间。功率转换器可使用线路侧转换器将来自DFIG的定子的AC功率转换成用于DC链路的DC功率。功率转换器可使用转子侧转换器将DC链路上的DC功率转换成用于DFIG的转子的AC信号。例如,AC信号可提供在联接在转子侧转换器和DFIG的转子之间的转子母线上。AC信号可用于例如控制DFIG的操作特性。DFIG系统还可包括有源滤波器,该有源滤波器包括有源受控构件(例如,切换元件、绝缘栅双极晶体管IGBT、绝缘栅换向晶闸管、MOSFET(例如,基于硅或碳化硅的MOSFET)、双极晶体管、可控硅整流器或其它合适的切换元件)。有源滤波器可与转子侧转换器并联联接,以减少DFIG系统的谐波。
转子侧转换器可包括一个或多个切换元件。在一些实施例中,切换元件可为任何种类的合适的切换元件,诸如绝缘栅双极晶体管IGBT、绝缘栅换向晶闸管、MOSFET(例如,基于硅或碳化硅的MOSFET)、双极晶体管、可控硅整流器或其它合适的切换元件。切换元件可控制成使用例如脉宽调制来将DC链路上的DC信号转换成用于DFIG的转子的AC信号。
功率转换器可在功率系统中生成谐波。作为实例,在一些实施例中,切换元件可根据过调制机制来控制,以在转子侧转换器上产生AC信号。
例如,切换元件的调制可通过将调制波与载波进行比较并基于该比较调制切换元件来实现。例如,在载波和调制波相交的任何时候,切换元件可被触发。在过调制机制下,调制波的最大幅度大于载波的最大幅度。这可导致载波的一些脉冲不与调制波相交。在一些实施例中,调制波可为周期性的、恒定幅度的正弦信号,并且载波可为周期性的三角波,但是根据本公开,可使用用于调制波和载波两者的其它合适的波形,诸如正弦波、对称三角波、包括锯齿波的不对称三角波、方波、准方波和其它合适的波形。
在一些实施例中,转子侧转换器可在过调制机制下操作,使得转子侧转换器的输出是准方波AC信号。例如,在转子处的线对线电压波形可为六步准方波,其具有低电压的区域和高电压的区域,在低电压的区域和高电压的区域中间具有中间电压(诸如参考电压或零电压)的区域。
在过调制机制下操作转子侧转换器可具有若干优点。例如,在一些实施例中,从DC链路到转子的电压增益可相对于非过调制机制增加。在一些实施例中,这可有助于发电机的增加RPM操作范围。另外,在过调制机制下操作转子侧转换器可导致切换元件的切换频率降低。这可减少在切换元件的调制期间的能量损失,并且可附加地减少磨损和/或允许切换元件上的较高电流。其它优点可包括连续操作电网电压的扩展的较高极限、在瞬态电网电压和/或高电压穿越(HVRT)期间的改进的可控性和/或降低的应力、用于风力涡轮系统的扩展的超速极限、在低电网电压条件期间由线路侧转换器的较低DC链路调节,和/或较高的发电机速度。然而,根据一些实施例,转子侧转换器可在过调制机制之外或接近过调制机制操作。在这些情况下,上述优点中的一些仍然适用。
在过调制机制下操作转子侧转换器可有助于发电机中的增加的谐波。在一些情况下,增加的谐波可传播到功率系统中的其它元件,诸如连接的电力网。另外,具有最大增加的谐波可具有与基频(即发电机的功率输出)相似的频率,诸如三次、五次、七次或其它较低次谐波。由于这些谐波的大小和/或与基频的接近性,过滤这些谐波典型地比较高次谐波(例如,五十次谐波)更困难。
在一些实施例中,诸如有源滤波器的滤波器可提供成抵消或减少来自在过调制机制、接近过调制机制下或在过调制机制之外操作转子侧转换器的谐波贡献。有源滤波器可包括有源受控构件,并且在一些实施例中可仅在系统中的谐波贡献不满足阈值(诸如行业标准)的任何时候被致动,例如以保存系统内的资源和/或防止对有源滤波器的磨损。例如,当较低次谐波超过电网要求时致动有源滤波器可为可能的。例如,有源滤波器可提供处于与谐波相同的频率但处于相反相位的电流或电压,以几乎完全或完全消除谐波。
有源滤波器可联接于电功率系统内的转子母线。例如,有源滤波器可在转子侧转换器和转子之间的电线处联接于转子母线。有源滤波器还可直接联接于转子侧转换器的终端。有源滤波器还可并联联接于转子侧转换器。有源滤波器还可联接于变压器,该变压器联接于转子侧转换器和转子之间的电线。因此,有源滤波器允许谐波在注入到DFIG发电机中之前的滤波。此外,除了减少定子功率路径上的谐波之外,有源滤波器还有助于减少由谐波电流导致的发电机上的热加载。此外,在转子侧转换器处放置有源滤波器允许基于转子桥或转子绕组的电流或电压感测对注入谐波电流的闭环控制,进一步减少发电机上的热加载。
现在参照附图,图1示出风力涡轮10的一个实施例的透视图。如所示,风力涡轮10包括从支承表面14延伸的塔架12、安装在塔架12上的机舱16以及联接于机舱16的转子18。转子18包括可旋转的毂20和至少一个转子叶片22,至少一个转子叶片22联接于毂20并且从毂20向外延伸。例如,在示出的实施例中,转子18包括三个转子叶片22。然而,在备选实施例中,转子18可包括多于或少于三个转子叶片22。每个转子叶片22可绕着毂20间隔,以便于旋转转子18,以使得动能能够从风转变成可用的机械能,和随后转变成电能。例如,毂20可以可旋转地联接于定位在机舱16内的图2的电动发电机120,以容许产生电能。风力涡轮10还可包括涡轮控制器26,其用于控制风力涡轮10的偏航调节、转子叶片22的桨距调节和/或图2的发电机120的扭矩调节。涡轮控制器26可与风力涡轮10内的构件(诸如图2的转换器控制器140)对接。
现在参照图2,根据本主题的方面,示出DFIG风力涡轮系统100的一个实施例的示意图。应当认识到,将在本文中大体上参照图2中示出的系统100来描述本主题。然而,使用本文中提供的公开的本领域技术人员应当理解,本公开的方面还可以能够应用于其它功率生成系统。
如所示,发电机120(例如,DFIG 120)可联接于定子母线122并且经由转子侧母线124联接于功率转换器130。定子母线122可从DFIG 120的定子提供输出多相功率(例如,三相功率),并且转子侧母线124可提供DFIG 120的转子的输出多相功率(例如,三相功率)。功率转换器130可具有转子侧转换器132和线路侧转换器134。DFIG 120可经由转子侧母线124联接于转子侧转换器132。转子侧转换器132可联接于线路侧转换器134,线路侧转换器134继而可联接于线路侧母线138。转子侧转换器132和线路侧转换器134可经由DC链路135、137联接,DC链路电容器136横跨DC链路135、137。
此外,功率转换器130可联接于转换器控制器140,以便控制转子侧转换器132和线路侧转换器134的操作。例如,转换器控制器140可配置成在过调制机制或接近过调制机制下操作转子侧转换器132。转换器控制器140可包括任何数量的控制装置。在一个实施例中,控制装置可包括执行存储在计算机可读介质中的计算机可读指令的处理装置(例如,微处理器、微控制器等)。当由处理装置执行时,指令可使处理装置执行操作,包括向功率转换器130的切换元件142提供控制命令(例如,切换频率命令)。例如,指令可包括向转子侧转换器132的图4的切换元件142提供控制命令,以在过调制机制或接近过调制机制下操作转子侧转换器132(例如,通过切换元件142)。
如所示,系统100可包括将风力涡轮系统100联接于电网190的变压器160。变压器160可为三绕组变压器,其可包括例如联接于电网的高压(例如,大于12KVAC)初级绕组162、例如联接于定子母线122的中压(例如,6KVAC)次级绕组164和/或例如联接于线路侧母线138的低压(例如,575VAC、690VAC等)辅助绕组166。应当理解,变压器160可为如所示的三绕组变压器,或者备选地可为仅具有初级绕组162和次级绕组164的双绕组变压器;可为具有初级绕组162、次级绕组164、辅助绕组166和附加辅助绕组的四绕组变压器;或者可具有任何其它合适数量的绕组。
在定子母线122上,正弦多相(例如,三相)交流(AC)功率可从发电机120的定子提供到定子母线122,并且从定子母线122提供到变压器160,例如到其次级绕组164。各种断路器、熔断器、接触器和其它装置,诸如电网断路器158、定子母线断路器156、开关154和线路侧母线断路器152可包括在系统100中,以连接或断开对应的母线(例如,当电流过大并且可损坏风力涡轮系统100的构件或出于其它操作考虑时)。附加的保护构件还可包括在风力涡轮系统100中。
现在参照图3,示出根据本主题的方面的、可包括在涡轮控制器26和/或转换器控制器140内的合适构件(例如,一个或多个控制装置)的一个实施例的框图。如所示,控制器26/140可包括一个或多个处理器60和(多个)相关联的存储器装置62,它们配置成执行各种计算机实施的功能(例如,执行本文中公开的方法、步骤、计算等)。另外,控制器26/140还可包括通信模块64,以便于控制器26/140和风力涡轮10的各种构件之间的通信。例如,通信模块64可用作接口,以容许涡轮控制器26将控制信号传送至一个或多个桨距调节机构,以例如控制转子叶片22的桨距。通信模块64可附加地和/或备选地用作接口,以容许涡轮控制器26将信号(例如,控制信号或状态信号)传送至转换器控制器140。通信模块64可附加地和/或备选地用于容许转换器控制器140向功率转换器130提供控制信号。此外,通信模块64可包括传感器接口66(例如,一个或多个模数转换器),以容许从例如各种传感器(诸如电压传感器和电流传感器)传送的输入信号转换成可由处理器60理解和处理的信号。
现在参照图4,根据本主题的方面,示出图2中示出的功率转换器130的示例性实施例的示意图。如所示,转子侧转换器132包括多个桥电路,其中输入至转子侧转换器132的转子侧母线124的每个相联接于单个桥电路。此外,线路侧转换器134也可包括多个桥电路。类似于转子侧转换器132,线路侧转换器134也包括用于线路侧转换器134的每个输出相的单个桥电路。在其它实施例中,在不偏离本公开的范围的情况下,线路侧转换器134、转子侧转换器132或线路侧转换器134和转子侧转换器132两者可包括并联桥电路。
每个桥电路可大体上包括彼此串联联接的多个切换元件(例如,IGBT)142。例如,如图4所示,每个桥电路包括上切换元件144和下切换元件146。此外,二极管可与切换元件142中的每个并联联接。在备选实施例中,并联切换元件142和二极管可用于增加转换器的额定电流。如通常所理解的,线路侧转换器134和转子侧转换器132可例如通过使用合适的驱动电路向切换元件142的栅极提供控制命令来控制。例如,转换器控制器140可向桥电路的切换元件142的栅极提供合适的栅极定时命令。控制命令可控制切换元件142的切换频率,以提供期望的输出。本领域技术人员应当认识到,功率转换器130可包括任何合适的切换元件142,诸如绝缘栅双极晶体管(IGBT)、绝缘栅换向晶闸管、MOSFET(例如基于硅或碳化硅的MOSFET)、双极晶体管、可控硅整流器或其它合适的切换元件。
图5示出根据本公开的示例性实施例的、用于控制功率转换器内的切换装置的示例性过调制机制200的图形表示。使用本文中提供的公开,本领域技术人员将理解,在不脱离本公开的范围或精神的情况下,可使用各种合适的过调制机制和/或配置。此外,如上所述,也可使用包括接近过调制机制的其它调制机制。
根据过调制机制200,调制波202与载波204相比较。调制波202示出为恒定幅度、恒定频率的正弦信号,但是可为各种合适的波形中的任何一种,包括正弦波、具有谐波附加的正弦波、方波、准方波以及其它合适的波形。载波204示出为恒定幅度、恒定频率的对称三角波,但是可为各种合适的波形中的任何一种,包括正弦波、对称三角波、包括锯齿波的不对称三角波、方波、准方波以及其它合适的波形。此外,调制波202和/或载波204的频率和/或幅度可随时间的变化而改变。
切换元件(例如,切换元件142)可基于过调制机制200来控制。例如,在调制波202和载波204例如在交点208处相交的任何时候,切换元件(例如,切换元件142)可例如通过从控制器(例如,转换器控制器140)发送控制信号来触发,以偏置横跨切换元件142的栅极的电压。调制波202可对应于仅一个切换装置,或者可对应于若干切换元件。可提供多个调制波202和/或载波204。例如,多个调制波202可与单个载波204相比较,其中多个调制波202中的每个调制波202对应于一个或多个切换元件。多个调制波202可同相或异相(例如,异相60度、120度、180度等)。备选地,可提供多对调制波202和载波204,其中每对调制波202和载波204对应于一个或多个切换元件。可例如基于切换元件的配置和/或类型使用其它合适的控制方案。
调制波202的幅度可大于载波204的幅度,导致其中调制波202不与载波204相交的过调制区域206。大体上,调制波202和载波204之间的幅度差越大,过调制区域206就越大。例如,如果调制波202和载波204之间的幅度差足够大,则在调制波202的一个时段期间,调制波202可与载波204相交仅两次。类似地,在接近过调制机制的机制中,区域206可最小化成以便接近与载波204一致。在这些情况下,调制机制可称为接近过调制机制。
切换装置(例如,切换装置142)可根据过调制机制(例如,过调制机制200)来控制,以产生时变AC信号。时变AC信号可为例如图6中示出的准方波210。准方波210可为诸如转子侧母线124的AC母线中的两条线之间的线对线电压。准方波210也可代表其它配置。如可在图6中看到的,准方波210在高电压的区域214和低电压的区域216之间具有中间电压的区域212。中间电压的区域212可处于零伏,或者可处于某一非零参考电压。边缘218可对应于切换元件的触发。边缘218显示为理想的,即瞬时的,但是本领域技术人员使用本文中提供的公开将理解,边缘218可稍微不平坦或倾斜。
如果从功率转换器线路到诸如负DC链路(图4的137)的参照物来看,从过调制机制(例如,过调制机制200)产生的时变AC信号可为图7中示出的方波220。方波220可为诸如转子侧母线124的AC母线中的线与诸如DC链路135的负侧137的参照物之间的线对参照物电压。方波220也可代表其它配置。如可在图7中看到的,方波220具有直接在高电压的区域214和低电压的区域216之间的边缘218(即不具有中间电压的区域212)。边缘218可对应于切换元件的触发。边缘218显示为理想的,即瞬时的,但是本领域技术人员使用本文中提供的公开将理解,边缘218可稍微不平坦或倾斜。
如本文中详细描述的,可在电功率系统(例如,电功率系统100)中提供有源滤波器,诸如图8中示出的并联有源滤波器250,以减少或消除由在过调制机制或接近过调制机制下操作转子侧转换器(例如,转子侧转换器132)引起的谐波。例如,有源滤波器250可减少或消除谐波,以满足针对谐波的一个或多个电网要求。有源滤波器250可以以与谐波大约相同的频率和/或幅度以及以相反的相位(即异相大约180度)提供电流。有源滤波器250可以以高精度提供该功率,以消除谐波,甚至接近基频的谐波,具有基频下的对功率的减少影响或无影响。有源滤波器250(例如,并联有源滤波器250)可将来自系统的一个或多个电流的至少一部分(例如,母线上的基波电流的一部分)作为输入,以补偿与有源滤波器250的操作相关联的损失。可在不脱离本公开的范围或精神的情况下使用其它合适的有源滤波器。
现在参照图9至图11,示出用于减少谐波(诸如由在过调制机制或接近过调制机制下操作转子侧转换器引起的谐波)的有源滤波器的示例性实施。出于说明的目的,使用图2中示出的电功率系统的简化版本。未在图9至图11中示出的、图2中示出的构件连同其它合适的构件仍可存在于本公开的实施例中。
例如,如图9至图11所示,有源滤波器250可联接于转子母线124,即在功率转换器130和发电机120之间。有源滤波器可将Is(即,在定子母线122上的电流)和/或IROTOR(即,在转子侧母线124上的电流)作为输入。在一些实施例(诸如图9中示出的实施例)中,有源滤波器250可直接联接于转子侧转换器132的终端。有源滤波器250还可直接联接于转子侧母线124。在一些实施例(诸如图10中示出的实施例)中,变压器260,例如双绕组变压器260可设置在有源滤波器250和转子侧母线124之间。
根据一些实施例,诸如图12中示出的实施例,变压器260可实施为电容器和电感器的串联连接(示出为261)。因此,有源滤波器250可为混合有源滤波器。混合有源滤波器250和261可具有附加的技术优点,诸如相对于其它有源滤波器,对于相同、相似或等同的滤波性能而言,减小的滤波器尺寸。
另外,无源滤波器270可设置在线路侧母线138上,诸如图10和图11中示出的。例如,无源滤波器270可设置在功率转换器130和变压器160之间,或者以其它合适的配置设置在功率转换器130和电网190之间。无源滤波器270可布置为RC滤波器。无源滤波器270可包括无源构件,诸如电感器、电容器和电阻器;即,不需要次级控制信号或功率来操作以无源地滤波的构件。这与有源滤波器250的有源构件成对比。
另外,有源滤波器250还可联接于DC链路135、137,诸如图11中示出的,使得有源滤波器250横跨转子侧转换器132并联联接。有源滤波器250可将Is(即,在定子母线122上的电流)、IROTOR(即,在转子侧母线124上的电流)和/或DC链路135、137的电流和/或电压作为输入。有源滤波器250还可配置成从转子母线、线路侧转换器、转子侧转换器、定子母线、电网互连母线和DC链路中的至少一个接收至少一个电气条件。因此,有源滤波器250可布置成有源地过滤谐波,包括接近基频的这些谐波,以满足电网要求。注意,在其中硬连接存在于有源滤波器DC链路和转换器DC链路之间的情况下,用于隔离的机构可用于避免在有源滤波器和转子转换器的桥(例如,变压器260或备选地在DC链路侧的250内具有功率切换装置的高频变压器)之间的循环电流。
现在参照图12,根据本主题的方面,示出用于操作发电系统的方法1300的一个实施例的流程图。大体上,方法1300将在本文中描述为使用风力涡轮系统(诸如以上参照图2描述的DFIG风力涡轮系统100)来实施。然而,应当认识到,公开的方法1300可使用配置成供应功率用于施加于负载的任何其它合适的发电系统来实施。另外,尽管为了说明和讨论的目的,图12描绘以特定顺序执行的步骤,但是本文中描述的方法不限于任何特定顺序或布置。使用本文中提供的公开,本领域技术人员将认识到,方法的各种步骤可以以各种方式被省略、重新布置、同时执行、组合和/或修改。在不脱离本公开的范围或精神的情况下,可执行本文中未公开的附加步骤。
在(1302)处,方法1300可包括将在线路侧转换器处的AC功率转换成用于DC链路的DC功率。例如,线路侧转换器可为功率转换器的部分,诸如AC-AC功率转换器130的线路侧转换器134,并且DC链路可为DC链路135、137。AC功率可为在诸如线路侧母线138的AC母线上的三相AC功率。例如,AC功率可使用多个桥电路来转换。根据本方法,可使用用于执行AC到DC转换的其它合适的系统。
在(1304)处,方法1300可包括在转子侧转换器处接收来自DC链路的DC功率。例如,转子侧转换器可为转子侧转换器132。DC功率可包括诸如横跨DC链路电容器的DC链路电压。转子侧转换器可包括多个桥电路。
在(1306)处,方法1300可包括以过调制机制或接近过调制机制操作转子侧转换器,以将DC功率转换成AC信号。例如,转子侧转换器132可使用转换器控制器140根据过调制机制200操作。例如,转子侧转换器132还可使用转换器控制器140根据具有最小化区域206的过调制机制200(即,接近单一过调制(unity overmodulation))来操作。例如,转换器控制器140可基于调制波202和载波204的交点208向转子侧转换器内的切换元件142的栅极提供控制信号,其中调制波202的幅度对于过调制机制而言大于载波204的幅度,或者对于接近过调制机制的调制机制而言接近载波204的幅度。
在(1308)处,方法1300包括提供来自并联联接于转子侧转换器的有源滤波器(例如,有源滤波器250)的输出,以减少由在过调制机制或接近过调制机制下操作转子侧转换器引起的至少一个谐波。例如,有源滤波器可为有源滤波器250或其它合适的有源滤波器。有源滤波器可设置在转子侧母线124上,并联联接于转子侧转换器132,直接联接于DC链路135、137或其它合适的位置。有源滤波器可以以与至少一个谐波大约相同的频率和以大约相反的相位提供电压或电流,以减少或消除至少一个谐波,具有基频下的对功率的最小影响或无影响。在一些实施例中,除了有源滤波器之外,可使用无源滤波器。
虽然本主题关于其具体示例性实施例被详细描述,但是将认识到,本领域技术人员在获得前述内容的理解之后,可容易地产生此类实施例的改型、变型和等同物。因此,本公开的范围经由实例而非经由限制,并且主题公开不排除包括对本主题的此类修改、变型和/或添加,如将对本领域技术人员而言为容易显而易见的。

Claims (20)

1.一种连接于电力网的电功率系统,其包括:
发电机,其包括定子和转子,所述定子经由定子功率路径连接于所述电力网;
功率转换器,其包括:
线路侧转换器,其经由转换器功率路径联接于所述电力网;和
转子侧转换器,其联接于所述转子的转子母线并且经由DC链路联接于所述线路侧转换器,所述转子侧转换器配置成将所述DC链路上的DC功率转换成用于所述转子母线的AC信号;和
有源滤波器,其包括一个或多个有源受控构件,所述有源滤波器与所述转子侧转换器并联联接以减少所述电功率系统的谐波。
2.根据权利要求1所述的电功率系统,其特征在于,所述电功率系统还包括控制系统,所述控制系统包括一个或多个控制装置,所述一个或多个控制装置配置成操作所述转子侧转换器以提供用于所述转子母线的所述AC信号。
3.根据权利要求2所述的电功率系统,其特征在于,所述转子侧转换器包括一个或多个切换元件,其中,所述一个或多个控制装置在过调制机制下操作所述一个或多个切换元件。
4.根据权利要求1所述的电功率系统,其特征在于,所述有源受控构件包括一个或多个切换元件。
5.根据权利要求1所述的电功率系统,其特征在于,所述电功率系统还包括无源滤波器,所述无源滤波器联接于所述转换器功率路径,以进一步减少所述电功率系统的谐波。
6.根据权利要求3所述的电功率系统,其特征在于,所述有源滤波器进一步配置成减少由在所述过调制机制下操作所述转子侧转换器的所述一个或多个切换元件引起的谐波。
7.根据权利要求6所述的电功率系统,其特征在于,所述有源滤波器还联接于所述DC链路。
8.根据权利要求1所述的电功率系统,其特征在于,所述有源滤波器配置成从所述转子母线、所述线路侧转换器、所述转子侧转换器、定子母线、电网互连母线和所述DC链路中的至少一个接收至少一个电气条件。
9.根据权利要求8所述的电功率系统,其特征在于,所述至少一个电气条件是电流和电压中的一个或多个。
10.根据权利要求1所述的电功率系统,其特征在于,所述电功率系统还包括联接在所述有源滤波器和所述转子母线之间的电感器和电容器的串联连接。
11.根据权利要求1所述的电功率系统,其特征在于,所述电功率系统还包括联接在所述有源滤波器和所述转子母线之间的至少一个电感器。
12.根据权利要求1所述的电功率系统,其特征在于,所述有源滤波器直接联接于所述转子侧转换器的终端。
13.一种风力涡轮系统,其包括:
发电机,其包括定子和转子,所述定子经由定子功率路径连接于所述电力网;
功率转换器,其包括:
线路侧转换器,其经由转换器功率路径联接于所述电力网;和
转子侧转换器,其联接于所述转子的转子母线并且经由DC链路联接于所述线路侧转换器,所述转子侧转换器配置成将所述DC链路上的DC功率转换成用于所述转子母线的AC信号;和
有源滤波器,其包括一个或多个有源控制电子构件,所述有源滤波器与所述转子侧转换器并联联接以减少所述电功率系统的谐波。
14.根据权利要求13所述的风力涡轮系统,其特征在于,所述风力涡轮系统还包括控制系统,所述控制系统包括一个或多个控制装置,所述一个或多个控制装置配置成操作所述转子侧转换器以提供用于所述转子母线的所述AC信号。
15.一种操作用于双馈感应发电机系统的电功率转换器的方法,所述方法包括:
将在线路侧转换器处的AC功率转换成用于DC链路的DC功率;
在转子侧转换器处接收来自所述DC链路的所述DC功率;
使用一个或多个控制装置操作所述转子侧转换器,以将所述DC功率转换成AC信号;和
操作并联联接于所述转子侧转换器的有源滤波器,以减少所述功率系统中的至少一个谐波。
16.根据权利要求15所述的方法,其特征在于,使用所述一个或多个控制装置操作所述转子侧转换器以将所述DC功率转换成所述AC信号包括在过调制机制下操作一个或多个切换元件。
17.根据权利要求16所述的方法,其特征在于,所述有源滤波器包括一个或多个有源受控构件。
18.根据权利要求15所述的方法,其特征在于,所述方法还包括使用无源滤波器来减少由操作所述转子侧转换器引起的至少一个谐波。
19.根据权利要求15所述的方法,其特征在于,从所述有源滤波器提供输出减少由在过调制机制下操作所述转子侧转换器引起的至少一个谐波。
20.根据权利要求15所述的方法,其特征在于,所述双馈感应发电机系统是风力驱动的双馈感应发电机系统,其配置成生成用于电力网的电功率。
CN201980024484.4A 2018-04-04 2019-04-04 具有有源滤波器的dfig转换器 Pending CN111971885A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/944,828 US10778112B2 (en) 2018-04-04 2018-04-04 DFIG converter with active filter
US15/944828 2018-04-04
PCT/US2019/025711 WO2019195503A1 (en) 2018-04-04 2019-04-04 Dfig converter with active filter

Publications (1)

Publication Number Publication Date
CN111971885A true CN111971885A (zh) 2020-11-20

Family

ID=66223851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980024484.4A Pending CN111971885A (zh) 2018-04-04 2019-04-04 具有有源滤波器的dfig转换器

Country Status (6)

Country Link
US (1) US10778112B2 (zh)
EP (1) EP3776829A1 (zh)
CN (1) CN111971885A (zh)
BR (1) BR112020019779A2 (zh)
CA (1) CA3095626A1 (zh)
WO (1) WO2019195503A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10826297B2 (en) * 2018-11-06 2020-11-03 General Electric Company System and method for wind power generation and transmission in electrical power systems
US11736056B2 (en) * 2019-05-30 2023-08-22 General Electric Company System and method for controlling harmonics in a renewable energy power system
US11296612B2 (en) 2019-12-30 2022-04-05 General Electric Company Carrier-based pulse width modulation control for back-to-back voltage source converters
CN111245020B (zh) * 2020-03-12 2022-09-30 上海电气风电集团股份有限公司 一种双馈风力发电系统以及发电方法
US11231014B2 (en) 2020-06-22 2022-01-25 General Electric Company System and method for reducing voltage distortion from an inverter-based resource
US11689017B1 (en) 2021-12-13 2023-06-27 General Electric Renovables Espana, S.L. Electrical power system having active harmonic filter

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593106A (en) 1970-03-11 1971-07-13 Gen Electric Cycloconverter with rectifier bank control for smooth switching between rectifier banks
US4281371A (en) 1980-03-05 1981-07-28 Westinghouse Electric Corp. Cycloconverter with waveform improving nonlinear feedback
US5047910A (en) 1990-07-09 1991-09-10 Teledyne Inet Ideal sinusoidal voltage waveform synthesis control system
US5499178A (en) * 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
US5757099A (en) * 1996-03-01 1998-05-26 Wisconsin Alumni Research Foundation Hybrid parallel active/passive filter system with dynamically variable inductance
US5737198A (en) * 1996-11-26 1998-04-07 General Electric Company Hybrid active power filter with programmed impedance characteristics
US5910889A (en) * 1996-11-26 1999-06-08 General Electric Company Hybrid active power filter with programmed impedance characteristics
US7187566B2 (en) 2000-03-17 2007-03-06 Daikin Industries, Ltd. Three-phase rectifier
JP2001268913A (ja) 2000-03-17 2001-09-28 Daikin Ind Ltd 三相整流装置
GB2398841A (en) 2003-02-28 2004-09-01 Qinetiq Ltd Wind turbine control having a Lidar wind speed measurement apparatus
KR100547569B1 (ko) * 2003-09-17 2006-01-31 한국전력공사 11차와 13차 고조파를 동시에 제거하는 12차 능동필터
US7175389B2 (en) 2004-06-30 2007-02-13 General Electric Company Methods and apparatus for reducing peak wind turbine loads
US7822560B2 (en) 2004-12-23 2010-10-26 General Electric Company Methods and apparatuses for wind turbine fatigue load measurement and assessment
US7212421B2 (en) 2005-03-15 2007-05-01 Perfect Electric Power, Inc. Combination feedback controller and power regulator using same
CN1734879A (zh) * 2005-07-18 2006-02-15 西安交通大学 电力系统变电站用电能质量综合控制器
US7342323B2 (en) 2005-09-30 2008-03-11 General Electric Company System and method for upwind speed based control of a wind turbine
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
US7613548B2 (en) 2006-01-26 2009-11-03 General Electric Company Systems and methods for controlling a ramp rate of a wind farm
US7521907B2 (en) 2006-03-06 2009-04-21 Enpirion, Inc. Controller for a power converter and method of operating the same
US7346462B2 (en) 2006-03-29 2008-03-18 General Electric Company System, method, and article of manufacture for determining parameter values associated with an electrical grid
US7505833B2 (en) 2006-03-29 2009-03-17 General Electric Company System, method, and article of manufacture for controlling operation of an electrical power generation system
EP1911968A1 (en) 2006-10-10 2008-04-16 Ecotecnia Energias Renovables S.L. Control system for a wind turbine and method of controlling said wind turbine
US7950901B2 (en) 2007-08-13 2011-05-31 General Electric Company System and method for loads reduction in a horizontal-axis wind turbine using upwind information
US7861583B2 (en) 2008-01-17 2011-01-04 General Electric Company Wind turbine anemometry compensation
US7942629B2 (en) 2008-04-22 2011-05-17 General Electric Company Systems and methods involving wind turbine towers for power applications
HRP20080209C1 (hr) 2008-05-13 2018-08-10 Saša Sladić Jednofazni paralelni aktivni učinski filtar s adaptivnim naponom filterskog kondenzatora
US8192161B2 (en) 2008-05-16 2012-06-05 Frontier Wind, Llc. Wind turbine with deployable air deflectors
US7944068B2 (en) * 2008-06-30 2011-05-17 General Electric Company Optimizing converter protection for wind turbine generators
US7928592B2 (en) * 2008-06-30 2011-04-19 General Electric Company Wind turbine with parallel converters utilizing a plurality of isolated generator windings
US7939959B2 (en) * 2008-06-30 2011-05-10 General Electric Company Wind turbine with parallel converters utilizing a plurality of isolated transformer windings
EP2164159B1 (en) * 2008-09-12 2019-02-20 Vestas Wind Systems A/S Low-voltage harmonic filter for full-scale converter systems
CN101684774B (zh) 2008-09-28 2012-12-26 通用电气公司 一种风力发电系统及风力发电机的测风方法
US8050887B2 (en) 2008-12-22 2011-11-01 General Electric Company Method and system for determining a potential for icing on a wind turbine blade
US8363433B2 (en) * 2009-09-09 2013-01-29 Ge Energy Power Conversion Technology Limited Hybrid conditioner for a power system
EP2302206A1 (en) 2009-09-23 2011-03-30 Siemens Aktiengesellschaft Selecting a load reduction measure for operating a power generating machine
US8025476B2 (en) 2009-09-30 2011-09-27 General Electric Company System and methods for controlling a wind turbine
GB2476316B (en) 2009-12-21 2014-07-16 Vestas Wind Sys As A wind turbine having a control method and controller for predictive control of a wind turbine generator
GB2476507A (en) 2009-12-23 2011-06-29 Vestas Wind Sys As Method And Apparatus For Protecting Wind Turbines From Gust Damage
US8531027B2 (en) * 2010-04-30 2013-09-10 General Electric Company Press-pack module with power overlay interconnection
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
CN103328816B (zh) * 2010-12-23 2016-01-20 维斯塔斯风力系统集团公司 操作风力涡轮机的方法以及适用于此的系统
GB2487715A (en) 2011-01-18 2012-08-08 Vestas Wind Sys As Method and apparatus for protecting wind turbines from extreme wind direction changes
EP2670979B1 (en) 2011-01-31 2022-09-28 General Electric Company Systems and method for controlling wind turbine
US8711565B2 (en) * 2011-11-02 2014-04-29 General Electric Company System and method for operating an electric power converter
WO2013083130A1 (en) 2011-12-09 2013-06-13 Vestas Wind Systems A/S Wind turbine including blades with suction side winglet
EP2604853A1 (en) 2011-12-15 2013-06-19 Siemens Aktiengesellschaft Method of controlling a wind turbine
US8773873B2 (en) * 2011-12-15 2014-07-08 General Electric Company Methods and systems for operating a power converter
US8622698B2 (en) 2011-12-22 2014-01-07 Vestas Wind Systems A/S Rotor-sector based control of wind turbines
US20130204447A1 (en) 2012-02-02 2013-08-08 Martin Huus Bjerge Wind turbine with price-optimised turbine load control
US9667128B2 (en) 2012-04-30 2017-05-30 Rockwell Automation Technologies, Inc. Power converter resonance detection apparatus and method
US9653984B2 (en) 2012-04-30 2017-05-16 Rockwell Automation Technologies, Inc. Filter capacitor degradation detection apparatus and method
US9617975B2 (en) 2012-08-06 2017-04-11 General Electric Company Wind turbine yaw control
US9118184B2 (en) * 2012-08-15 2015-08-25 General Electric Company Alternative power converter system
US20140062425A1 (en) * 2012-08-31 2014-03-06 General Electric Company System and method for interfacing variable speed generators to a power grid
US9671442B2 (en) * 2012-11-30 2017-06-06 General Electric Company System and method for detecting a grid event
US9099936B2 (en) * 2013-03-14 2015-08-04 General Electric Company High voltage direct current (HVDC) converter system and method of operating the same
US9318944B2 (en) 2013-04-29 2016-04-19 Rockwell Automation Technologies, Inc. Methods and apparatus for active front end filter capacitor degradation detection
US9605558B2 (en) 2013-08-20 2017-03-28 General Electric Company System and method for preventing excessive loading on a wind turbine
US9513614B2 (en) * 2013-09-11 2016-12-06 General Electric Company Auxiliary electric power system and method of regulating voltages of the same
US9231509B2 (en) * 2013-11-25 2016-01-05 General Electric Company System and method for operating a power generation system within a power storage/discharge mode or a dynamic brake mode
US9337685B2 (en) * 2013-12-23 2016-05-10 General Electric Company Optimized filter for battery energy storage on alternate energy systems
US10104814B2 (en) * 2014-11-03 2018-10-16 General Electric Company System and method for cooling electrical components of a power converter
CN107002636B (zh) 2014-11-21 2019-09-17 维斯塔斯风力系统集团公司 用于估计风速,包括计算针对叶片扭转调节的桨距角的方法
US10333390B2 (en) * 2015-05-08 2019-06-25 The Board Of Trustees Of The University Of Alabama Systems and methods for providing vector control of a grid connected converter with a resonant circuit grid filter
US10075114B2 (en) * 2016-03-03 2018-09-11 General Electric Company System and method for controlling DC link voltage of a power converter
US10340829B2 (en) * 2016-07-25 2019-07-02 General Electric Company Electrical power circuit and method of operating same
CN107332484A (zh) 2017-09-05 2017-11-07 桂林电子科技大学 一种电力电子变换器
US10662923B2 (en) * 2017-09-29 2020-05-26 General Electric Company Contingency autonomous yaw control for a wind turbine
US20190140569A1 (en) * 2017-11-09 2019-05-09 General Electric Company DFIG Converter Overmodulation

Also Published As

Publication number Publication date
EP3776829A1 (en) 2021-02-17
WO2019195503A1 (en) 2019-10-10
US20190312502A1 (en) 2019-10-10
BR112020019779A2 (pt) 2021-01-05
CA3095626A1 (en) 2019-10-10
US10778112B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
EP3484007B9 (en) Dfig converter overmodulation
US10778112B2 (en) DFIG converter with active filter
EP2141795B1 (en) Wind turbine with parallel converters utilizing a plurality of isolated generator windings
EP2400619B1 (en) Low cost current source converters for power generation application
EP3731405B1 (en) System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter
US11296612B2 (en) Carrier-based pulse width modulation control for back-to-back voltage source converters
US20140319838A1 (en) Switching-based control for a power converter
EP3893383A1 (en) System and method for controlling wind turbine converters during high voltage ride through events
EP4266580A1 (en) System and method for detecting igbt failure in a multi-level converter using gate-emitter voltage sensing
EP4170888A1 (en) System and method for operating multi-level power converter using a multi-state deadtime
EP3961886A1 (en) Crowbar module for an active neutral point clamped power conversion assembly
US11736056B2 (en) System and method for controlling harmonics in a renewable energy power system
EP3487066B1 (en) System and method for operating a doubly fed induction generator system to reduce harmonics
US11552575B1 (en) System and method for operating multi-level power converter using multiple deadtimes
EP4195437A1 (en) Electrical power system having active harmonic filter
EP4270750A1 (en) Fault tolerant system and method for continuous skip-fire pulse width modulation for an active neutral point clamped converter
CN112443455A (zh) 在低风速期间操作风力涡轮功率系统的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20231229

Address after: Barcelona, Spain

Applicant after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Applicant before: General Electric Co.

TA01 Transfer of patent application right