CN116201180A - Marine fan foundation scour experiment device of rotatable base - Google Patents
Marine fan foundation scour experiment device of rotatable base Download PDFInfo
- Publication number
- CN116201180A CN116201180A CN202310203318.9A CN202310203318A CN116201180A CN 116201180 A CN116201180 A CN 116201180A CN 202310203318 A CN202310203318 A CN 202310203318A CN 116201180 A CN116201180 A CN 116201180A
- Authority
- CN
- China
- Prior art keywords
- rotating shaft
- fixedly connected
- block
- limiting
- positioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 claims description 3
- 238000011010 flushing procedure Methods 0.000 claims 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 238000009991 scouring Methods 0.000 abstract 1
- 230000003628 erosive effect Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/42—Foundations for poles, masts or chimneys
- E02D27/425—Foundations for poles, masts or chimneys specially adapted for wind motors masts
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Wind Motors (AREA)
Abstract
Description
技术领域technical field
本发明属于海上风机技术领域,涉及一种可转底座的海上风机基础冲刷实验装置。The invention belongs to the technical field of offshore wind turbines, and relates to an offshore wind turbine foundation scour test device with a rotatable base.
背景技术Background technique
海上风电是清洁能源的重要发展方向。目前,我国已在东南沿海地区形成了较为完整的海上风电技术产业链,极大优化了周边城市的能源结构。然而,随着海上风电基础结构服役年限的增长,基础局部冲刷问题也逐渐暴露出来,导致地基承载力降低、横向受力不平衡,严重影响海上风电基础的稳定性。海上风电基础一旦发生破坏,将带来巨大的经济损失,我国东南沿海地区的潮流特征与地形密切相关,大部分海域属强潮流区,并且属于规则半日潮类型,浅水效应明显。因此,潮流作用对于海上风电基础的局部冲刷影响较大,而不同的潮流作用方向又是研究海上风电基础冲淤特性的关键因素。Offshore wind power is an important development direction of clean energy. At present, my country has formed a relatively complete industrial chain of offshore wind power technology in the southeast coastal areas, which has greatly optimized the energy structure of surrounding cities. However, with the increase of the service life of the offshore wind power infrastructure, the local erosion of the foundation is gradually exposed, resulting in a reduction in the bearing capacity of the foundation and unbalanced lateral forces, which seriously affect the stability of the offshore wind power foundation. Once the offshore wind power foundation is damaged, it will bring huge economic losses. The tidal current characteristics of the southeastern coastal areas of my country are closely related to the topography. Most sea areas belong to the strong tidal current area and belong to the regular semi-diurnal tidal type, and the shallow water effect is obvious. Therefore, tidal currents have a great influence on the local scour of offshore wind power foundations, and different tidal current directions are the key factors for studying the scour-silting characteristics of offshore wind power foundations.
目前的实验室水槽只能给定单方向的往复水流或波浪,难以针对单桩基础结构设定不同的来流方向,无法对不同潮流作用方向下的海上风电基础结构的冲淤特性进行机理性研究。因此,亟需一种能够模拟不同潮流作用方向的海上风电单桩基础旋转圆盘试验装置,进一步揭示潮流作用下的海上风电基础结构的冲淤机制,从而形成全面、客观的海上风电基础局部冲淤特性的分析方法,来保障海上风电结构的安全性。The current laboratory tank can only give a single direction of reciprocating water flow or wave, it is difficult to set different flow directions for the single pile foundation structure, and it is impossible to conduct a mechanism study on the erosion and deposition characteristics of the offshore wind power foundation structure under different tidal current directions . Therefore, there is an urgent need for a rotating disk test device for offshore wind power single pile foundations that can simulate different tidal action directions, and further reveal the erosion and deposition mechanism of offshore wind power foundation structures under tidal currents, thereby forming a comprehensive and objective local erosion of offshore wind power foundations. The analysis method of silt characteristics is used to ensure the safety of offshore wind power structures.
发明内容Contents of the invention
本发明的目的是提供一种可转底座的海上风机基础冲刷实验装置,以克服现有实验装置的不足。The purpose of the present invention is to provide a rotatable base offshore wind turbine foundation scour test device to overcome the shortcomings of the existing test device.
本发明采用的技术方案为:该装置包括圆盘底板,其特点是:该圆盘底板上部固定连接有直立轴承;直立轴承上端转动连接有侧面固定有转轴的转动块,该转动块的下端固定连接有连接杆,连接杆下端固定连接有第一锥齿轮,第一锥齿轮下面啮合连接有第二锥齿轮;该第二锥齿轮内侧固定连接有转动轴,转动轴外侧固定连接有定位齿轮;直立轴承上侧部开有用于插入限位轴套的限位通孔;限位轴套外侧设有限位卡块,内侧开有套装在转动轴外侧的凹槽,该凹槽内部设有定位卡块;限位卡块及定位卡块在限位轴套插入时,卡接在限位通孔内侧的限位卡槽及转动轴外侧的定位齿轮上。The technical solution adopted by the present invention is: the device includes a disc bottom plate, which is characterized in that: the upper part of the disc bottom plate is fixedly connected with an upright bearing; A connecting rod is connected, the lower end of the connecting rod is fixedly connected with the first bevel gear, and the second bevel gear is meshed and connected with the bottom of the first bevel gear; the inner side of the second bevel gear is fixedly connected with the rotating shaft, and the outer side of the rotating shaft is fixedly connected with the positioning gear; The upper side of the vertical bearing has a limit through hole for inserting the limit sleeve; the limit sleeve has a limit block on the outside, and a groove on the outside of the rotating shaft is opened on the inside, and the inside of the groove is provided with a positioning card block; the limit block and the positioning block are clamped on the limit card groove inside the limit through hole and the positioning gear on the outside of the rotating shaft when the limit shaft sleeve is inserted.
采用上述结构,使用时,将定位轴套向外侧抽出,转动转轴带动转动块转动,转动块带动第一锥齿轮转动,第一锥齿轮带动第二锥齿轮转动,调节完毕之后,将定位轴套向内侧推动,将定位卡块卡在定位齿轮的外侧,对转轴的位置进行限定。由于定位轴套限位卡及定位卡块的限定位作用,此时,通过手动转动转动块侧面的转轴,即可调节转轴的方向,从而通过直立轴承带动圆盘底板转动,调节圆盘底板的方向,以对圆盘底板的方向进行调节,模拟不同潮流作用方向的海上风电单桩基础旋转圆盘试验,解决了实验室水槽只能给定单方向的往复水流或波浪,难以针对单桩基础结构设定不同的来流方向,无法对不同潮流作用方向下的海上风电基础结构的冲淤特性进行机理性研究的问题。同时,凹槽的内部设有的定位卡块在使用过程中卡紧在定位齿轮的外侧,可对转动轴进行锁紧,对转动轴进行固定。With the above structure, when in use, pull out the positioning sleeve to the outside, turn the rotating shaft to drive the rotating block to rotate, the rotating block drives the first bevel gear to rotate, and the first bevel gear drives the second bevel gear to rotate. After the adjustment is completed, place the positioning sleeve Push it inward, and clamp the positioning block on the outside of the positioning gear to limit the position of the rotating shaft. Due to the position-limiting effect of the positioning sleeve limit card and the positioning block, at this time, the direction of the rotating shaft can be adjusted by manually rotating the rotating shaft on the side of the rotating block, so that the upright bearing drives the rotation of the disc bottom plate to adjust the rotation of the disc bottom plate. Direction, to adjust the direction of the disc bottom plate, to simulate the rotating disc test of the offshore wind power single pile foundation with different tidal current directions, and solve the problem that the laboratory tank can only give reciprocating water flow or waves in one direction, which is difficult for the single pile foundation structure It is impossible to conduct a mechanism study on the erosion and deposition characteristics of offshore wind power infrastructure structures under different tidal current directions by setting different flow directions. At the same time, the positioning block provided inside the groove is clamped on the outside of the positioning gear during use, so as to lock the rotating shaft and fix the rotating shaft.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明直立轴承的结构示意图;Fig. 2 is the structural representation of vertical bearing of the present invention;
图3为本发明滚珠的结构示意图;Fig. 3 is the structural representation of ball of the present invention;
图4为本发明转动块的结构示意图;Fig. 4 is the structural representation of rotating block of the present invention;
图5为本发明转轴的结构示意图。Fig. 5 is a structural schematic diagram of the rotating shaft of the present invention.
图中:1、圆盘底板;11、玻璃立柱;12、直立轴承;13、限位通孔;14、限位卡槽;15、定位轴套;16、限位卡块;17、定位卡块;18、轴孔;19、滚珠;2、转动块;21、定位卡槽;22、第一锥齿轮;23、第二锥齿轮;24、转动轴;25、定位齿轮;26、第一连接块;27、连接杆;3、转轴;31、定位板;32、第二连接块。In the figure: 1. Disc bottom plate; 11. Glass column; 12. Upright bearing; 13. Limiting through hole; 14. Limiting slot; 15. Positioning sleeve; 16. Limiting block; 17. Positioning card Block; 18, shaft hole; 19, ball; 2, rotating block; 21, positioning slot; 22, the first bevel gear; 23, the second bevel gear; 24, rotating shaft; 25, positioning gear; 26, the first Connecting block; 27, connecting rod; 3, rotating shaft; 31, positioning plate; 32, second connecting block.
具体实施方式Detailed ways
如图1、图2、图3、图4所示,本发明包括圆盘底板1。该圆盘底板1上部固定连接有直立轴承12。直立轴承12上端转动连接有侧面固定有转轴3的转动块2,该转动块2的下端固定连接有连接杆27,连接杆27下端固定连接有第一锥齿轮22,第一锥齿轮22下面啮合连接有第二锥齿轮23。该第二锥齿轮23内侧固定连接有转动轴24,转动轴24外侧固定连接有定位齿轮25。直立轴承12上侧部开有用于插入限位轴套15的限位通孔13。限位轴套15外侧设有限位卡块16,内侧开有套装在转动轴24外侧的凹槽,该凹槽内部设有定位卡块17。限位卡块16及定位卡块17在限位轴套15插入时,卡接在限位通孔13内侧的限位卡槽14及转动轴24外侧的定位齿轮25上。As shown in FIG. 1 , FIG. 2 , FIG. 3 and FIG. 4 , the present invention includes a disc bottom plate 1 . An upright bearing 12 is fixedly connected to the top of the disc bottom plate 1 . The upper end of the upright bearing 12 is rotatably connected with a rotating
如图5所示,转轴3前部设有定位板31,该定位板31后部的转轴3上套有内有螺纹的第二连接块32;转动块2侧面设有外置螺纹、内开插孔的第一连接块26;定位板31前部的转轴3插入第一连接块的插孔26内并由定位板31定位,第二连接块32通过螺纹旋紧在第一连接块26外侧上,使转轴3固定连接在转动块2侧面。采用该种结构,不但方便拆卸,而且便于携带运输。As shown in Figure 5, the front portion of the rotating
如图3、图4所示,转动块2下端及直立轴承12上端均设有定位卡槽21,该定位卡槽21内设有滚珠19,以增加转动块2与直立轴承12之间的转动灵活度。As shown in Figure 3 and Figure 4, the lower end of the rotating
如图1、图3所示,直立轴承12上端中心位置开有中心轴孔18,外侧套装有玻璃立柱11。As shown in Fig. 1 and Fig. 3, a
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310203318.9A CN116201180B (en) | 2023-03-06 | 2023-03-06 | Marine fan foundation scour experiment device of rotatable base |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310203318.9A CN116201180B (en) | 2023-03-06 | 2023-03-06 | Marine fan foundation scour experiment device of rotatable base |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116201180A true CN116201180A (en) | 2023-06-02 |
CN116201180B CN116201180B (en) | 2024-10-18 |
Family
ID=86512627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310203318.9A Active CN116201180B (en) | 2023-03-06 | 2023-03-06 | Marine fan foundation scour experiment device of rotatable base |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116201180B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130019340A (en) * | 2012-07-05 | 2013-02-26 | 재단법인 중소조선연구원 | Experimental method for testing vertical reaction resonance period and movement performance of multi supporters located in the sea with gravity base offshore structure |
CN207047916U (en) * | 2017-08-21 | 2018-02-27 | 亢磊磊 | A kind of base pit engineering safe construction informationization maintenance device |
CN207171996U (en) * | 2017-08-29 | 2018-04-03 | 南京帝开电气自动化有限公司 | Rotary table |
CN109115451A (en) * | 2018-11-13 | 2019-01-01 | 重庆大学 | Can with pacing wind pressure, hydraulic pressure, Flow Field Distribution wind-water flow coupled vibrations experimental rig |
CN110617943A (en) * | 2019-10-21 | 2019-12-27 | 大连理工大学 | Wave direction angle conversion device for wave test of sea-crossing bridge pier |
CN110657073A (en) * | 2019-10-30 | 2020-01-07 | 中国海洋大学 | Test device and method for testing the evolution of dynamic parameters of offshore wind turbines under the action of wind and waves |
CN113027701A (en) * | 2021-02-26 | 2021-06-25 | 中国电建集团华东勘测设计研究院有限公司 | Non-contact dynamic measurement system for offshore wind turbine vibration and erosion test |
CN113790869A (en) * | 2021-10-22 | 2021-12-14 | 中国船舶科学研究中心 | Offshore floating type wind power model dynamic load measuring device |
CN114646482A (en) * | 2022-03-21 | 2022-06-21 | 山东大学 | Integrated multidirectional loading model test device for offshore wind turbine |
CN217277728U (en) * | 2021-11-15 | 2022-08-23 | 东南大学 | Experimental device for simulating scouring of underwater solidified soil at bottom of concrete pile |
CN115290306A (en) * | 2022-07-07 | 2022-11-04 | 大连理工大学 | Offshore wind turbine-foundation interaction test device |
CN218153958U (en) * | 2022-08-22 | 2022-12-27 | 桐柏丰谷电子科技有限公司 | Solar street lamp convenient to maintain |
-
2023
- 2023-03-06 CN CN202310203318.9A patent/CN116201180B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130019340A (en) * | 2012-07-05 | 2013-02-26 | 재단법인 중소조선연구원 | Experimental method for testing vertical reaction resonance period and movement performance of multi supporters located in the sea with gravity base offshore structure |
CN207047916U (en) * | 2017-08-21 | 2018-02-27 | 亢磊磊 | A kind of base pit engineering safe construction informationization maintenance device |
CN207171996U (en) * | 2017-08-29 | 2018-04-03 | 南京帝开电气自动化有限公司 | Rotary table |
CN109115451A (en) * | 2018-11-13 | 2019-01-01 | 重庆大学 | Can with pacing wind pressure, hydraulic pressure, Flow Field Distribution wind-water flow coupled vibrations experimental rig |
CN110617943A (en) * | 2019-10-21 | 2019-12-27 | 大连理工大学 | Wave direction angle conversion device for wave test of sea-crossing bridge pier |
CN110657073A (en) * | 2019-10-30 | 2020-01-07 | 中国海洋大学 | Test device and method for testing the evolution of dynamic parameters of offshore wind turbines under the action of wind and waves |
CN113027701A (en) * | 2021-02-26 | 2021-06-25 | 中国电建集团华东勘测设计研究院有限公司 | Non-contact dynamic measurement system for offshore wind turbine vibration and erosion test |
CN113790869A (en) * | 2021-10-22 | 2021-12-14 | 中国船舶科学研究中心 | Offshore floating type wind power model dynamic load measuring device |
CN217277728U (en) * | 2021-11-15 | 2022-08-23 | 东南大学 | Experimental device for simulating scouring of underwater solidified soil at bottom of concrete pile |
CN114646482A (en) * | 2022-03-21 | 2022-06-21 | 山东大学 | Integrated multidirectional loading model test device for offshore wind turbine |
CN115290306A (en) * | 2022-07-07 | 2022-11-04 | 大连理工大学 | Offshore wind turbine-foundation interaction test device |
CN218153958U (en) * | 2022-08-22 | 2022-12-27 | 桐柏丰谷电子科技有限公司 | Solar street lamp convenient to maintain |
Also Published As
Publication number | Publication date |
---|---|
CN116201180B (en) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102200090B (en) | Power generating device for power generation by utilizing seawater wave energy | |
CN203239487U (en) | Hydraulic power generator | |
WO2020083013A1 (en) | Method and submersible equipment for electricity generation with marine energy | |
CN101526066A (en) | Ocean current and wind dual-use generator | |
CN110566398A (en) | Yaw tidal current energy generator set and yaw method thereof | |
CN113373965A (en) | Offshore wind power single-pile foundation device capable of preventing scouring | |
CN116201180A (en) | Marine fan foundation scour experiment device of rotatable base | |
CN209041023U (en) | An integrated power generation device for ocean wind energy, tidal current energy and magnetic fluid | |
CN205714561U (en) | A kind of novel green TRT | |
CN220266650U (en) | Scour prevention device for offshore wind power foundation | |
TWI744633B (en) | Reciprocating hydroelectric mechanism with lifting function | |
CN109340030B (en) | A suspended swing plate type floating body wave eliminating power generation device and its use method | |
CN201262131Y (en) | Dual-purpose generator by ocean current and wind power | |
CN108223238B (en) | A wave turbine and an ocean wave turbine type hydropower generation device | |
CN109812378A (en) | Inshore Beach Wave Power Generation System | |
CN206845377U (en) | Wave energy generating set | |
CN112128057A (en) | Floating type wind power generation device capable of automatically lifting along with water level in river dam | |
WO2007071161A1 (en) | Electricity generating equipment with ocean energy, water energy and wind energy | |
CN207160011U (en) | A kind of more position-limited racks in sea | |
KR100510327B1 (en) | Tidal current power plant | |
CN220723433U (en) | A water inlet pressure-resistant lifting frame for hydropower generation | |
CN201925081U (en) | Tide power generator | |
CN101260865A (en) | Wind power generation device with self-adjusting angle windward blades | |
CN221798437U (en) | Positioning pile assembly of floating pile stabilization platform | |
CN104747381A (en) | Coaxial rotating type wave energy-wind energy utilizing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |