CN116178930B - 一种3d打印制备碳纳米管基柔性温敏材料的方法 - Google Patents

一种3d打印制备碳纳米管基柔性温敏材料的方法 Download PDF

Info

Publication number
CN116178930B
CN116178930B CN202310081773.6A CN202310081773A CN116178930B CN 116178930 B CN116178930 B CN 116178930B CN 202310081773 A CN202310081773 A CN 202310081773A CN 116178930 B CN116178930 B CN 116178930B
Authority
CN
China
Prior art keywords
printing
temperature
solution
sensitive material
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310081773.6A
Other languages
English (en)
Other versions
CN116178930A (zh
Inventor
张晋
李斌
李仲明
李杨
赵一霖
唐杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310081773.6A priority Critical patent/CN116178930B/zh
Publication of CN116178930A publication Critical patent/CN116178930A/zh
Application granted granted Critical
Publication of CN116178930B publication Critical patent/CN116178930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种3D打印制备碳纳米管基柔性温敏性材料的方法,将改性以后的带正电的多壁碳纳米管溶液与带负电的黑磷溶液混合,得到静电混合溶液,干燥、固化、研磨,再溶于有机溶剂,冰浴超声分散得到分散液;将热塑性聚氨酯加入到有机溶剂中,搅拌至为半透明粘稠状溶液;分散液和半透明粘稠状溶液搅拌混合,干燥固化得到纳米复合材料薄膜,纳米复合材料薄膜切粒,密炼机熔融,干燥、切粒后加入单螺杆挤出机中挤出线材,挤出的线材按照设计的模型采用3D打印加工成型;本发明使用静电溶液混合和密炼共混,相互分散更均匀,使用自下而上的3D打印方法可以更准确、灵活的构造高敏感度的三维石墨烯导电网络。

Description

一种3D打印制备碳纳米管基柔性温敏材料的方法
技术领域
本发明涉及一种3D打印制备碳纳米管基柔性温敏材料的方法,属于柔性传感材料的开发技术领域。
背景技术
柔性传感材料可以将检测到的温度变化以电信号(例如电阻R值变化)的形式输出,传感材料传感方式多样,既有传统的温敏传感,也有压阻、光敏、磁敏和声敏等,传统的刚性基底温度传感器在许多领域的应用中耐高温差,灵活性也受到了限制,且存在容易堆叠、团聚,且不稳定的问题。
碳纳米管(MWCNT)作为一种新型材料用于许多方面,基于碳纳米管和弹性体的纳米复合材料是一种很有前途的软电子应用材料。
黑磷是磷的一种同素异形体,由单一的磷原子层通过范德华力相互作用聚集在一起。在一个单层的内部,每个磷原子与3个相邻的磷原子通过共价键结合在一起,形成一个褶皱的蜂窝状结构。由于这种特殊的层状结构,黑磷可被剥离成单层薄片,即二维黑磷晶体,也称作磷烯。石墨烯是0能带间隙的,这一点让石墨烯在半导体材料的应用中受到了限制,黑磷超越石墨烯的最大优点就在于拥有能隙,更容易进行光探测,而黑磷的能带间隙是可以随层数的改变而变化的,即带隙结构可调。
蜘蛛丝具有很强的强度和韧性,拉伸应变可达到60%,由于特殊的网状结构,蜘蛛网结构的灵敏度很高,3D打印技术能够通过设计,直接制造合成网络结构,与传统的制造路线相比,3D打印具有不需要制造新模具就可以轻松地改变几何结构的独特优势,自下而上精确加工的3D打印技术不需要制造新模具就可以轻松地改变几何结构,而具有独特的优势,构筑精确可控的3D结构,模拟自然界独特的仿生结构,为三维石墨烯材料仿生结构化设计和智能制造提供了新的途径。
熔融沉积成型(Fused deposition modeling,FDM),是一种将各种热熔性的丝状材料(蜡、ABS和尼龙等)加热熔化成形的方法,是3D打印技术的一种。又可被称为FFM熔丝成型(Fused Filament Modeling)或FFF熔丝制造(Fused Filament Fabrication)。热熔性材料的温度始终稍高于固化温度,而成型的部分温度稍低于固化温度。FDM工艺是利用热塑性材料的热熔性、粘结性,在PLC控制下逐层堆积成型。成型材料和支撑材料由供丝机构送至各自对应的喷头,并在喷头中加热至熔融态。加热喷头在控制系统指令下沿着零件截面轮廓和内部轨迹运动,同时将半流动状态的热熔材料挤出,粘稠状的成型材料和支撑材料被选择性地涂覆在工作台上,迅速固化后形成截面轮廓。当前层成型后,喷头上升特定高度再进行下一层的涂覆,层层堆积形成三维产品。熔融沉积快速成型技术已经基本成熟,大多数FDM设备具备以下特点:(1)设备以数控方式工作,刚性好,运行平稳;(2)X、Y轴采用精密伺服电机驱动,精密滚珠丝杠传动;(3)实体内部以网格路径填充,使原型表面质量更高;(4)可以对STL格式文件实现自动检验和修补;(5)丝材宽度自动补偿,保证零件精度;(6)挤压喷射喷头无流涎、高响应;(7)精密微泵增压系统控制的远程送丝机构,确保送丝过程持续和稳定。
发明内容
本发明提出一种3D打印制备碳纳米管基柔性温敏性材料的方法,使用多壁碳纳米管和高分子聚合物聚合得到具有柔韧温敏性打印材料并设计特殊的蜂巢状和改进蜘网式三维导电网络,并通过熔融沉积打印开发出高柔韧性、灵敏度、耐久性的极佳传感材料。
本发明技术方案如下:
一种3D打印制备碳纳米管基柔性温敏性材料的方法,具体步骤如下:
(1)将10-20mg多壁碳纳米管加入20-40mL去离子水中,超声分散1-2小时,将5-10mg十六烷基三甲基溴化铵(CTAB)加入上述多壁碳纳米管(MWCNTs)溶液中,混合溶液冰浴超声1-2h,得到改性以后的带正电的多壁碳纳米管溶液(m-MWCNTs);
(2)将5.5-24mg黑磷(BP)加入11-48mL去离子水中,冰浴超声分散1.5-2.5小时,配置成带负电的黑磷溶液;
(3)将步骤(1)和步骤(2)配置好的溶液按照体积比1:1进行混合,得到静电混合溶液m-MWCNTs/BP;
(4)将静电混合溶液放入恒温干燥箱中固化,固体研磨为粉末,取8-10mg加入到80-100mL有机溶剂中,冰浴超声分散1-2小时得到分散液;
(5)先将100-200mL有机溶剂放入烧杯中,将10-15g柔性基底材料热塑性聚氨酯(TPU),平均分三次加入到烧杯中,间隔时间为5min,加入时边加边搅拌,搅拌10h以上直至为半透明粘稠状溶液;
(6)将步骤(4)的分散液和步骤(5)的半透明粘稠状溶液搅拌混合,倒入直径为10cm的培养皿中,溶液高度为3cm,放入恒温干燥箱中固化,得到纳米复合材料薄膜m-MWCNTs/BP/TPU;
(7)将步骤(6)的纳米复合材料薄膜切粒,加入密炼机熔融共混,然后干燥、切粒后加入单螺杆挤出机中挤出线材,将挤出的线材按照设计的模型使用3D打印机加工成型。
步骤(4)和步骤(5)有机溶剂选自:甲苯、丙酮、甲基丁酮、甲基异丁酮、乙醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、乙酸乙酯、四氢呋喃、甲醇、乙醇、异丙醇苯、甲苯、二甲苯、氯苯、二氯苯、二氯甲烷、三氯甲烷、乙腈、吡啶、苯酚、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等。
步骤(4)和步骤(6)放入恒温干燥箱中固化是在140℃保温10-12小时干燥为固体。
步骤(6)中步骤(4)的分散液和步骤(5)的半透明粘稠状溶液的体积比为1:1-2。
步骤(7)密炼机的螺杆转速为30-120r/min,螺杆温度为150-200℃,共混10-20min;单螺杆挤出机的螺杆温度为140-200℃,螺杆转速30-80r/min。
步骤(7)按照计算机软件Solidworks、AutoCAD、3ds max或UG设计的形状,以STL格式导出图像,将线材插入3D打印机中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度140-180℃,层层堆叠加工柔性温敏传感材料。
本发明与现有技术相比具有下列优点:
本发明将碳纳米管和柔性高分子聚合物热塑性聚氨酯进行溶液混合、干燥、密炼、挤出,通过设计的蜂巢式三维仿生结构经熔融沉积构造三维导电网络,获得性能优良的柔性温敏材料,其特有的仿生形状设计、3D打印三维石墨烯导电网络结构和碳纳米管基柔性聚合物材料的合成工艺,使其与现有技术相比具有更高的温敏性、灵敏度、导电性、线性度和柔韧性,是极佳的传感材料。
本发明方法操作简单,所制备柔性传感材料性能优异,信号响应速率较快,在一些温度变化迅速的环境反应灵敏,电阻大小不易受到整体结构影响,还在人机交互、健康检测等领域具有很大的应用潜力。
附图说明
图1是实施例1中的3D打印碳纳米管基柔性温敏性材料照片;
图2是实施例1中的3D打印碳纳米管基柔性温敏性材料的FE-SEM图;
图3是实施例1中改性以后的多壁碳纳米管溶液和黑磷溶液的Zeta电位电势图;
图4是温敏性能测试平台;
图5是3D打印碳纳米管基柔性温敏性材料温阻曲线图。
具体实施方式
下面结合附图和具体实施例对本发明做更详细地描述。
实施例1
一种3D打印制备碳纳米管基柔性温敏性材料的方法,具体步骤如下:
(1)将10mg多壁碳纳米管加入到20mL去离子水中,超声分散2小时,将5mg十六烷基三甲基溴化铵(CTAB)加入到多壁碳纳米管(MWCNTs)溶液中,混合溶液冰浴超声2h,得到改性以后的带正电的多壁碳纳米管溶液(m-MWCNTs);
(2)将5.5mg黑磷(BP)加入到11mL去离子水中,冰浴超声分散2h,配置成带负电的黑磷溶液;
(3)将步骤(1)和步骤(2)配置好的溶液按照体积比1:1进行混合,得到静电混合溶液m-MWCNTs/BP,带正电m-MWCNT和带负电的BP溶液之间产生了自发的静电相互作用,而且还促进了混合纳米填料在弹性体基质中相对均匀的分散;
(4)将静电混合溶液放入140℃恒温干燥箱中固化12小时,直至为固体,固体研磨为粉末,取8mg加入到80mLN,N-二甲基甲酰胺中,冰浴超声分散2小时得到分散液;
(5)先将200mLN,N-二甲基甲酰胺放入烧杯中,将15g柔性基底材料热塑性聚氨酯(TPU),平均分三次加入到烧杯中,每次间隔时间为5min,加入时不断搅拌,搅拌10h以上直至为半透明粘稠状溶液;
(6)将步骤(4)的分散液和步骤(5)的半透明粘稠状溶液按照体积比为1:1搅拌混合,倒入直径为10cm的培养皿中,溶液高度为3cm,培养皿放入140℃恒温干燥箱中固化10小时,得到黑色纳米复合材料薄膜m-MWCNTs/BP/TPU;
(7)将步骤(6)的纳米复合材料薄膜切粒,加入密炼机熔融,密炼机的螺杆转速为120r/min,螺杆温度为150℃,共混20min,然后干燥、切粒后加入单螺杆挤出机中挤出线材,单螺杆挤出机的螺杆温度为200℃,螺杆转速30r/min,将挤出的线材按照计算机软件AutoCAD设计的形状,以STL格式导出图像,将线材插入3D打印机中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度180℃,层层堆叠加工柔性温敏传感材料。
对比例1
(1)将10mg多壁碳纳米管加入到20mL去离子水中,混合溶液冰浴超声2h,得到未改性的多壁碳纳米管溶液;
(2)将5.5mg黑磷(BP)加入到11mL去离子水中,冰浴超声分散2h,配置成带负电的黑磷溶液;
(3)将步骤(1)和步骤(2)配置好的溶液按照体积比1:1进行混合,得到混合溶液;
(4)将静电混合溶液放入140℃恒温干燥箱中固化12小时,直至为固体,固体研磨为粉末,取8mg加入到80mLN,N-二甲基甲酰胺中,冰浴超声分散1小时得到分散液;
(5)先将200mLN,N-二甲基甲酰胺放入烧杯中,将15g柔性基底材料热塑性聚氨酯(TPU),平均分三次加入到烧杯中,每次间隔时间为5min,加入时不断搅拌,搅拌10h以上直至为半透明粘稠状溶液;
(6)将步骤(4)的分散液和步骤(5)的半透明粘稠状溶液按照体积比为1:1搅拌混合,倒入直径为10cm的培养皿中,溶液高度为3cm,培养皿放入140℃恒温干燥箱中固化10小时,得到黑色纳米复合材料薄膜;
(7)将步骤(6)的纳米复合材料薄膜切粒,加入密炼机熔融,密炼机的螺杆转速为120r/min,螺杆温度为150℃,共混20min,然后干燥、切粒后加入单螺杆挤出机中挤出线材,单螺杆挤出机的螺杆温度为200℃,螺杆转速30r/min,将挤出的线材按照计算机软件AutoCAD设计的形状,以STL格式导出图像,将线材插入3D打印机中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度160℃,层层堆叠加工柔性温敏传感材料。
图1是实施例1中3D打印碳纳米管基柔性温敏性材料的照片,图1(a)是圆片状材料,从图中可以看出,材料表面平整光滑,证明材料复合成功,图1(b)为通过设计结构3D打印成型的柔性温敏性材料,材料内部形成三维导电网络,结构新颖。
图2(a)是对比例1得到的碳纳米管基柔性温敏性材料(未改性,未进行静电组装)的FE-SEM图,图2(b)是实施例1中的碳纳米管基柔性温敏性材料(改性,进行静电组装)的FE-SEM图;从图中可知,图2(a)形态显示出聚集的不规则形状的聚合体,极为凹凸不平,显示了广泛的填料分布;图2(b)没有聚集,较为均匀分布,相比明显平缓。
图3是实施例1中改性以后的带正电的多壁碳纳米管溶液和带负电的黑磷溶液的Zeta电位电势图,从图中可知,两种溶液的ZETA电位为-(35±6),两种溶液混合后可得到静电溶液。
实施例2
一种3D打印制备碳纳米管基柔性温敏性材料的方法,具体步骤如下:
(1)将20mg多壁碳纳米管溶于40mL去离子水中,超声分散1小时,将10mg十六烷基三甲基溴化铵(CTAB)溶于多壁碳纳米管(MWCNTs)溶液中,混合溶液冰浴超声1.5h,得到改性以后的带正电的多壁碳纳米管溶液(m-MWCNTs);
(2)将将10.7mg黑磷(BP)溶于30mL去离子水中,冰浴超声分散1.5小时,配置成带负电的黑磷溶液;
(3)将步骤(1)和步骤(2)配置好的溶液按照体积比1:1进行混合,得到静电混合溶液m-MWCNTs/BP;在带正电m-MWCNT和带负电的BP纳米片之间产生了自发的静电相互作用,而且还促进了混合纳米填料在弹性体基质中相对均匀的分散;
(4)将静电混合溶液放入140℃恒温干燥箱中固化10小时,直至为固体,固体研磨为粉末,取9mg溶于90mLN,N-二甲基甲酰胺中,冰浴超声分散2小时得到分散液;
(5)先将150mLN,N-二甲基甲酰胺放入烧杯中,将14g柔性基底材料热塑性聚氨酯(TPU),平均分三次加入到烧杯中,每次间隔时间为5min,加入时不断搅拌,搅拌10h以上直至为半透明粘稠状溶液;
(6)将步骤(4)的分散液和步骤(5)的半透明粘稠状溶液按照体积比为1:1.5搅拌混合,倒入直径为10cm的培养皿中,溶液高度为3cm,培养皿放入140℃恒温干燥箱中固化12小时,得到黑色纳米复合材料薄膜m-MWCNTs/BP/TPU;
(7)将步骤(6)的纳米复合材料薄膜切粒,加入密炼机熔融,密炼机的螺杆转速为30r/min,螺杆温度为200℃,共混10min,然后干燥、切粒后加入单螺杆挤出机中挤出线材,单螺杆挤出机的螺杆温度为140℃,螺杆转速80r/min,将挤出的线材按照计算机软件Solidworks设计的形状,以STL格式导出图像,将线材插入3D打印机中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度160℃,层层堆叠加工柔性温敏传感材料。
实施例3
一种3D打印制备碳纳米管基柔性温敏性材料的方法,具体步骤如下:
(1)将15mg多壁碳纳米管溶于30mL去离子水中,超声分散1.5小时,将8mg十六烷基三甲基溴化铵(CTAB)溶于多壁碳纳米管(MWCNTs)溶液中,混合溶液冰浴超声1小时,得到改性以后的带正电的多壁碳纳米管溶液(m-MWCNTs);
(2)将24mg黑磷(BP)溶于48mL去离子水中,冰浴超声分散2.5h,配置成带负电的黑磷溶液;
(3)将步骤(1)和步骤(2)配置好的溶液按照体积比1:1进行混合,得到静电混合溶液m-MWCNTs/BP;在带正电m-MWCNT和带负电的BP纳米片之间产生了自发的静电相互作用,而且还促进了混合纳米填料在弹性体基质中相对均匀的分散;
(4)将静电混合溶液放入140℃恒温干燥箱中固化11小时,直至为固体,固体研磨为粉末,取10mg溶于100mLN,N-二甲基甲酰胺中,冰浴超声分散2h得到分散液;
(5)先将100mLN,N-二甲基甲酰胺放入烧杯中,将10g柔性基底材料热塑性聚氨酯(TPU),平均分三次加入到烧杯中,间隔时间为5min,加入时不断搅拌,搅拌10h以上直至为半透明粘稠状溶液;
(6)将步骤(4)的分散液和步骤(5)的半透明粘稠状溶液按照体积比为1:2搅拌混合,倒入直径为10cm的培养皿中,溶液高度为3cm,培养皿放入140℃恒温干燥箱中固化11小时,得到黑色纳米复合材料薄膜m-MWCNTs/BP/TPU;
(7)将步骤(6)的纳米复合材料薄膜切粒,加入密炼机熔融,密炼机的螺杆转速为80r/min,螺杆温度为180℃,共混15min,然后干燥、切粒后加入单螺杆挤出机中挤出线材,单螺杆挤出机的螺杆温度为180℃,螺杆转速50r/min,将挤出的线材按照计算机软件3dsmax设计的形状,以STL格式导出图像,将线材插入3D打印机中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度140℃,层层堆叠加工柔性温敏传感材料。
图4是温敏性能测试平台,设置真空温控箱将温度控制在将30℃-100℃内,并用真空泵抽真空至箱内腔体至压强指针为0.07Mpa,通过高精度数字万用表连接计算机测试端和真空干燥箱温控端,每1s内读取传感器的4组电阻数据,记录不同实时温度下材料的电阻变化曲线,将实施例1-3得到的3D打印的不同厚度(1mm、2mm、3mm)的碳纳米管基柔性温敏性材料,放入真空干燥箱中,温敏材料两端用铜箔封装作为电极与多功能数字万用表连接,多功能数字万用表调节至欧姆档,读取三相纳米温敏材料实时电阻,本测试是在同一季节、同一时段(秋季,14时-17时)即在相同的实验条件下完成,图5是得到的温阻曲线图,从图中可知,以恒定速率(1.54℃/min)升温,不同实施例制备得到的不同厚度的样品,随温度在30~100℃变化,电阻随着温度的升高而线性减小,本发明材料的电阻与温度成线性关系,材料具有良好的温敏性。

Claims (7)

1.一种3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,具体步骤如下:
(1)将10-20mg多壁碳纳米管加入20-40mL去离子水中,超声分散1-2小时,加入5-10mg十六烷基三甲基溴化铵,混合溶液冰浴超声1-2h,得到改性以后的带正电的多壁碳纳米管溶液;
(2)将5.5-24mg黑磷加入11-48mL去离子水中,冰浴超声分散1.5-2.5小时,配置成带负电的黑磷溶液;
(3)将步骤(1)和步骤(2)配置好的溶液按照体积比1:1进行混合,得到静电混合溶液;
(4)将静电混合溶液干燥固化,研磨为粉末,取8-10mg加入到80-100mL有机溶剂中,冰浴超声分散1-2小时得到分散液;
(5)将10-15g热塑性聚氨酯加入到100-200mL有机溶剂中,边加边搅拌,搅拌10h以上为半透明粘稠状溶液;
(6)将步骤(4)的分散液和步骤(5)的半透明粘稠状溶液搅拌混合,干燥固化,得到纳米复合材料薄膜;
(7)将步骤(6)的纳米复合材料薄膜切粒,加入密炼机熔融共混,然后干燥、切粒后加入单螺杆挤出机中挤出线材,将挤出的线材按照设计的模型采用3D打印加工成型。
2.根据权利要求1所述3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,步骤(4)和步骤(5)有机溶剂为甲苯、丙酮、甲基丁酮、甲基异丁酮、乙醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、环氧丙烷、醋酸甲酯、醋酸丙酯、乙酸乙酯、四氢呋喃、甲醇、乙醇、二甲苯、氯苯、二氯苯、二氯甲烷、三氯甲烷、乙腈、吡啶、苯酚、N ,N 二甲基甲酰胺或N ,N二甲基乙酰胺。
3.根据权利要求1所述3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,步骤(4)和步骤(6)干燥固化是在140℃保温10-12小时。
4.根据权利要求1所述3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,步骤(6)中步骤(4)的分散液和步骤(5)的半透明粘稠状溶液混合的体积比为1:1-2。
5.根据权利要求1所述3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,步骤(7)密炼机的螺杆转速为30-120r/min,螺杆温度为150-200℃,共混10 20min。
6.根据权利要求1所述3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,步骤(7)单螺杆挤出机的螺杆温度为140-200℃,螺杆转速30-80r/min。
7.根据权利要求1所述3D打印制备碳纳米管基柔性温敏性材料的方法,其特征在于,步骤(7)3D打印的初始打印速度为20mm/s,打印温度140-180℃。
CN202310081773.6A 2023-01-17 2023-01-17 一种3d打印制备碳纳米管基柔性温敏材料的方法 Active CN116178930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310081773.6A CN116178930B (zh) 2023-01-17 2023-01-17 一种3d打印制备碳纳米管基柔性温敏材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310081773.6A CN116178930B (zh) 2023-01-17 2023-01-17 一种3d打印制备碳纳米管基柔性温敏材料的方法

Publications (2)

Publication Number Publication Date
CN116178930A CN116178930A (zh) 2023-05-30
CN116178930B true CN116178930B (zh) 2024-04-19

Family

ID=86437843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310081773.6A Active CN116178930B (zh) 2023-01-17 2023-01-17 一种3d打印制备碳纳米管基柔性温敏材料的方法

Country Status (1)

Country Link
CN (1) CN116178930B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015658A1 (zh) * 2014-08-01 2016-02-04 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
CN106046721A (zh) * 2016-05-30 2016-10-26 郑州大学 一种高分子基温敏材料及其制备方法和应用
CN108164980A (zh) * 2017-12-28 2018-06-15 山东诺威聚氨酯股份有限公司 用于3d打印的碳纳米管改性tpu材料及其制备方法
CN110117348A (zh) * 2019-04-26 2019-08-13 深圳先进技术研究院 聚氨酯材料及其制备方法和应用、聚合物材料、3d支架
CN110274803A (zh) * 2019-05-30 2019-09-24 中国科学院金属研究所 可精确调控纳米级厚度薄膜成膜厚度和面积的制膜方法
CN111664974A (zh) * 2020-04-26 2020-09-15 太原理工大学 一种黑磷柔性应力传感器及其制备方法
CN112011160A (zh) * 2020-09-03 2020-12-01 陕西理工大学 一种高韧性高分子基温敏复合材料及其制备方法和应用
CN115112260A (zh) * 2022-06-20 2022-09-27 陕西科技大学 一种紫磷烯/石墨烯温敏传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015658A1 (zh) * 2014-08-01 2016-02-04 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
CN106046721A (zh) * 2016-05-30 2016-10-26 郑州大学 一种高分子基温敏材料及其制备方法和应用
CN108164980A (zh) * 2017-12-28 2018-06-15 山东诺威聚氨酯股份有限公司 用于3d打印的碳纳米管改性tpu材料及其制备方法
CN110117348A (zh) * 2019-04-26 2019-08-13 深圳先进技术研究院 聚氨酯材料及其制备方法和应用、聚合物材料、3d支架
CN110274803A (zh) * 2019-05-30 2019-09-24 中国科学院金属研究所 可精确调控纳米级厚度薄膜成膜厚度和面积的制膜方法
CN111664974A (zh) * 2020-04-26 2020-09-15 太原理工大学 一种黑磷柔性应力传感器及其制备方法
CN112011160A (zh) * 2020-09-03 2020-12-01 陕西理工大学 一种高韧性高分子基温敏复合材料及其制备方法和应用
CN115112260A (zh) * 2022-06-20 2022-09-27 陕西科技大学 一种紫磷烯/石墨烯温敏传感器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3D printed graphene/polyurethane wearable pressure sensor for motion fitness monitoring;Zhongming Li 等;《Nanotechnology》;20210709;第32卷(第39期);第395503号 *
Towards the Development of Sensors Based on Black Phosphorus;xu, xin 等;《Nanoscience and Nanotechnology Letters》;20170630;第9卷(第6期);第829-838页 *
基于3D打印技术制造柔性传感器研究进展;李仲明 等;《化工进展》;20200505;第39卷(第05期);第1835-1843页 *
基于二维层状半导体材料的电化学传感器性能研究及应用进展;李慧娟 等;《材料导报》;20220110;第36卷(第01期);第47-56页 *

Also Published As

Publication number Publication date
CN116178930A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
Zhuang et al. 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites
Bekas et al. 3D printing to enable multifunctionality in polymer-based composites: A review
Guo et al. Recent advances on 3D printing graphene-based composites
Ly et al. 4D printing–fused deposition modeling printing with thermal-responsive shape memory polymers
Liu et al. 3D printed flexible strain sensors: from printing to devices and signals
AU2014302635B8 (en) Printed three-dimensional (3D) functional part and method of making
Sezer et al. FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties
Ryan et al. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications
Gardner et al. 3-D printing of multifunctional carbon nanotube yarn reinforced components
Friedrich et al. Structure and properties of additive manufactured polymer components
CN105542377B (zh) 一种利用双螺杆挤出机制备导电3d打印耗材的方法
Tang et al. Recent advances of 4D printing technologies toward soft tactile sensors
CN108819223A (zh) 一种基于3d打印的内部三维结构电路一体化制作方法
CN109880324B (zh) 一种具有高导电性能的制件及其制备方法
CN112045992B (zh) 一种高β晶含量PVDF的熔融沉积成型3D打印方法
US11560486B2 (en) Method and resins for creating electrically-conductive objects
Potnuru et al. Investigation of polylactide and carbon nanocomposite filament for 3D printing
Liu et al. Conductive polymer composites based flexible strain sensors by 3D printing: A mini-review
CN116178930B (zh) 一种3d打印制备碳纳米管基柔性温敏材料的方法
Li et al. Vat polymerization-based 3D printing of nanocomposites: A mini review
Blachowicz et al. Recent developments in additive manufacturing of conductive polymer composites
Hu et al. Silver flake/polyaniline composite ink for electrohydrodynamic printing of flexible heaters
Thomas Enhancing the electrical and mechanical properties of graphene nanoplatelet composites for 3D printed microsatellite structures
Wang et al. Isotropical conductive adhesives with very-long silver nanowires as conductive fillers
Ahammed et al. Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant