CN116164778A - 具有主轨道和诺纽斯轨道的位置传感器 - Google Patents

具有主轨道和诺纽斯轨道的位置传感器 Download PDF

Info

Publication number
CN116164778A
CN116164778A CN202211493755.0A CN202211493755A CN116164778A CN 116164778 A CN116164778 A CN 116164778A CN 202211493755 A CN202211493755 A CN 202211493755A CN 116164778 A CN116164778 A CN 116164778A
Authority
CN
China
Prior art keywords
sensor
track
magnetic
sensing system
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211493755.0A
Other languages
English (en)
Inventor
B·布拉永
C·肖特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Melexis Electronic Technology Co ltd
Original Assignee
Melexis Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Melexis Electronic Technology Co ltd filed Critical Melexis Electronic Technology Co ltd
Publication of CN116164778A publication Critical patent/CN116164778A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种用于感测位置的感测系统和方法,包括用于产生磁场的第一磁轨和用于感测磁场的第二传感器,所述第一磁轨包括第一数量的多极,所述第一磁轨被牢固地固定到用于产生磁场的第二磁轨,从而形成磁结构。包括至少两个传感器。第一传感器接近第一磁轨定位,相比于靠近第二磁轨而言更靠近第一磁轨。第二传感器接近第二磁轨定位。第一传感器和第二磁轨之间的距离大于第二传感器和第二磁轨之间距离。由第一磁轨和第二磁轨产生的磁通密度遵循2或更高的比率。

Description

具有主轨道和诺纽斯轨道的位置传感器
技术领域
本发明涉及位置感测的领域。更具体而言,本发明涉及一种位置感测系统,该位置感测系统用于确定磁结构相对于磁场传感器的相对位置。
背景技术
位置感测系统通常被包括在其中需要检测其某些组件的位置的设备中。例如,许多发动机包括角位置感测系统,以检测转子相对于定子的相对位置,以便确保发动机线圈的正确供电。
它们通常包括磁场传感器和磁性件。一者相对于另一者的相对运动由传感器检测,该传感器提供信号。测量信号的准确度、分辨率和其他特性取决于若干因素,诸如磁体的类型。具有简单偶极磁体和霍尔磁传感器的常规旋转编码器在角分辨率方面被限制到约0.02度,并且在随温度而变化的角度准确度方面被限制到约0.3度,这也取决于信噪比。
多极磁体改进了相对定位的分辨率和准确度。然而,多极磁体被分成扇区,而仅用磁传感器无法标识角度扇区本身的位置。这意味着相对于绝对角位置的信息丢失。
为了将此解决,现有的磁结构包括两个多极磁轨,其中该两个多极磁轨中的一者比另一者少一个极对,因此可通过组合由一对传感器获取的两个轨道的信号来重建整个360°范围,该一对传感器通常集成在单个芯片中。具有最多极数的轨道是“主轨道”。
来自两个轨道的信号之间的差异用于区分扇区,而主轨道的信号用于测量角度。然而,这些类型的系统在场之间具有高串扰。可物理地分离轨道以减少串扰,但需要两个单独的芯片,或者替代地,集成传感器需要更大的分离,并因此需要更大的传感器芯片面积,因而增加成本。
发明内容
本发明的实施例的目的是提供感测系统和包括这种系统的位置传感器,以及用于感测位置的方法。本发明允许准确检测磁结构相对于磁性传感器的位置,而不会丢失关于绝对位置的信息。它还允许提供紧凑的感测系统,其中传感器可被集成。在第一方面中,本发明提供了一种用于感测位置的感测系统,包括用于产生磁场的第一磁轨和用于产生磁场的第二磁轨,所述第一磁轨包括第一数量的多极。第一磁轨和第二磁轨彼此牢固地固定,从而形成磁结构。包括至少第一传感器和第二传感器,用于感测不同位置中的磁场。第一传感器接近第一磁轨定位,相比于靠近第二磁轨而言更靠近第一磁轨。第二传感器接近第二磁轨定位。第一传感器和第二磁轨之间的距离大于第二传感器和第二磁轨之间距离。由第一磁轨和第二磁轨产生的磁通密度遵循2或更高的比率。本发明的实施例的优点是,由第一传感器感测的信号受到来自较弱的第二磁轨的串扰的可忽略贡献的影响,因此不需要串扰补偿,同时提供了紧凑的设备和高度可集成的传感器。在本发明的一些实施例中,第一传感器在垂直于轨道的方向上(在传感器和磁结构之间的距离的方向上)的投影与第一轨道重叠。在一些实施例中,第二传感器在第二传感器和磁结构之间的距离的方向上的投影不与第一轨道重叠。例如,第二传感器的投影与设置在第一轨道和第二轨道之间的非磁性材料的间隙重叠。例如,第二传感器的投影与第二轨道重叠。本发明不限于此,并且第二传感器可以定位为使得其投影也与第一轨道重叠。
在本发明的一些实施例中,轨道是绕公共旋转轴可旋转的同心轨道。
本发明的实施例的优点是可以提供角位置感测系统。
在特定的实施例中,轨道是共面轨道。第二轨道由第一轨道封围。第一轨道具有第一预定宽度,并且第二轨道具有第二预定宽度。第一预定宽度是第二预定宽度的至少两倍大。
本发明的实施例的优点是可以提供具有平坦轮廓的感测系统。
在本发明的一些实施例中,第一轨道和第二轨道是具有相同外半径的堆叠环。第一轨道的在轴向方向上限定的宽度是第二轨道的宽度的至少两倍大。
本发明的实施例的优点是易于提供环形多极。进一步的优点是传感器可位于一侧,这在一些空间约束下可以是期望的。
在本发明的一些实施例中,第一轨道是具有至少8个偶极的多极,其中第二轨道包括非零数量的偶极,该数量不同于第一轨道的偶极的数量。
本发明的实施例的优点是,与具有更多多极的其他解决方案相比,可使感测系统更为紧凑。
在本发明的一些实施例中,第一传感器和第二传感器适于感测不同的场分量,通常是切向场分量和轴向场分量。
本发明的实施例的优点是,可通过轴向场分量和切向场分量的线性组合来获取相对于第二轨道的位置;轴向分量通常对串扰较不敏感。
在本发明的一些实施例中,第一传感器和第二传感器集成于单个半导体芯片中。
本发明的实施例的优点是,可降低制造成本而不牺牲紧凑性或准确度。
在本发明的实施例中,系统进一步包括用于对传感器的信号进行处理的信号处理装置。系统进一步包括信号输出,以用于提供第一轨道相对于传感器的绝对位置
本发明的实施例的优点是感测系统可以用作位置传感器。
在特定的实施例中,处理装置适于在感测系统启动时根据第二传感器的测量计算初始位置。
本发明的实施例的优点是,感测系统可在通电期间提供扇区辨别,因此可简单地通过考虑第一传感器的测量来进行适配。进一步的优点是可以减轻计算负载,因此提高感测速度。
在特定的实施例中,处理装置适于利用来自第一传感器和第二传感器的测量信号获取位置,并且校准位置。
本发明的实施例的优点是简单查找表可用于补偿例如轨道中的机械错位、瑕疵等。
在第二方面中,本发明提供了一种使用如前述权利要求中的任一项所述的感测系统感测位置的方法,该方法进一步包括检索第一传感器和第二传感器的测量,并且计算磁结构相对于第一传感器的位置。
本发明的实施例的优点是可获取位置而无需串扰补偿。
在本发明的一些实施例中,方法进一步包括随后校准结果以补偿机械错位。
本发明的实施例的优点是可以使用简单查找表。
在本发明的一些实施例中,方法进一步包括通过使用第一传感器和第二传感器的用于检测磁结构(所述传感器在该磁结构之上)的偶极的测量、同时忽略第二传感器的用于检测第一传感器相对于该磁结构的绝对位置的测量,检测第一轨道的位置。
本发明的实施例的优点是可以使用绝对位置的测量来更新初始测量。
在本发明的一些实施例中,在传感器启动时执行检测偶极的位置和绝对位置,例如作为第一步骤,其中方法进一步包括:通过使用第一传感器的用于检索磁结构(该传感器在该磁结构之上)的偶极的测量,在检测到第一轨道的初始位置之后在后续的测量中忽略第二传感器的信号。优点是该方法可以提供较快的测量。
在本发明的一些实施例中,通过使用第一传感器和第二传感器的用于检测磁结构(所述传感器在该磁结构之上)的偶极的测量、以及用于检测第一传感器相对于磁结构的绝对位置的测量,通过执行第一传感器和第二传感器的测量的线性组合,来执行第一轨道的位置的检测。
在本发明的一些实施例中,计算磁结构相对于第一传感器的位置包括检索由两个轨道产生的磁场的轴向分量和切向分量两者的线性组合。
进一步的优点是,该方法可以提供第二轨道的位置,而无需复杂的计算,这允许重建系统的绝对位置,例如360°的周期内的角位置。
在所附独立和从属权利要求中阐述了本发明的特定和优选方面。来自从属权利要求的特征可以与独立权利要求的特征以及与其他从属权利要求的特征适当地组合,而不仅仅是如在权利要求中明确阐述的那样。
根据此后所描述的(多个)实施例,本发明的这些方面和其他方面将是显而易见的,并且参考这些实施例阐明了本发明的这些方面和其他方面。
附图说明
图1示出了现有技术传感器和作为要测量的目标的可旋转轴。
图2示出了具有多极的三个磁结构或编码器,前两个是角度编码器,而第三个是线性的。
图3至图10示出了不同的传感器设备,包括具有不同分布并且适合于测量磁场的正交分量的多个磁传感器。
图11示出了根据本发明的实施例的用于角位置感测的包括传感器设备和磁结构的感测系统。
图12示出了图11的系统的俯视图。
图13示出了根据本发明的实施例的用于角位置感测的包括传感器设备和磁结构的替代性感测系统。
图14示出了根据本发明的实施例的用于线性位置感测的包括传感器设备和磁结构的替代性感测系统。
图15示出了用于使用如图1或图2所示的现有技术位置感测系统获取目标的绝对位置的信号处理的示意性现有方法。
图16示出了根据本发明的实施例的用于使用根据本发明的实施例的感测系统获取目标的绝对位置的示意性方法。
这些附图只是示意性而非限制性的。在附图中,出于说明性目的,要素中的一些要素的尺寸可被放大且未按比例绘制。
权利要求中的任何附图标记不应被解释为限制范围。
在不同的附图中,相同的附图标记指代相同或相似的要素。
具体实施方式
将就具体实施例并且参考特定附图来描述本发明,但是本发明不限于此而仅由权利要求书来限定。尺度和相对尺度不与本发明实践的实际缩减对应。
此外,说明书中和权利要求中的术语第一、第二等等用于在类似的元素之间进行区分,并且不一定用于在时间上、空间上、以排名或任何其他方式来描述序列。应当理解,如此使用的术语在适当的情况下是可互换的,并且本文中所描述的本发明的实施例能够以与本文中所描述或图示的不同的顺序来进行操作。
此外,说明书和权利要求中的术语顶部、下方等等用于描述性目的并且不一定用于描述相对位置。应当理解,如此使用的术语在适当的情况下是可互换的,并且本文中所描述的本发明的实施例能够以与本文中所描述或图示的取向不同的取向进行操作。
应当注意,权利要求中使用的术语“包括”不应被解释为限定于其后列出的装置;它并不排除其他元件或步骤。因此,该术语应被解释为指定如所提到的所陈述的特征、整数、步骤或组件的存在,但不排除一个或多个其他特征、整数、步骤或组件、或其群组的存在或添加。因此,术语“包括”覆盖其中仅存在所叙述的特征的情况以及其中存在这些特征和一个或多个其他特征的情况。因此,表述“包括装置A和B的设备”的范围不应当被解释成限定于仅由组件A和B构成的设备。这意味着对于本发明而言,该设备中的相关组件只有A和B。
贯穿本说明书对“一个实施例”或“实施例”的引用意指结合该实施例所描述的特定的特征、结构或特性被包括在本发明的至少一个实施例中。因此,短语“在一个实施例中”或在“在实施例中”贯穿本说明书在各个地方的出现并不一定全部指代同一实施例,虽然可以指代同一实施例。此外,在一个或多个实施例中,如通过本公开将对本领域普通技术人员显而易见的,特定的特征、结构或特性能以任何合适的方式进行组合。
类似地,应当领会,在本发明的示例性实施例的描述中,出于精简本公开和辅助对各个发明性方面中的一个或多个的理解的目的,本发明的各个特征有时一起被编组在单个实施例、附图或其描述中。然而,该公开方法不应被解释为反映要求保护的发明要求比每一项权利要求中明确记载的特征更多的特征的意图。相反,如所附权利要求所反映,发明性方面存在于比单个前述公开的实施例的全部特征更少的特征中。因此,具体实施方式之后所附的权利要求由此被明确纳入本具体实施方式中,其中每一项权利要求本身代表本发明的单独实施例。
此外,尽管本文中所描述的一些实施例包括其他实施例中所包括的一些特征但没有其他实施例中包括的其他特征,但是不同实施例的特征的组合旨在落在本发明的范围内,并且形成如将由本领域技术人员所理解的不同实施例。例如,在所附的权利要求书中,所要求保护的实施例中的任何实施例均可以任何组合来使用。
在本文中所提供的描述中,阐述了众多具体细节。然而,应当理解,可以在没有这些具体细节的情况下实施本发明的实施例。在其他实例中,公知的方法、结构和技术未被详细示出,以免混淆对本描述的理解。
在本发明的实施例中,提及“位置感测系统”时,提及的是包括诸如磁结构和传感器设备之类的组件的系统,该传感器设备包括用于检测与移动目标的位置相关联的参数或参数集的传感器,该移动目标赋予在该结构与该传感器之间的相对运动。这些传感器可以包括感测元件,该感测元件提供与所检测的一个参数或多个参数成比例的信号(例如,电信号)。参数可以例如是磁场的分量。因此,位置感测系统提供可被处理以获取目标位置的信号。这些信号可由处理器处理,处理器例如微电子处理器、单片集成微处理器等。在本发明的框架中,位置传感器可被定义为与用于对系统的信号进行处理的处理器相组合的位置感测系统。
本发明涉及用于测量目标的位置的位置感测系统。图1示出了现有技术位置传感器10,包括集成在芯片11中的一个或多个磁场传感器、以及磁结构12,从而形成感测系统13,其中该传感器或该结构中的一个与目标一起移动,而另一个保持固定。在图1的示例性传感器10中,目标是轴20,轴20围绕其轴线21旋转,并且磁结构12(诸如盘)附接至与其一起旋转的轴20,而芯片11是静止的。例如,它可附接至壳体(未示出)。该传感器和该结构的相对位置可通过测量磁结构12所产生的磁场、以及所述磁场在传感器芯片11的位置处的变化来测量。传感器可测量场的极性(南或北)以及通量,其指示该位置距离特定极的中心有多近或者距离与另一极的边界有多近。传感器可包括用于测量向量场的不同磁分量的若干感测元件,因而改进定位。来自传感器芯片11的信号可由处理器14处理,处理器14可基于在传感器芯片11的位置处感测到的场来计算磁体的位置。
本公开可应用于相对于固定传感器的移动磁结构或应用于静态磁结构以及相对于磁结构移动的传感器。
例如,在用于感测角位置的感测系统的情况下,具有简单偶极磁体和磁感测元件的常规旋转编码器可提供绝对角位置,这是因为场的取向和值两者都由磁感测元件测量,并且这些相同的参数配置每一整转便重复。因此,测量将给出在一转(360°)内的准确角度。
然而,最先进的位置传感器中的分辨率被限制为0.02°或14位,并且随着温度而变化的角度准确度为约0.3度,包括温度漂移、信噪比、定位误差等。此限制由磁体和磁传感器的相对机械定位以及由信噪比所造成。使用多极磁体(包括多个偶极(例如,各自具有北极和南极的多个偶极))是提高分辨率和角度准确度的可获得解决方案。下文会将多极磁体简称为“多极”。在多极中,每个偶极覆盖结构的一部分(例如,360°全旋转的细分),从而使场可随着运动而更多变化,因此提高了磁传感器的准确度。以这种方式,如果保持两个信号的场强,则可通过所应用的极对的数量来直接地提高准确度的分辨率。因此,对于8个极对,准确度可以提高到8倍。
另一方面,通过使用多极方法,关于绝对位置的直接信息丢失,这是因为极对在每个细分都重复。尽管在该细分或角度扇区(例如,针对8个极对的45°扇区)中准确测量了角度,但是仅根据多极,无法标识角度扇区。
为了克服这个问题,现有系统使用由两个磁轨形成的复合磁结构。如本文所使用的,作为磁源的一部分的术语“轨道”在谈论角位置传感器系统时通常指环形或环状或圆柱形对象,而在谈论线性位置传感器系统时通常指束形对象。
磁结构包括第一轨道或主轨道、以及第二轨道(也称为诺纽斯(nonius)轨道)。主轨道是具有预定数量偶极的多极,且诺纽斯轨道是具有与主轨道不同数量的极对的多极(通常极对较少)(准确度不如主轨道那么关键,因此可简化设计)。由每个轨道所产生的场由相应的磁传感器感测。通过组合所测量的信号,可检索一个360°转内的角位置。每个轨道的极对的数量及其差异可被适配,以便优化角位置的计算。例如,考虑到主轨道具有n个极对,诺纽斯轨道通常具有n-1个极对,但是在常见设计中以及也在本发明的一些实施例中具有多于一个偶极。值得注意的是,诺纽斯轨道和主轨道包括相同类型的磁性材料,且具有基本上相同的大小,因此磁通量基本上相同。由第一传感器和第二传感器感测的场强或磁通量上的差异是由于极沿着磁结构的相对位置不同而导致的,这是因为主轨道和诺纽斯轨道的极的数量不同。因此,在现有技术中,主轨道和诺纽斯轨道中的极的通量基本上相同。
这些轨道的示例如图2所示。顶部磁源30是包括位于单个平面中的两个同心轨道的结构,用于角位置传感器。磁传感器设备31可以布置在此平面的上方或下方。在示例中,第一轨道32由具有五个极对的外环形成,并且第二轨道33由具有四个极对的内环形成。这些环优选是轴向磁化的。当传感器和源30之间存在相对旋转运动时,对于每一旋转,传感器设备31用内轨道传感器感测八个极,并且用外轨道传感器感测十个极。
中间的图示出磁结构40,包括具有相同半径的两个圆柱轨道42、43和布置为卫星的传感器设备41,传感器设备41可围绕这些圆柱轨道移动(或在传感器设备41保持固定的情况下,圆柱绕其中心而垂直于轴向方向A旋转)。
最下方的图示出用于线性位置传感器的磁结构50,磁结构50包括位于单个平面中的磁传感器设备51和两个平行的线性轨道52、53,传感器设备51布置在此平面的上方或下方。第一轨道52可由具有五个极对的第一多极磁体形成,并且第二轨道53由具有四个极对的第二多极磁体形成。这些磁体优选地在高度方向H上被磁化。当磁感测系统和磁结构之间在纵向方向L上沿所述结构存在相对运动时,如前所述的感测系统将感测第一轨道的五个N极和五个S极,以及第二轨道的四个N极和四个S极。
如上所提及,磁传感器设备包括用于相应轨道的第一传感器和第二传感器,并且这些传感器提供至少两个不同方向上的磁场测量。例如,每个传感器适于提供至少两个不同方向上的磁场的测量。例如,每个传感器设备包括至少两个磁感测元件,第一传感器的元件被配置用于在第一磁轨之上的第一传感器位置(P1)处测量至少两个第一正交磁场分量(通常被称为By1、Bz1),并且第二传感器的元件被配置用于在第二传感器位置(P2)处测量至少两个第二正交磁场分量(通常被称为By2、Bz2)。
下面,参照图3至图10来阐释若干磁传感器设备。注意到,Z方向遵循从传感器到磁结构的方向。这对应于共面角磁结构中的轴向方向,并且对应于堆叠圆柱形磁结构情况下的径向方向。
图3示出了传感器设备820a的示意表示,其中在位置P1、P2处的第一磁传感器和第二磁传感器沿着X轴在预定义距离Δx上间隔开。每个传感器包括四个水平磁感测元件,诸如布置在集成磁通集中器IMC1、IMC2周边附近的霍尔元件H1-H4。可在各个位置P1、P2处测量三个正交磁场分量Bx、By、Bz,如公开物EP3650816A1中更详细描述的。分量是从来自不同元件的信号的差分或相加获取的(诸如Bx1与H1-H3的信号的差分成比例)。因此,传感器设备820a具有八个磁感测元件,该八个磁感测元件能够测量两组三正交磁场分量,即第一传感器位置P1处的(Bx1,By1,Bz1)和第二传感器位置P2处的(Bx2,By2,Bz2)。
图4示出了包括两个磁传感器的另一传感器设备,各个磁传感器在预定义距离Δx上间隔开,每个传感器包括一结构,该结构包括一个水平霍尔感测元件(用于测量Bz)和两个垂直霍尔感测元件(一个用于测量Bx,并且一个用于测量By)。因此,磁传感器设备820b也能够测量三个正交磁场分量,即第一传感器位置P1处的(Bx1,By1,Bz1)和第二传感器位置P2处的(Bx2,By2,Bz2)。
图5中的传感器设备也包括在预定义距离Δx上间隔开的两个传感器,每个传感器包括一结构,该结构仅包括两个水平霍尔元件,该两个水平霍尔元件布置在IMC盘的相对侧上,并且位于垂直于X轴的虚拟线上。每个传感器结构能够在传感器位置P1、P2中的每一者处测量两个正交分量By、Bz。此传感器设备有利地仅需要四个水平霍尔元件而不是八个。
图6示出了包括两个磁传感器结构的另一传感器设备,该两个磁传感器结构在预定义距离Δx上间隔开,每个传感器结构包括一个水平霍尔元件和一个垂直霍尔元件。每个传感器结构能够测量两个正交分量By、Bz。它不需要集成磁通量集中器,因此可更易于生产。
由于可使用两个正交分量来检索绝对位置,因此提供两个正交分量的这些类型的传感器便足够。
图7示出了图3的变体,而图8示出了图4的变体。图7和图8的传感器设备各自包括在X方向和Y方向上间隔开的四个传感器,而不是仅两个传感器。这些设备不仅能够测量P1处的三个正交分量(Bx1、By1、Bz1)和P2处的另外三个正交分量(Bx2、By2、Bz2),而且还能够确定Bx、By和Bz在两个传感器位置P1、P2处的空间梯度为dBx/dy、dBy/dy、dBz/dy。
虽然设置更复杂,但是梯度信号是有用的,因为它们对外部干扰场高度地不敏感,并因此整体角位置也将对外部干扰场高度地不敏感。
然后可以将梯度信号dBy/dy和dBz/dy转换为两组异相(quadrature)信号,例如使用一组具有相对少量的系数(例如预定义的系数)的线性或多项式等式,该系数可(例如,在组装后)通过模拟或通过测量来确定。系数可以存储在非易失性存储器中,例如存储在诸如微电子处理器等的处理单元中。然后可以基于异相信号的反正切函数计算相对于内环的第一角度α1和相对于第二环的第二角度α2。
需要注意的是,获取梯度信号是可选的;例如,在图3到图6中,两个分量(例如By和Bz)可能是异相的,并且不需要梯度信号。
图9是图7的传感器设备的简化图,其中X方向上的分量和梯度dBx/dy不是针对每个传感器获得的。它类似于图5的传感器设备,进一步能够测量磁场梯度信号dBy/dy和dBz/dy。类似地,图10是图8的传感器设备的简化图,其中X方向上的分量和梯度dBx/dy不是针对每个传感器获得的。它类似于图6的传感器设备,进一步能够测量磁场梯度信号dBy/dy和dBz/dy。
从功能上讲,图3、图5、图7和图9的传感器设备分别类似于图4、图6、图8和图10的传感器设备。
多轨道构思具有的缺点是在由第一轨道和第二轨道所产生的磁场之间存在相当大的重叠(或串扰)。在与磁结构和传感器之间建立的方向或Z方向平行的分量中,串扰较低,但在与Z方向正交的场分量中,串扰通常要高得多。为了解决这个问题,现有技术的轨道和传感器位置必须彼此充分隔开以允许单独读取,因此每个传感器都可从其相应的轨道以低串扰获得信号。这可能需要使用若干传感器平台或使用大型半导体芯片,这是昂贵的。替代性地,可通过计算校正串扰。
信号处理将在下面的示例中更深入地讨论。一般而言,每个传感器适于测量具有不同方向的场分量,例如在相应的轨道附近的场的两个正交场分量。因此,从场获得四个信号(从每个传感器位置获得两个信号),但是来自每个轨道旁边的传感器的读数会受到来自其他轨道的串扰的影响。数学校正需要解决线性回归问题。这可针对每个轨道提供两个异相分量。由此,可获得主角度和诺纽斯角度,该主角度和诺纽斯角度被再次组合以提供未校准的绝对角度。可提供最终校准以消除磁体中的诸如机械错位或瑕疵之类的非线性。
然而,该方法需要复杂的数据处理,这是因为主角度以及诺纽斯角度只可通过所有四个输入信号的连续线性组合来重建。另外,用于主角度的系数将仅对精确校准位置有效。如果发生轻微错位,则将在经校准角度中引入误差。
本发明提供了一种系统和传感器以及一种位置感测的方法,其减少了由主轨道产生的场和由诺纽斯轨道产生的场之间的串扰。这是在不需要分离感测元件的情况下完成的,因此磁感测系统可安装在相当小的芯片中,从而降低成本。这是通过适配磁结构来提供的,其中主轨道产生比诺纽斯轨道强得多的磁场,例如是至少两倍强。因此,第一传感器检测由较强的第一磁轨产生的场,而由第一传感器检测到的较弱的第二磁轨对该磁场的贡献可被忽略。为了确定精细角度,一旦获得诺纽斯轨道的位置,就不需要在线性组合中使用四个输入信号来获得精细角度,因此该感测对错位较不敏感。在运动期间不需要复杂的计算,仅在感测系统“启动”时需要复杂的计算。
可以以不同的方式来实现其中主轨道产生比诺纽斯轨道强得多的场的磁结构。主轨道中的极可能在物理上较大。然而,本发明不限于此,并且主轨道和诺纽斯轨道的大小可为相似的(诸如图2所示的结构),但是在主轨道中提供的极由与诺纽斯轨道中的极不相同的磁性材料制成(或者极的大小和材料两者都可以不同)。
在第一方面,本发明提供了一种感测系统,该感测系统包括具有主轨道和诺纽斯轨道的磁结构、以及用于测量接近每个轨道的场的相应传感器。该磁结构被适配以使得第一传感器感测大部分主轨道的磁场,使得忽视来自诺纽斯轨道的场不会影响测量的准确度。至少两个传感器可被设置在相同的传感器芯片中。该磁结构在360度上不是旋转对称的(换句话说,该磁结构具有1重旋转对称性,因此只有在360度旋转后场才相同)。例如,主轨道和诺纽斯轨道具有不同数量的极,使得场有1重对称性,通常主轨道具有比诺纽斯轨道更多的极(例如多一个极)。
在一些实施例中,如前所解释的,每个传感器适于提供磁场的正交分量的测量。在一些实施例中,至少两个传感器可被包括在参考图3至图10所讨论的磁传感器设备中的任一个中。这些附图示出了可用于本发明的实施例中的传感器设备的各种示例,但本发明不限于此,并且还可使用其他传感器结构,例如包括磁阻元件的传感器结构。
传感器之间的预定义距离Δx可以是在约1.0mm至约3.0mm的范围内的值,例如约1.5mm至约2.5mm,例如等于约2.0mm。两对传感器之间的预定义距离Δy可以是在约0.5mm至约3.0mm的范围内的值。如上文所提及的,Δy(Δy将在磁源的周向方向上定向)可大于或小于Δx(Δx将在磁源的径向方向上定向)。
感测系统的磁结构实现更好且更简单的方法,因为主轨道提供更强的磁场,例如是诺纽斯轨道的两倍或三倍高、或甚至5倍或10倍高。这允许在第一传感器处(在面向主轨道的位置P1处)串扰较小。
利用这些磁传感器之间的小距离的约束(例如两个传感器都被设置在相同的传感器设备(例如,芯片)上),第一磁传感器和第二磁传感器的相对定位可以被优化以用于减少串扰。通常,第一传感器与诺纽斯轨道之间的距离应大于第二传感器与诺纽斯轨道之间的距离。
在一些实施例中,第一传感器另外地相比于靠近诺纽斯轨道而言更靠近主轨道。在本发明的一些实施例中,第一传感器的顶部投影与主轨道重叠,并且第二传感器至少处于距主轨道和诺纽斯轨道两者相同的距离,优选地,第二传感器相比于靠近主轨道而言更靠近诺纽斯轨道。第二传感器的顶部投影可与诺纽斯轨道重叠,替代性地,第二传感器的顶部投影可与主轨道和诺纽斯轨道之间的非磁性材料的间隙重叠。本发明不限于这些配置,并且第二传感器的顶部投影可以与主轨道重叠。在一些实施例中,第一传感器与第二传感器之间的中点的顶部投影不与诺纽斯轨道重叠。
具有这种感测系统的位置传感器在测量期间以较少的计算负载提供位置感测,如将在下文中可见的。
在一些实施例中,主轨道的每个磁偶极提供磁场,在该磁场中所测量的分量是诺纽斯轨道的磁偶极中的每一个的至少两倍高。
可针对相对于其他轨道基本上在相同位置处(例如,于相似气隙处在磁极的中心上方和轨道的中心线上(在此处Bz最大),或于相似气隙处在轨道中心线上的两个相对极之间(在此处Bx最大))的每个轨道,对磁场(例如通量范数的最大值)进行比较。替代性地,也可考虑相似气隙处位于每个轨道上方的任何位置的通量范数的最大值。由于极的大小、极的磁性材料或这两者,主轨道的磁场更大(至少两倍大)的事实取决于磁轨本身,而不是根据传感器等的放置。在一些实施例中,气隙可以是至少0.3mm,大至5mm。
例如,可在相对的传感器位置处比较每一个轨道的场。第一传感器的位置P1比第二传感器的位置P2离诺纽斯轨道更远。在第一传感器的位置P1处从诺纽斯轨道产生的磁通量可为在第二传感器的位置P2处从主轨道产生的磁通量的值的至少一半至十分之一,例如至少一半、或三分之一、或四分之一、或五分之一、或六分之一、或十分之一。与之相对,在现有技术中,这些值基本相等。效果是,即使在第二位置P2处串扰可能增加,第一位置P1处的串扰也会减少。令人惊讶的效果是,绝对位置的总体确定得到改善,而不是使串扰变化相互抵消或者甚至恶化对绝对位置的确定。
利用适当的适配,本发明可应用于线性系统或可旋转系统。在下文中,将参考适于测量旋转系统的角位置的感测系统来解释本发明的细节。例如,主轨道和诺纽斯轨道是可绕公共旋转轴旋转的同心轨道,因此可以获得旋转系统的位置,例如旋转系统(诸如转子)的角位置。
在一些实施例中,主轨道和诺纽斯轨道是矩形环面。
在一些实施例中,主轨道和诺纽斯轨道是轴向磁化的共面轨道。传感器可放置在轨道上方或下方、在与轨道平行的平面内,因此场的Z分量为轴向方向。例如,传感器芯片可包括所有传感器,例如传感器可与平行于轨道的芯片单片集成。以此方式,轨道相对于传感器的旋转运动被检测为变化的磁场及其定向。
具体而言,由于实际原因,诺纽斯轨道可被主轨道封围,因为诺纽斯轨道通常比主轨道小(具有较少数量的极对)。
如前所述,主轨道提供比诺纽斯轨道高得多的磁场,例如,对于场的至少两个分量(例如场的两个正交分量),最大磁通密度是2倍大,例如是3或6倍大。在一些实施例中,主轨道由磁化大于诺纽斯轨道的磁性材料制成。可设想许多组合,例如用于主轨道的钕基磁体,在诺纽斯轨道中有铁氧体磁体。在一些实施例中,两个轨道可包括具有不同磁性材料含量的钕基合金。例如,第一轨道可包括高含量的FeNdB或几乎全是FeNdB,而第二轨道包括塑料基质中的FeNbB(也称为塑料粘接磁体),因此第二轨道的磁性材料含量以及最终强度降低。磁结构的配置可如图2所示的实施例中那样,适配极的磁性材料,以使得主轨道中的极比诺纽斯轨道的极强得多(提供更高的磁通量)。
替代性地或附加地,磁体的相对大小和几何形状可适于获得期望的效果。例如,在至少一个维度中,主轨道可包括比诺纽斯轨道更大的磁体。例如,如图11的本发明实施例所示,磁结构100的轨道101、102可具有相同的厚度并由相同的材料制成,这在可旋转系统中提供了机械优势(例如,当磁结构可移动时的均匀分布),但是第一轨道或主轨道101具有的宽度是共面诺纽斯轨道102的宽度的至少两倍,例如是共面诺纽斯轨道的宽度的三倍,例如是共面诺纽斯轨道的宽度的至少六倍。本发明不限于此,且主轨道中的极的形状、大小和材料均可与诺纽斯轨道中的极不同。
图11示出了具有8个极对103的主轨道101,其中每个黑色区域是N极或S极。诺纽斯轨道102具有7个极对104,其中磁体比主轨道的磁体小得多。当该磁结构在垂直于轴A的平面中围绕其中心转动时,位于主轨道和诺纽斯轨道旁边的位置P1、P2处的传感器分别获得主轨道101的极对103的信号和诺纽斯轨道102的极对104的信号。例如,第一传感器的位置P1可与第一轨道重叠。例如,第二传感器的位置P2可以不与第二轨道重叠,例如,第二传感器的位置P2可穿过第一轨道和第二轨道之间的相邻区域,例如,如图11所示,第二传感器的位置P2可与无码区域108重叠。第二传感器的位置P2可至少距两个轨道相同距离,更靠近诺纽斯轨道;第二传感器的位置P2可与诺纽斯轨道重叠。位置P2也可与主轨道重叠。这不限于图11的平面几何形状,而是可至根据本发明的实施例的任何其他磁结构几何形状。应注意,重叠方向遵循相应传感器到磁结构的距离。在图11的情况下,重叠是在俯视视角上。
由于对于主轨道而言磁体要大得多,所以可以忽视诺纽斯轨道中的磁体(极对104)的信号。如前所述,由传感器感测的轴向分量和切向分量的磁通密度对于主轨道来说可为诺纽斯轨道的两倍,例如,针对所述分量的最大磁通密度,或主轨道在第二传感器的位置P2处的场与诺纽斯轨道在第一传感器的位置P1处的场相比较。这可应用于磁轨的其他配置以及磁场的不同分量。
例如,第一轨道具有的面积是第二轨道的五倍大,例如20倍大,例如10倍大。通常,第一轨道可以例如是第二轨道5倍至50倍大,例如10倍至30倍大。图12是具有特定测量的图11的磁结构的俯视图。尽管如此,也可以使用其他参数、尺寸和几何形状。示出传感器设备105,传感器设备105被放置成从主轨道获得大信号,其中第一传感器和第二传感器被放置在位置P2处,使得其Z方向不与主轨道相交。
本发明不限于共面设置。例如,可使用如图13的实施例所示的圆柱形设置,其中结构200的轨道是在轴向方向(A)上堆叠的环。例如,主轨道201的厚度(在轴向方向上)可以大于诺纽斯轨道202的厚度。如前所述,可以调整尺寸以获得由轨道产生的磁场的期望比率。例如,特别是对于相对于传感器设备205的传感器的相关组件而言,主轨道的磁性材料可以比诺纽斯轨道的磁体更强,具有更高的最大磁通密度。传感器设备205坐落成使得传感器设备205感测轨道的周边,其中第一传感器靠近主轨道201,并且第二传感器远离主轨道201、接近诺纽斯轨道202。如图11,第一传感器可与主轨道重叠(在图13情况下的侧视图上,跟随传感器设备205和磁结构200之间的距离,在这种情况下是径向的),并且第二传感器可位于无码区域上,或在距两个轨道的相同距离处,优选地更靠近诺纽斯轨道,例如与诺纽斯轨道重叠)。在某些空间约束下,传感器设备在感测系统一侧上的这种定位可为理想的。
图14还示出用于线性位置测量的线性感测系统的示例性实施例,其中磁结构300包括平行的第一线性轨道301和第二线性轨道302,其中偶极分布和传感器设备305如参考图2的最下方的图所限定的那样地放置。
在这些附图中,复合磁结构的轨道的宽度在共面轨道中限定在径向方向R上,在堆叠的圆柱形轨道中限定在轴向方向A上,并且在线性轨道中限定在横向方向T上。
为了使主轨道和诺纽斯轨道示出所需的磁场及其比率,在图11、图13和图14的实施例中,主轨道的宽度是诺纽斯轨道的宽度的至少两倍大,例如是诺纽斯轨道的宽度的至少三倍(例如,六倍)大。然而,如前所述,本发明不限于此,并且可适配主轨道的磁性材料,或者可提供其他几何形状(例如,不同的厚度),以提供所期望的磁场配置。
在所有这些示例中,测量第一传感器和磁结构之间的相对位置。例如,待测量其位置的移动目标与第一轨道和第二轨道共同地移动,例如,移动目标可以附接到彼此固定的轨道和/或附接到固定至该移动目标的轨道,并且磁感测系统是固定的,类似于图1中的系统(由根据本发明的实施例的感测系统代替磁结构12和传感器设备或芯片11)。替代性地,磁结构是静态的,并且磁感测系统与目标共同地移动(例如附接到目标)。例如,它可以是附接到目标的芯片。在任何情况下,主轨道和诺纽斯轨道都不会相对于另一个轨道移动。在本发明的实施例中,磁结构是其中轨道彼此固定的磁性件。在本发明的一些实施例中,结构包括第一轨道和第二轨道之间的间隙。间隙可以用非磁性材料填充。间隙的存在减少了磁结构之间的串扰。
气隙可定义为传感器和轨道之间的最短距离,例如包含轨道表面的平面。该平面可以与图13的圆柱形设置的弯曲表面相切,或者在图11和图14的平面轨道的情况下,与面向传感器的轨道的平面相切。系统被布置成使得传感器与包含轨道表面的平面共面且平行,因此针对每个传感器的气隙可以基本相同。气隙可以在约0.3mm至约5.0mm的量级,例如在0.8mm至3mm之间。
在另一方面,本发明提供了一种包括根据本发明的第一方面的实施例的位置感测元件的位置传感器。该位置传感器进一步包括可以耦合到感测系统的处理装置,诸如处理单元或处理器。例如,处理器可以是可连接到或被连接到磁传感器的信号输出的外部模块。处理器可以被包括作为与磁传感器一起的组成部分,例如,磁传感器和处理器可以被单片集成在相同的芯片中,等等。然而,这不是必需的,并且该处理可由传感器设备外部(例如物理上在感测系统外部)的外部处理器、微处理器或微控制器来完成。
图12示出了根据本发明的实施例的这种位置传感器400,位置传感器400包括感测结构和适于处理来自传感器设备105(例如传感器芯片)的信号的处理装置106。这种处理装置例如可以是处理器(例如与传感器设备105的传感器相连接的微电子处理器),该处理器可包括计算能力、可编程性、存储器(例如用于查找表的)等。处理装置106可以是单独的模块,或者处理装置106可以与传感器设备105单片地集成。
在本发明的一些实施例中,处理单元可包括用于输出单元107(例如存储器、显示器、接口等)的连接。例如,输出单元107可包括耦合或连接到处理装置106的控制器,因此该控制器可从处理器接收信号并相应地控制设备,例如该控制器可根据安装在所述电机中的位置传感器的反馈来控制使磁结构100所附接的目标移动的电机的供电。然而,本发明适用于其他功能和设备。
在本发明的一些实施例中,处理装置106(例如处理单元)还可包括内部存储器和/或连接,以从表格(例如LUT)检索信息,例如用于校准位置传感器。
在一些实施例中,处理单元(例如处理器)可以适于在感测系统启动时(例如当感测系统的传感器被上电时)使用第一传感器和第二传感器的测量来执行计算。这导致第一绝对位置。在传感器启动之后,处理器可适于随后处理来自第一传感器的信号,而忽视来自第二传感器的信号。所获得的经处理信号用于更新在启动时获得的位置信息,由此提供随后的绝对位置。处理器可适于周期性地地重复该过程,仅处理来自第一传感器的信号(因此,忽视来自第二传感器基于诺纽斯轨道的信号),并更新先前获得的绝对位置的信息,由此利用每次周期性测量更新绝对位置。使用两个传感器的输入的复杂计算有利地仅需要在位置传感器启动(或激活)时进行一次。
处理器包括触点或输入,以接收来自第一传感器和第二传感器的信号,并处理所述信号以提供位置传感器。信号处理可以根据下面讨论的方法进行。
在进一步的方面中,提供了一种用于位置测量的方法。测量目标的运动包括将要测量的运动与磁结构(包括第一多极磁轨和第二多极磁轨)相对于第一传感器和第二传感器的相对运动相关联,如前所述。该方法可包括提供主轨道,主轨道处的磁场通量是诺纽斯所产生的磁场的通量的至少两倍。该方法包括使用第一传感器读取与第一轨道(或主轨道)相邻的第一位置处的磁场,由此获得第一信号。例如,第一传感器可以放置得比靠近诺纽斯轨道而言更靠近主轨道。该方法包括使用第二传感器读取第二位置中的磁场,由此获得第二信号,第二位置不与主轨道重叠,例如第二位置与第二轨道(或诺纽斯轨道)相邻。第二传感器可以放置得比靠近诺纽斯轨道而言更靠近主轨道。
该方法可以包括使用磁传感器设备,例如使用包括第一传感器和第二传感器的传感器芯片。该方法包括使用第一轨道和第二轨道,该第一轨道和第二轨道具有不同数量的极并且一起共同地移动(两者具有相同的速度以及运动方向)。在一些实施例中,该方法可以包括使用根据本发明的第一方面的感测系统,并用处理器处理传感器信号。包括信号处理的方法步骤可以在处理器中以算法实现。
该方法包括使用来自第一传感器和第二传感器的信号来获得象限信息,或者换句话说,与目标的哪个分区(例如,360°中的哪个分区,例如,对于八偶极多极来说,八个45°象限中的哪一个)正面向传感器有关的信息。这提供了关于磁结构一般位置的粗略信息。该方法包括仅使用第一传感器的信号来获得象限上的准确位置(例如角度)。组合粗略信息和准确位置信息,可准确地检索磁结构的绝对位置(例如绝对角度)。
图15是包括主轨道和诺纽斯轨道的信号处理方案。在传感器位置处测量在磁结构与传感器之间的方向上的磁分量、以及正交分量。在此特定实施例中,可假设使用共面磁结构,由此感测轴向分量Mx和切向分量Mt。由适于分别感测场的轴向分量和切向分量的至少两个感测元件提供轴向信号和切向信号。
第二传感器在与诺纽斯轨道相邻的位置处提供类似的测量(信号),该位置相比于靠近主轨道来说更靠近诺纽斯轨道。可针对轴向信号Nx和切向信号Nt如前所述那样地进行针对第二传感器的类似讨论。
在第一实例中,可考虑在任一传感器的位置处由主轨道产生的磁场与由诺纽斯轨道产生的磁场之间的串扰,因为传感器彼此定位得非常靠近,例如在一个芯片上,例如集成在单个芯片中。如前所述,分离传感器是可能的,这可能会带来新的问题。如果传感器位于单个芯片(例如半导体芯片)上,则在经济上是有利的。
异相(quadrature)分量可作为不同的测得分量(例如轴向分量和切向分量)的线性组合而从测量中获得。
在本发明的实施例中,信号之间的异相源自以特定距离间隔开的敏感元件,而不是源自正交分量或梯度。在一些实施例中,敏感元件可与相应极距的一半相匹配。例如,如果使用在主轨道上以极距的一半间隔开的两个Bz感测元件,以及在诺纽斯轨道上也以极距的一半间隔开的另两个Bz感测元件(四个Bz感测元件),则即使感测到单个分量(在两个位置而不是一个位置被感测),每对中的信号也将是异相的。
主轴向信号Mx和主切向信号Mt可分别被写为场分量Ba_主、Bt_主,并且对于诺纽斯信号Nx、Nt同样可写为Ba_诺纽斯、Bt_诺纽斯
1)Sin(Npp*x)=A1*Bt_主+A2*Ba_主+A3*Bt_诺纽斯+A4*Ba_诺纽斯
2)Cos(Npp*x)=A5*Bt_主+A6*Ba_主+A7*Bt_诺纽斯+A8*Ba_诺纽斯
3)Sin((Npp-1)*x)=A9*Bt_主+A10*Ba_主+A11*Bt_诺纽斯+A12*Ba_诺纽斯
4)Cos((Npp-1)*x)=A13*Bt_主+A14*Ba_主+A15*Bt_诺纽斯+A16*Ba_诺纽斯
主轨道具有预定数量Npp个极,而诺纽斯轨道具有比主轨道少一个的极(Npp-1个极)。前两个组合1)、2)是主轨道的异相分量(Sin和Cos),并且所述分量包括第二传感器(对应于诺纽斯轨道)的串扰分量。另外两个组合3)、4)是诺纽斯轨道的分量,也包括由于上述串扰而产生的来自第一传感器的测量的分量。
因此,从所有四个信号的线性组合LC中获得主轨道角度MALC作为分量1)、2)。还从所有四种信号的线性组合中获得诺纽斯角度NA作为分量3)、4)。通过将主角度MA与诺纽斯角度NA组合来获得主极计数器MPC。它提供与该结构的扇区(传感器正在从该扇区接收磁场)相关的信息。例如,在该角度在0°和360°之间的范围内的情况下,再次将MPC与MALC组合递送了(未校准的)绝对位置UA1。可应用(例如使用查找表LUT的)最终校准CAL补偿机械不规则性或磁不规则性,由此获得绝对角度ABS。需要对传感器所获得的每个连续测量进行线性回归操作和进一步的计算,例如,周期性地每隔零点几秒进行一次。这是计算密集型的操作,它减慢了位置检测。然而,校准和回归可仅进行一次,并且然后由第一传感器所提供的测量可简单地用于更新位置信息。换言之,由于最初使用诺纽斯位置来获得象限,所以可以在相对运动指示从一个象限传到另一个象限之后更新象限的信息,这可通过第一轨道上的测量来跟踪。
在本发明的实施例中,主轨道相对于诺纽斯轨道的磁配置导致具有比来自诺纽斯轨道磁场的串扰低得多的串扰的来自第一传感器的信号。这允许忽视第二传感器的测量。通过本发明实现了这种简化,并且可通过信号处理以不同的方式来执行这种简化。
在一些实施例中,如先前所示进行线性回归以用于获得绝对角度。然而,本发明允许在该计算中忽视来自第二传感器的信号(诺纽斯信号)。例如,图16是根据本发明实施例的方法的方案。如前所述,第一传感器提供两个正交信号Mx、Mt,该两个正交信号Mx、Mt对应于在相比于靠近诺纽斯轨道而言更靠近主轨道的位置处的场。第二传感器提供两个正交信号Nx、Nt,该两个正交信号Nx、Nt可对应于与第一传感器的正交信号相同的取向。这些是由在相比于靠近主轨道而言更靠近诺纽斯轨道的位置处的场所产生的。
然后,如前所述,从这些信号中获得线性回归,从而形成如前所示的一组四个等式。
然而,在本发明的实施例中,主轨道的前两个等式1)、2)的计算不需要使用来自第二传感器的测量。这由图16中的阴影线箭头指示。在前面所示的具有等式1)、2)、3)、4)的特定算法中,系数A3、A4、A7、A8被设置为0。
换句话说,使用如本发明实施例中的结构允许了以下简化:
1)Sin(Npp*x)=A1*Bt_主+A2*Ba_主
2)Cos(Npp*x)=A5*Bt_主+A6*Ba_主
3)Sin((Npp-1)*x)=A9*Bt_主+A10*Ba_主+A11*Bt_诺纽斯+A12*Ba_诺纽斯
4)Cos((Npp-1)*x)=A13*Bt_主+A14*Ba_主+A15*Bt_诺纽斯+A16*Ba_诺纽斯
然而,应当注意,第二传感器的线性回归仍然可受到更强主轨道的串扰的严重影响,因此在计算中可考虑来自第一传感器的信号(等式3)和4))。
通过计算相应的修正Arctan函数,从Sin和Cos中获得主角度和诺纽斯角度。
在求解线性回归以获得主角度MA和诺纽斯角度NA之后,可获得主极计数器MPC和未校准角度UA:
MPC=int(MA-NA-MA/Npp)
UA=MPC*360/Npp+MA/Npp
可例如通过计算或使用LUT来提供最终校准CAL,以消除磁体中的诸如机械错位或瑕疵之类的非线性,由此提供经校准的绝对角度ABS。LUT中使用的点的数量等于16*Npp,作为分辨率和校准点数量之间的有用权衡。然而,可使用其他数量的点,例如在4*Npp和32*Npp之间。这些等式可被周期性地求解。
这些特定的等式和算法例示了本发明对信号处理的影响,然而,本发明不限于这些特定算法或场的特定正交分量来提供位置的测量。
例如,代替轴向分量和横向分量,可使用不同的分量,诸如径向分量和横向分量。例如,若使用诸如图13所示的轨道那样的堆叠轨道,则可能是这种情况。对于如图14所示的感测系统的线性实施例,分量也可以是高度H方向和线性L方向上的分量。在这种情况下,可使用不同的算法,但是第二传感器的读数仍然只能在测量轨道中特定偶极的位置(主极计数器)时使用,并且在测量相对于该特定偶极的位置(绝对位置)时可忽视。
在一些实施例中,在感测系统启动时从第一传感器和第二传感器获得主极计数器(开始时的主极计数器,MPCS)。例如,这可通过遵循如前所示的简化的线性回归计算来实现。一旦这在启动时已完成,则随后的测量仅需来自第一传感器的信号。由于初始测量允许确定第一传感器正在从中感测出磁场的扇区(区分出极),并且由于诺纽斯轨道的影响是可忽略不计的,因此可使用来自第一传感器的进一步的准确测量来简单地更新操作中的主极计数器(MPCO),而无需再次根据所述线性回归来计算MPC。如图16所示,对于更新MPCO,不需要使用来自第二传感器的信号直到可能的下一次启动为止,或者可能在例如若干转之后重新调整MPC,以再次确定或验证影响传感器的磁结构扇区的位置。
在一些实施例中,在目标移动的同时执行感测系统的启动。例如,诸如电机(包括本发明的传感器)之类的设备可以正在旋转,并且方法可以通过在电机正在运行时在启动时(当打开传感器时)获得主角度和诺纽斯角度来执行。在一些实施例中,绝对位置的测量(包括考虑来自第二传感器的信号)可以在设备的正常运动开始之前、在例如发动机的运动开始之前执行。
本发明提供了来自主轨道的精确测量,其限定了总体测量精度。来自诺纽斯通道的测量不需要那么精确,因为该测量只用于区分绝对位置。在第二位置处的测量(将第二传感器用于诺纽斯轨道)可容纳来自主轨道的一些串扰。

Claims (15)

1.一种用于感测位置的感测系统,包括:
-用于产生磁场的第一磁轨和用于感测磁场的第一传感器,所述第一磁轨包括第一数量的多极;
-用于产生磁场的第二磁轨和用于感测磁场的第二传感器;
所述第一磁轨和所述第二磁轨彼此牢固地固定,从而形成磁结构;
其中,所述第一传感器接近所述第一磁轨定位,相比于靠近所述第二磁轨而言更靠近所述第一磁轨,并且所述第二传感器接近所述第二磁轨定位,其中所述第一传感器和所述第二磁轨之间的距离大于所述第二传感器和所述第二磁轨之间的距离,其中由所述第一磁轨和所述第二磁轨产生的磁通密度遵循2或更高的比率。
2.如权利要求1所述的感测系统,其特征在于,所述轨是绕公共旋转轴能旋转的同心轨道。
3.如权利要求2所述的感测系统,其特征在于,所述轨是共面轨道,其中所述第二轨由所述第一轨封围,其中所述第一轨具有第一预定宽度,并且所述第二磁轨具有第二预定宽度,所述第一预定宽度是所述第二预定宽度的至少两倍大。
4.如权利要求2所述的感测系统,其特征在于,所述第一轨和所述第二轨是具有相同外半径的堆叠环,其中所述第一轨的在轴向方向上限定的宽度是所述第二轨的宽度的至少两倍大。
5.如权利要求1或2所述的感测系统,其特征在于,所述第一轨是具有至少8个偶极的多极,并且所述第二轨包括非零数量的偶极,所述数量不同于所述第一轨的偶极的数量。
6.如权利要求1或2所述的感测系统,其特征在于,所述第一传感器和所述第二传感器适于感测不同的场分量。
7.如权利要求1或2所述的感测系统,其特征在于,所述第一传感器和所述第二传感器集成在单个半导体芯片中。
8.如权利要求1所述的感测系统,进一步包括用于处理所述传感器的信号的信号处理装置,并且进一步包括用于提供所述第一轨相对于所述传感器的绝对位置的信号输出。
9.如权利要求8所述的感测系统,其特征在于,所述处理装置适于在所述感测系统启动时根据所述第二传感器的测量来计算初始位置。
10.如权利要求8或9中任一项所述的感测系统,其特征在于,所述处理装置适于利用来自所述第一传感器和所述第二传感器的测量信号来获得所述位置,并且校准所述位置。
11.一种使用如权利要求1所述的感测系统感测位置的方法,所述方法进一步包括检索所述第一传感器和所述第二传感器的测量,并且计算所述磁结构相对于所述第一传感器的位置。
12.如权利要求11所述的方法,进一步包括随后校准结果以用于补偿机械错位。
13.如权利要求11所述的方法,进一步包括:通过使用所述第一传感器和所述第二传感器的用于对所述磁结构的偶极进行检测的测量、同时忽略所述第二传感器的用于对所述第一传感器相对于所述磁结构的绝对位置进行检测的测量,来检测所述第一轨的位置,所述传感器位于所述磁结构之上。
14.如权利要求13所述的方法,其特征在于,在所述传感器启动时执行所述偶极的位置和所述绝对位置的检测,所述方法进一步包括:通过使用所述第一传感器的用于检索所述磁结构的偶极的测量,在检测到所述第一轨的初始位置之后在后续测量中忽略所述第二传感器的信号,所述传感器位于所述磁结构之上。
15.如权利要求11至12中任一项所述的方法,进一步包括:通过使用所述第一传感器和所述第二传感器的用于对所述磁结构的偶极进行检测的测量、以及用于对所述第一传感器相对于所述磁结构的绝对位置进行检测的测量,通过执行所述第一传感器和所述第二传感器的所述测量的线性组合,来检测所述第一轨的位置,所述传感器位于所述磁结构之上。
CN202211493755.0A 2021-11-25 2022-11-25 具有主轨道和诺纽斯轨道的位置传感器 Pending CN116164778A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21210602.5A EP4187209A1 (en) 2021-11-25 2021-11-25 Position sensor with master and nonius tracks
EP21210602.5 2021-11-25

Publications (1)

Publication Number Publication Date
CN116164778A true CN116164778A (zh) 2023-05-26

Family

ID=78789922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211493755.0A Pending CN116164778A (zh) 2021-11-25 2022-11-25 具有主轨道和诺纽斯轨道的位置传感器

Country Status (4)

Country Link
US (1) US20230160722A1 (zh)
EP (1) EP4187209A1 (zh)
JP (1) JP2023078105A (zh)
CN (1) CN116164778A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994411B2 (en) * 2022-02-25 2024-05-28 Semiconductor Components Industries, Llc Vernier sensor with self calibration

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477933B2 (ja) * 2017-04-25 2019-03-06 日本精工株式会社 回転角度検出装置及び回転角度検出方法
FR3069319B1 (fr) * 2017-07-18 2020-10-23 Ntn Snr Roulements Systeme de determination de la position d'un organe
EP3650816B1 (en) 2018-11-12 2021-01-27 Melexis Technologies SA Magnetic position sensor system and method
US10866122B2 (en) * 2019-01-23 2020-12-15 Allegro Microsystems, Llc Magnetic field sensor for detecting an absolute position of a target object
US11353345B2 (en) * 2019-07-22 2022-06-07 Boston Dynamics, Inc. Magnetic encoder calibration
US11333530B2 (en) * 2019-11-20 2022-05-17 Allegro Microsystems, Llc Absolute angle sensor with improved accuracy using error estimation

Also Published As

Publication number Publication date
JP2023078105A (ja) 2023-06-06
US20230160722A1 (en) 2023-05-25
EP4187209A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
CN101929834B (zh) 旋转角检测装置以及转速检测装置
US8659289B2 (en) Rotating field sensor
KR101426877B1 (ko) 회전 각도 검출 장치, 회전기 및 회전 각도 검출 방법
EP2932286B1 (en) Circuits and methods for processing signals generated by a circular vertical hall (cvh) sensing element in the presence of a multi-pole magnet
US10732009B2 (en) Angle sensing in an off-axis configuration
EP3385679B1 (en) Redundant fault detection device and method
KR101331182B1 (ko) 360도 범위의 자기 각위치 센서
JP6043721B2 (ja) 改良型位置センサ
EP3321638A1 (en) Measuring an absolute angular position
EP3550269A1 (en) System for measuring angular position and method of stray field cancellation
US10215550B2 (en) Methods and apparatus for magnetic sensors having highly uniform magnetic fields
JP7153012B2 (ja) 回転部材の少なくとも1つの回転パラメータを決定するための決定システム
JP2003075108A (ja) 回転角度センサ
WO2008094809A2 (en) Magnetic speed, direction, and/or movement extent sensor
EP3531074A2 (en) Angular sensor system and method of stray field cancellation
JP5187538B2 (ja) 磁気センサ
EP3151017B1 (en) Amr speed and direction sensor for use with magnetic targets
US7710110B2 (en) Rotary sensor with rotary sensing element and rotatable hollow magnet
JP5201493B2 (ja) 位置検出装置及び直線駆動装置
CN116164778A (zh) 具有主轨道和诺纽斯轨道的位置传感器
JP2021001879A (ja) 回転角センサ、角度信号算出方法及びプログラム
JP4900838B2 (ja) 位置検出装置及び直線駆動装置
JP7242352B2 (ja) 回転部材の少なくとも1つの回転パラメータを決定するためのシステム
US20230296416A1 (en) Position sensor with master and nonius tracks
JP2009271054A (ja) 位置検出装置およびそれを備えた回転直動モータ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication