CN116179584A - 一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用 - Google Patents

一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用 Download PDF

Info

Publication number
CN116179584A
CN116179584A CN202211125899.0A CN202211125899A CN116179584A CN 116179584 A CN116179584 A CN 116179584A CN 202211125899 A CN202211125899 A CN 202211125899A CN 116179584 A CN116179584 A CN 116179584A
Authority
CN
China
Prior art keywords
schizochytrium
zeo
pbs
strain
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211125899.0A
Other languages
English (en)
Inventor
黄和
孙小曼
李进
马旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202211125899.0A priority Critical patent/CN116179584A/zh
Publication of CN116179584A publication Critical patent/CN116179584A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种高效生产EPA的裂殖壶菌基因工程菌株、方法和应用,所述工程菌株是通过在裂殖壶菌野生型中过表达MetE‑like结构域中的基因AT、KS或AT‑KS获得的;其中,所述基因AT的基因序列为SEQIDNO.13,所述基因KS的基因序列为SEQIDNO.14,所述基因AT‑KS的基因序列为SEQIDNO.15。本发明通过在裂殖壶菌野生型中过表达MetE‑like结构域中的AT、KS和AT‑KS基因获得裂殖壶菌基因工程菌株,可以明显提高EPA积累,这为该菌株工业化定向合成EPA提供了基础。

Description

一种高效生产EPA的裂殖壶菌基因工程菌株、方法和应用
技术领域
本发明属于基因工程领域和生物化工技术领域,尤其是一种高效生产EPA的裂殖壶菌基因工程菌株、方法和应用。
背景技术
多不饱和脂肪酸(polyunsaturated fatty acid,PUFAs)在降低心血管疾病方面有重要的作用,通常分为ω-3和ω-6不饱和脂肪酸,其中ω-3不饱和脂肪酸中对人体最重要的两种不饱和脂肪酸是二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahexaenoic acid,DHA)。
EPA是一种重要的ω-3长链多不饱和脂肪酸,是人体内的必需的微量活性物质,具有降血脂、抗肿瘤、抗炎、抗氧化应激、稳定细胞膜、改善血液循环、降低血液黏度,降低血液中胆固醇的含量等功能,同时对治疗由自身免疫缺陷引起的炎症有效以及能够降低患心血管疾病的风险,是一种重要的保健品原料。目前,大部分EPA来源于深海鱼油。
裂殖壶菌是属于网粘菌门、网粘菌纲、破囊壶菌目、破囊壶菌科的一类缺乏叶绿体的海洋单细胞异养型真菌。同时作为一种产油微生物,因其能够高产DHA而受到广泛的关注,但是EPA的产量比较低,且实现EPA和DHA的联合生产是一个挑战。
迄今为止,已经实现了两种代谢途径用于生产PUFAs,一种是传统的脂肪酸延长酶/去不饱和酶(EL/DE)途径,另一种是聚酮合酶(PKS)途径。由于PKS催化的合成过程可以有效地产生包括EPA和DHA在内的许多PUFAs,并且副产物较少,因此被认为是一个比EL/DE途径更有效的生产PUFAs的系统。PKS途径是大多数海洋产油微生物合成PUFAs的主要方式,但是这些PKS催化结构域的组织方式和产物偏好性明显不同。大多数源自海洋细菌的PKS催化结构域分布在四个亚基上,分别为PfaA、PfaB、PfaC和PfaD,然而大多数来源于真核微生物的PKS由三个亚基组成,即orfA,orfB和orfC。DHA和EPA型PKS基因簇已经在多种海洋细菌中被鉴定出来,而破囊壶菌中只有DHA/n-6DPA型PKS基因簇被鉴定出来。
通过检索,尚未发现与本发明专利申请相关的公开文献。
发明内容
本发明的目的在于克服现有技术上存在的问题,提供一种高效生产EPA的裂殖壶菌基因工程菌株、方法和应用。
本发明解决技术问题所采用的技术方案是:
一种高效生产EPA的裂殖壶菌基因工程菌株,所述工程菌株是通过在裂殖壶菌野生型中过表达MetE-like结构域中的基因AT、KS或AT-KS获得的;
其中,所述基因AT的基因序列为SEQ ID NO.13,所述基因KS的基因序列为SEQ IDNO.14,所述基因AT-KS的基因序列为SEQ ID NO.15。
进一步地,所述裂殖壶菌野生型为裂殖壶菌HX-308;
或者,所述MetE-like结构域为来源于裂殖壶菌HX-308的类甲硫氨酸合酶MetE-like结构域。
如上所述的高效生产EPA的裂殖壶菌基因工程菌株的构建方法,包括如下步骤:
从裂殖壶菌中克隆MetE-like结构域中的AT、KS基因,在裂殖壶菌中进行过表达获得裂殖壶菌基因工程菌株。
进一步地,步骤如下:
(1)克隆裂殖壶菌野生型的MetE-like结构域中的AT、KS基因
(2)构建过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS
1)AT、KS和AT-KS基因上的拼接及添加同源臂;
为AT、KS和AT-KS基因设计同pBS-Zeo酶切位点两端的同源臂序列,将同源臂通过PCR加到AT、KS和AT-KS基因的两端,胶回收;
2)连接反应
将酶切后的载体pBS-Zeo片段、AT基因片段和KS基因片段连接,得到重组过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS;
3)连接产物转化大肠杆菌DH5α感受态细胞
挑选阳性转化子,提取质粒,测序验证成功,获得过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS;
(3)构建过表达pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS的裂殖壶菌基因工程菌株
1)制备裂殖壶菌感受态细胞;
2)裂殖壶菌电转化;
3)筛选后,稳定遗传的菌株为重组过表达载体pBS-Zeo-AT/pBS-Zeo-KS/pBS-Zeo-AT-KS基因的裂殖壶菌基因工程菌株。
利用如上所述的裂殖壶菌基因工程菌株高效生产EPA的方法,所述方法为将裂殖壶菌基因工程菌株接种于种子培养基活化后,获得发酵用菌种;将发酵用菌种接种于发酵培养基中进行发酵培养;收集菌体提取脂质,得到EPA。
进一步地,所述发酵用菌种的具体制备方法包括:
将裂殖壶菌基因工程菌株接种于种子培养基中,培养获得一代种子;取所述一代种子接种于种子培养基中,培养获得二代种子;取所述二代种子接种于种子培养基中,培养获得三代种子,作为所述发酵用菌种;
其中,所述培养的条件为25~30℃,150~250r/min振摇培养;
或者,所述发酵培养的整个周期达到144h,例如可以为48h、60h、72h、84h、96h、120h、或144h。。
进一步地,所述收集菌体提取脂质的方法包括:
1)向发酵培养结束后的发酵液中加入NaOH溶液调pH=10-13后,加入质量终浓度为0.01-0.5%的破壁酶,40~60℃,100~200r/min振荡5~15h;
2)冷却至室温,加入等体积无水乙醇失活破壁酶;
3)加入正己烷萃取,收集上层有机相;
4)重复步骤3)若干次,合并有机相,挥干溶剂,得到脂质,得到EPA。
进一步地,将裂殖壶菌基因工程菌株接种于平板培养基,经平板培养后,挑取单菌落接种于种子培养基活化;
其中,所述平板培养基的pH值为6.0~6.5,且包括:琼脂15-20g/L,葡萄糖30-60g/L,酵母浸粉8~15g/L,硫酸钠10~15g/L,硫酸镁2~4g/L,硫酸铵6~12g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠8~12g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L,维生素B6 4-10 mg/L、维生素B12 0.1-1.5mg/L;
所述种子培养基的pH值为6.0~6.5,且包括:葡萄糖40-60g/L,酵母浸粉4~6g/L,硫酸钠5~8g/L,硫酸镁2~4g/L,硫酸铵4~8g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠8~12g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L;
所述发酵培养基的pH值为6.0~6.5,且包括:葡萄糖40-60g/L,甘油10-30g/L,酵母浸粉5~15g/L,硫酸钠5~12g/L,硫酸镁2~4g/L,硫酸铵4~8g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠15~20g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L,维生素B6 4-10 mg/L。
如上所述的裂殖壶菌基因工程菌株在EPA生产中的应用。
如上所述的裂殖壶菌基因工程菌株在同时生产EPA和DHA中的应用。
本发明取得的有益效果是:
1、本发明通过在裂殖壶菌野生型中过表达MetE-like结构域中的AT、KS或AT-KS基因获得裂殖壶菌基因工程菌株,可以明显提高EPA积累,这为该菌株工业化定向合成EPA提供了基础。
2、本发明裂殖壶菌基因工程菌株中的AT、KS基因克隆于Schizochytrium sp.HX-308,该工程菌株对MetE-like结构域中的AT、KS基因进行过表达,使得裂殖壶菌中的EPA含量从1.02%提高到10.6%。
3、本发明通过序列比对希瓦氏菌聚酮合酶pfaB结构域、裂殖壶菌聚酮合酶orfB结构域和裂殖壶菌类甲硫氨酸合酶结构域(含AT和KS结构域)(MetE-like),出现极大的相似性。本发明通过对裂殖壶菌进行转录组分析,发现裂殖壶菌积累EPA功能的增强源于类甲硫氨酸合酶MetE-like结构域中的AT、KS基因转录水平的上调。
4、本发明通过发酵培养基中缺乏钴胺素的条件,调控类甲硫氨酸合酶MetE-like结构域上调,从而过表达AT、KS基因来积累EPA。
5、本发明采用裂殖壶菌Schizochytrium sp.HX-308为出发菌株,通过过表达MetE-like结构域中的AT、KS基因获得裂殖壶菌基因工程菌株高效生产EPA的应用,为产品工业化奠定了理论基础。
6、本发明基于启动子策略调控MetE-like表达。在培养基中通过钴胺素缺乏的条件高效表达MetE-like结构域,通过对裂殖壶菌转录组分析,MetE-like结构域中的AT、KS基因的转录水平明显上调。
7、本发明证实可以通过功能域调控DHA型聚酮合酶的功能,使DHA型聚酮合酶具有EPA合成能力。
附图说明
图1为本发明中钴胺素缺乏条件下与对照组中裂殖壶菌发酵培养后各脂质占比的比较图;
图2为本发明中钴胺素缺乏条件下与对照组中裂殖壶菌发酵培养后各甘油酯占比的比较图;
图3为本发明中钴胺素缺乏条件下与对照组中裂殖壶菌发酵培养后各脂肪酸含量的对比图;
图4为本发明中钴胺素缺乏条件下与对照组中裂殖壶菌发酵培养后的菌体转录组分析结果对比图;其中,图中红点即为MetE-like结构域;
图5为本发明中裂殖壶菌中MetE-like结构域的示意图;
图6为本发明中各裂殖壶菌基因工程菌株pBS-Zeo-AT、pBS-Zeo-KS和pBS-Zeo-AT-KS的EPA和DHA的含量占比图;
图7为本发明中过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS的测序验证结果图。
具体实施方式
为更好理解本发明,下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例所表示的范围。
本发明中所使用的的原料,如无特殊说明,均为常规市售产品,本发明中所使用的方法,如无特殊说明,均为本领域常规方法,本发明所使用的各物质质量均为常规使用质量。
本发明所涉及的设备、试剂、工艺、参数等,除有特别说明外,均为常规设备、试剂、工艺、参数等,不再作实施例。
本发明所列举的所有范围包括该范围内的所有点值。
本发明中,除在领域内有通用意义或有特别说明外,%均为质量百分比,比例均为质量比。所述质量的单位例如为克、千克或吨。
本发明中,所述“室温”即常规环境温度,可以为10~30℃。
一种高效生产EPA的裂殖壶菌基因工程菌株,所述工程菌株是通过在裂殖壶菌野生型中过表达MetE-like结构域中的基因AT、KS和AT-KS获得的;
其中,所述基因AT的基因序列为SEQ ID NO.13,所述基因KS的基因序列为SEQ IDNO.14,所述基因AT-KS的基因序列为SEQ ID NO.15。
较优地,所述裂殖壶菌野生型为裂殖壶菌HX-308;
或者,所述MetE-like结构域为来源于裂殖壶菌HX-308的类甲硫氨酸合酶MetE-like结构域。
如上所述的高效生产EPA的裂殖壶菌基因工程菌株的构建方法,包括如下步骤:
从裂殖壶菌中克隆MetE-like结构域中的AT、KS基因,在裂殖壶菌中进行过表达获得裂殖壶菌基因工程菌株。
较优地,步骤如下:
(1)克隆裂殖壶菌野生型的MetE-like结构域中的AT、KS基因
(2)构建过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS
1)AT、KS和AT-KS基因上的拼接及添加同源臂;
为AT、KS和AT-KS基因设计同pBS-Zeo酶切位点两端的同源臂序列,将同源臂通过PCR加到AT、KS和AT-KS基因的两端,胶回收;
2)连接反应
将酶切后的载体pBS-Zeo片段、AT基因片段和KS基因片段连接,得到重组过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS;
3)连接产物转化大肠杆菌DH5α感受态细胞
挑选阳性转化子,提取质粒,测序验证成功,获得过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS;
(3)构建过表达pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS的裂殖壶菌基因工程菌株
1)制备裂殖壶菌感受态细胞;
2)裂殖壶菌电转化;
3)筛选后,稳定遗传的菌株为重组过表达载体pBS-Zeo-AT/pBS-Zeo-KS/pBS-Zeo-AT-KS基因的裂殖壶菌基因工程菌株。
利用如上所述的裂殖壶菌基因工程菌株高效生产EPA的方法,所述方法为将裂殖壶菌基因工程菌株接种于种子培养基活化后,获得发酵用菌种;将发酵用菌种接种于发酵培养基中进行发酵培养;收集菌体提取脂质,即得EPA。
较优地,所述发酵用菌种的具体制备方法包括:
将裂殖壶菌基因工程菌株接种于种子培养基中,培养获得一代种子;取所述一代种子接种于种子培养基中,培养获得二代种子;取所述二代种子接种于种子培养基中,培养获得三代种子,作为所述发酵用菌种;
其中,所述培养的条件为25~30℃,150~250r/min振摇培养;
或者,所述发酵培养的整个周期达到144h,例如可以为48h、60h、72h、84h、96h、120h、或144h。。
较优地,所述收集菌体提取脂质的方法包括:
1)向发酵培养结束后的发酵液中加入NaOH溶液调pH=10-13后,加入质量终浓度为0.01-0.5%的破壁酶,40~60℃,100~200r/min振荡5~15h;
2)冷却至室温,加入等体积无水乙醇失活破壁酶;
3)加入正己烷萃取,收集上层有机相;
4)重复步骤3)若干次,合并有机相,挥干溶剂,得到脂质,即得EPA。
较优地,将裂殖壶菌基因工程菌株接种于平板培养基,经平板培养后,挑取单菌落接种于种子培养基活化;
其中,所述平板培养基的pH值为6.0~6.5,且包括:琼脂15-20g/L,葡萄糖30-60g/L,酵母浸粉8~15g/L,硫酸钠10~15g/L,硫酸镁2~4g/L,硫酸铵6~12g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠8~12g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L,维生素B6 4-10 mg/L、维生素B12 0.1-1.5mg/L;
所述种子培养基的pH值为6.0~6.5,且包括:葡萄糖40-60g/L,酵母浸粉4~6g/L,硫酸钠5~8g/L,硫酸镁2~4g/L,硫酸铵4~8g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠8~12g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L;
所述发酵培养基的pH值为6.0~6.5,且包括:葡萄糖40-60g/L,甘油10-30g/L,酵母浸粉5~15g/L,硫酸钠5~12g/L,硫酸镁2~4g/L,硫酸铵4~8g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠15~20g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L,维生素B6 4-10 mg/L。
如上所述的裂殖壶菌基因工程菌株在EPA生产中的应用。
如上所述的裂殖壶菌基因工程菌株在同时生产EPA和DHA中的应用。
具体地,相关的制备及检测如下:
下述各实施例中采用的培养基如下:
平板培养基的pH为6.6,且该培养基由且包括:琼脂15-20g/L,葡萄糖40g/L,酵母浸粉10g/L,硫酸钠10g/L,硫酸镁2g/L,硫酸铵6g/L,氯化钾1g/L,氯化钙0.1g/L,硫酸钾0.6g/L,磷酸二氢钾1g/L,谷氨酸钠10g/L,0.1%的微量矿物质(七水合硫酸锌3g/L,六水合氯化钴0.05g/L,五水合硫酸铜5g/L,六水合硫酸镍1g/L,七水合硫酸铁10g/L,泛酸钙4g/L,四水合氯化锰5g/L,二水合钼酸钠0.04g/L),维生素B6 5 mg/L、维生素B12 0.5 mg/L。
种子液的种子培养基的pH为6.6,且包括:葡萄糖50g/L,酵母浸粉5g/L,硫酸钠5g/L,硫酸镁2g/L,硫酸铵6g/L,氯化钾1g/L,氯化钙0.1g/L,硫酸钾0.6g/L,磷酸二氢钾1g/L,谷氨酸钠10g/L,0.1%的微量矿物质,维生素B6 5 mg/L、维生素B12 0.5 mg/L。
其中,所述发酵培养基的pH值为6.0~7.5,且包括:葡萄糖40g/L,甘油20g/L,酵母浸粉10g/L,硫酸钠10g/L,硫酸镁2g/L,硫酸铵6g/L,氯化钾1g/L,氯化钙0.1g/L,硫酸钾0.6g/L,磷酸二氢钾1g/L,谷氨酸钠20g/L,0.1%的微量矿物质,维生素B6 5 mg/L。
实施例1以钴胺素缺乏作为限制条件进行裂殖壶菌发酵培养
将裂殖壶菌Schizochytrium sp.HX-308接种于250mL锥形瓶(含种子培养基50mL)中,28℃,180r/min摇床培养24h后为一代种子。取1mL一代种子培养液接种于250mL锥形瓶(含种子培养基50mL)中,28℃,180r/min摇床培养24h为二代种子。取1mL二代种子培养液接种于250mL锥形瓶(含种子培养基50mL)中,28℃,180r/min摇床培养24h为三代种子,作为发酵用菌种。对照组即为正常含钴胺素的发酵培养基条件下培养的裂殖壶菌。
1、摇瓶发酵培养:取10mL三级种子培养液接种于500mL锥形瓶(含发酵培养基90mL)中,28℃,180r/min摇床培养120h,每隔24h取样测量脂肪酸组成。
2、收集菌体提取脂质,包括以下步骤:
(1)向发酵培养结束后的发酵液中加入NaOH溶液调pH=10-13后,加入0.01-0.2%(w/v)破壁酶,40~60℃,100~200r/min振荡5~15h;
(2)冷却至室温,加入等体积无水乙醇失活破壁酶;
(3)加入正己烷萃取,收集上层有机相;
(4)薄层色谱分析各种脂质含量:
使用硅胶-60色谱板进行分离,脂质溶于乙醚中制成样品,展开剂为正己烷:乙醚:乙酸=50:50:1(v/v/v)。待展开完全后,用吹风机吹干,将硅胶板置于装有固体碘的缸中显色。将各种脂质刮下,在脂质提取瓶中进行重提,分析各种脂质占比。如图1和2所示,相较于对照组,缺乏钴胺素条件下裂殖壶菌中磷脂占比明显提高,并且甘油酯中甘油二酯的占比也从36.6%提高到54.7%;
(5)气相检测分析脂肪酸,取20μL油脂加入到含有1ml 1M氢氧化钾-甲醇溶液的EP管中,在20℃和1000r/min条件下振荡6h,加入50μL浓硫酸终止反应,加入1ml正己烷在20℃和1000r/min条件下振荡0.5h萃取脂质。将萃取相装入液相小瓶中,进行气相检测。采用GC-2010(Shimadzu,Japan)气相系统分析,配有DB-23毛细管柱(60m*0.22mm)和火焰离子化检测器(FID)。氮气被用作载气。注入量为1μL,注入温度为250℃。柱温按25℃/min的速度从100℃升高到200℃,再按4℃/min速度升高到230℃,并保持9min,FID检测器温度为280℃。通过与相关外部标准(Sigma,美国)的比较,鉴别出不同脂肪酸组成。以非内源脂肪酸(C19:0)为内标,从色谱图上的峰面积估算出单个脂肪酸的含量。结果如图3所示,裂殖壶菌的EPA积累从1.02%提升至8.55%。
实施例2裂殖壶菌的转录组分析
按照实施例1的条件发酵的裂殖壶菌,取72h的发酵菌体进行转录组分析,对MetE-like结构域的转录水平进行分析,该结构域的转录水平明显提高(如图4所示),而MetE-like结构域含有AT和KS功能域(如图5所示)。对照组同实施例1。
实施例3裂殖壶菌Schizochytrium sp.HX-308的MetE-like结构域中的AT、KS基因的克隆
根据裂殖壶菌MetE-like结构域中的AT、KS和AT-KS基因的序列信息:
MetE-AT的序列信息:
ATGCACGTGGATGCCGTTGCGGAGCGTCTCGAGCAGGAGCACGGCGTGCAGCTCCGTGAGGTGCTCCAGCGCGTGCGCACGGCGCCCGAAAGCCTTACCGCCCTCGAAGAAATCGTGGCGCAGCTCGTCGTGCAGCTCGGCGCTGCCCAAATTGCCCGCAGCGCCCTCGGACCCGAGGCCGAGATTGTCGTCGTCGGCCATAGCATCGGAGAGCTCGCCGCCGCCGTTGTGGCCGGCCACCTCTCGCCCGCCGAGGCCGTCGATGCCGCCGTCTGCCTCGCCCACGTGACCGGATCCGAGCAAGGAGGCCTCGTCTACGGCACCCTCGGCCCCCAGGACCAGGTCGCTTCTCTCAACCACGTTGACGAGGACGGCGCCGACGTTGGCGCTGCCATTATCCTCGGCGACGAGGCCGCAATCGAGGCCGACAGCCGCTCCAAGGTGCATACCGGATTTCCCTGGCACGCCTCCGTCTACGAGTCCCACGAGTGGCGCAAGCTGCCTGCGCGCCCAGCTGGGTTGACCGATGGCAAGACCCTCCAGCTGGCACTTTCTTTGCTCGGGGGATTCGGAAATGACGAAAAGAACAAGACCCTCTTTGACGATGAGTACTGGGCCCGTTGGACCCACACGGGCGTTGATTTGGCCAAGACCCTTGCGGCTGTCCACGAGCGTTGCGCCGGCAAAATCGCCCGCGTTGTCGAGCTCGGCGCGCACCCCATTCTCGCGCCCTCCCTGCGCCGTGCCTTTGGACCCGACAGTCCTGCT
MetE-KS的序列信息:
ATGGTCATCCGCGCCATGAGTTGCCTGCTGCCGGCCAACATCAAGTCGCCGGCGCAGCTGTTCGCGTTCACGTCGTCGCAGGGCGACGCTGTGCGCTTCGACGCGGGCTTTGACGGCGGCAAGCGCGCCGCTGCCTTCCTCGGGGATCTGACACTGGACTGCGCCAAGTTCGGAATCTCGCAAGGCGAGGCCCGAACCCTGGACCCGCAACAGGCACTTGTGCTCTCGTGCGTGGACAAGCTTCTCACTGAGCATAATATCGAGCAGCTTCCCGCGCGCACCGGCGTCTACATTGGCGCCTGGAACTCGGAGTTTGCCGGCGACCGCTCCTCGGTCTTTTACCCGACGGGCACGAACCCGAGCATCATCGCTGCGCGCGTCAGCCACGTCTACCGCCTCCACGGTCCTTGCAAGGTCATCAACTCCGCCTGCGCCTCCTCGCTCGACGCTGTGCTCGAGGCCCAGCGCGACCTCGCAGCCGGCACCATCGATGCCGCCATTGCCGGTGGCGTCAACCTGCTCTGGGACCCCGCCTTCTCTACCTGCATGGCGCAGTCCGGCTTCCTCGCCCCCGGTGCGCGCTGCCGCTCCTTCGATTCTAGCGCCGACGGCTACGTGCGCAGTGAGGGCGCCGCGCTCGTGCTGCTCCAGCGCCGCGAGCCCAAGAACTCGGATGCTCTTATCAACGGCTCTGACGCCGGCAAGGTCAACAATGACGACTGCGAGCCGTACTACGCCGAGGTGCTCGGCGGCGCCTCGAACCAGAATGGTGGCCGCGGCGCGAGTTTGACCGCGCCCAGCCCGGCCGCTCAGGAGGAGTGCATTGCGGCGGCTCTGCGCGCGGCGCGCGTGGATGCTGGCGAGGTGGACTTCGTCGAGTGCCACGGCACCGGCACGAAGCTCGGCGATCCGATCGAATGGAGCGCCCTCAAGGCTGCCGTGGGCACGTCCCGGTCGGCGGAACGTCCCTGCTATCTGGCGAGCGTCAAGAGCAGCCTCGGCCATCTCGAGGCCGCCGCTGGCGTCGCAGGTTTGCTGCACGCAGCCATGGTGCTCTCGCGCCAGGAAGTTCCGCGCATGGCCAACTTTGTCGAGGCTAACCCGCTCCTCGAGCCCTGCGAGGGTCTTCGCCTCGCCGCCGACGCCAACGTGCGCCCCGACCAGCCGCTCCGTGTCGCCGGCGTCTCCTCCTTTGGCTTTGGCGGCAGCAACGTCCACATCTTGCTT
MetE-AT-KS的序列信息:
ATGCACGTGGATGCCGTTGCGGAGCGTCTCGAGCAGGAGCACGGCGTGCAGCTCCGTGAGGTGCTCCAGCGCGTGCGCACGGCGCCCGAAAGCCTTACCGCCCTCGAAGAAATCGTGGCGCAGCTCGTCGTGCAGCTCGGCGCTGCCCAAATTGCCCGCAGCGCCCTCGGACCCGAGGCCGAGATTGTCGTCGTCGGCCATAGCATCGGAGAGCTCGCCGCCGCCGTTGTGGCCGGCCACCTCTCGCCCGCCGAGGCCGTCGATGCCGCCGTCTGCCTCGCCCACGTGACCGGATCCGAGCAAGGAGGCCTCGTCTACGGCACCCTCGGCCCCCAGGACCAGGTCGCTTCTCTCAACCACGTTGACGAGGACGGCGCCGACGTTGGCGCTGCCATTATCCTCGGCGACGAGGCCGCAATCGAGGCCGACAGCCGCTCCAAGGTGCATACCGGATTTCCCTGGCACGCCTCCGTCTACGAGTCCCACGAGTGGCGCAAGCTGCCTGCGCGCCCAGCTGGGTTGACCGATGGCAAGACCCTCCAGCTGGCACTTTCTTTGCTCGGGGGATTCGGAAATGACGAAAAGAACAAGACCCTCTTTGACGATGAGTACTGGGCCCGTTGGACCCACACGGGCGTTGATTTGGCCAAGACCCTTGCGGCTGTCCACGAGCGTTGCGCCGGCAAAATCGCCCGCGTTGTCGAGCTCGGCGCGCACCCCATTCTCGCGCCCTCCCTGCGCCGTGCCTTTGGACCCGACAGTCCTGCTGGCTGTCCACGAGCGATGGTCATCCGCGCCATGAGTTGCCTGCTGCCGGCCAACATCAAGTCGCCGGCGCAGCTGTTCGCGTTCACGTCGTCGCAGGGCGACGCTGTGCGCTTCGACGCGGGCTTTGACGGCGGCAAGCGCGCCGCTGCCTTCCTCGGGGATCTGACACTGGACTGCGCCAAGTTCGGAATCTCGCAAGGCGAGGCCCGAACCCTGGACCCGCAACAGGCACTTGTGCTCTCGTGCGTGGACAAGCTTCTCACTGAGCATAATATCGAGCAGCTTCCCGCGCGCACCGGCGTCTACATTGGCGCCTGGAACTCGGAGTTTGCCGGCGACCGCTCCTCGGTCTTTTACCCGACGGGCACGAACCCGAGCATCATCGCTGCGCGCGTCAGCCACGTCTACCGCCTCCACGGTCCTTGCAAGGTCATCAACTCCGCCTGCGCCTCCTCGCTCGACGCTGTGCTCGAGGCCCAGCGCGACCTCGCAGCCGGCACCATCGATGCCGCCATTGCCGGTGGCGTCAACCTGCTCTGGGACCCCGCCTTCTCTACCTGCATGGCGCAGTCCGGCTTCCTCGCCCCCGGTGCGCGCTGCCGCTCCTTCGATTCTAGCGCCGACGGCTACGTGCGCAGTGAGGGCGCCGCGCTCGTGCTGCTCCAGCGCCGCGAGCCCAAGAACTCGGATGCTCTTATCAACGGCTCTGACGCCGGCAAGGTCAACAATGACGACTGCGAGCCGTACTACGCCGAGGTGCTCGGCGGCGCCTCGAACCAGAATGGTGGCCGCGGCGCGAGTTTGACCGCGCCCAGCCCGGCCGCTCAGGAGGAGTGCATTGCGGCGGCTCTGCGCGCGGCGCGCGTGGATGCTGGCGAGGTGGACTTCGTCGAGTGCCACGGCACCGGCACGAAGCTCGGCGATCCGATCGAATGGAGCGCCCTCAAGGCTGCCGTGGGCACGTCCCGGTCGGCGGAACGTCCCTGCTATCTGGCGAGCGTCAAGAGCAGCCTCGGCCATCTCGAGGCCGCCGCTGGCGTCGCAGGTTTGCTGCACGCAGCCATGGTGCTCTCGCGCCAGGAAGTTCCGCGCATGGCCAACTTTGTCGAGGCTAACCCGCTCCTCGAGCCCTGCGAGGGTCTTCGCCTCGCCGCCGACGCCAACGTGCGCCCCGACCAGCCGCTCCGTGTCGCCGGCGTCTCCTCCTTTGGCTTTGGCGGCAGCAACGTCCACATCTTGCTT
设计分别如SEQ ID No.1/SEQ ID No.2、SEQ ID No.3/SEQ ID No.4和SEQ IDNo.5/SEQ ID No.6所示的引物P1/P2、P3/P4和P5/P6,以裂殖壶菌Schizochytrium sp.HX-308基因组为模版,用引物P1/P2、P3/P4和P5/P6、PrimerStar高保真聚合酶,通过PCR分别对MetE-like结构域中的AT、KS、AT-KS的基因片段进行扩增,得到AT、KS、AT-KS基因片段。PCR程序为:94℃30s,55℃30s,70℃30s,32个循环,并对PCR产物进行纯化,纯化产物进行琼脂糖凝胶电泳验证。
SEQ ID No.1 P1(sense):ATGCACGTGGATGCCGTTGC
SEQ ID No.2 P2(antisense):AGCAGGACTGTCGGGTCCAA
SEQ ID No.3 P3(sense):ATGGTCATCCGCGCCATGAG
SEQ ID No.4 P4(antisense):AAGCAAGATGTGGACGTTGC
SEQ ID No.5 P5(sense):ATGCACGTGGATGCCGTTGC
SEQ ID No.6 P6(antisense):AAGCAAGATGTGGACGTTGC
实施例4过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS的构建
1、AT、KS和AT-KS基因上的拼接及添加同源臂
为AT、KS和AT-KS基因设计同pBS-Zeo酶切位点两端的同源臂序列(SEQ ID No.7P7和SEQ ID No.8 P8)、(SEQ ID No.9 P9和SEQ ID No.10 P10)和(SEQ ID No.11 P11和SEQ ID No.12 P12),将同源臂通过PCR加到AT、KS和AT-KS基因的两端,胶回收。
SEQ ID No.7 P7(sense):AGCGAGAGGCGAGAGAAAAGATGGTCATCCGCGCCATGAG
SEQ ID No.8 P8(antisense):TGACATAACTAATTACATGACTAAAGCAAGATGTGGACGT
SEQ ID No.9 P9(sense):AGCGAGAGGCGAGAGAAAAGATGCACGTGGATGCCGTTGC
SEQ ID No.10 P10(antisense):TGACATAACTAATTACATGACTAAGCAGGACTGTCGGGTC
SEQ ID No.11 P11(sense):AGCGAGAGGCGAGAGAAAAGATGACGAGCGTACTCGTATT
SEQ ID No.12 P12(antisense):TGACATAACTAATTACATGACTAAAGCAAGATGTGGACGT
2、连接反应
用gibson组装将酶切后的载体pBS-Zeo片段、AT基因片段和KS基因片段连接,得到重组过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS。连接体系(25μL):2μL目的基因片段,1μL载体酶切后片段,2.5μL连接酶buffer,19.5μL ddH2O,50℃连接2h。
3、连接产物转化大肠杆菌DH5α感受态细胞,转化方法如下:
(1)无菌状态下取100μL感受态细胞,加入连接产物混匀,冰上放置30min。
(2)42℃热激90s,迅速放置冰上2min。
(3)加入900μL LB培养基,37℃,180r/min孵育1h。
(4)取200μL涂布于含100μg/mLZeo抗性LB平板上。倒置37℃培养过夜。
挑选阳性转化子,提取质粒,测序验证结果如图7所示。
表明连接成功,获得过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS。
实施例5过表达pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS的裂殖壶菌基因工程菌株的构建
1、裂殖壶菌感受态细胞的制备
(1)挑取平板上已活化好的Schizochytrium sp.HX-308裂殖壶菌单菌落至50mL种子培养基,28℃,170r/min摇床培养24h。
(2)按5%的接种量转接至50mL种子培养基,28℃,170r/min摇床培养24h。
(3)重复步骤(2)。
(4)取25mL菌液,4000rpm室温下离心2min,弃上清。
(5)用25mL的预处理剂(20mM DTT和0.1M CaCl2溶于pH=6.5的Tris-HCl缓冲液中)重悬菌体,轻微震荡以松散细胞壁。
(6)离心后,用25mL已预冷的无菌水洗涤菌体两次,离心条件均为:4000rpm,4℃离心2min。
(7)用1M的无菌预冷山梨醇溶液(含0.1M CaCl2)洗涤菌体两次,离心条件均为:4000rpm,4℃离心2min。
(8)用200μL的1M的无菌预冷山梨醇溶液(含0.1M CaCl2)重悬菌体,分装于1.5mL的无菌离心管,每管100μL,冰上备用。
2、裂殖壶菌电转化
(1)将10μL线性化后的重组过表达载体pBS-Zeo-AT/pBS-Zeo-KS/pBS-Zeo-AT-KS加入100μL裂殖壶菌感受态细胞,混匀后转移至预冷的电转杯,冰上静置30min。
(2)电击,2KV,一个脉冲。
(3)立即往电转杯加入1mL预冷的含1M山梨醇的种子培养基,混匀后转移至含1M山梨醇的种子培养基。
(4)28℃,180rpm培养2~3h。
(5)取适量菌液涂板,28℃培养2~4天。
3、重组过表达载体pBS-Zeo-AT/pBS-Zeo-KS/pBS-Zeo-AT-KS基因的裂殖壶菌基因工程菌株的筛选和鉴定
(1)挑取平板菌落接种至含50mg/L博莱霉素的种子培养基中,28℃,180rpm培养24h。
(2)传代5次保证过表达载体稳定遗传,每一代都重复步骤(1)中描述实验。
(3)稳定遗传的菌株为过表达pBS-Zeo-AT/pBS-Zeo-KS/pBS-Zeo-AT-KS的裂殖壶基因工程菌株表型,保藏于-80℃冰箱。
实施例6裂殖壶菌工程菌株的发酵及EPA含量的测定
按照实施例1的条件对裂殖壶菌基因工程菌株进行发酵,并分析脂质及脂肪酸组成。表明裂殖壶菌基因工程菌株的EPA含量(10.6%)相较于野生型(1.02%)有了大幅提升,裂殖壶菌基因工程菌株pBS-Zeo-AT-KS的EPA和DHA分别占比为10.6%和45.4%(如图6所示)。
MetE-like结构域的AT结构域与来自A.marina的Pfa C的AT结构域具有较高的同源性,其次是来自P.profundum的PfaA和Pfa B的AT结构域。A.marina和P.profundum的PKS途径能够合成二十碳四烯酸(arachidonic acid,ARA)和EPA,因此认为MetE-like结构域的AT域可能更适合于C20产物的合成。在脂肪酸合成途径中,需要硫酯酶(TE)从酰基载体蛋白(ACP)系链的中间产物中释放游离脂肪酸。然而Schizochytrium和海洋细菌PKS中的AT结构域可以催化酰基-ACP的链式释放反应形成游离脂肪酸。MetE-like结构域的KS结构域与细菌的Pfa C的KS结构域具有更高的同源性。有研究表明,碳链的最终长度是由KSA和KSC结构域决定的。KSA结构域催化了C18到C20的缩合,KSC结构域催化DHA合成的最后一个延伸步骤。因此,MetE-like结构域的KS结构域可能没有催化C20向C22延伸的功能,从而从DHA/n-6DPA型PKS系统中释放EPA。通过去除裂殖壶菌培养基中的钴胺素来激活MetE-like结构域的表达。根据基因组信息,裂殖壶菌有且仅有一个MetE-like结构域上的MetE功能域。为了缓解钴胺素缺乏带来的影响,MetE的转录水平有了显著的提高,因此MetE-like结构域的AT和KS功能域的转录水平也得到了提高。说明MetE-like结构域可以通过PKS途径调控EPA的合成。
本发明通过对比希瓦氏菌聚酮合酶pfaB结构域、裂殖壶菌聚酮合酶orfB结构域和裂殖壶菌类甲硫氨酸合酶结构域(含AT和KS结构域)(MetE-like),结果的相似性表明MetE-like结构域可能参与PKS途径合成脂肪酸。进一步发现,裂殖壶菌Schizochytrium sp.HX-308中MetE-like结构域中AT、KS基因的转录上调是导致的EPA积累能力大幅度提高的关键,通过在裂殖壶菌Schizochytrium sp.HX-308中构建过表达来源于裂殖壶菌Schizochytrium sp.HX-308的MetE-like结构域中AT、KS基因,通过发酵培养证实MetE-like结构域中AT、KS基因是导致EPA的积累能力提升的关键。
目前通过对培养基成分进行优化,Thraustochytrium sp.KK17-3能积累超过4.5%的EPA;通过泛素启动子驱动脂肪酸Δ5去饱和酶基因表达使得EPA含量提高,但也仅占总脂肪酸的2.85%;此外,基于实验室自进化手段,裂殖壶菌可以积累占总脂肪酸6.23%的EPA。然而,本发明在裂殖壶菌Schizochytrium sp.HX-308中构建过表达来源于裂殖壶菌Schizochytrium sp.HX-308的MetE-like结构域中AT、KS基因,再通过发酵培养可以将EPA含量提高到10.6%。
尽管为说明目的公开了本发明的实施例,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例所公开的内容。

Claims (10)

1.一种高效生产EPA的裂殖壶菌基因工程菌株,其特征在于:所述工程菌株是通过在裂殖壶菌野生型中过表达MetE-like结构域中的基因AT、KS或AT-KS获得的;
其中,所述基因AT的基因序列为SEQ ID NO.13,所述基因KS的基因序列为SEQ IDNO.14,所述基因AT-KS的基因序列为SEQ ID NO.15。
2.根据权利要求1所述的裂殖壶菌基因工程菌株,其特征在于:所述裂殖壶菌野生型为裂殖壶菌HX-308;
或者,所述MetE-like结构域为来源于裂殖壶菌HX-308的类甲硫氨酸合酶MetE-like结构域。
3.如权利要求1或2所述的高效生产EPA的裂殖壶菌基因工程菌株的构建方法,其特征在于:包括如下步骤:
从裂殖壶菌中克隆MetE-like结构域中的AT、KS基因,在裂殖壶菌中进行过表达获得裂殖壶菌基因工程菌株。
4.根据权利要求3所述的方法,其特征在于:步骤如下:
(1)克隆裂殖壶菌野生型的MetE-like结构域中的AT、KS基因
(2)构建过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS
1)AT、KS和AT-KS基因上的拼接及添加同源臂;
为AT、KS和AT-KS基因设计同pBS-Zeo酶切位点两端的同源臂序列,将同源臂通过PCR加到AT、KS和AT-KS基因的两端,胶回收;
2)连接反应
将酶切后的载体pBS-Zeo片段、AT基因片段和KS基因片段连接,得到重组过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS;
3)连接产物转化大肠杆菌DH5α感受态细胞
挑选阳性转化子,提取质粒,测序验证成功,获得过表达载体pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS;
(3)构建过表达pBS-Zeo-AT,pBS-Zeo-KS,pBS-Zeo-AT-KS的裂殖壶菌基因工程菌株
1)制备裂殖壶菌感受态细胞;
2)裂殖壶菌电转化;
3)筛选后,稳定遗传的菌株为重组过表达载体pBS-Zeo-AT/pBS-Zeo-KS/pBS-Zeo-AT-KS基因的裂殖壶菌基因工程菌株。
5.利用如权利要求1或2所述的裂殖壶菌基因工程菌株高效生产EPA的方法,其特征在于:所述方法为将裂殖壶菌基因工程菌株接种于种子培养基活化后,获得发酵用菌种;将发酵用菌种接种于发酵培养基中进行发酵培养;收集菌体提取脂质,得到EPA。
6.根据权利要求5所述的方法,其特征在于:所述发酵用菌种的具体制备方法包括:
将裂殖壶菌基因工程菌株接种于种子培养基中,培养获得一代种子;取所述一代种子接种于种子培养基中,培养获得二代种子;取所述二代种子接种于种子培养基中,培养获得三代种子,作为所述发酵用菌种;
其中,所述培养的条件为25~30℃,150~250r/min振摇培养;
或者,所述发酵培养的整个周期达到144h。
7.根据权利要求5所述的方法,其特征在于:所述收集菌体提取脂质的方法包括:
1)向发酵培养结束后的发酵液中加入NaOH溶液调pH=10-13后,加入质量终浓度为0.01-0.5%的破壁酶,40~60℃,100~200r/min振荡5~15h;
2)冷却至室温,加入等体积无水乙醇失活破壁酶;
3)加入正己烷萃取,收集上层有机相;
4)重复步骤3)若干次,合并有机相,挥干溶剂,得到脂质,得到EPA。
8.根据权利要求5至7任一项所述的方法,其特征在于:将裂殖壶菌基因工程菌株接种于平板培养基,经平板培养后,挑取单菌落接种于种子培养基活化;
其中,所述平板培养基的pH值为6.0~6.5,且包括:琼脂15-20g/L,葡萄糖30-60g/L,酵母浸粉8~15g/L,硫酸钠10~15g/L,硫酸镁2~4g/L,硫酸铵6~12g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠8~12g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L,维生素B64-10 mg/L、维生素B120.1-1.5mg/L;
所述种子培养基的pH值为6.0~6.5,且包括:葡萄糖40-60g/L,酵母浸粉4~6g/L,硫酸钠5~8g/L,硫酸镁2~4g/L,硫酸铵4~8g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠8~12g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L;
所述发酵培养基的pH值为6.0~6.5,且包括:葡萄糖40-60g/L,甘油10-30g/L,酵母浸粉5~15g/L,硫酸钠5~12g/L,硫酸镁2~4g/L,硫酸铵4~8g/L,氯化钾1~2g/L,氯化钙0.1~0.2g/L,硫酸钾0.5~1g/L,磷酸二氢钾0.5~2g/L,谷氨酸钠15~20g/L,七水合硫酸锌1~5mg/L,六水合氯化钴0.01~0.1mg/L,五水合硫酸铜2~6mg/L,六水合硫酸镍1~2mg/L,七水合硫酸铁8~15mg/L,泛酸钙2~4mg/L,四水合氯化锰3~5mg/L,二水合钼酸钠0.04mg/L,维生素B64-10 mg/L。
9.如权利要求1或2所述的裂殖壶菌基因工程菌株在EPA生产中的应用。
10.如权利要求1或2所述的裂殖壶菌基因工程菌株在同时生产EPA和DHA中的应用。
CN202211125899.0A 2022-09-16 2022-09-16 一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用 Pending CN116179584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211125899.0A CN116179584A (zh) 2022-09-16 2022-09-16 一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211125899.0A CN116179584A (zh) 2022-09-16 2022-09-16 一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用

Publications (1)

Publication Number Publication Date
CN116179584A true CN116179584A (zh) 2023-05-30

Family

ID=86437050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211125899.0A Pending CN116179584A (zh) 2022-09-16 2022-09-16 一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用

Country Status (1)

Country Link
CN (1) CN116179584A (zh)

Similar Documents

Publication Publication Date Title
JP4718477B2 (ja) 油性酵母中において多価不飽和脂肪酸レベルを変更するのに適したδ12デサチュラーゼ
Sun et al. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production
JP7261815B2 (ja) ネルボン酸を生産する組換え酵母菌株およびその使用
WO2005003310A2 (en) Glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase promoters for gene expression in oleaginous yeast
Fan et al. Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer
WO2005049805A2 (en) Fructose-bisphosphate aldolase regulatory sequences for gene expression in oleaginous yeast
JP2007504838A (ja) 油性酵母菌における多不飽和脂肪酸生産のためのコドン最適化遺伝子
CN110373437B (zh) 一种产十八碳四烯酸卷枝毛霉细胞工厂的构建及其发酵技术
CN113265340B (zh) 产角鲨烯的裂殖壶菌基因工程菌株及其构建方法和应用
CN114561434B (zh) 裂殖壶菌发酵生产epa和dha的方法
Cui et al. Enhancing tricarboxylate transportation-related NADPH generation to improve biodiesel production by Aurantiochytrium
WO2024051249A1 (zh) 一种显著提高epa含量的溶血磷脂酰胆碱酰基转移酶、核酸分子及其应用
WO2022105841A1 (zh) 一种脂肪酸延长酶基因和酯化酶基因在酵母合成神经酸和油脂中的应用
JP2014068638A (ja) トリアシルグリセロール高生産性藻類の作製方法
CN116179584A (zh) 一种高效生产epa的裂殖壶菌基因工程菌株、方法和应用
JP2016136962A (ja) 粘液細菌からの遺伝子集団の異種発現による脂肪酸の生産
CN108330114B (zh) 一种利用epa的甘油二酯酰基转移酶及其应用
CN114456957B (zh) 一种裂殖壶菌基因工程菌株、其构建方法及其应用
Wang et al. Engineering Rhodosporidium toruloides for sustainable production of value-added punicic acid from glucose and wood residues
CN114790425B (zh) 一种裂殖壶菌基因工程菌株、其构建方法及其应用
CN116179381A (zh) 产opo型结构酯的基因工程菌及其构建方法与应用
CN100400663C (zh) 雅致枝霉△6-脂肪酸脱氢酶启动子序列及其应用
CN118638662A (zh) 一株高产金盏酸的重组解脂耶氏酵母菌及其构建方法和应用
KR20240150766A (ko) 장쇄 다중불포화 지방산을 포함하는 바이오재료 생산을 위한 신규한 트라우스토키트리드 균주
CN117625654A (zh) 海洋微拟球藻脂肪酸延长酶及其基因和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination