CN116251240A - 一种薄壁可吸收植入器械及其制备方法 - Google Patents

一种薄壁可吸收植入器械及其制备方法 Download PDF

Info

Publication number
CN116251240A
CN116251240A CN202310065483.2A CN202310065483A CN116251240A CN 116251240 A CN116251240 A CN 116251240A CN 202310065483 A CN202310065483 A CN 202310065483A CN 116251240 A CN116251240 A CN 116251240A
Authority
CN
China
Prior art keywords
thin
wall
walled
absorbable
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310065483.2A
Other languages
English (en)
Inventor
边东
郑玉峰
童之沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong General Hospital
Original Assignee
Guangdong General Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong General Hospital filed Critical Guangdong General Hospital
Priority to CN202310065483.2A priority Critical patent/CN116251240A/zh
Publication of CN116251240A publication Critical patent/CN116251240A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种薄壁可吸收植入器械,所述薄壁由钼或钼合金构成,所述薄壁的单层/单丝壁厚≤500μm,所述薄壁通过增材制造手段获得。该器械力学性能优异,降解均匀,组织兼容性好,可抑制细菌生物膜形成(防感染),可被完全降解吸收,适用于多种临床场景。

Description

一种薄壁可吸收植入器械及其制备方法
技术领域
本发明属于医疗器械领域,具体涉及一种薄壁可吸收植入器械及其制备方法。
背景技术
金属材料在植介入器械领域具有广泛的应用,并且占据了较大市场份额,大到关节和四肢骨骼假体,小到心血管支架和外科吻合钉,均可由金属材料制成。近年来,一类全新的医用金属材料逐渐进入大众视野—可降解金属。可降解金属在植入人体后可被逐渐降解吸收,避免了需要二次手术取出的烦恼,同时降解产物可为组织修复提供支持和帮助,被认为是“革命性的医用金属”。
过去20年,有关可降解金属的基础研究和应用转化研究取得了突破性进展,一些基于镁、铁、锌的可降解金属制成的骨科植入器械或血管支架已经进入了临床实践阶段,而且学者们还在不断探索新的可降解金属材料体系,如钼合金体系。出于金属元素毒性剂量考虑,腔道内支架、外科吻合钉、多孔组织支架等薄壁或者小尺寸器械吸引了人们的广泛关注。专利CN114182151A公开了一种可降解钼基合金植入材料及其制备方法与应用,包括0wt.%-5wt.%Re、0wt.%-5wt.%功能性元素和余量的钼,通过粉末冶金得到铸锭,再通过热轧制、热挤压、热拉拔等塑性变形细化合金晶粒尺寸,得到壁厚0.2-2mm的薄壁钼合金管材;但是该方法只能制备出形状简单的管材,无法制备形状复杂、尺寸精细的薄壁器件,难以适应临床的应用需求。这是因为钼金属本身具有高熔点、高硬度、高强度的特点(高温下仍具有高强度、高硬度),很难通过传统机加工手段或者塑性加工(如拉拔)的方法制成形状复杂、尺寸精细的薄壁器件。
发明内容
本发明的目的是提供一种薄壁可吸收植入器械及其制备方法,该器械由钼或钼合金制成,是通过钼粉或钼合金粉末直接经增材制造(3D打印)获得,近净成形,薄壁形状、尺寸和精度可控可调,适用于多种临床应用需求。
本发明的目的通过下述技术方案实现:
一种薄壁可吸收植入器械,所述薄壁由钼或钼合金构成,所述薄壁及其结构设计通过增材制造(3D打印)技术制得,所述薄壁的单层/单丝壁厚≤500μm。
所述钼合金中含有微合金化元素,所述微合金化元素选自Na、K、Fe、Zn、Cu、B、Si、C、W、O和稀土(RE)中的至少一种,并且单一微合金化元素的含量≤0.1wt.%,微合金化元素的总量≤0.2wt.%。考虑到器械的壁厚较薄(微米尺度),如果合金元素含量较高,易形成尺寸较大的第二相(相对壁厚而言),那么极有可能因为粗大第二相与基体间的电偶腐蚀导致非均匀腐蚀出现,也可能导致材料脆性,降低器械的安全性和有效性。此外,粗大第二相如果难以降解和吸收,残留产物将容易引发不良组织反应。发明人通过研究发现,通过将单一微合金化元素及总量控制在上述范围内,可以有效避免粗大第二相的出现。因此,本发明采用微合金化手段,在提高器械力学性能的同时,可以避免出现粗大的第二相,由此避免粗大第二相可能导致的非均匀腐蚀、材料脆性和不良组织学反应,提升器械安全性和可靠性。
优选地,所述薄壁可吸收植入器械,由单层薄壁构成并呈镂空管状,壁厚≤150μm,管状金属的覆盖率(金属占管状表面积的比例)为5-50%。进一步优选地,所述壁厚≤100μm,金属覆盖率为10-20%。所述薄壁的表面涂覆有治疗性药物;所述治疗性药物选自抗增生、抗血栓、促内皮化、抗肿瘤药物中的至少一种;所述治疗性药物覆盖部分或者全部薄壁表面。所述抗增生药物可以选择紫杉醇、西罗莫司、依维莫司及它们的衍生物,也可以选择人干细胞来源的外泌体;抗血栓药物可以选择抗凝血药、抗血小板药或溶血栓药物;促内皮化药物可以选择血管内皮生长因子、成纤维细胞生长因子、粒细胞集落刺激因子、雌激素及他汀类药物等;抗肿瘤药物可以选择紫杉醇、西罗莫司、吉西他滨、顺铂、单克隆抗体类抗肿瘤药物等。该器械可作为人体生理腔道/管道内的植介入器械,所述腔道/管道内植介入器械包括血管支架、尿道支架、胰/胆道支架、气管支架、食道支架、肠道支架等。
优选地,所述薄壁可吸收植入器械,由单层薄壁构成并呈镂空网状,壁厚≤500μm,边缘设有孔洞,用于安装螺钉固定或缝合线固定。该器械的形状可适配组织外形,可作为骨板、骨组织补片等硬组织植入器械,也可作为组织诱导再生膜、软组织补片、软组织连接器件等软组织植入器械。
优选地,所述薄壁可吸收植入器械,由多层薄壁构成,多层薄壁间相互平行或者交替/交叉排列,整体形成多孔结构;其中,单层壁厚≤500μm,多孔结构的孔隙率≥50%。进一步优选地,单层壁厚≤300μm,多孔结构孔隙率≥80%,所述薄壁上还负载有治疗性药物,所述治疗性药物可以选择促血管化、促成骨、促修复、抗感染和抗肿瘤药物中的至少一种,所述治疗性药物覆盖部分或者全部的薄壁。
优选地,所述薄壁可吸收植入器械,由多层薄壁构成,多层薄壁可以形成三重周期极小曲面结构,其内部孔洞相互连通,器械的外形可根据病人病损区的形状进行个性化定制。所述三重周期极小曲面多孔结构易于调控器械弹性模量,有利于组织长入及修复。该器械可作为骨组织支架、定制化骨植入假体,通过调控薄壁厚度、薄壁微观组织、多孔结构孔隙率和精细结构设计等,使所述薄壁可吸收器械的弹性模量、机械强度、几何结构匹配不同组织或匹配同一组织中的不同部位,实现从宏观到微观,植入器械与组织在结构、力学、降解等方面的匹配,实现组织修复在时空次序上的精准适配。
上述薄壁可吸收植入器械的制备方法,包括以下步骤:
(1)选取粒径为10-50μm的球形钼粉或钼合金粉末,控制粉末长径比≤1.5,且表面氧含量≤3.0wt.%;
(2)3D打印舱内,抽真空后,通入氩气(Ar)或氮气(N2)作为保护气氛,控制氧(O)含量<100ppm;选用304不锈钢作为基板,预热基板至100-500℃;器械几何结构经计算机辅助设计(CAD)建模,采用激光选区熔化技术(SLM),在高能激光束的作用下,逐层熔化和焊合,获得薄壁可吸收植入器械。
步骤(1)中,将钼粉或钼合金粉末置于真空干燥箱中烘干备用,真空干燥条件为:真空度-0.1MPa,温度50-80℃,保温3-6h。
步骤(2)中,所述激光选区熔化技术(SLM)的工艺参数为:激光功率100-400W,束斑直径10-200μm,铺粉层厚15-50μm,扫描速度100-1000mm/s,扫描间距20-150μm,单层扫描次数1-10次。优选地,所述激光选区熔化技术的参数为:激光功率100-300W,束斑直径10-80μm,铺粉层厚20-30μm,扫描速度200-800mm/s,扫描间距20-100μm,单层扫描次数2-5次。
步骤(2)中,对获得的薄壁可吸收植入器械进行保护气氛(Ar或N2)或还原性气氛下(如氢气H2)下的退火处理,所述退火处理的温度为800-1600℃。
步骤(2)中,对获得的薄壁可吸收植入器械进行后处理,包括采用喷砂处理或机械打磨去除毛刺,然后使用高压气体吹洗清洁;再进行碱洗以去除表面氧化和脏污,然后经化学抛光或电解抛光后,获得表面光洁、壁厚符合预期的薄壁可吸收植入器械。
进一步地,可在上述薄壁可吸收植入器械上搭载治疗性药物,抽真空后封装,再经环氧乙烷或射线辐照灭菌后,装入充有氮气/氩气保护的铝箔袋内保存备用。
本发明的原理是:(1)发明人研究发现,钼或钼合金具有高硬度、高强度(高温下仍具有高硬度、高强度),常规机加工和塑性加工难度大,很难获得形状复杂的薄壁件,通过本发明中的制造方法,可实现直接制备形状复杂,结构精细,无缺陷的薄壁件。(2)发明人研究发现,当钼粉或钼合金粉末表面含氧量较高或者含有氧化层时,将严重影响SLM过程中粉体的熔化及铺展,影响熔体之间的相互连接,最终影响3D打印件性能,因此,本发明采用的钼粉或钼合金粉形状规则、球形度高、表面含氧量低,非常适合用于薄壁器件的3D打印。(3)发明人研究发现,SLM过程中,氧元素易趋向于晶界、亚晶界以及包括位错在内的缺陷周围,易导致缺陷产生和脆性,因此本发明中的SLM均在惰性保护气氛下进行,且严格控制氧含量(<100ppm)。同时,本发明钼合金中的微合金化元素也有利于降低氧元素的不利影响,避免柱状晶产生,并能提升器械的塑性/变形能力。此外,本发明中还采用了单层多道次扫描的策略,有利于充分焊合,减少孔洞、裂纹缺陷产生。(4)SLM是一个高能量、快冷过程,3D打印件内部易积聚内应力,本发明采用保护性气氛(如Ar、N2)或还原性气氛(如H2)中的退火处理,可以释放应力,均匀化组织,改善3D打印件强韧性。(5)3D打印件表面不可避免的会带有毛刺,本发明中通过3D打印后的喷砂处理或机械打磨,可以高效去除表面毛刺,提升表面质量;再经后续碱洗、化学抛光或电解抛光,可获得壁厚满足尺寸精度要求,表面光洁无缺陷的薄壁可吸收植入器械。(6)本发明中的薄壁可吸收器械在含氧、含水的环境中可能发生氧化和腐蚀,会缩短产品有效期/货架期,因此本发明中的器械采用真空包装,并在灭菌后充入惰性气体(Ar或N2)保存。(7)除微合金化元素的强化作用外,本发明中的薄壁可吸收器械经高能激光处理,急速冷却,晶粒内部拥有丰富的位错和亚结构,能够起到额外的显著的强化作用。
本发明与现有技术相比具有如下优点和效果:
(1)本发明的薄壁可吸收植入器械能够在使用非常少量的材料前提下,即可获得足够支撑组织修复的机械性能,有利于植入器械小型化和微型化。该器械用料少,力学性能优异,可实现完全降解和吸收。
(2)由钼或钼合金制成的薄壁可吸收植入器械,以均匀腐蚀模式降解,降解缓慢,降解产物温和,细胞和组织兼容性良好,可抑制细菌生物膜形成,可防止术后感染,临床适用范围广泛,并发症风险低。
(3)本发明中的SLM制备技术及工艺可成功实现壁厚≤500μm,甚至<10μm的薄壁器件制备,这是其他常规加工方法所不能实现的。
(4)本发明的薄壁可吸收植入器械,可根据病损情况进行个性化定制,能从宏观到微观尺度,实现器械在几何结构、力学性能、降解行为等方面与组织修复进程在时空次序上的精准适配。
附图说明
图1为用于3D打印的钼粉(扫描电镜照片)及通过SLM获得的一系列镂空圆管状薄壁可吸收植入器械(可作为腔道内支架使用)。
图2为典型多孔骨组织支架的外观图(a),不同激光功率和扫描速度获得的单层薄壁的显微组织(b)和对应的壁厚数值(c)。
图3为一种边缘带有固定孔洞的薄壁可吸收植入器械的光学金相组织。
图4为一种典型的镂空网状补片及其植入动物体内(SD大鼠颅骨)的主要研究结果。
图5为一种典型三重周期极小曲面结构建模(a)和对应的具有连通孔结构的三重周期极小曲面薄壁植入器械实物(b)。
图6为一种典型薄壁钼管的透射电镜照片(a);一种壁厚为100μm的薄壁钼管的径向压缩力-位移曲线(b);一种壁厚为100μm的薄壁钼管的轴向压缩力-位移曲线(c);一种壁厚为200μm的薄壁钼管的轴向压缩力-位移曲线(d)。
图7为一种典型薄壁钼管在Hank’s模拟体液中浸泡30天后的腐蚀形貌图(扫描电镜照片)。
图8为对比例1的纯钼薄壁件的金相组织(a)和对应的透射电镜照片(b)。
具体实施方式
为更好的理解本发明,使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细说明。需要说明的是,在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做出类似改进,因此本发明不受下面公开的具体实施的限制。
实施例1:腔道内支架
选用粒径范围为15-45μm的高纯度球形钼粉(长径比<1.2,表面氧含量2.5wt.%),于真空干燥箱中烘干备用,真空干燥条件为:真空度-0.1MPa,温度50℃,保温3h。控制3D打印舱内氧含量<100ppm,通入Ar气作为保护气体,304不锈钢基板预热至120℃。选用激光功率200W,束斑直径80μm,铺粉层厚30μm,扫描速度200mm/s,单道次扫描成型,获得3D打印件。打印件在还原性气氛下(H2)进行退火处理,选择的退火处理的温度范围为800-1200℃。退火处理后的打印件经过喷砂、碱洗、电解抛光后获得表面光洁的薄壁可吸收植入器械。进一步地,可采用超声雾化喷涂的方法,在薄壁表面制备一层聚乳酸载药层,搭载的药物为紫杉醇或西罗莫司。经上述系列处理后,获得最终壁厚为100μm的单层镂空管状结构的薄壁可吸收植入器械,其金属覆盖率范围为10-20%,径向支撑力≥130kPa,该器械可作为腔道内支架,如血管支架、尿道支架、胰/胆道支架、气管支架、食道支架或者肠道支架使用,可在植入后1.5-2.5年内实现完全降解吸收。图1为用于3D的打印的钼粉(扫描电镜照片)和经过SLM制备的不同尺寸、不同金属覆盖率的系列腔道内支架实物图。
实施例2:多孔骨支架
选用粒径范围为10-30μm的Mo-0.05K合金粉末(球形粉,长径比<1.2,表面含氧量<3wt.%),于真空干燥箱中烘干备用,真空干燥条件为:真空度-0.1MPa,温度80℃,保温6h。控制3D打印舱内氧含量<100ppm,通入惰性保护气体(Ar气或N2气),304不锈钢基板预热至150℃。选用SLM激光功率范围100-300W,束斑直径70μm,铺粉层厚30μm,扫描速度范围200-400mm/s,获得系列3D打印多孔薄壁件。再经喷砂处理去除毛刺,使用高压气体吹洗清洁后获得不同结构设计、不同壁厚、不同孔隙率的多孔骨组织支架。图2(a)给出了典型多孔骨组织支架的外观图,图2(b)为不同激光功率和扫描速度下单层薄壁的显微组织(未浸蚀),图2(c)为对应图2(b)的壁厚情况。可见,在上述SLM工艺条件下,成功获得了内部无孔洞、无缺陷的Mo-0.05K合金薄壁。并且,可通过调整激光功率、扫描速度,实现对薄壁壁厚的调控。相同扫描速度下,随着激光功率的增加,薄壁壁厚增加。同理,随着扫描速度的增大,薄壁壁厚减薄。
实施例3:骨板
选用粒径范围为10-50μm的Mo-0.2La2O3合金粉末(球形粉,长径比<1.2,表面含氧量<3wt.%),于真空干燥箱中烘干备用,控制3D打印舱内氧含量<100ppm,通入N2气作为保护气氛,304不锈钢基板预热至200℃。选用激光功率200W,束斑直径70μm,铺粉层厚30μm,扫描速度200mm/s,扫描间距50μm,相邻两层间的夹角为45-75°,获得厚度为500μm,边缘存在有孔洞的3D打印件。打印件在惰性气氛(Ar或者N2)下进行退火处理,退火处理的温度范围为900-1300℃。退火后的薄壁件分别经喷砂处理、高压气体吹洗和碱洗后获得表面无氧化层的薄壁打印件,再经环氧乙烷或射线辐照灭菌后,装入充有氮气/氩气保护的铝箔袋内保存备用。该薄壁打印件可作为骨折固定板,孔洞可用于安装螺钉固定。图3给出了该3D打印薄壁骨折固定板的金相组织。可见,材料组织均匀,无孔洞、裂纹等缺陷,无明显柱状晶组织,平均晶粒尺寸为18μm,明显优于相同工艺条件下打印的纯钼件(平均晶粒尺寸为42μm)。
实施例4:组织补片
选用粒径范围为15-45μm的球形钼粉(长径比<1.2,表面含氧量<2.5wt.%),控制3D打印舱内氧含量<100ppm,304不锈钢基板预热至300℃。选用激光功率100W,束斑直径10μm,铺粉层厚15μm,扫描速度100mm/s,扫描间距20μm,同一痕迹重复扫描2次,获得镂空网状薄片,经机械打磨和化学抛光后,获得镂空网状薄壁器械,可作为组织修补片。进一步地,制备了SD大鼠颅骨缺损模型,建立的临界缺损范围为5mm,植入直径5mm、厚度10μm的镂空网状补片,对侧无植入作为对照。图4为一种典型的镂空网状补片及其植入动物体内的主要研究结果。术后3月,micro-CT可见网状补片一侧有明显的新骨生成,新骨延伸至缺损中央,而对侧仍然存在较大范围的缺损,仅在缺损边缘可见一些新骨形成。同时,可以观察到补片的在体降解,补片边缘和中央均发生明显降解吸收。相关结果整体说明该补片具有良好的骨传导性能,在体缓慢降解,组织兼容性好。
实施例5:三周期极小曲面结构
选用粒径范围为10-35μm的高纯钼球形粉末(长径比≤1.1,表面氧含量≤2.0wt.%),真空干燥箱内烘干备用。控制3D打印舱内氧含量<100ppm,通入惰性保护气氛(Ar气或N2气),304不锈钢基板预热至500℃。器械几何结构经计算机辅助设计(CAD)建模,此处选用三重周期极小曲面结构,其中典型的一种结构设计如图5(a)所示,选用激光功率200W,束斑直径70μm,铺粉层厚30μm,扫描速度200mm/s,同一痕迹重复扫描1-5次,获得薄壁打印件,再经喷砂处理去除毛刺,使用高压气体吹洗清洁后获得内部具有连通孔结构的三重周期极小曲面薄壁打印件(如图5(b)实物图所示)。该薄壁件的尺寸为10×10×10mm,重量仅为750mg,孔隙率达到92%。可通过调控三重周期极小曲面结构设计、薄壁厚度、孔隙率等参数,使所述薄壁可吸收器械的弹性模量、机械强度、几何结构、外观形状从微观到宏观尺度与组织匹配。该器械可根据具体应用灵活设计,可作为骨组织支架、定制化骨植入假体等,应用范围广。
实施例6
选用粒径分布为15-45μm的高纯球形纯钼粉(长径比≤1.1,表面氧含量≤2wt.%),真空干燥箱内烘干备用。抽真空,控制3D打印舱内氧含量<100ppm,通入Ar气作为惰性保护气氛,304不锈钢基板经乙醇清洗后,预热至120℃。选用1070nm波长的连续激光,选用激光功率200W,束斑直径70μm,铺粉层厚30μm,扫描速度200mm/s,单道次环形扫描(同一层上不存在两条熔道的搭接),可获得不同外径和长度的薄壁钼管。薄壁钼管经喷砂处理,去除表面毛刺,经测量该薄壁钼管的真实壁厚为100μm。增加激光功率至300W,保持其他打印参数不变(束斑直径70μm,铺粉层厚30μm,扫描速度200mm/s,单道次环形扫描),可获得真实壁厚为200μm的薄壁钼管。上述薄壁管可进一步加工成镂空圆管,可用作腔道内支架使用。
使用聚焦离子束(FIB)对上述钼管进行切割和减薄,并采用高分辨扫描透射电镜(STEM)对该系列薄壁钼管的显微组织进行观察。通过SLM制造的薄壁钼管,晶粒内具有高密度的位错缺陷,晶界处无氧化物或碳化物析出,晶界干净,无杂质元素偏析(如图6(a)所示),该显微组织特征可确保薄壁钼管具有优异的力学性能。
选取壁厚为100μm的上述薄壁钼管,截取外径为3mm,长度为15mm的薄壁管段,该薄壁管段的材料体积仅为0.014cm3,对其进行径向方向的平板压缩试验(下压速度1mm/min),压缩过程中的力-位移曲线如图6(b)所示。可见,外径仅为3mm,壁厚仅为100μm的3D打印钼管最大可以承受81N(径向)的压力。截取外径为3mm,长度为6mm的薄壁管段,对其进行轴向方向的压缩试验,下压速度1mm/min,压缩过程中的力-位移曲线如图6(c)所示。可见壁厚仅为100μm,总体积仅有0.0056cm3(总重量仅有57.3mg)的3D打印钼管能承受的最大轴向压力为1192.2N,对应最大轴向压力处的位移数值为0.52mm。该钼管轴向压缩的力学数值远高于同尺寸的拉拔态锌合金(Zn-0.8Li-0.1Mn)管材(能承受的最大轴向力为629.8N,对应最大轴向压力处的位移为0.22mm)。
选择壁厚为200μm的上述薄壁钼管,截取外径为3mm,长度为6mm的薄壁管段,该薄壁管段的体积仅为0.0113cm3,对该管段进行轴向方向的压缩试验,下压速度1mm/min,压缩过程中的力-位移曲线如图6(d)所示。可见,壁厚仅为200μm的薄壁钼管能承受的最大轴向压力为1506.5N,该数值远高于同尺寸的拉拔态镁合金(AZ31)管材(能承受的最大轴向力为666.5N)。
将上述薄壁钼管紫外灭菌后,放入Hank’s模拟体液进行浸泡,30天后取出,可见样品完整,表面颜色变暗。将腐蚀后的样品进行包埋、打磨、抛光,然后在扫描电镜(SEM)下观察,可见样品表面附着一层厚度约5-10μm的腐蚀产物层,腐蚀层厚度均匀(图7),说明3D打印薄壁钼管以均匀腐蚀的方式缓慢降解。
实施例7
参考以上实施例中的设计制备方法,本实施例中囊括了一些典型薄壁可吸收植入器械的关键设计指标及其应用场景。
Figure BDA0004061953290000101
Figure BDA0004061953290000111
对比例1
选用粒径范围为15-45μm的球形钼粉(表面氧含量5wt.%),于真空干燥箱中烘干备用(真空度-0.1MPa,温度50℃,保温3h)。控制3D打印舱内氧含量<100ppm,通入Ar气作为保护气体,304不锈钢基板预热至120℃。选用激光功率500W,束斑直径70μm,铺粉层厚30μm,扫描速度1200mm/s,单道次扫描成型,获得3D打印薄壁件。经打磨、抛光后,采用体积比为2:1的铁氰化钾和氢氧化钠溶液浸蚀后观察,可见沿制造方向存在明显的柱状晶组织(图8(a)),并在部分薄壁中发现微裂纹存在(图8(a)插入图中白色箭头所示)。进一步制备透射电镜样品,并在高分辨扫描透射显微镜(STEM)下观察,可见晶界和晶内存在有氧化物和碳化物颗粒析出(图8(b))。柱状晶和晶界氧化物均会对薄壁件的性能造成不良影响,如导致脆性,材料受力时裂纹沿晶界氧化物处萌生,柱状晶织构导致力学、腐蚀的各向异性等。
与本发明相比,一方面,对比例中钼粉表面较高的氧含量(5wt.%)导致3D打印件中晶界和晶内出现明显的氧化物和碳化物夹杂,导致材料脆性,损害薄壁件力学性能;另一方面,偏离本发明限定的3D打印参数(激光功率500W,功率过高),使得3D打印薄壁件中沿制造方向出现了明显的柱状晶,柱状晶晶界薄弱,易诱发形成裂纹;并且,柱状晶织构导致薄壁件的性能各向异性。可见,采用本发明的工艺条件可以有效避免这些问题。

Claims (10)

1.一种薄壁可吸收植入器械,其特征在于:所述薄壁由钼或钼合金构成,所述薄壁及其结构设计通过增材制造技术制得,所述薄壁的单层/单丝壁厚≤500μm。
2.根据权利要求1所述的薄壁可吸收植入器械,其特征在于:所述钼合金中含有微合金化元素,所述微合金化元素选自Na、K、Fe、Zn、Cu、B、Si、C、W、O和稀土中的至少一种,并且单一微合金化元素的含量≤0.1wt.%,微合金化元素的总量≤0.2wt.%。
3.根据权利要求1所述的薄壁可吸收植入器械,其特征在于:由单层薄壁构成并呈镂空管状,壁厚≤150μm,管状金属的覆盖率为5-50%。
4.根据权利要求1所述的薄壁可吸收植入器械,其特征在于:由单层薄壁构成并呈镂空网状,壁厚≤500μm,边缘设有孔洞,用于安装螺钉固定或缝合线固定。
5.根据权利要求1所述的薄壁可吸收植入器械,其特征在于:由多层薄壁构成,多层薄壁间相互平行或者交替/交叉排列,整体形成多孔结构;其中,单层壁厚≤500μm,多孔结构的孔隙率≥50%。
6.根据权利要求1所述的薄壁可吸收植入器械,其特征在于:由多层薄壁构成,多层薄壁形成三重周期极小曲面结构,其内部孔洞相互连通,器械的外形根据病人病损区的形状进行个性化定制。
7.根据权利要求1~6中任一项所述的薄壁可吸收植入器械,其特征在于:所述薄壁的表面涂覆有治疗性药物。
8.一种权利要求1~7中任一项所述的薄壁可吸收植入器械的制备方法,其特征在于包括以下步骤:
(1)选取粒径为10-50μm的球形钼粉或钼合金粉末,控制粉末长径比≤1.5,且表面氧含量≤3.0wt.%;
(2)3D打印舱内,抽真空后,通入氩气或氮气作为保护气氛,控制氧含量<100ppm;预热基板至100-500℃;器械几何结构经计算机辅助设计建模,采用激光选区熔化技术,在高能激光束的作用下,逐层熔化和焊合,获得薄壁可吸收植入器械。
9.根据权利要求8所述的薄壁可吸收植入器械的制备方法,其特征在于:步骤(2)中,所述激光选区熔化技术的工艺参数为:激光功率100-400W,束斑直径10-200μm,铺粉层厚15-50μm,扫描速度100-1000mm/s,扫描间距20-150μm,单层扫描次数1-10次。
10.一种权利要求1~7中任一项所述的薄壁可吸收植入器械的应用,其特征在于:作为腔道内支架、多孔骨支架、骨板、组织补片、骨组织支架、定制化骨植入假体。
CN202310065483.2A 2023-02-06 2023-02-06 一种薄壁可吸收植入器械及其制备方法 Pending CN116251240A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310065483.2A CN116251240A (zh) 2023-02-06 2023-02-06 一种薄壁可吸收植入器械及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310065483.2A CN116251240A (zh) 2023-02-06 2023-02-06 一种薄壁可吸收植入器械及其制备方法

Publications (1)

Publication Number Publication Date
CN116251240A true CN116251240A (zh) 2023-06-13

Family

ID=86680310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310065483.2A Pending CN116251240A (zh) 2023-02-06 2023-02-06 一种薄壁可吸收植入器械及其制备方法

Country Status (1)

Country Link
CN (1) CN116251240A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335742A (zh) * 2011-11-04 2012-02-01 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
CN106367714A (zh) * 2015-07-24 2017-02-01 先健科技(深圳)有限公司 铁基可吸收植入医疗器械与预制管及其制备方法
CN106390198A (zh) * 2016-09-19 2017-02-15 西安交通大学 一种选区激光成形及电解还原制备个性化多孔植入物方法
WO2021208651A1 (zh) * 2020-04-13 2021-10-21 中国科学院金属研究所 基于增材制造技术制备超高强度钛合金多孔材料的方法
CN114182151A (zh) * 2021-12-18 2022-03-15 山东瑞安泰医疗技术有限公司 一种可降解钼基合金植入材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335742A (zh) * 2011-11-04 2012-02-01 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
CN106367714A (zh) * 2015-07-24 2017-02-01 先健科技(深圳)有限公司 铁基可吸收植入医疗器械与预制管及其制备方法
CN106390198A (zh) * 2016-09-19 2017-02-15 西安交通大学 一种选区激光成形及电解还原制备个性化多孔植入物方法
WO2021208651A1 (zh) * 2020-04-13 2021-10-21 中国科学院金属研究所 基于增材制造技术制备超高强度钛合金多孔材料的方法
CN114182151A (zh) * 2021-12-18 2022-03-15 山东瑞安泰医疗技术有限公司 一种可降解钼基合金植入材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
国家新材料产业发展专家咨询委员会: "《中国新材料产业发展年度报告 2017》", 31 August 2018, 冶金工业出版社, pages: 588 *

Similar Documents

Publication Publication Date Title
Qin et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives
Gieseke et al. Selective laser melting of magnesium and magnesium alloys
EP1934381B1 (en) Medical devices having alloy compositions
Hermawan et al. Metals for biomedical applications
US10286120B2 (en) In-vivo biodegradable medical implant comprising a microstructure engineered metallic material
EP2366808B1 (en) Commercially pure nanostructural titanium for biomedicine and a method for making a bar thereof
EP2114480B1 (en) Medical devices and methods of making the same
EP3038666B1 (en) Bioerodible composites for endoprostheses
EP3062832B1 (en) Bioerodible magnesium alloy microstructures for endoprostheses
US7540995B2 (en) Process for forming an improved metal alloy stent
JP4911566B2 (ja) 医療用デバイスおよび医療用デバイスの表面改質方法
US20150209480A1 (en) Osseo-inductive metal implants for a living body and the producing method thereof
US10960110B2 (en) Iron-based biodegradable metals for implantable medical devices
EP1868528A2 (en) Process for forming an improved metal alloy stent
KR20200056462A (ko) 증가된 분해 속도를 갖는 fe-mn 흡수성 임플란트 합금
Dehghan-Manshadi et al. Additively manufactured Fe-35Mn-1Ag lattice structures for biomedical applications
CN116251240A (zh) 一种薄壁可吸收植入器械及其制备方法
WO2009070133A1 (en) Process for forming an improved metal alloy stent
CN114182151A (zh) 一种可降解钼基合金植入材料及其制备方法与应用
JP7041902B2 (ja) 生体吸収性医療器具の表面処理方法
Singh et al. Corrosion Performance of Additively Manufactured Metallic Biomaterials: A Review
CN117448711A (zh) 提高承重骨植入用镁合金抗应力腐蚀性能的制备方法
CN116103553A (zh) 一种Mo-Mn系可降解钼合金及其制备方法与应用
CN117448900A (zh) 一种表面MAO处理的多孔Ti-Cu合金支架及其制备方法和应用
CN117942433A (zh) 一种抑菌及可降解的镁金属支架

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination