CN116254287A - 玉米ZmAGA3基因用于提高植物耐旱性的应用 - Google Patents

玉米ZmAGA3基因用于提高植物耐旱性的应用 Download PDF

Info

Publication number
CN116254287A
CN116254287A CN202211484668.9A CN202211484668A CN116254287A CN 116254287 A CN116254287 A CN 116254287A CN 202211484668 A CN202211484668 A CN 202211484668A CN 116254287 A CN116254287 A CN 116254287A
Authority
CN
China
Prior art keywords
zmaga3
gene
corn
maize
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211484668.9A
Other languages
English (en)
Inventor
赵天永
闫栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN202211484668.9A priority Critical patent/CN116254287A/zh
Publication of CN116254287A publication Critical patent/CN116254287A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2465Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on alpha-galactose-glycoside bonds, e.g. alpha-galactosidase (3.2.1.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01022Alpha-galactosidase (3.2.1.22)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及玉米ZmAGA3基因在植物耐旱中的应用。本发明通过在植物中过表达玉米ZmAGA3基因,提高了植物中ZmAGA3蛋白的表达量,提高了植物的耐旱性。

Description

玉米ZmAGA3基因用于提高植物耐旱性的应用
技术领域
本发明涉及生物技术领域,具体涉及利用提高玉米ZmAGA3基因表达提高玉米耐旱性的应用。
背景技术
ZmAGA3基因(GRMZM2G037265)编码一个碱性α-半乳糖苷酶(EC 3.2.1.22),能将棉子糖水解为蔗糖和半乳糖(Zhao et al.,2006)。
Zhao,T.Y.,Corum,J.W.,Mullen,J.,Meeley,R.B.,Helentjaris,T.,Martin,D.,and Downie,B.(2006).An alkaline alpha-galactosidase transcript is present inmaize seeds and cultured embryo cells,and accumulates during stress.Seed SciRes 16,107-121.
发明内容
发明人研究发现,提高ZmAGA3基因的表达量,可以显著提高植物的耐旱性,表明ZmAGA3基因在植物耐旱中发挥重要作用。
基于此,本发明提供了玉米ZmAGA3基因用于提高玉米耐旱的应用,所述玉米
ZmAGA3基因序列如SEQ ID NO:1所示,或者,所述玉米ZmAGA3基因编码的蛋白序列如SEQ ID NO:2所示。进一步,所述通过在植物中过表达玉米ZmAGA3基因提高了植物的耐旱性。具体方案中可利用现有的相关技术实现玉米ZmAGA3基因在植物的过表达,本发明提供了利用ZmAGA3基因自身启动子提高ZmAGA3基因的表达量的示例,所述玉米ZmAGA3基因的启动子序列如SEQ ID NO:3所示。
本发明同时提供了一种耐旱植物的育种方法。所述育种方法包括:利用包含玉米ZmAGA3基因和玉米ZmAGA3基因启动子的表达载体转化植物。
本发明还提供了实现上述方法的表达载体。所述表达载体包含玉米ZmAGA3基因和玉米ZmAGA3基因启动子。
本发明所述植物为玉米、小麦、棉花、大豆、燕麦等农作物。
附图说明
图1为本发明实施例中玉米转化载体示意图;其中:A3pro:玉米ZmAGA3基因启动子;ZmAGA3cds:玉米碱性α-半乳糖苷酶3基因cds序列;NOS:终止子;35S:花椰菜花叶病毒35S启动子;Bar:抗除草剂基因;Tvsp:终止子。
图2为本发明实施例转基因植株鉴定结果;A图为玉米过表达株系的基因组水平鉴定;Marker:DNA分子量;Control:PCR水对照;Zong31:玉米综31自交系叶片基因组;ZmAGA3#1,#2,#3为过表达ZmAGA3基因的3个株系(综31背景)的叶片基因组;ZmAGA3(E):内源ZmAGA3基因(Endogenous ZmAGA3 gene);ZmAGA3(T):转化的ZmAGA3基因(Transformed ZmAGA3gene);B图为玉米过表达株系叶片ZmAGA3蛋白水平鉴定,Zong31:玉米综31自交系叶片总蛋白;ZmAGA3#1,#2,#3为过表达ZmAGA3基因的3个株系(综31背景)的叶片总蛋白;ZmGAPDH:甘油醛-3-磷酸脱氢酶,作为内参蛋白。
图3为本发明实施例ZmAGA3转基因阳性株系及野生型WT的抗旱性鉴定结果;A图为综31自交系和ZmAGA3转基因株系(#1,#2,#3)幼苗在干旱胁迫下的生长状态;B图为综31自交系和ZmAGA3转基因株系(#1,#2,#3)幼苗在干旱胁迫后复水5天后的生长状态。Zong31:玉米综31自交系;ZmAGA3#1,#2,#3为过表达ZmAGA3基因的3个株系(综31背景);C图为ZmAGA3转基因株系及其综31自交系玉米幼苗复水后存活率比较,每个红点表示一个生物学重复,每个株系3个生物学重复;D图为ZmAGA3转基因株系及其综31自交系幼苗复水后叶片电导率比较,每个红点代表1个生物学重复,每个株系3个生物学重复;数据表示平均值±标准误,*表示差异显著(p<0.05),**代表极显著(p<0.01),***代表极显著(p<0.001),(Student’st-test)。
具体实施方式
除非有特殊说明,本文中的科学与技术术语及方法根据相关领域普通技术人员的认识理解或采用相关领域技术人员公知方法实现。
下面结合附图和具体实施例对本发明的技术方案作进一步详细地说明。如无特殊说明,以下实施例所用材料或试剂均为市售产品。
实施例:
该实施例通过PCR方法克隆了玉米ZmAGA3基因的编码区序列和启动子区序列,构建了该基因植物表达载体,转化玉米,获得了玉米转基因植株。具体方法如下:
(1)从B73三叶期玉米幼苗的叶片提取RNA并将其反转录成cDNA;
(2)以cDNA为模板,用上游引物5’-CAGGTCGACTCTAGAGGATC-CATGACGGTGGGCGCC-3’和下游引物5’-AATGTTTGAACGA-TCGAGCTCTCAATACTCTACTGTAACCGTCCAC-3’对SEQ ID NO:1所示的ZmAGA3的编码区进行扩增;扩增程序为:95℃预变性5min;95℃变性30s,55℃退火30s,72℃延伸2min 10s,35个循环;72℃终延伸10min;
(3)以cDNA为模板,用上游引物5’-GACCTGCAGGCATGCATACAT-ACTGAAGGTATGTGGTGGTC-3’和下游引物5’-GGCGCCCACCGTCATGGA-TCCGATCGTCCTCGGATTC-3’对SEQ ID NO:3所示的ZmAGA3的启动子区进行扩增;扩增程序为:95℃预变性5min;95℃变性30s,55℃退火30s,72℃延伸1min 50s,35个循环;72℃终延伸10min;
(4)将两次的扩增产物切胶回收,依次通过同源重组的方法分别连接到玉米表达载体pTF101上,之后将载体转化到农杆菌AGL1菌株中,如图1所示;
(5)所得农杆菌AGL1菌株用于玉米的遗传转化,玉米转化受体为Zong31自交系;通过侵染Zong31授粉后10天的幼胚,经过恢复、筛选、再生等培养阶段,获得转基因阳性植株。
进一步通过PCR对上述实施例构建的其中3个转基因株系的阳性植株叶片进行基因组水平鉴定,鉴定ZmAGA3基因所用引物为:上游引物F1 5′-CCCTGTGGGAATCGCTT-3′和下游引物R1 5′-CCGCTGCATCTTTGATC-3′,PCR扩增程序为:95℃预变性5min;95℃变性30s,55℃退火30s,72℃延伸30s,30个循环;72℃终延伸10min。用上游引物F2 5′-ATGGAACAAGGGCAGAAGATT-3′和下游引物R2 5′-GCACCATCGTCAACCACTAC-3′鉴定Bar基因,PCR扩增程序为:95℃预变性5min;95℃变性30s,55℃退火30s,72℃延伸30s,30个循环;72℃终延伸8min;结果如图2(A)所示。
并通过Western blot对上述实施例构建的其中3个转基因阳性株系蛋白水平进行鉴定;Western blot步骤参照文献:Gu,L.,et al.,ZmGOLS2,a target of transcriptionfactor ZmDREB2A,of erssimilar protection against abiotic stress asZmDREB2A.Plant Mol Biol,2016.90(1-2):p.157-70.中公开的方法,方法中所用ZmAGA3一抗为参照文献Li,T.,et al.,Regulation of seed vigor by manipulation ofraffinose family oligosaccharides(RFOs)in maize and Arabidopsis.MolecularPlant.2017.10(12):1540-1555.中公开的方法制备,使用稀释倍数为1:100000;二抗(羊抗兔)购于康为公司,使用稀释倍数为1:20000;结果如图2(B)所示。
进一步对上述实施例得到的其中3个ZmAGA3转基因阳性株系及野生型WT的抗旱性鉴定:
将ZmAGA3转基因株系及野生型WT种子在发芽纸上萌发3天,取5粒发芽一致的种子种植于同一小盆中并进行控重,每小盆的最终质量控制在140g;幼苗培养条件为25℃,16光照/8h黑暗的光周期,培养至两叶期进行持续干旱处理,待表型出现后拍照记录,并浇水进行恢复处理,恢复5天后测定存活率和电导率;
幼苗存活率测定:统计每个小盆中恢复后存活的幼苗数和总苗数,利用公式(存活数/幼苗总数)×100%计算幼苗存活率。
叶片电导率测定:将每盆中的5株幼苗混合,作为一个生物学重复,置于干净的试管中,加入15mL去离子水中,抽真空30min,25℃、120rpm处理1h后测定电导率,记录为k1;随后将叶片沸水浴20min,冷却至室温,混合均匀测定电导率,记录为k2;利用公式(k1-k0)/(k2-k0)×100%,计算叶片电导率,k0是去离子水的电导率;电导测定仪型号:雷磁DDS-307。利用Student’s T-test检测野生型与转基因株系之间的差异显著性(*表示0.01<p<0.05;**表示0.001<p<0.01;***表示p<0.001)。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到技术方案的简单变化或等效替换均属于本发明的保护范围内。
核苷酸或氨基酸序列表
<110>西北农林科技大学
<120>玉米ZmRAFS基因用于提高植物耐涝性的应用
<160>3
<210>1
<211>2244
<212>DNA
<213>人工序列(Artificial Sequence)
<220>玉米ZmAGA3基因
<400>1
ATGACGGTGGGCGCCGGCATCGCCGTCCAGGACGGCAGCCTCCTGGCGCTGGGCGCCAAGGTCCTGCGGGAGGTGC
GCGGCAACGTGCTCGTGACGCCGGCCGCCGGCGGGGGCCTAACCAACGGCGCGTTCCTCGGCGTCCGGTCCGCGCC
CGCCGCCAGCCGCAGCATCTTCCCCGTCGGGAAGCTCCGGGACCAGCGGTTCGTGTGCACGTTCCGGTTCAAGATG
TGGTGGATGACGCAGAGGATGGGCTCCGCAGGCCGCGACATCCCCTCCGAGACGCAGTTCCTGCTGGTGGAAGGGT
CCGGCGGCGGCGAGCAGCCCGTCGTGTACACCGTCTTCCTCCCCGTGCTGGAGGGCTCGTTCCGTGCCGTTCTTCA
GGGGAACGCCGCCGACGAGCTGGAGATCTGCCTGGAGAGCGGCGACCCGGACGTGGAATCTTTCCAAGGCTCCCAT
CTGGTCTTCGTTGGCGCCGGATCGGACCCGTTCGAGGTCATCACAAGTTCAGTCAAGGCTGTCGAGAGGCACTTGC
AGACGTTCTCTCACAGGGAGAAGAAAAAGATGCCAGACATTCTGAACTGGTTTGGCTGGTGCACGTGGGACGCGTT
CTACACCAATGTCACCGCCCAGGGAGTGAAGCAAGGATTGCAGAGCTTGGAAAAAGGCGGGGTCTCTCCTAGGTTC
GTCATAATCGACGACGGATGGCAGTCCGTCGCCATGGACCCTGTGGGAATCGCTTGCCTATCTGACAACTCAGCCA
ACTTCGCAAACAGGCTGACTCACATCAGGGAGAACCACAAGTTTCAGAAAAATGGCAGGGAGGGTCACAGGGAAGA
TGACCCAGCGAAGGGCCTAGCACACGTCGTCAATGAGATTAAGGGGAAGCATCAGCTCAAGTATGTGTACGTATGG
CATGCCATCACCGGATACTGGGGCGGAGTGAGGCCGGGTGCAGCTGGAATGGAGCACTACGGATCAAAGATGCAGC
GGCCCGTGCCATCGCCGGGGGTTCAGAAGAACGAGCGCTGCGACGCCCTGGACAGCATGACGGCCAACGGGCTGGG
CCTCGTGAACCCTGACAGGGCGTTCAGTTTCTACGACGAGCTCCACTCGTACCTCGCGTCTGCCGGGATCGACGGG
GTGAAGGTGGACGTGCAGAACGTCCTCGAGACGCTGGGCGCCGGCCATGGCGGGAGGGTGATGCTGGCGAGGAAGT
ACCAGCAGGCTCTGGAAGCGTCCGTCGCCAGGAACTTCCCTGACAATGGCATCATATCGTGCATGAGCCACAGCAC
GGACAACTTGTACAGCTCGAAACGGAGCGCGGTGATTAGAGCCTCTGACGATTTCTGGCCGAGAGACCCCGCTTCC
CATACCATACACGTCGCGTCCGTCGCTTATAACACCGTCTTTCTTGGGGAGTTCATGCAGCCAGACTGGGACATGT
TCCATAGTGTTCATCCCATGGCTGAGTACCATGCTGCGGCTCGAGCGGTTGGTGGCTGTGCCATATATGTCAGCGA
CAAGCCTGGGAGCCATGACTTCAATCTGCTCAAGAAGCTCGTGCTTCCCGACGGATCGATCCTGCGCGCAAAGCTC
CCCGGGAGGCCAACCAGAGACTGCCTCTTCTCTGACCCCGCAAGGGACGGCAAAAGCGTTCTCAAGATATGGAACC
TGAACGAACACTCCGGCGTCGTTGGCGCCTTCAACTGCCAAGGCGCCGGCTGGTGCCGGGTAGCCAAGAAGAACCT
CATCCACGACCAGCAGCCCGGAACGGTGAGCGGCGTCATCCGGGCGCAGGACGTGGAGCACCTTGGAAGGGTGGCT
GATCACGGCTGGAACGGCGACGTGGTCGTGTATTTGCACGTGGGAGGGGAGGTGGTGTACCTGCCGAAGAACGCCT
TGCTGCCTGTGACGCTGAGATCGCGCGAGTATGAGGTGTTCACCGTCGTCCCTCTCAAGCACCTGCCAAACGGTAC
CTCCTTTGCGGCGATCGGCCTTCTCGGCATGTTCAACTCCGGTGGCGCGGTGAGGGAGCTGAGATTCGGTGGTGAG
GATGCCGACGTCGAGCTCAGAGTGCGGGGCTCGGGCACGGTCGGAGCTTATTCCTCGACCAAGCCAACGTGTGTCG
CCGTCGATTCCAAGGCGGTTGGTTTCTCCTACGATGCCACCTGTGGCCTCATCAGCTTCGAGCTCGGCATTCCCGA
CCAAGAAATGTACTTGTGGACGGTTACAGTAGAGTATTGA
<210>2
<211>747
<212>PRT
<213>人工序列(Artificial Sequence)
<220>玉米ZmAGA3基因编码的蛋白
<400>2
MTVGAGIAVQDGSLLALGAKVLREVRGNVLVTPAAGGGLTNGAFLGVRSAPAASRSIFPVGKLRDQRFVCTFRFKM
WWMTQRMGSAGRDIPSETQFLLVEGSGGGEQPVVYTVFLPVLEGSFRAVLQGNAADELEICLESGDPDVESFQGSH
LVFVGAGSDPFEVITSSVKAVERHLQTFSHREKKKMPDILNWFGWCTWDAFYTNVTAQGVKQGLQSLEKGGVSPRF
VIIDDGWQSVAMDPVGIACLSDNSANFANRLTHIRENHKFQKNGREGHREDDPAKGLAHVVNEIKGKHQLKYVYVW
HAITGYWGGVRPGAAGMEHYGSKMQRPVPSPGVQKNERCDALDSMTANGLGLVNPDRAFSFYDELHSYLASAGIDG
VKVDVQNVLETLGAGHGGRVMLARKYQQALEASVARNFPDNGIISCMSHSTDNLYSSKRSAVIRASDDFWPRDPAS
HTIHVASVAYNTVFLGEFMQPDWDMFHSVHPMAEYHAAARAVGGCAIYVSDKPGSHDFNLLKKLVLPDGSILRAKL
PGRPTRDCLFSDPARDGKSVLKIWNLNEHSGVVGAFNCQGAGWCRVAKKNLIHDQQPGTVSGVIRAQDVEHLGRVA
DHGWNGDVVVYLHVGGEVVYLPKNALLPVTLRSREYEVFTVVPLKHLPNGTSFAAIGLLGMFNSGGAVRELRFGGEDADVELRVRGSGTVGAYSSTKPTCVAVDSKAVGFSYDATCGLISFELGIPDQEMYLWTVTVEY*
<210>3
<211>1695
<212>DNA
<213>人工序列(Artificial Sequence)
<220>玉米ZmAGA3基因的启动子
<400>3
ACTGAAGGTATGTGGTGGTCATGATTTTATATCACTGACCTTATTATCTATGAAGATAATATACTTTGTGTTGTTT
AGATGAAAAACAAGTTACGAACTAAGTCTCTATCTTCACATTTTAAATGTGTTTGAGAGCAGGTATGAGATGACTT
AGTAATTTGCAAAGATCAGGGGGAGTTTCCTCTTGATCGGAAAAACTTGTTTTTACATCATGTTGTACTCTTTTCT
TTGCATGAGTTTTCCCCCTATTTGGGTTTCTCATTCAAAGTTTTTAACGAGGCAACATCAACACAAGGCCTATGTC
GTATCATCTATTTTTCCCATAGAGGTTTTTCGAGGATGATACATTATGACATAGTTATTGTTGTATTTAAACTAGG
TTATGAGTTTATCTCATAAGAGTTTAAATGATCAACAATAGATCGTGATTATTCTCCTTATTTTTCCCATTGGGTA
TTTAAGGAGACTCGGCTCATATGTTGATTTCCCAGATTTTCTGACACGATTATCTTGGAGAAATATTAGCCTGAGT
TATATGTCTCATCATTTATTTTCCCCACTGGGGTTTTTGAGATGATGGCTATAGACATATTATTGTTCTTTGGGCT
AGAGGTCCATTGGAGAACAATGTACCATGATTCGATTGAATCACCGACAATTATCTATAAGGATAATTGAGCTTGT
GTTGTTCAGATGGAAACATGAAAATGGAAATATTGACATCTTGCAAACAAAGTCTTGTGATAATCTTGCTGATCTA
TTCACAAAATCTCTACCATGCTCCACGTTTCAGAAATATGTTAAAATGGTTGGTATGAGAAGACTTAAGTGATTGC
AAGAATCAGGGGGAGAAATTCTCCGTGATATTTGACCTGTTTTGTCCATCATATTACACTCTTTTCTTTGTATGAG
TTTTGCCTTGTTAAGGTTTTCTCATCCAAAGTTTTTAATGAGGTAATATCAACTAAGCTATATGCTTCATCATTGA
TTTTTCCCCAAGGGGGTTTTTACGAATGATGATTACAAGCATATTTTTCTTTTGGAGTTCAATGTGAGTTTTACTC
ATGATTCAAAAGCATTGTGTACTCCTTATTTTTCCCACAGGGTTTTTGAGGAGATGAAACATTGAAAGACATCTTG
CAGATGATCAATGGACTTGGATTGATCAAGGGAGAGTGTTACAAAATATTTGTATAATATATGATCAATCCCGGAC
AGTTATTCCCAAGGGACACACCCCTTGGGTGACACTGTATCTACTTGTATATAAATAAGGATCTCTGCAATAAAGA
TGACAGTTACTTGTCTCTGCCATTTGTCTATCTCAATTCTCATTTGCCACTGAGTATACTCCAACACTATATATGC
CAACGATCATTTCCAAGCTGACGTGGCAGGACGGGTCAGCATCGTCCGACGCGGATCGCATGTGGCGGTGATGATA
CCGGTTCCGGACGCCACGAAGAGTTCGAATCCCCCAATCCTACGACTAATAACTGCCACGAGTCTTCCGCCGCCTG
CAAGTCCGAGCGGCAGGGTATATATAAGCAGGGGCCAGGGAGAGGAGCGTCGCCGGCCGGACCACCCAGAGCCAGA
AGCGCGTCGCCAGCCAACTATCGCCGCTGATAACCAACCCAATCCAACCTAACCCAACCCTGCTCTCTGCCGACGC
GGATTCGAATCCGAGGACGATCG。

Claims (7)

1.玉米ZmAGA3基因用于提高植物耐旱性的应用,所述玉米ZmAGA3基因序列如SEQ IDNO:1所示,或者,所述玉米ZmAGA3基因编码SEQ ID NO:2所示蛋白序列。
2.如权利要求1所述的应用,其特征在于,通过在植物中过表达玉米ZmAGA3基因提高植物的耐旱性。
3.如权利要求2所述的应用,其特征在于,利用玉米ZmAGA3基因启动子构建载体,实现玉米ZmAGA3基因在植物中的过表达。
4.如权利要求3所述的应用,其特征在于,所述玉米ZmAGA3基因启动子序列如SEQ IDNO:3所示。
5.一种耐旱植物的育种方法,其特征在于,方法包括:利用包含玉米ZmAGA3基因和玉米ZmAGA3基因启动子的表达载体转化植物。
6.如权利要求5所述的育种方法,其特征在于,所述玉米ZmAGA3基因启动子序列如SEQID NO:3所示。
7.实现权利要求5所述方法的表达载体,其特征在于,所述表达载体包含玉米ZmAGA3基因和玉米ZmAGA3基因启动子。
CN202211484668.9A 2022-11-24 2022-11-24 玉米ZmAGA3基因用于提高植物耐旱性的应用 Pending CN116254287A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211484668.9A CN116254287A (zh) 2022-11-24 2022-11-24 玉米ZmAGA3基因用于提高植物耐旱性的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211484668.9A CN116254287A (zh) 2022-11-24 2022-11-24 玉米ZmAGA3基因用于提高植物耐旱性的应用

Publications (1)

Publication Number Publication Date
CN116254287A true CN116254287A (zh) 2023-06-13

Family

ID=86686912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211484668.9A Pending CN116254287A (zh) 2022-11-24 2022-11-24 玉米ZmAGA3基因用于提高植物耐旱性的应用

Country Status (1)

Country Link
CN (1) CN116254287A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948366A (zh) * 2022-11-16 2023-04-11 西北农林科技大学 玉米ZmAGA1基因用于提高植物抗旱性的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050055748A1 (en) * 2003-03-28 2005-03-10 Downie A. Bruce Stress-responsive genes, regulatory elements, and methods of use for same
US20110119792A1 (en) * 2007-06-12 2011-05-19 Nguyen Henry T Genes Controlling Plant Root Growth And Development For Stress Tolerance And Method Of Their Use
CN102933707A (zh) * 2010-03-02 2013-02-13 普罗塔里克斯有限公司 稳定的α-半乳糖苷酶及其用途
CN105779478A (zh) * 2016-04-05 2016-07-20 西北农林科技大学 玉米ZmAGA4基因及其应用
WO2019169150A1 (en) * 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050055748A1 (en) * 2003-03-28 2005-03-10 Downie A. Bruce Stress-responsive genes, regulatory elements, and methods of use for same
US20110119792A1 (en) * 2007-06-12 2011-05-19 Nguyen Henry T Genes Controlling Plant Root Growth And Development For Stress Tolerance And Method Of Their Use
CN102933707A (zh) * 2010-03-02 2013-02-13 普罗塔里克斯有限公司 稳定的α-半乳糖苷酶及其用途
CN105779478A (zh) * 2016-04-05 2016-07-20 西北农林科技大学 玉米ZmAGA4基因及其应用
WO2019169150A1 (en) * 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALEXANDROV NN等: "Zea mays alkaline alpha galactosidase 3 (LOC606431), mRNA", GENBANK DATABASE, 1 July 2020 (2020-07-01), pages 001112305 *
HARA, M等: "Isolation of a drought-responsive alkaline α-galactosidase gene from New Zealand spinach", PLANT BIOTECHNOLOGY, vol. 25, no. 5, 31 December 2008 (2008-12-31), pages 497 - 501 *
TIAN-YONG ZHAO等: "An alkaline α-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress", SEED SCIENCE RESEARCH, vol. 16, no. 2, 22 February 2007 (2007-02-22), pages 110 *
张丁方;关涛;严俊;韩庆辉;: "玉米种子萌发初期碱性α-半乳糖苷酶活性与种子脱水耐性的关系", 西北农业学报, no. 09, 25 September 2013 (2013-09-25) *
韩博;王卫栋;杨培志;张攀;呼天明;: "紫花苜蓿抗逆基因MsDUF的克隆及其功能分析", 中国农业科学, no. 02, 16 January 2013 (2013-01-16) *
韩庆辉: "ZmAGA1基因5’调控区的功能分析", 中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑, 15 January 2016 (2016-01-15), pages 006 - 23 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948366A (zh) * 2022-11-16 2023-04-11 西北农林科技大学 玉米ZmAGA1基因用于提高植物抗旱性的应用
CN115948366B (zh) * 2022-11-16 2024-04-09 西北农林科技大学 玉米ZmAGA1基因用于提高植物抗旱性的应用

Similar Documents

Publication Publication Date Title
Yarra et al. Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.)
Begcy et al. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants
CN115287295B (zh) 玉米ZmRAFS基因用于提高作物抗热能力的应用
CN101437947A (zh) 提高植物非生物胁迫耐受性和/或生物量的方法以及因此产生的植物
Raza et al. Overexpression of an H+-PPase gene from Arabidopsis in sugarcane improvesdrought tolerance, plant growth, and photosynthetic responses
CN111187778B (zh) 小麦耐盐基因TaFLZ2及其应用
WO2020221029A1 (zh) 玉米类受体激酶基因ZmRLK7及其应用
Singha et al. Heterologous expression of PDH47 confers drought tolerance in indica rice
CN116254287A (zh) 玉米ZmAGA3基因用于提高植物耐旱性的应用
CN112062823B (zh) Glk7蛋白及其编码基因在植物抗旱中的应用
Geda et al. Enhancement of drought tolerance in rice through introgression of Arabidopsis DREB1A through transgenic approach
CN108218967B (zh) 水稻抽穗期相关蛋白及其编码基因与应用
EP2350284B1 (en) Hybrid-type histidine kinase gene isolated from indica rice ir64
CN115992149B (zh) 玉米ZmRAFS基因用于提高植物耐涝性的应用
Haq et al. Barley vacuolar pyrophosphatase (HVP1) gene confers salinity tolerance in locally adapted wheat (Triticum aestivum).
CN116376964B (zh) 一种调控水稻低温发芽的基因及其应用
US20240035043A1 (en) Application of maize ZmRAFS gene to improve crop heat stress tolerance
CN115873889B (zh) 一种SsGolS2基因在提高植物抗旱性中的应用
CN111676228B (zh) 抗稻曲病基因OsRFS2在水稻遗传改良中的应用
CN116103258A (zh) 玉米ZmRAFS基因用于提高玉米叶片中棉子糖含量的应用
CN108586594B (zh) 一种AmCBF1转录因子及其在植物抗逆方面的应用
CN115786392A (zh) 玉米ZmRAFS基因用于提高玉米耐储藏能力的应用
Narancio Transgenic white clover plants with a molecular stack of traits for delayed leaf senescence, aluminium tolerance and alfalfa mosaic virus resistance. Generation and molecular and functional characterisation
Zhang et al. Overexpression of the CmACS-3 gene in melon causes abnormal pollen development
CN117051038A (zh) OsUBP7-6基因在调控水稻经济性状和培育高产水稻品种中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination