CN116190495A - 一种硼发射极及其制备方法、n型晶体硅电池 - Google Patents

一种硼发射极及其制备方法、n型晶体硅电池 Download PDF

Info

Publication number
CN116190495A
CN116190495A CN202310254755.3A CN202310254755A CN116190495A CN 116190495 A CN116190495 A CN 116190495A CN 202310254755 A CN202310254755 A CN 202310254755A CN 116190495 A CN116190495 A CN 116190495A
Authority
CN
China
Prior art keywords
boron
silicon wafer
emitter
silicon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310254755.3A
Other languages
English (en)
Inventor
张薛丹
沈健锋
赵福祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Q Cells Qidong Co Ltd
Original Assignee
Hanwha SolarOne Qidong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha SolarOne Qidong Co Ltd filed Critical Hanwha SolarOne Qidong Co Ltd
Priority to CN202310254755.3A priority Critical patent/CN116190495A/zh
Publication of CN116190495A publication Critical patent/CN116190495A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种硼发射极及其制备方法、N型晶体硅电池,制备方法包括如下步骤:对制绒抛光及清洗后的硅片在特气气氛中进行PECVD沉积,在所述硅片表面形成掺硼沉积层,再将具有掺硼沉积层的硅片放入管式扩散炉管中进行高温退火,将硼源推进至硅基体内,形成所述硼发射极。本发明的一种硼发射极及其制备方法,通过PECVD沉积硼源,再通过高温退火将硼源推进硅基体内形成硼发射极,能够使硼源均匀地覆盖在硅片表面,有利于硼原子进入硅片表面,不会产生富硼层,减少俄歇复合,有效地提高了电池效率;还可避免使用传统的BCl3和BBr3作为硼源,不会产生有害副产物,不会对设备和管路造成不可逆的损坏,降低了生产成本。

Description

一种硼发射极及其制备方法、N型晶体硅电池
技术领域
本发明涉及一种硼发射极及其制备方法、N型晶体硅电池。
背景技术
N型晶体硅由于其少子寿命高、温度系数低及无B-O复合导致的光热诱导衰减等优点,已成为目前光伏行业高效电池的重点发展方向。尤其是这两年兴起的N-Topcon(TunnelOxide Passivated Contact,隧穿氧化层钝化接触)电池、HJT(Heterojunction withIntrinsic Thin Layer,异质结)电池,其火爆程度可见一斑。可目前常规的硼发射极的制备方法还是存在很多弊端,例如采用BCL3和BBr3作为热扩散硼源,其中间产物为B2O3为液体,不同于气体,B2O3很难扩散进入硅基体内,导致硼发射极的均匀性差;且常规的硼扩散往往需要很高的温度和很长的时间,这会导致能耗过高和产能较低的问题。同时,假如用BBr3作为硼源,那么扩散炉门或者石英舟的损耗率特别大,从成本考虑,势必不划算;而使用BCl3作为硼源,其副产物HCl是具有腐蚀性的气体,长期使用也会对管路和设备产生不可逆的损坏。
目前也有通过喷洒、旋涂液态硼源或者印刷硼浆,再通过管式或链式扩散炉或者激光掺杂的方式,进行硼源的推进制备硼发射极,但是开发高纯度的硼源和激光参数的优化都很难实现,所以制备理想的硼发射极极其困难。
发明内容
有鉴于此,为了克服现有技术的缺陷,本发明的目的是提供一种硼发射极的制备方法,能够在获得均匀性较好的硼发射极的同时缩短工艺时间,从而在提高电池效率的同时降低了生产成本。
为了达到上述目的,本发明采用以下的技术方案:
一方面,本发明提供了一种硼性发射极的制备方法,包括如下步骤:
对制绒抛光及清洗后的硅片在特气气氛中进行PECVD沉积,在所述硅片表面形成掺硼沉积层,再将具有掺硼沉积层的硅片放入管式扩散炉管中进行高温退火,将硼源推进至硅基体内,形成所述硼发射极。
通过PECVD沉积掺硼沉积层作为硼源,然后通过扩散炉管高温退火推进硼源至硅基体内,能够形成质量较好的硼发射极。且避免使用传统硼源BCl3和BBr3,不会产生有害副产物,不会对设备和管路造成不可逆的损坏,降低了生产成本。此外,PECVD沉积硼源,能够使硼源均匀地覆盖在硅片表面,并且不同于传统硼扩散,不会产生富硼层,减少俄歇复合,有效地提高了电池效率;且先沉积硼源再扩散还可以确保扩散的均匀性。
根据本发明的一些优选实施方面,所述特气为SiH4、B2H4与N2O的混合气体。本发明的一些实施例中,无需使用BCl3和BBr3作为硼源,不会产生有害副产物,不会对设备和管路造成不可逆的损坏,有利于降低生产成本。
根据本发明的一些优选实施方面,所述SiH4与B2H4及N2O的流量比为1:0.05-0.15:8-10。其中B2H4的流量是以稀释H2后的流量计算的。
根据本发明的一些优选实施方面,所述硼发射极的结深为800-1100nm,所述硼发射极的峰值浓度为1×1019-2×1019cm-3
根据本发明的一些优选实施方面,所述掺硼沉积层为掺杂硼的氢化非晶氧化硅层,所述掺硼沉积层的厚度为100-200nm。在制绒后的硅片表面形成的掺硼沉积层为掺杂硼的氢化非晶氧化硅层,其不同于非晶硅或氢化非晶硅,氢化非晶氧化硅层容易被HF溶液清洗去除,这有利于电池制备过程中对a-SiOx:H层的彻底清洗去除;并且硼原子能够在氢化非晶氧化硅层上均匀排布,使得硼原子更容易进入硅基体表面。
根据本发明的一些优选实施方面,经过所述高温退火,将硼源推进至硅基体内的步骤后,所述硅片的方阻均匀性为0-1%。由于利用PECVD沉积硼源,能够使硼源均匀地覆盖在硅片表面,这使得经过高温推进后硅片的方阻均匀性为0-1%。
根据本发明的一些优选实施方面,所述硅片为N型硅片。
根据本发明的一些优选实施方面,所述高温退火步骤中,向所述管式扩散炉管内通入N2和O2,所述N2和O2的流量比为3-5:1,高温退火的温度为920-1070℃,高温退火的时间为5-180min。
另一方面,本发明还提供了一种利用如上所述的制备方法制备得到的硼发射极。
另一方面,本发明还提供了一种包括如上所述的硼发射极的N型晶体硅电池。
具体地,本发明的一种包括上述硼发射电极的N型晶体硅电池的制备方法,包括以下步骤:
步骤1、取N型硅片用KOH溶液进行双面制绒,对制绒后的硅片的背面进行酸抛光处理,并通过RCA清洗法清洗硅片。
步骤2、对步骤1处理后的硅片在特气气氛中进行PECVD沉积,具体地:关闭N2O的阀门,打开B2H6和SiH4的阀门,通入B2H6:SiH4的流量比为10%的混合气体;再关闭B2H6的阀门,打开N2O的阀门,通入SiH4:(SiH4+N2O)的流量比为10%的混合气体,通入特气的过程持续20min,在N型硅片的制绒面沉积一层掺硼氢化非晶氧化硅层,其厚度为170nm。
步骤3、向管式扩散炉管中通入N2:O2的流量比为3:1的混合气体,将步骤2处理后的硅片在1020℃的高温下进行硼源驱入,驱入时间为120min,在硅片表面形成硼浓度为1×1019cm-3,结深为1000nm的硼发射极。
步骤4、用49%的HF溶液对步骤3处理后的硅片清洗30S,以除去残留的硼掺杂氧化硅层。
步骤5、对步骤4处理后的硅片用相同的PECVD设备在硅片背面沉积掺磷多晶硅层,然后再进行高温退火,制备晶体硅电池背面的隧穿氧化层。
步骤6、对步骤5处理后的硅片的正背面生长钝化层,利用ALD在硅片正面镀上AlOx层,利用PECVD在硅片背面镀上SiNx层。
步骤7、对步骤6处理后的硅片进行正背面金属电极的制备,并烧结形成欧姆接触,得到N型晶体硅电池。
上述步骤1至步骤3为本发明的硼发射极的制备方法。
与现有技术相比,本发明的有益之处在于:本发明的一种硼发射极的制备方法,通过PECVD沉积硼源,再通过高温退火将硼源推进硅基体内形成硼发射极,能够使硼源均匀地覆盖在硅片表面,有利于硼原子进入硅片表面,不会产生富硼层,减少俄歇复合,有效地提高了电池效率;还可避免使用传统的BCl3和BBr3作为硼源,不会产生有害副产物,不会对设备和管路造成不可逆的损坏,降低了生产成本。
具体实施方式
为了使本技术领域的人员更好地理解本发明的技术方案,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例一:一种N型晶体硅电池的制备方法
本实施例中的一种N型晶体硅电池的制备方法包括如下步骤:
步骤1、取N型硅片用KOH溶液进行双面制绒,对制绒后的硅片的背面进行酸抛光处理,并通过RCA清洗法清洗硅片。
步骤2、对步骤1处理后的硅片在特气气氛中进行PECVD沉积,具体地:关闭N2O的阀门,打开B2H6和SiH4的阀门,通入B2H6:SiH4的流量比为10%的混合气体;再关闭B2H6的阀门,打开N2O的阀门,通入SiH4:(SiH4+N2O)的流量比为10%的混合气体,通入特气的过程持续20min,在N型硅片的制绒面沉积一层掺硼氢化非晶氧化硅层,其厚度为170nm。
步骤3、向管式扩散炉管中通入N2:O2的流量比为3:1的混合气体,将步骤2处理后的硅片在1020℃的高温下进行硼源驱入,驱入时间为120min,在硅片表面形成硼浓度为1×1019cm-3,结深为1000nm的硼发射极。
步骤4、用49%的HF溶液对步骤3处理后的硅片清洗30S,以除去残留的硼掺杂氧化硅层。
步骤5、对步骤4处理后的硅片用相同的PECVD设备在硅片背面沉积掺磷多晶硅层,然后再进行高温退火,制备晶体硅电池背面的隧穿氧化层。
步骤6、对步骤5处理后的硅片的正背面生长钝化层,利用ALD在硅片正面镀上AlOx层,利用PECVD在硅片背面镀上SiNx层。
步骤7、对步骤6处理后的硅片进行正背面金属电极的制备,并烧结形成欧姆接触,得到N型晶体硅电池。
本实施例中的一种N型晶体硅电池,由上述制备方法制备得到,本实施例的N型晶体硅电池包括硼发射极,其中,上述步骤1至步骤3为对应的硼发射极的制备方法。
本实施例中,通过PECVD沉积硼源,再通过高温退火将硼源推进硅基体内形成硼发射极,能够使硼源均匀地覆盖在硅片表面,有利于硼原子进入硅片表面,不会产生富硼层,减少俄歇复合,有效地提高了电池效率;还可避免使用传统的BCl3和BBr3作为硼源,不会产生有害副产物,不会对设备和管路造成不可逆的损坏,降低了生产成本。
对比例一:一种N型晶体硅电池的制备方法
本对比例的N型晶体硅电池的制备方法与实施例一的区别在于步骤2不同,其他步骤与实施例一相同,对比例一的步骤2是在常规的管式炉中进行的,具体地,将管式炉升温至900℃,通入N2和O2,二者的流量比为3:1,其中的N2携带有BBr3,然后升温至1020℃进行高温推进生成硼扩散结。
实施例二结果与讨论
将按照实施例一和对比例一的制备方法制备得到的N型晶体硅电池进行相关电化学性能测试,测试方法为:利用传统的Halm测试仪,在STC(Standard Test Conditions)条件(25℃,1000w/m2)进行测试。测试结果见表1。
表1按照实施例一及对比例一的制备方法制备得到的N型晶体硅电池的电性能测试结果
η(%) FF(%) Jsc(mA/cm2) Voc(mV)
实施例一 24.24 83.31 41.99 692.83
对比例一 24.03 82.58 41.30 704.65
从表1中可以看出,按照实施例一的制备方法制备得到的N型晶体硅电池在开路电压(Voc)、电流密度(Jsc)、影响因子(FF)及转换效率(η)等方面都明显优于对比例一中各个对应的性能,实施例一中得到的电池具有更高的电流密度、更高的影响因子和更高的转换效率以及更低的开路电压,这说明按照实施例一中步骤1至步骤3的制备方法制备得到了质量更优的硼发射极,从而使得对应的N型晶体硅电池的电性能更优。其通过PECVD沉积硼源,再通过高温退火将硼源推进硅基体内形成硼发射极,能够使硼源均匀地覆盖在硅片表面,有利于硼原子进入硅片表面,有效地提高了电池性能。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种硼发射极的制备方法,其特征在于,包括如下步骤:
对制绒抛光及清洗后的硅片在特气气氛中进行PECVD沉积,在所述硅片表面形成掺硼沉积层,再将具有掺硼沉积层的硅片放入管式扩散炉管中进行高温退火,将硼源推进至硅基体内,形成所述硼发射极。
2.根据权利要求1所述的制备方法,其特征在于,所述特气为SiH4、B2H4与N2O的混合气体。
3.根据权利要求2所述的制备方法,其特征在于,所述SiH4与B2H4及N2O的流量比为1:0.05-0.15:8-10。
4.根据权利要求1所述的制备方法,其特征在于,所述硼发射极的结深为800-1100nm,所述硼发射极的峰值浓度为1×1019-2×1019cm-3
5.根据权利要求1所述的制备方法,其特征在于,所述掺硼沉积层为掺杂硼的氢化非晶氧化硅层,所述掺硼沉积层的厚度为100-200nm。
6.根据权利要求1所述的制备方法,其特征在于,经过所述高温退火,将硼源推进至硅基体内的步骤后,所述硅片的方阻均匀性为0-1%。
7.根据权利要求1所述的制备方法,其特征在于,所述硅片为N型硅片。
8.根据权利要求1所述的制备方法,其特征在于,所述高温退火步骤中,向所述管式扩散炉管内通入N2和O2,所述N2和O2的流量比为3-5:1,高温退火的温度为920-1070℃,高温退火的时间为5-180min。
9.一种硼发射极,其特征在于,由权利要求1~8任意一项所述的硼发射极的制备方法制备而成。
10.一种N型晶体硅电池,其特征在于,包括如权利要求9所述的硼发射极。
CN202310254755.3A 2023-03-16 2023-03-16 一种硼发射极及其制备方法、n型晶体硅电池 Pending CN116190495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310254755.3A CN116190495A (zh) 2023-03-16 2023-03-16 一种硼发射极及其制备方法、n型晶体硅电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310254755.3A CN116190495A (zh) 2023-03-16 2023-03-16 一种硼发射极及其制备方法、n型晶体硅电池

Publications (1)

Publication Number Publication Date
CN116190495A true CN116190495A (zh) 2023-05-30

Family

ID=86438490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310254755.3A Pending CN116190495A (zh) 2023-03-16 2023-03-16 一种硼发射极及其制备方法、n型晶体硅电池

Country Status (1)

Country Link
CN (1) CN116190495A (zh)

Similar Documents

Publication Publication Date Title
CN108336184A (zh) 一种隧穿氧钝化接触晶体硅太阳电池的制备方法
WO2023029059A1 (zh) 一种N-TOPCon电池的绕镀多晶硅去除方法
CN112510121B (zh) 一种perc电池碱抛前后保护工艺
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
CN111987191A (zh) 一种修复perc电池激光开膜损伤的方法
WO2024066207A1 (zh) 一种新型太阳能电池及其制作方法
CN115036391A (zh) 具有选择性发射极的n型太阳能电池的制备方法及电池
CN114823969A (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN110767772B (zh) 局域接触钝化太阳电池的制备方法
CN114975643A (zh) N-TOPCon光伏太阳能电池制备方法及太阳能电池
CN116741871A (zh) 一种扩硼SE结构的N型TOPCon电池制作方法
CN116741877A (zh) 一种tbc电池制备方法及tbc电池
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN111584679A (zh) 一种用于N型TOPCon电池背表面钝化的掺杂方法
CN113594299A (zh) 一种n型硅片p++结构的制作工艺
CN111628043B (zh) 一种适用于perc电池叠加se的扩散工艺
CN114335237A (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN116632076A (zh) TOPCon电池钝化方法和光伏电池、光伏组件
CN116053353A (zh) 硼掺杂选择性发射极的制备方法及n型晶体硅太阳能电池
CN116190495A (zh) 一种硼发射极及其制备方法、n型晶体硅电池
CN113571602B (zh) 一种二次扩散的选择性发射极及其制备方法和应用
CN112838144B (zh) 一种金字塔绒面上优化均匀性化的工艺方法
CN110739366B (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
CN113808927A (zh) 一种TOPCon电池磷扩散工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination