CN116183497A - Spectrum diagnosis device suitable for welding in narrow space and micro-area plasma - Google Patents
Spectrum diagnosis device suitable for welding in narrow space and micro-area plasma Download PDFInfo
- Publication number
- CN116183497A CN116183497A CN202310115960.1A CN202310115960A CN116183497A CN 116183497 A CN116183497 A CN 116183497A CN 202310115960 A CN202310115960 A CN 202310115960A CN 116183497 A CN116183497 A CN 116183497A
- Authority
- CN
- China
- Prior art keywords
- plasma
- fixing
- cabin
- welding
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 46
- 238000003745 diagnosis Methods 0.000 title claims abstract description 14
- 238000001228 spectrum Methods 0.000 title abstract description 10
- 239000000523 sample Substances 0.000 claims abstract description 53
- 230000001681 protective effect Effects 0.000 claims abstract description 39
- 230000003595 spectral effect Effects 0.000 claims description 18
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 24
- 238000001514 detection method Methods 0.000 abstract description 2
- 239000003496 welding fume Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 210000003437 trachea Anatomy 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种适用于狭小空间焊接及微区等离子体的光谱诊断装置,包括等离子体采集装置、三维移动装置和固定支架,等离子体采集装置包括等离子体收集管道,伞端保护罩,布置于等离子体收集管道后端的光谱仪探头固定舱,设置于等离子体收集管道内,用于保护光谱仪探头的保护镜片和向等离子体收集管道输送气体的送气舱;三维移动装置用于安装等离子体采集装置,实现等离子体采集装置在三维空间内的移动;固定支架用于将三维移动装置固定于焊接机器人上,并调整三维移动装置相对于焊接机器人的位置和角度。本发明光谱诊断装置可避免焊接烟尘对等离子体采集的影响和焊接飞溅损坏光谱仪探头,实现狭小空间内部以及微区的等离子体检测。
A spectroscopic diagnostic device suitable for welding in narrow spaces and micro-area plasma, including a plasma collection device, a three-dimensional mobile device and a fixed bracket. The fixed cabin of the spectrometer probe at the back end of the pipeline is set in the plasma collection pipeline, which is used to protect the protective lens of the spectrometer probe and the gas supply cabin for delivering gas to the plasma collection pipeline; the three-dimensional mobile device is used to install the plasma collection device to realize plasma collection. The movement of the acquisition device in three-dimensional space; the fixed bracket is used to fix the three-dimensional mobile device on the welding robot, and adjust the position and angle of the three-dimensional mobile device relative to the welding robot. The spectrum diagnosis device of the invention can avoid the influence of welding fumes on plasma collection and the damage of spectrometer probes by welding spatter, and realize plasma detection in narrow spaces and in micro-areas.
Description
技术领域technical field
本发明涉及一种光谱诊断装置,特别涉及一种适用于狭小空间焊接及微区等离子体的光谱诊断装置。The invention relates to a spectrum diagnosis device, in particular to a spectrum diagnosis device suitable for narrow space welding and micro-area plasma.
背景技术Background technique
光谱诊断即光谱分析法,通过检测等离子体光谱强度及轮廓等信息,进而获得等离子体电子密度、温度等信息。光谱分析法属于间接式测量,不会对等离子体产生影响,并且得到的信息量丰富。在焊接领域,可进行等离子羽辉分析、焊接质量光谱监测、复合焊接热源间的相互作用光谱分析等。在焊接异形件或者狭小空间焊接时,由于空间限制,光谱仪探头无法直接深入狭小空间,导致无法采集等离子体信息或者采集精度不够。Spectral diagnosis is a spectroscopic analysis method. By detecting information such as plasma spectral intensity and profile, information such as plasma electron density and temperature can be obtained. The spectroscopic analysis method is an indirect measurement that will not affect the plasma, and the amount of information obtained is rich. In the field of welding, plasma plume analysis, welding quality spectral monitoring, interaction spectral analysis between composite welding heat sources, etc. can be performed. When welding special-shaped parts or welding in a narrow space, due to space constraints, the spectrometer probe cannot directly penetrate into the narrow space, resulting in the inability to collect plasma information or insufficient collection accuracy.
现有的光谱诊断方法,均是将光谱仪探头直接指向焊接位置,采集整个焊接位置等离子体光谱信号,所得的光谱信号反应的是整体的等离子体物理信号的变化,无法反应某一微小区域等离子体的变化,并且受到焊接烟尘、飞溅的影响,无法保证采集精度。狭小空间焊接时,探头无法深入到狭小空间内部,会对采集精度产生影响,也无法实现微区等离子体。实际焊接中,不同微小区域的等离子体密度、温度是有区别的,特别在摆动激光-电弧复合焊接时,当光束摆动到不同位置时,其等离子体密度也会随之变化。因此,寻求一种适用于狭小空间焊接及微区等离子体的光谱诊断装置是有必要的。Existing spectral diagnosis methods all point the spectrometer probe directly to the welding position, and collect the plasma spectral signal of the entire welding position. The obtained spectral signal reflects the change of the overall plasma physical signal, and cannot reflect the plasma in a small area. and is affected by welding fume and spatter, so the acquisition accuracy cannot be guaranteed. When welding in a narrow space, the probe cannot go deep into the narrow space, which will affect the acquisition accuracy and cannot realize micro-area plasma. In actual welding, the plasma density and temperature are different in different tiny areas, especially in swing laser-arc hybrid welding, when the beam swings to different positions, the plasma density will also change accordingly. Therefore, it is necessary to seek a spectroscopic diagnostic device suitable for narrow space welding and micro-area plasma.
发明内容Contents of the invention
本发明的发明目的是解决现有技术无法采集狭小空间焊接和微区等离子体光谱信息的问题,提供一种适用于狭小空间焊接及微区等离子体的光谱诊断装置。The purpose of the invention is to solve the problem that the prior art cannot collect spectral information of narrow space welding and micro-area plasma, and provide a spectral diagnostic device suitable for narrow space welding and micro-area plasma.
本发明实现其发明目的所采取的技术方案是:一种适用于狭小空间焊接及微区等离子体的光谱诊断装置,包括等离子体采集装置、三维移动装置和固定支架;The technical solution adopted by the present invention to achieve the purpose of the invention is: a spectral diagnostic device suitable for welding in narrow spaces and micro-area plasma, including a plasma acquisition device, a three-dimensional moving device and a fixed bracket;
所述等离子体采集装置包括等离子体收集管道,伞端保护罩,布置于等离子体收集管道后端的光谱仪探头固定舱,设置于等离子体收集管道内,用于保护光谱仪探头的保护镜片和设置于光谱仪探头固定舱与伞端保护罩之间,可向等离子体收集管道输送气体的送气舱;The plasma collection device includes a plasma collection pipe, an umbrella end protective cover, a spectrometer probe fixed cabin arranged at the rear end of the plasma collection pipe, arranged in the plasma collection pipe, a protective lens for protecting the spectrometer probe and a spectrometer probe. Between the probe fixing cabin and the protective cover of the umbrella end, there is a gas supply cabin that can deliver gas to the plasma collection pipeline;
所述送气舱包裹在等离子体收集管道外侧,被送气舱包裹的等离子体收集管道上开有通气孔,用于将送气舱的气体送入等离子体收集管道内;The gas supply chamber is wrapped on the outside of the plasma collection pipe, and the plasma collection pipe wrapped by the gas supply chamber has vent holes for sending the gas in the gas supply chamber into the plasma collection pipe;
所述三维移动装置用于安装等离子体采集装置,实现等离子体采集装置在三维空间内的移动;The three-dimensional moving device is used to install the plasma collection device to realize the movement of the plasma collection device in three-dimensional space;
所述固定支架用于将三维移动装置固定于焊接机器人上,并调整三维移动装置相对于焊接机器人的位置和角度。The fixing bracket is used to fix the three-dimensional mobile device on the welding robot, and adjust the position and angle of the three-dimensional mobile device relative to the welding robot.
本发明光谱诊断装置实现光谱诊断的方法是:将光谱仪探头固定于等离子体采集装置的光谱仪探头固定舱内,将等离子体采集装置安装在三维移动装置上,然后将三维移动装置固定于焊接机器人上,并调整三维移动装置相对于焊接机器人的位置,使得等离子体采集装置的等离子体收集管道处于合适的角度和位置。通过送气舱向等离子体收集管道内通气,并控制气流量在合适的范围内,以免影响焊接等离子体;将等离子体收集管道置于狭小空间待焊处,实现狭小空间焊接等离子信号的收集;将等离子体收集管道指向等离子体某一区域,采集过程中通过调节三维移动装置,实现对检测区域的调整。The method for realizing spectral diagnosis by the spectrum diagnosis device of the present invention is: fixing the spectrometer probe in the spectrometer probe fixing cabin of the plasma collection device, installing the plasma collection device on the three-dimensional mobile device, and then fixing the three-dimensional mobile device on the welding robot , and adjust the position of the three-dimensional mobile device relative to the welding robot, so that the plasma collection pipe of the plasma collection device is at a suitable angle and position. Ventilate the plasma collection pipe through the air supply chamber, and control the air flow within an appropriate range so as not to affect the welding plasma; place the plasma collection pipe in a narrow space to be welded to realize the collection of welding plasma signals in a narrow space; The plasma collection pipe points to a certain area of the plasma, and the adjustment of the detection area is realized by adjusting the three-dimensional moving device during the collection process.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
1、本发明光谱诊断装置设有送气舱,送气舱通过等离子体收集管道上的通气孔进入到等离子体收集管道中完成同轴送气,去除所述光谱采集装置端部的烟尘,避免烟尘对光谱采集的干扰,保证采集精度,而且通过送气舱起到缓冲气流的作用,经过送气舱后,送出的气体流速更缓,进一步减小对等离子体的影响。1. The spectrum diagnosis device of the present invention is provided with an air delivery chamber, which enters into the plasma collection pipeline through the vent hole on the plasma collection pipeline to complete coaxial air supply, removes the smoke and dust at the end of the spectrum acquisition device, and avoids the smoke and dust from affecting the spectrum. The interference of collection ensures the accuracy of collection, and the gas supply chamber plays a role of buffering the air flow. After passing through the gas supply chamber, the flow rate of the gas sent out is slower, further reducing the impact on the plasma.
2、本发明光谱诊断装置设有伞端保护罩和保护镜片,可防止焊接时产生的飞溅损坏光谱仪探头和送气舱、保护镜片、光谱仪探头固定舱等等离子体采集装置的内部结构。2. The spectral diagnosis device of the present invention is equipped with an umbrella end protective cover and a protective lens, which can prevent the spatter generated during welding from damaging the internal structure of the plasma acquisition device such as the spectrometer probe, the air supply chamber, the protective lens, and the spectrometer probe fixing cabin.
3、本发明光谱诊断装置设有光谱仪探头固定舱,可用于定位不同型号的光谱仪探头。3. The spectral diagnostic device of the present invention is provided with a fixed cabin for spectrometer probes, which can be used to locate different types of spectrometer probes.
4、本发明光谱诊断装置的等离子体收集管道可根据焊接情况选择长度和粗细,狭小空间焊接时,可深入狭小空间内部,进行光谱诊断。4. The length and thickness of the plasma collection pipe of the spectrum diagnosis device of the present invention can be selected according to the welding conditions. When welding in a narrow space, it can go deep into the narrow space for spectrum diagnosis.
5、本发明光谱诊断装置设置有三维移动装置,可实现等离子体采集装置在三维空间内的运动,用于采集不同微小区域的等离子体信号。5. The spectral diagnosis device of the present invention is equipped with a three-dimensional moving device, which can realize the movement of the plasma collection device in three-dimensional space, and is used to collect plasma signals in different micro regions.
进一步,本发明所述等离子体收集管道位于伞端保护罩的中轴位置。Further, the plasma collection pipe of the present invention is located at the central axis of the protective cover at the umbrella end.
更进一步,本发明所述伞端保护罩有两个,两个伞端保护罩均布置于光谱仪探头固定舱的前端,位于最前端的伞端保护罩记为伞端保护罩一,位于伞端保护罩一和光谱仪探头固定舱之间的伞端保护罩记为伞端保护罩二;所述送气舱安装于伞端保护罩一的内侧,保护镜片安装于伞端保护罩二的内侧。Furthermore, there are two umbrella-end protective covers in the present invention, and the two umbrella-end protective covers are arranged at the front end of the fixed cabin of the spectrometer probe. The umbrella end protective cover between the protective cover 1 and the spectrometer probe fixed cabin is recorded as the umbrella end protective cover 2; the air supply chamber is installed on the inside of the umbrella end protective cover 1, and the protective lens is installed on the inside of the umbrella end protective cover 2.
设置两个伞端保护罩,一方面可更好地防飞溅,保护光谱仪探头和送气舱、保护镜片、光谱仪探头固定舱等等离子体采集装置的内部结构,而且便于安装送气舱和保护镜片,使得整个结构更加协调稳固。Two umbrella end protective covers are set, on the one hand, it can better prevent splashing, protect the internal structure of the plasma collection device such as the spectrometer probe and the gas supply cabin, the protective lens, the spectrometer probe fixed cabin, and facilitate the installation of the gas supply cabin and the protective lens, so that The whole structure is more coordinated and stable.
再进一步,本发明所述送气舱包括安装于伞端保护罩一内侧的具有外螺纹的送气舱体和具有内螺纹的气舱盖,气舱盖上设置有可穿过等离子体收集管道的通孔和用于连接气管的气管接头。Still further, the air supply chamber of the present invention includes an air supply chamber body with external threads installed on the inner side of the protective cover of the umbrella end and an air capsule cover with internal threads. Holes and tubing connectors for connecting tubing.
气体从气管接头进入到送气舱,再从送气舱通过等离子体收集管道上的通气孔进入到等离子体收集管道中完成同轴送气。The gas enters the gas supply chamber from the trachea joint, and then enters the plasma collection pipeline from the gas supply chamber through the vent hole on the plasma collection pipeline to complete the coaxial gas supply.
再进一步,本发明所述光谱仪探头固定舱包括固定舱体,固定舱体前端设置有可固定不同尺寸光谱仪探头前端的光谱仪探头卡槽,固定舱体后端设置有固定舱体盖、通过蝶形螺母安装于固定舱体盖上的固定杆和固定杆前端的橡胶垫,通过蝶形螺母调整固定杆的轴向位置,从而使得橡胶垫压紧光谱仪探头的后端。Still further, the fixed cabin of the spectrometer probe of the present invention includes a fixed cabin body, the front end of the fixed cabin body is provided with a spectrometer probe card slot that can fix the front ends of spectrometer probes of different sizes, and the rear end of the fixed cabin body is provided with a fixed cabin body cover. The nut is installed on the fixed rod on the fixed cabin cover and the rubber pad at the front end of the fixed rod, and the axial position of the fixed rod is adjusted through the wing nut, so that the rubber pad is pressed against the rear end of the spectrometer probe.
进一步,本发明所述三维移动装置包括移动台和可调节移动台在X、Y、Z方向上位置的带有千分尺的调节装置,所述等离子体采集装置安装在移动台上,通过调节装置调整移动台的位置,可实现等离子体采集装置在三维空间内的移动,采集不同微小区域的等离子体信号。Further, the three-dimensional mobile device of the present invention includes a mobile platform and an adjustment device with a micrometer that can adjust the position of the mobile platform in the X, Y, and Z directions. The plasma collection device is installed on the mobile platform and adjusted by the adjustment device. The position of the mobile station can realize the movement of the plasma collection device in three-dimensional space, and collect plasma signals in different tiny areas.
三维移动装置的调节装置设置有千分尺,运动精度可达到0.01mm,可精确调节等离子体采集装置的等离子采集区域,实现不同微小区域等离子体信号的采集。The adjustment device of the three-dimensional mobile device is equipped with a micrometer, and the movement accuracy can reach 0.01mm, which can accurately adjust the plasma collection area of the plasma collection device and realize the collection of plasma signals in different micro areas.
进一步,本发明所述等离子体采集装置安装在移动台上的具体方式是:所述移动台上固定有三角卡槽,所述三角卡槽包括三角卡槽底座、锁紧套和设置在锁紧套侧面的锁紧螺钉,将等离子体采集装置的光谱仪探头固定舱部分置于三角卡槽底座和锁紧套之间,旋转锁紧螺钉使得锁紧螺钉压紧光谱仪探头固定舱外壁,实现等离子体采集装置的固定。Further, the specific way for the plasma collection device of the present invention to be installed on the mobile platform is as follows: a triangular card slot is fixed on the mobile platform, and the triangular card slot includes a triangular card slot base, a locking sleeve and a locking sleeve. Set the locking screw on the side of the cover, place the spectrometer probe fixing compartment part of the plasma acquisition device between the triangular card slot base and the locking sleeve, rotate the locking screw so that the locking screw presses the outer wall of the spectrometer probe fixing compartment to realize plasma Fixation of the acquisition device.
进一步,本发明所述固定支架包括一级支撑杆、二级支撑杆、可沿一级支撑杆轴向移动的连接块和固定块一、可沿二级支撑杆轴向移动的固定块二和固定块三;所述连接块与焊接机器人固定连接,所述固定块一与固定块二可旋转连接,所述固定块三与三维移动装置固定连接。Further, the fixed bracket of the present invention includes a primary support rod, a secondary support rod, a connecting block that can move axially along the primary support rod, a fixed block one, a fixed block two that can move axially along the secondary support rod, and The third fixed block; the connecting block is fixedly connected to the welding robot, the first fixed block is rotatably connected to the second fixed block, and the third fixed block is fixedly connected to the three-dimensional moving device.
这样,可通过固定支架方便调节三维移动装置的位置和角度,进一步实现等离子体采集装置位置和角度的调节,辅助三维移动装置实现不同位置和角度焊接时对等离子体的采集。In this way, the position and angle of the three-dimensional mobile device can be conveniently adjusted through the fixed bracket, further realizing the adjustment of the position and angle of the plasma collection device, and assisting the three-dimensional mobile device to realize plasma collection during welding at different positions and angles.
下面通过具体实施方式及附图对本发明作进一步详细说明。The present invention will be further described in detail below through specific embodiments and accompanying drawings.
附图说明Description of drawings
图1为本发明实施例等离子体采集装置的正视结构示意图。FIG. 1 is a schematic diagram of a front view structure of a plasma collection device according to an embodiment of the present invention.
图2为本发明实施例等离子体采集装置正视结构的A-A面剖视示意图。Fig. 2 is a schematic cross-sectional view of plane A-A of the front view structure of the plasma collection device according to the embodiment of the present invention.
图3为本发明实施例等离子体采集装置的侧视结构示意图。Fig. 3 is a schematic side view structural diagram of a plasma collection device according to an embodiment of the present invention.
图4为本发明实施例光谱诊断装置的三维结构示意图。Fig. 4 is a schematic diagram of a three-dimensional structure of a spectral diagnostic device according to an embodiment of the present invention.
图中,1为等离子体收集管道,2为送气舱,3为光谱仪探头固定舱,4为气管接头,5为光谱仪探头,6为伞端保护罩一,7为保护镜片,8为伞端保护罩二,9为橡胶垫,10为固定杆,11为固定舱体盖,12为蝶形螺母,13为连接块,14为固定块一,15为一级支撑杆,16为二级支撑杆,17为固定块二,18为锁紧套,19为锁紧螺钉,20为三角卡槽底座,21为三维移动装置,22为固定块三,23千分尺。In the figure, 1 is the plasma collection pipeline, 2 is the air supply chamber, 3 is the fixed cabin of the spectrometer probe, 4 is the gas pipe joint, 5 is the spectrometer probe, 6 is the protective cover for the umbrella end, 7 is the protective lens, and 8 is the umbrella end protection Cover two, 9 is a rubber pad, 10 is a fixed rod, 11 is a fixed cabin cover, 12 is a butterfly nut, 13 is a connecting block, 14 is a
具体实施方式Detailed ways
实施例Example
一种适用于狭小空间焊接及微区等离子体的光谱诊断装置,图4为实施例光谱诊断装置的三维结构示意图,如图4所示,光谱诊断装置包括等离子体采集装置、三维移动装置21和固定支架,其结构特点是:A spectral diagnostic device suitable for narrow space welding and micro-area plasma, Figure 4 is a three-dimensional structural schematic diagram of the embodiment of the spectral diagnostic device, as shown in Figure 4, the spectral diagnostic device includes a plasma acquisition device, a three-dimensional
所述等离子体采集装置包括等离子体收集管道1,伞端保护罩,布置于等离子体收集管道1后端的光谱仪探头固定舱3,设置于等离子体收集管道1内,用于保护光谱仪探头5的保护镜片7和设置于光谱仪探头固定舱3与伞端保护罩之间,可向等离子体收集管道1输送气体的送气舱2;The plasma collection device includes a plasma collection pipe 1, an umbrella end protective cover, a spectrometer probe fixed
所述送气舱2包裹在等离子体收集管道1外侧,被送气舱2包裹的等离子体收集管道1上开有通气孔,用于将送气舱2的气体送入等离子体收集管道1内;The gas supply chamber 2 is wrapped on the outside of the plasma collection pipe 1, and the plasma collection pipe 1 wrapped by the gas supply chamber 2 has a ventilation hole for sending the gas in the gas supply chamber 2 into the plasma collection pipe 1;
所述三维移动装置21用于安装等离子体采集装置,实现等离子体采集装置在三维空间内的移动;The three-dimensional moving
所述固定支架用于将三维移动装置21固定于焊接机器人上,并调整三维移动装置21相对于焊接机器人的位置和角度。The fixing bracket is used to fix the three-dimensional moving
本实施例所述等离子体收集管道1位于伞端保护罩的中轴位置。The plasma collection pipe 1 in this embodiment is located at the central axis of the protective cover at the umbrella end.
本实施例所述伞端保护罩有两个,两个伞端保护罩均布置于光谱仪探头固定舱3的前端,位于最前端的伞端保护罩记为伞端保护罩一6,位于伞端保护罩一6和光谱仪探头固定舱3之间的伞端保护罩记为伞端保护罩二8;所述送气舱2安装于伞端保护罩一6的内侧,保护镜片7安装于伞端保护罩二8的内侧。本例中两个伞端保护罩之间以及伞端保护罩与光谱仪探头固定舱之间通过定位销定位,具体包括伞端保护罩一内测加工有定位销,伞端保护罩二内外侧分别加工有定位销、定位孔,光谱仪探头固定舱外侧加工有定位孔,伞端保护罩一、伞端保护罩二、光谱仪探头固定舱依次通过定位孔、定位销连接,保证等离子体采集装置同轴度。There are two umbrella end protective covers in this embodiment, and the two umbrella end protective covers are arranged at the front end of the spectrometer probe fixed
本实施例所述送气舱2包括安装于伞端保护罩一内侧的具有外螺纹的送气舱2体和具有内螺纹的气舱盖,气舱盖上设置有可穿过等离子体收集管道1的通孔和用于连接气管的气管接头4。The air supply chamber 2 described in this embodiment comprises an air supply chamber 2 body with external threads and a gas chamber cover with internal threads installed on the inner side of the umbrella end protective cover. Through hole and the trachea connector 4 for connecting the trachea.
本实施例所述光谱仪探头固定舱3包括固定舱体,固定舱体前端设置有可固定不同尺寸光谱仪探头前端的光谱仪探头卡槽,固定舱体后端设置有固定舱体盖11、通过蝶形螺母12安装于固定舱体盖11上的固定杆10和固定杆10前端的橡胶垫9,通过蝶形螺母12调整固定杆10的轴向位置,从而使得橡胶垫9压紧光谱仪探头的后端。The spectrometer probe fixed
图1为本实施例等离子体采集装置的正视结构示意图。图2为图1的A-A面剖视示意图,也即本实施例等离子体采集装置正视结构的A-A面剖视示意图。图3为本实施例等离子体采集装置的侧视结构示意图。FIG. 1 is a front view schematic diagram of the plasma collection device of this embodiment. FIG. 2 is a schematic cross-sectional view of plane A-A of FIG. 1 , that is, a schematic cross-sectional diagram of plane A-A of the front view structure of the plasma collection device of this embodiment. Fig. 3 is a schematic side view structural diagram of the plasma collection device of this embodiment.
本实施例所述三维移动装置21包括移动台和可调节移动台在X、Y、Z方向上位置的带有千分尺23的调节装置,所述等离子体采集装置安装在移动台上,通过调节装置调整移动台的位置,可实现等离子体采集装置在三维空间内的移动,采集不同微小区域的等离子体信号。The three-dimensional
本实施例所述等离子体采集装置安装在移动台上的具体方式是:所述移动台上固定有三角卡槽,所述三角卡槽包括三角卡槽底座20、锁紧套18和设置在锁紧套18侧面的锁紧螺钉19,将等离子体采集装置的光谱仪探头固定舱3部分置于三角卡槽底座20和锁紧套18之间,旋转锁紧螺钉19使得锁紧螺钉19压紧光谱仪探头固定舱3外壁,实现等离子体采集装置的固定。The specific way that the plasma collection device described in this embodiment is installed on the mobile platform is: a triangular card slot is fixed on the mobile platform, and the triangular card slot includes a triangular
本实施例所述固定支架包括一级支撑杆15、二级支撑杆16、可沿一级支撑杆15轴向移动的连接块13和固定块一14、可沿二级支撑杆16轴向移动的固定块二17和固定块三22;所述连接块13与焊接机器人固定连接,所述固定块一14与固定块二17可旋转连接,所述固定块三22与三维移动装置21固定连接。The fixed bracket described in this embodiment includes a
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310115960.1A CN116183497A (en) | 2023-02-15 | 2023-02-15 | Spectrum diagnosis device suitable for welding in narrow space and micro-area plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310115960.1A CN116183497A (en) | 2023-02-15 | 2023-02-15 | Spectrum diagnosis device suitable for welding in narrow space and micro-area plasma |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116183497A true CN116183497A (en) | 2023-05-30 |
Family
ID=86450161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310115960.1A Pending CN116183497A (en) | 2023-02-15 | 2023-02-15 | Spectrum diagnosis device suitable for welding in narrow space and micro-area plasma |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116183497A (en) |
-
2023
- 2023-02-15 CN CN202310115960.1A patent/CN116183497A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104364047B (en) | For connecting the device of the end of the pipe being formed from steel by means of track welding | |
CN104849346B (en) | CRDM component omega welding seam is vortexed automatic checking device | |
CN114563159B (en) | Hypersonic low-density wind tunnel nozzle inner axis Mach number measuring device and method | |
JPH0374953B2 (en) | ||
CN110214058A (en) | Pipe tunnel fixing and welding machine | |
CN116183497A (en) | Spectrum diagnosis device suitable for welding in narrow space and micro-area plasma | |
CN110836926B (en) | Ultrasonic detection probe for air conduit electron beam welding seam | |
US20120183114A1 (en) | Method and apparatus for testing an annular weld on a main coolant line connected to a reactor pressure vessel of a nuclear power plant | |
CN105180833A (en) | System And Method For Measuring Tire Tread Profile | |
CN117722977B (en) | Non-contact measurement equipment and method for revolving body part in special equipment | |
CN117596536B (en) | Device and method for switching incident angle during microphone frequency weighting test | |
WO2011089319A1 (en) | Method and apparatus for detecting defects in a welding joint | |
CN201548523U (en) | Eddy current detecting device for air valve | |
CN210376236U (en) | Steel pipe ultrasonic flaw detection device with size measurement function | |
CN109490327A (en) | A kind of tooling and its method of endoscope check hollow shaft/inside pipe wall | |
CN209085629U (en) | A kind of posture mileage measuring device of in-pipeline detector | |
CN110849923B (en) | Special device for radiographic inspection of butt weld of small-diameter pipe | |
CN209311398U (en) | A kind of servo-actuated probe boots for ultrasonic wave non-destructive inspection for pipe end machine | |
CN222144002U (en) | A kind of automobile muffler detection tool | |
JP2002022430A (en) | Equipment for measuring thickness of tubular body | |
CN112798684B (en) | Bidirectionally adjustable self-priming phased array probe scanning device and detection method | |
CN113504248A (en) | Auxiliary tool for detecting blade hole of high-pressure compressor of aircraft engine and detection method | |
CN112284816A (en) | Grain sampler automatic sampling system | |
JPS6331001Y2 (en) | ||
CN214278018U (en) | Bidirectional adjustment self-suction type phased array probe scanning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |