CN116165742A - 一种集成底部反射层的双层氮化硅光栅耦合器 - Google Patents

一种集成底部反射层的双层氮化硅光栅耦合器 Download PDF

Info

Publication number
CN116165742A
CN116165742A CN202310161920.0A CN202310161920A CN116165742A CN 116165742 A CN116165742 A CN 116165742A CN 202310161920 A CN202310161920 A CN 202310161920A CN 116165742 A CN116165742 A CN 116165742A
Authority
CN
China
Prior art keywords
layer
silicon nitride
grating
nitride grating
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310161920.0A
Other languages
English (en)
Inventor
林曈
杨航宇
路丰盛
于文琦
恽斌峰
李少波
胡国华
马向
崔一平
梁晓东
刘博缘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
CETC 54 Research Institute
Original Assignee
Southeast University
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, CETC 54 Research Institute filed Critical Southeast University
Priority to CN202310161920.0A priority Critical patent/CN116165742A/zh
Publication of CN116165742A publication Critical patent/CN116165742A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种集成底部反射层的双层氮化硅光栅耦合器,涉及光通信以及微波光子学领域。其包括自上而下设置的氧化物上包层、第二氮化硅光栅层、氧化物夹层、第一氮化硅光栅层、氧化物下包层、底部反射层以及衬底层,两层光栅都完全包埋在氧化物上下包层中,且在水平和垂直方向都有固定的间距。第一氮化硅光栅层以一定周期和填充占空比均匀排列,第二氮化硅光栅层采用了切趾处理。双层光栅设计能实现很高的指向性,抑制旁瓣。底部反射层采用多层分布式布拉格反射设计,有效防止向下耦合的光场泄露到衬底。

Description

一种集成底部反射层的双层氮化硅光栅耦合器
技术领域
本发明属于光通信与微波光子领域,尤其涉及一种集成底部反射层的双层氮化硅光栅耦合器。
背景技术
近年来,半导体微电子芯片尺寸已接近理论极限,越来越难以突破摩尔定律的限制。而光电子集成芯片由于其巨大的传输带宽和优异的低功耗特性,被认为是能够突破摩尔定律的革命性器件,会改变未来芯片格局。硅基集成光路指的是将光电子器件集成在硅衬底上,组成片上光学系统。在进行光信号传输时,需要将光信号从外接光纤中耦合进光电芯片中,或者是将处理完成的光信号从光电芯片耦合进光纤中。目前有常用两种光耦合方式:端面耦合与垂直耦合。与端面耦合相比,基于光栅耦合器的垂直耦合方式能够减小器件尺寸;布局灵活,可以设计在芯片的任意位置且易于形成阵列化,为后续光电子芯片的测试和封装提供极大的便利。但是,传统光栅耦合器面临的较低耦合效率以及较窄的带宽亟需解决。
传统的基于绝缘体上硅光栅耦合器能够获得较高的耦合效率,但是带宽较窄。氮化硅作为一种CMOS工艺兼容的材料,其折射率介于二氧化硅和硅之间,导致了光栅周期大,在光纤芯层范围内具有更小的光栅数,因此带宽大;氮化硅有着较大的能带间隙和大范围透明光学窗口,在光纤通讯 C波段窗口有极弱的双光子吸收效应;当波导厚度大于700 nm时,能实现波导色散调控,应用于光频梳、超连续光谱产生等非线性光学器件中。这样的材料特性使得有厚薄膜的氮化硅光栅耦合器与绝缘体上硅光栅耦合器相比,有着更广的应用场景。
目前已报道的厚度大于700 nm的氮化硅光栅耦合器工作非常少。其中,华中科技大学的夏金松教授研究团队研究了一种700 nm厚的单层氮化硅浅刻蚀光栅耦合器,结合倒锥型波导结构,在实验中测量得到-3.7 dB的耦合效率,1 dB带宽为54nm,耦合角度为8°。但是该耦合器需要复杂且脆弱的模式转换结构,稳定性差:其关键尺寸小于100 nm,无法通过紫外光刻机制备。
发明内容
本发明的目的是提供一种集成底部反射层的双层氮化硅光栅耦合器,用于解决光信号在厚氮化硅光子芯片与光纤间进行耦合时,两者之间的耦合效率低、带宽窄的难题。
为了解决上述问题,本发明的技术方案为:
一种集成底部反射层的双层氮化硅光栅耦合器,包括由上至下依次层叠在一起的氧化物上包层、第二氮化硅光栅层、氧化物夹层、第一氮化硅光栅层、氧化物下包层、底部反射层以及衬底层。
进一步地,所述氧化物上包层、氧化物夹层与氧化物下包层使用的材质为二氧化硅,材质折射率小于第一氮化硅光栅层的材质折射率,氧化物上包层、氧化物下包层的厚度不少于2.5μm。
进一步地,所述第一氮化硅光栅层采用全刻蚀工艺,光栅厚度大于或等于700 nm。
进一步地,所述第一氮化硅光栅层是一个均匀光栅,均匀光栅指的是在整条光栅中每个光栅条纹都有着相同的宽度和周期。
进一步地,所述第二氮化硅光栅层采用全刻蚀工艺,光栅厚度大于或等于500 nm。
进一步地,所述第二氮化硅光栅层是一个切趾光栅,切趾光栅指的是在整条光栅中每个光栅条纹都有着不同的宽度和周期,第一氮化硅光栅层、第二氮化硅光栅层之间的垂直方向间隔范围为50 nm-150 nm。
进一步地,底部反射层由高折射率材质层和低折射率材质层交替沉积形成,高折射率层与低折射率层的厚度范围为100 nm-350 nm;高折射率材质层为氮化硅,低折射率材质层为二氧化硅。
进一步地,所述衬底层的材质为硅。
进一步地,还包括入射波导和锥形波导,入射波导和锥形波导的材质与第一氮化硅光栅层的材质一致,入射波导和锥形波导的厚度等于第一氮化硅光栅层的厚度,无需额外的模式转换结构,锥形波导的始端与入射波导的末端相连接,锥形波导的末端与第一氮化硅光栅层的始端相连。
由于采用了上述技术方案,本发明与现有技术相比,具有以下的优点和积极效果:
1、本发明中采用厚度大于700nm的氮化硅薄层,能够应用于非线性光学器件中,并且相较于传统绝缘体上硅平台,具有更大的带宽;制备工艺完全兼容CMOS工艺,成本较低,能够大规模生产应用。
2、本发明中双层光栅结构能够显著提高出射光的方向性,从而达到高耦合效率。
3、本发明中的第二氮化硅光栅层采用了切趾处理,能够提升向上耦合场与标准单模光纤本征场的模式匹配程度,提高耦合效率。
4、本发明中引入了位于下包层和衬底之间的底部反射层,能够将泄露到底部衬底的光反射回来,降低了泄露损耗,进一步提高了器件的耦合效率。
附图说明
通过阅读下文优选实施方式的详细描述,本发明的其他特征以及优点和益处对于本领域的技术人员将变得清楚明了。附图仅用于进一步具体描述优选实施方式的目的,而并不认为是对本发明的限制。
图1为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器的横截面结构示意图;
图2为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器的俯视示意图;
图3为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器的三维结构示意图;
图4为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器在1550nm波长的模场与单模光纤模场的重叠积分;
图5为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器在1550nm波长附近波段的耦合效率仿真图;
图6为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器在1550nm处的出射光功率分布图;
实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详尽的实施方式和具体的操作过程。显而易见地,以下所描述的具体实施例的附图仅仅是本发明的代表性实施例,并不是唯一的,对于本领域的技术人员而言,能够在不付出创造性劳动的前提下根据本实施例的附图来获得其他的附图,并且获得其他的实施方式,其在没有做出创造性劳动前提下所获得的所有实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各部分特征可以互相结合;本发明还可以通过不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。以下对本申请中的一优选实施例结合附图作详细说明。
一种集成底部反射层的双层氮化硅光栅耦合器,包括自上而下的氧化物上包层、氮化硅光栅耦合器层、氧化物下包层、底部反射层以及衬底层;其中氮化硅光栅耦合器层包括位于上方的第二氮化硅光栅层、二氧化硅夹层与位于下方的第一氮化硅光栅层,两层光栅都完全包埋在氧化物上下包层中,且在水平和垂直方向都有固定的间距。第一氮化硅光栅层以一定周期和填充占空比均匀排列;为了提高向上辐射场模式与标准单模光纤本征模式尽的匹配度,第二氮化硅光栅层采用了切趾处理。双层光栅设计能实现很高的指向性,抑制旁瓣。底部反射层采用多层分布式布拉格反射设计,有效防止向下耦合的光场泄露到衬底,对于准TE偏振模式的光获得的所述耦合效率约为79%、1 dB带宽约为117 nm。
氧化物上包层位于整个器件的最上端,工作时与标准单模光纤相靠近;第一氮化硅光栅层沉积在氧化物下包层之上,接着是二氧化硅夹层,然后沉积了第二氮化硅光栅层;底部反射层沉积于衬底与氧化物下包层之间,用于将泄露到衬底层的光向上反射;衬底层用于支撑和承载底部反射层、氧化物下包层、氮化硅光栅耦合器层以及氧化物上包层。
待输出光信号从入射端氮化硅波导进入,通过taper后进入光栅耦合器层,标准单模光纤紧贴着芯片的氧化物上包层,光纤接收从光栅耦合器中向上发射的光信号;根据光栅衍射理论,改变第一、第二氮化硅光栅层的周期、占空比以及厚度,能够调控耦合光信号的方向与强度,提高出射光指向性与抑制旁瓣。
具体地,所述集成底部反射层的双层氮化硅光栅耦合器工作在准TE偏振模式。
具体地,入射波导和taper的材质与氮化硅光栅耦合器层的材质一致,入射波导和taper的厚度等于第一氮化硅光栅层的厚度,无需复杂的模式转换结构,taper的始端与入射波导的末端相连接,taper的末端与第一氮化硅光栅层的始端相连。
在一种可能的实现方式中,所述氧化物上包层和氧化物下包层的材质为二氧化硅,其折射率应小于氮化硅光栅层的折射率,氧化物上包层与氧化物下包层的的厚度应大于或等于2.5 µm。
在一种可能的实现方式中,第一氮化硅光栅层采用全刻蚀工艺,光栅厚度大于或等于700 nm。
具体地,第一氮化硅光栅层是一个均匀光栅,均匀光栅指的是在整条光栅中每个构成光栅的氮化硅条都有着相同的宽度和周期。
在一种可能的实现方式中,第二氮化硅光栅层采用全刻蚀工艺,光栅厚度大于或等于500 nm。
具体地,第二氮化硅光栅层是一个切趾光栅,切趾光栅指的是在整条光栅中每个构成光栅的氮化硅条都有着不同的宽度和周期。
在一种可能的实现方式中,第一、第二氮化硅光栅层之间的垂直方向间隔范围为50 nm至150 nm。
在一种可能的实现方式中,所述底部反射层位于氧化物下包层与衬底层之间,由高折射率材质(氮化硅)与低折射率材质(二氧化硅)交替沉积形成,两种材质的薄层厚度范围为100 nm-350 nm。
在一种可能的实现方式中,所述衬底层的材质为硅。
如图1所示,本实例提供一种高耦合效率的集成底部反射层的双层氮化硅光栅耦合器,包括,衬底层10,底部反射层20,氧化物下包层30,第一氮化硅光栅层401,第二氮化硅光栅层402,氧化物上包层50,芯片上方的标准单模光纤60。
图1中的衬底层10采用硅材质,用作对于支撑整个芯片结构;在衬底层之上,交替沉积二氧化硅(低折射率)薄层和氮化硅(高折射率)薄层,一组不同折射率材质交替沉积的薄层构成了一层分布式布拉格反射层。在此优选实施例中,底部反射层20采用了三层分布式布拉格反射层,其中每层中的二氧化硅薄层与氮化硅薄层的厚度范围均为100 nm-350nm;氧化物下包层30采用二氧化硅材质,其厚度会对光耦合场产生周期性的影响,在此优选实施例中,氧化物下包层的厚度选为2.75 μm;第一氮化硅光栅层401沉积在氧化物下包层30上,第一氮化硅光栅层401是均匀光栅,其中包括11个周期与宽度相等的氮化硅光栅条,taper末端位于第一氮化硅光栅层的第1个氮化硅光栅条纹的左端;第二氮化硅光栅层402的下底端与第一氮化硅光栅层401上顶端的间距为50 nm-150 nm,第一、第二氮化硅光栅层之间全部由氧化物夹层填充;第二氮化硅光栅层402是切趾光栅,即每一个光栅条纹的周期与宽度均不同;氧化物上包层50的底端与第一氮化硅光栅层401的顶端相连,在此优选实施例中,氧化物上包层50的厚度选为3.3μm;标准单模光纤60靠近在氧化物上包层50上表面。
作为一优选实施例,如图1所示,所述第一氮化硅光栅层401与第二氮化硅光栅层402的厚度一致,在此优选实施例中均为800 nm,且第一、第二氮化硅光栅层之间在垂直方向(y方向)上的间距为100 nm,在水平方向(x方向)上的位移为345 nm。在水平、垂直方向上有一定间隔的两层氮化硅光栅形成阵列,能够显著提升光场耦合的方向性。
作为一优选实施例,如图1所示,所述第一氮化硅光栅层401与第二氮化硅光栅层402的光栅条均为长方体。
具体地,在此优选实施例中所述的底部反射层20采用厚度为180 nm的氮化硅薄层与320nm的二氧化硅薄层交替沉积,构成分布式布拉格反射层。理论上,沉积的反射层数越多,耦合效率越高,此优选实施例中为了兼顾制造的简便性与高反射率,采用三层分布式布拉格反射层的设计。
作为一优选实施例,如图1所示,底部反射层20沉积在氧化物下包层30与衬底层10之间,能够有效地将光栅耦合器向下耦合的光反射,从而提升耦合器的耦合效率。
图2是一种集成底部反射层的双层氮化硅光栅耦合器的俯视示意图,其中,10表示入射氮化硅光波导,20表示taper,30表示双层氮化硅光栅。
作为一优选实施例,如图2所示,所述入射氮化硅波导10的宽度为1.8μm,双层氮化硅光栅的宽度为20μm,如果直接将入射氮化硅波导10与双层氮化硅光栅30相连接,由于宽度的尺寸较大,会带来很大的模式失配;本优选实施例中采用taper 20作为模斑转换器,在入射氮化硅波导10后连taper 20;taper 20的起始宽度为1.8μm、末端宽度为20μm、长度为100μm,在俯视图中是一个等腰梯形;taper 20的末端与图1中所示的第一氮化硅光栅层相连接。
氮化硅芯片中的准TE偏振光从入射氮化硅波导10进入,通过taper 20后,进入双层氮化硅光栅的光模式为基模,最后经过双层光栅耦合器将输入的光向上耦合进入标准单模光纤。
图3是一种集成底部反射层的双层氮化硅光栅耦合器的三维示意图。
图4为本发明实施例提供的一种集成底部反射层的双层氮化硅光栅耦合器在1550nm波长的模场与单模光纤模场的重叠积分,两个模场匹配度达到88%。
图5所示的是为此优选实施例在1550 nm及附近波段的耦合效率仿真结果。在1550nm处耦合效率达到峰值,约为79%;器件1dB带宽达到了117 nm。
图6所示的是为此优选实施例在1550 nm处的输出光场强度分布图,其中耦合角度为24°。大部分的光都向上耦合,其他方向的光损失较少。
本实施例采用了厚度为800 nm的氮化硅光栅,引入了双层结构形成了光栅阵列,在下包层和衬底间添加了分布式布拉格反射器,使得耦合效率进一步提升。结合有限时域差分软件进行仿真,同时考虑到了在实际CMOS工艺中最小加工线宽的限制,对本发明中提出的双层氮化硅光栅耦合器的结构和几何参数进行了优化。本发明所得的集成底部反射层的双层氮化硅光栅耦合器能够获得较高的耦合效率以及较宽的带宽,能够应用于光通信与微波光子等领域,性能突出。
以上结合附图对本发明的优选实施方式作了详细的说明,但是本发明并不仅限于此优选实施方式。即使对本发明作出各种变化,倘若这些变化仍然属于本发明权利要求及其等同技术的范围之内,则仍被本发明保护。

Claims (9)

1.一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,包括由上至下依次层叠在一起的氧化物上包层、第二氮化硅光栅层、氧化物夹层、第一氮化硅光栅层、氧化物下包层、底部反射层以及衬底层。
2.根据权利要求1所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,所述氧化物上包层、氧化物夹层与氧化物下包层使用的材质为二氧化硅,材质折射率小于第一氮化硅光栅层的材质折射率,氧化物上包层、氧化物下包层的厚度不少于2.5μm。
3. 根据权利要求1所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,所述第一氮化硅光栅层采用全刻蚀工艺,光栅厚度大于或等于700 nm。
4.根据权利要求3所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,所述第一氮化硅光栅层是一个均匀光栅,均匀光栅指的是在整条光栅中每个光栅条纹都有着相同的宽度和周期。
5. 根据权利要求1所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,所述第二氮化硅光栅层采用全刻蚀工艺,光栅厚度大于或等于500 nm。
6. 根据权利要求5所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,所述第二氮化硅光栅层是一个切趾光栅,切趾光栅指的是在整条光栅中每个光栅条纹都有着不同的宽度和周期,第一氮化硅光栅层、第二氮化硅光栅层之间的垂直方向间隔范围为50 nm-150 nm。
7. 根据权利要求1-6中任一项所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,底部反射层由高折射率材质层和低折射率材质层交替沉积形成,高折射率层与低折射率层的厚度范围为100 nm-350 nm;高折射率材质层为氮化硅,低折射率材质层为二氧化硅。
8.根据权利要求7所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,所述衬底层的材质为硅。
9.根据权利要求8所述的一种集成底部反射层的双层氮化硅光栅耦合器,其特征在于,还包括入射波导和锥形波导,入射波导和锥形波导的材质与第一氮化硅光栅层的材质一致,入射波导和锥形波导的厚度等于第一氮化硅光栅层的厚度,无需额外的模式转换结构,锥形波导的始端与入射波导的末端相连接,锥形波导的末端与第一氮化硅光栅层的始端相连。
CN202310161920.0A 2023-02-24 2023-02-24 一种集成底部反射层的双层氮化硅光栅耦合器 Pending CN116165742A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310161920.0A CN116165742A (zh) 2023-02-24 2023-02-24 一种集成底部反射层的双层氮化硅光栅耦合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310161920.0A CN116165742A (zh) 2023-02-24 2023-02-24 一种集成底部反射层的双层氮化硅光栅耦合器

Publications (1)

Publication Number Publication Date
CN116165742A true CN116165742A (zh) 2023-05-26

Family

ID=86416152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310161920.0A Pending CN116165742A (zh) 2023-02-24 2023-02-24 一种集成底部反射层的双层氮化硅光栅耦合器

Country Status (1)

Country Link
CN (1) CN116165742A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116859521A (zh) * 2023-08-30 2023-10-10 之江实验室 光栅耦合器及其制备方法
CN117250697A (zh) * 2023-11-17 2023-12-19 中国科学院半导体研究所 高效光栅耦合器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116859521A (zh) * 2023-08-30 2023-10-10 之江实验室 光栅耦合器及其制备方法
CN116859521B (zh) * 2023-08-30 2024-01-09 之江实验室 光栅耦合器及其制备方法
CN117250697A (zh) * 2023-11-17 2023-12-19 中国科学院半导体研究所 高效光栅耦合器
CN117250697B (zh) * 2023-11-17 2024-03-01 中国科学院半导体研究所 高效光栅耦合器

Similar Documents

Publication Publication Date Title
CN116165742A (zh) 一种集成底部反射层的双层氮化硅光栅耦合器
CN108398842B (zh) 一种基于串联式光学天线的光学相控阵芯片
CN111175896A (zh) 一种大带宽的高效率光栅耦合器
US20140308004A1 (en) Grating edge coupler and method of forming same
US20110038588A1 (en) Optical coupler
US10317584B2 (en) Grating coupler and preparation method
CN110824612B (zh) 一种多层硅光子三维光连接结构
CN102156324B (zh) 具有多层结构的模式变换器和光分路器
CN109324372B (zh) 一种硅光波导端面耦合器
CN114815056B (zh) 一种基于交错偏移的夹层高效发射光栅天线及其制作方法
CN112230339A (zh) 光栅耦合器及其制备方法
CN216485897U (zh) 一种波导阵列及集成光学相控阵芯片
CN115857091A (zh) 一种铌酸锂薄膜mmi起偏分束器
CN103645540A (zh) 一种刻蚀衍射光栅型波分复用/解复用器
US20210141251A1 (en) Active region-less modulator and method
CN112649918B (zh) 一种边缘耦合器
CN202870343U (zh) 基于多模干涉器反射镜的反射式阵列波导光栅
CN115144964B (zh) 一种基于欧拉弯曲宽波导的硅基阵列波导光栅
CN113126217A (zh) 一种光发端器件、光发端器件的制备方法及光通信设备
CN214954215U (zh) 一种凸型自增强聚焦耦合光栅耦合器
CN115616703A (zh) 基于双层氮化硅结构的光栅耦合器及其制作方法
CN115210617A (zh) 基于多层平台的高效端射式3d光学相控阵
CN115201970B (zh) 具有光栅耦合器的硅基光学芯片
CN111999913A (zh) 一种热光移相器
CN220064425U (zh) 光子集成电路芯片及硅光集成平台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination