CN116139849A - 一种光催化产高价铁物种降解有机污染物的方法 - Google Patents

一种光催化产高价铁物种降解有机污染物的方法 Download PDF

Info

Publication number
CN116139849A
CN116139849A CN202310066389.9A CN202310066389A CN116139849A CN 116139849 A CN116139849 A CN 116139849A CN 202310066389 A CN202310066389 A CN 202310066389A CN 116139849 A CN116139849 A CN 116139849A
Authority
CN
China
Prior art keywords
iron species
organic pollutants
valence iron
photocatalysis
degrading organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310066389.9A
Other languages
English (en)
Inventor
敖燕辉
高新
车慧楠
姜子旭
于达蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN202310066389.9A priority Critical patent/CN116139849A/zh
Publication of CN116139849A publication Critical patent/CN116139849A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明提出的是一种光催化产高价铁物种降解有机污染物的方法,该方法包括:利用光催化系统下产生的高价铁物种进行有机污染物降解。本发明的有益效果:1)本发明通过简单的光催化氧化可溶性三价铁离子实现了光催化体系中高价铁物种的高效产生;2)本发明开发的光催化体系具有广泛的可光响应范围,可实现包括550 nm以下的可见光吸收,能够有效的利用自然界广泛存在的可见光;3)本发明中产生的高价铁活性物种具有良好的抗水基质影响能力,可实现高效、选择性的有机污染物降解;4)本发明适用于对废水中有机污染物的高效、选择性降解。

Description

一种光催化产高价铁物种降解有机污染物的方法
技术领域
本发明涉及一种光催化产高价铁物种降解有机污染物的方法,属于光催化及高级氧化技术领域。
背景技术
近年来,家庭废水和全球水生系统中的有机污染物是对生物环境和人类健康的一种新风险和潜在威胁;大多数有机污染物以分子形式排放,包括工业、医院和家庭排放的有机污染物;因此,在废水和地表水中经常检测到有机污染物,从而对生物和人类健康、饮用水质量和微生物群落产生负面影响;一项迫在眉睫的任务是开发合适且成本低、效益高的技术来处理水环境中的有机物污染;幸运的是,基于半导体的光催化技术是一种很有前途的方法,该技术利用光激发高能电子/空穴来驱动有机污染物的矿化;因此,开发高活性光催化体系仍然是该领域的一个热门话题。
高价铁在水处理和环境修复领域引起了广泛关注,它是一种绿色高效的氧化剂,具有优异的选择性、低成本和环境友好性;研究人员已经开展了大量工作证明高价铁存在于亚铁离子所涉及的各种高级氧化(AOP)和高铁酸盐(Ⅵ)的分解过程中;高价铁的高反应性来源于其高自旋状态下较强的Fe/O 3σ*(α)轨道亲电性;与自由基物种(例如,羟基自由基和硫酸根)相比,虽然高价铁表现出较弱的反应活性,但由于其较长的半衰期和对水基质中无机离子和有机化合物更好选择性,它仍保持出色的活性。
高价铁通常由亚铁或含铁化合物活化各种氧化剂产生;现有技术中高价铁主要的形成体系为二价铁离子活化氧化剂(例如:过氧化氢、过硫酸盐、过氧乙酸、臭氧、次氯酸钠等)的反应;但如何在光催化系统中实现铁离子的氧化形成高价铁物种,并将高价铁物种应用于对有机污染物的降解仍然是本领域的一个技术难题。
发明内容
本发明提出的是一种光催化产高价铁物种降解有机污染物的方法,其目的旨在将光催化系统与高价铁物种相结合来实现对有机污染物的降解。
本发明的技术解决方案:一种光催化产高价铁物种降解有机污染物的方法,该方法包括:利用光催化系统下产生的高价铁物种进行有机污染物降解。
进一步地,所述高价铁物种为四价铁物种。
进一步地,所述光催化系统下产生的高价铁物种适用于对水体中包含有芳香环或酚羟基或胺基或烷氧基的有机污染物的选择性降解。
进一步地,所述光催化系统下产生的高价铁物种适用于对水体中苯酚、苯胺、磺胺甲恶唑的选择性降解。
进一步地,所述利用光催化系统下产生的高价铁物种进行有机污染物降解,具体包括:
1)将光催化剂与可溶性三价铁盐在含有有机污染物的溶液中混合得到含三价铁离子的混合溶液;
2)在光照作用下,产生高价铁物种实现对有机污染物的降解。
进一步地,所述混合溶液中光催化剂的浓度为0.1 g/L~1 g/L,所述混合溶液中三价铁离子的浓度为0.01 mmol/L~10 mmol/L。
进一步地,所述光催化剂为BiVO4
进一步地,所述BiVO4的形状为片状、块状、花状、十面体中的任意一种或两种以上的组合。
进一步地,所述BiVO4的制备方法包括:
1)将Bi(NO3)3·5H2O和十二烷基苯磺酸钠添加到HNO3溶液中,同时将NH4VO3溶解到NaOH溶液中;所述Bi(NO3)3·5H2O、NH4VO3和十二烷基苯磺酸钠的摩尔比为1:1:(0 ~ 1);
2)将Bi(NO3)3和NH4VO3的前驱体溶液混合形成黄色的悬浊液;
3)调节pH值至2~7;
4)将上述黄色悬浮液转移到反应釜中,加热一定时间;
5)冷却后,洗涤、干燥得到BiVO4粉末。
进一步地,所述利用光催化系统下产生的高价铁物种进行有机污染物降解,具体包括:
1)、将一定量BiVO4粉末分散于含有目标污染物的溶液中形成混合溶液;
2)、向混合溶液中加入FeCl3·6H2O使三价铁离子浓度达到一定浓度;
3)、将加入FeCl3·6H2O后的混合溶液pH值调节至7.0以下;
4)在光照作用下,产生高价铁物种实现对目标污染物的降解。
本发明的有益效果:
1)本发明通过简单的光催化氧化可溶性三价铁离子实现了光催化体系中高价铁物种的高效产生;
2)本发明开发的光催化体系具有广泛的可光响应范围,可实现包括550 nm以下的可见光吸收,能够有效的利用自然界广泛存在的可见光;
3)本发明中产生的高价铁活性物种具有良好的抗水基质影响能力,可实现高效、选择性的有机污染物降解;
4)本发明适用于对废水中有机污染物的高效、选择性降解,本发明所用原料易得、方法操作简单、性能高效。
附图说明
附图1为BiVO4介导三价铁离子光催化产生高价铁体系对磺胺甲恶唑的降解动态曲线。
附图2为利用苯基甲基亚砜(PMSO)向苯基甲基砜(PMSO2)的转化实验检测高价铁的产生。
附图3为不同三价铁离子浓度条件下BiVO4介导三价铁离子光催化产生高价铁体系对磺胺甲恶唑的降解动态曲线。
附图4为不同BiVO4浓度条件下BiVO4介导三价铁离子光催化产生高价铁体系对磺胺甲恶唑的降解动态曲线。
附图5为不同pH值条件下BiVO4介导三价铁离子光催化产生高价铁体系对磺胺甲恶唑的降解动态曲线。
附图6为利用光催化系统产生的高价铁物种降解不同有机物的降解性能对比。
实施方式
一种光催化产高价铁物种降解有机污染物的方法,该方法包括:利用光催化系统下产生的高价铁物种进行有机污染物降解。
所述高价铁物种优选为四价铁物种,即优选为正四价铁物种,如:[FeO(H2O)5]2+
所述光催化系统下产生的高价铁物种适用于对水体中有机污染物的选择性氧化降解;优选用于对水体中苯酚、苯胺、磺胺甲恶唑的选择性降解。
所述利用光催化系统下产生的高价铁物种进行有机污染物降解,具体包括如下步骤:
1)将光催化剂与可溶性三价铁盐在含有有机污染物的溶液中混合得到含三价铁离子的混合溶液;所述混合溶液中光催化剂的浓度优选为0.1 g/L~1 g/L,所述混合溶液中三价铁离子的浓度优选为0.01 mmol/L~10 mmol/L;
2)采用光源照射,产生高价铁物种实现对有机污染物的降解;所述光源照射优选为氙灯光照。
所述光催化剂优选为BiVO4(钒酸铋)。
所述BiVO4的颗粒形状为片状、块状、花状、十面体中的任意一种或两种以上的组合;所述BiVO4的粒径优选为0.1μm~10μm;所述BiVO4的三维尺寸进一步优选为长、宽均为0.1μm~10μm,厚度为在0.1nm~5nm;或者所述BiVO4的三维尺寸进一步优选长、宽均为100nm~5000nm,厚度为1nm~100nm。
所述可溶性三价铁盐为无水可溶性铁盐或有结晶水的可溶性铁盐;所述可溶性三价铁盐优选为氯化铁、硝酸铁、硫酸铁、高氯酸铁中的一种或两种以上的组合。
所述高价铁物种适用于降解水体中的有机污染物;所述有机污染物为分子结构中包含有芳香环或酚羟基或胺基或烷氧基的有机物;所述高价铁物种尤其适用于降解水体中的四环素类药物、磺胺类药物、芳胺类有机物、酚类有机物中的任意一种有机物或同时降解两种以上的有机物。
本发明利用光催化系统产生高氧化性的空穴以实现铁离子的氧化;钒酸铋(BiVO4)作为最优异的光催化材料之一,由于其宽的可见光响应范围、合适的能带结构和优异的光催化性能,能实现对包括550 nm以下的可见光进行吸收,能够有效的利用自然界广泛存在的可见光;而且,在酸性条件下(比如:pH=2.5),Fe3+能够吸附在BiVO4表面,以加速基于内层反应机制的光诱导电荷转移,从而生成高价铁物种;因此,BiVO4光催化系统具有介导高价铁物种产生的潜在能力。
本发明优选利用钒酸铋结合三价铁离子实现光催化产生四价铁物种,其钒酸铋的光吸收是其产生空穴进而氧化三价铁离子的前提条件,由于钒酸铋的光吸收产生的电子容易形成局域化的电子极化子,而空穴可以在晶体内有效迁移至表面去氧化三价铁离子。同时,三价铁离子和钒酸铋的表面能够形成较强的化学键,有助于钒酸铋的空穴氧化三价铁离子为四价铁物种;简而言之,钒酸铋一方面作为光吸收单元为三价铁离子氧化提供了前提条件,另一方面钒酸铋表面和三价铁离子的相互作用也促进了四价铁物种的形成;本发明方法产生四价铁物种的过程不会产生羟基自由基、超氧自由基等自由基,本发明方法产生的四价铁物种对水基质中无机离子和有机化合物具有更好选择性,适用于对污染物的氧化过程。
所述BiVO4的制备方法包括:
1)将Bi(NO3)3·5H2O和十二烷基苯磺酸钠添加到HNO3溶液中,同时将NH4VO3溶解到NaOH溶液中;所述Bi(NO3)3·5H2O、NH4VO3和十二烷基苯磺酸钠的用量摩尔比范围为1:1:0 ~1:1:1,优选摩尔比的比例为1:1:0.72;
2)将Bi(NO3)3和NH4VO3的前驱体溶液混合形成黄色的悬浊液;优选将NH4VO3的前驱体溶液逐滴加入持续搅拌的Bi(NO3)3溶液中;
3)调节pH;优选用NaOH调节pH值至2~7;
4)将上述黄色悬浮液转移到反应釜中,加热一定时间;优选将悬浮液转移到反应釜中,160℃加热6小时;
5)冷却后,样品经超纯水和无水乙醇分别离心洗涤并在干燥温度下干燥12小时;所述干燥温度优选为60℃。
所述利用光催化系统下产生的高价铁物种进行有机污染物降解,具体包括如下步骤:
1)、将一定量BiVO4粉末分散于含有目标污染物的溶液中形成混合溶液;所述混合溶液中BiVO4的浓度优选为0.1~1.0 g/L;所述目标污染物为苯酚、苯胺、磺胺甲恶唑等有机污染物中的任一种或两种以上的组合。
2)、向混合溶液中加入FeCl3·6H2O使三价铁离子浓度达到一定浓度;优选向混合溶液中加入FeCl3·6H2O使三价铁离子浓度达到0.01 mmol/L~10 mmol/L;
3)、将加入FeCl3·6H2O后的混合溶液pH值调节至7.0以下;优选使用1 mol/L 的HCl将加入FeCl3·6H2O后的混合溶液pH值调节至2.0~7.0,进一步优选pH值调节至为2.0~3.0;
4)采用光源照射,产生高价铁物种实现对目标污染物的降解;所述光源照射优选为氙灯光照。
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例
将一定量BiVO4粉末分散于1~100 μmol/L的磺胺甲恶唑溶液中,使BiVO4的浓度为0.1~1.0 g/L;超声分散2分钟后,将溶液在避光条件下磁力搅拌30分钟,以达到磺胺甲恶唑和BiVO4之间的吸附-解吸平衡;同时,将装有420 nm截止滤光片的300W氙灯预热至少30分钟,以确保光源的稳定性,然后使用光功率计将光强调节到100~400 mW cm-2;在光催化反应之前,向上述混合溶液中加入所需量的FeCl3·6H2O使三价铁离子浓度达到0.01 mmol/L ~10 mmol/L,然后使用1 mol/L HCl将溶液初始pH调节至2.0~3.0;一旦含有BiVO4、Fe3+和磺胺甲恶唑的溶液暴露于氙灯下,降解反应便随之启动;按预定的时间间隔,取出2 mL溶液并通过0.22 μm聚醚砜过滤器过滤,然后将过滤出的磺胺甲恶唑溶液在配备C18柱和UV-vis检测器的高效液相色谱(Waters e2695)上进行分析。
附图1为不同体系对磺胺甲恶唑的光催化降解动力学曲线,从图中可以看出,BiVO4、Fe3+、光单独存在或者两两结合条件下均不能使磺胺甲恶唑降解,仅当三者同时存在时,BiVO4吸收光氧化Fe3+所产生的四价铁物种迅速氧化磺胺甲恶唑,实现了有机污染物的高效降解。
附图2为高价铁物种的选择性检测实验;亚砜类物质可以被高价铁的端氧选择性氧化为砜,实现体系中高价铁物种的有效检测;从附图2中可以看出在Fe3+/BiVO4光催化体系中,随着光照时间的延长,苯基甲基亚砜(PMSO2)逐渐消耗而苯基甲基砜(PMSO2)逐渐积累,说明在Fe3+/BiVO4光催化体系中产生了高价铁物种。
附图3为不同铁离子浓度下Fe3+/BiVO4光催化体系降解磺胺甲恶唑的动力学曲线;从附图3中可以看出磺胺甲恶唑的降解率随着铁离子浓度的增加逐渐提高,这归因于三价铁离子浓度的增加提高了高价铁的产量。
附图4为不同钒酸铋浓度下Fe3+/BiVO4光催化体系降解磺胺甲恶唑的动力学曲线;从附图4中能够看出钒酸铋浓度对磺胺甲恶唑的降解影响较小,表明钒酸铋仅作为系统中光吸收单元承担着光能转换的作用。
附图5为不同pH值条件下Fe3+/BiVO4光催化体系降解磺胺甲恶唑的动力学曲线;从附图5中能够看出,随着pH值的逐渐升高,磺胺甲恶唑的降解速率逐渐降低,这归因于铁离子于pH值大于3时将发生水解沉积于钒酸铋表面,降低了有效活性位点浓度。
附图6为不同有机物的降解性能;从附图6能够看出,本发明能够实现苯酚、苯胺的高效降解,但是对于硝基苯和苯甲酸的降解呈现惰性。因此,在Fe3+/BiVO4光催化系统中产生的四价铁离子具有优异的选择性,在复杂水体基质条件下的有机污染物选择性氧化方面存在潜在的应用前景。
在附图1、附图3、附图4、附图5、附图6中,[浓度]/[浓度]0为相应污染物降解后的浓度和初始浓度的比值。

Claims (10)

1.一种光催化产高价铁物种降解有机污染物的方法,其特征是包括:利用光催化系统下产生的高价铁物种进行有机污染物降解。
2.根据权利要求1所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述高价铁物种为四价铁物种。
3.根据权利要求1所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述光催化系统下产生的高价铁物种适用于对水体中包含有芳香环或酚羟基或胺基或烷氧基的有机污染物的选择性降解。
4.根据权利要求1所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述光催化系统下产生的高价铁物种适用于对水体中苯酚、苯胺、磺胺甲恶唑的选择性降解。
5.根据权利要求1所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述利用光催化系统下产生的高价铁物种进行有机污染物降解,具体包括:
1)将光催化剂与可溶性三价铁盐在含有有机污染物的溶液中混合得到含三价铁离子的混合溶液;
2)在光照作用下,产生高价铁物种实现对有机污染物的降解。
6. 根据权利要求5所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述混合溶液中光催化剂的浓度为0.1 g/L~1 g/L,所述混合溶液中三价铁离子的浓度为0.01 mmol/L~10 mmol/L。
7.根据权利要求5所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述光催化剂为BiVO4
8.根据权利要求7所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述BiVO4的形状为片状、块状、花状、十面体中的任意一种或两种以上的组合。
9.根据权利要求7所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述BiVO4的制备方法包括:
1)将Bi(NO3)3·5H2O和十二烷基苯磺酸钠添加到HNO3溶液中,同时将NH4VO3溶解到NaOH溶液中;所述Bi(NO3)3·5H2O、NH4VO3和十二烷基苯磺酸钠的摩尔比为1:1:(0 ~ 1);
2)将Bi(NO3)3和NH4VO3的前驱体溶液混合形成黄色的悬浊液;
3)调节pH值至2~7;
4)将上述黄色悬浮液转移到反应釜中,加热一定时间;
5)冷却后,洗涤、干燥得到BiVO4粉末。
10.根据权利要求1所述的一种光催化产高价铁物种降解有机污染物的方法,其特征是所述利用光催化系统下产生的高价铁物种进行有机污染物降解,具体包括:
1)、将一定量BiVO4粉末分散于含有目标污染物的溶液中形成混合溶液;
2)、向混合溶液中加入FeCl3·6H2O使三价铁离子浓度达到一定浓度;
3)、将加入FeCl3·6H2O后的混合溶液pH值调节至7.0以下;
4)在光照作用下,产生高价铁物种实现对目标污染物的降解。
CN202310066389.9A 2023-02-06 2023-02-06 一种光催化产高价铁物种降解有机污染物的方法 Pending CN116139849A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310066389.9A CN116139849A (zh) 2023-02-06 2023-02-06 一种光催化产高价铁物种降解有机污染物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310066389.9A CN116139849A (zh) 2023-02-06 2023-02-06 一种光催化产高价铁物种降解有机污染物的方法

Publications (1)

Publication Number Publication Date
CN116139849A true CN116139849A (zh) 2023-05-23

Family

ID=86373035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310066389.9A Pending CN116139849A (zh) 2023-02-06 2023-02-06 一种光催化产高价铁物种降解有机污染物的方法

Country Status (1)

Country Link
CN (1) CN116139849A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138057A1 (en) * 2004-12-23 2006-06-29 Council Of Scientific And Industrial Research Eco-friendly photo-fenton catalyst-immobilized Fe(III) over HY-zeolite
CN101318700A (zh) * 2008-07-16 2008-12-10 武汉大学 一种钒酸铋粉体及其制备方法
JP2014186028A (ja) * 2013-02-19 2014-10-02 Optech:Kk 無機鉄化合物及び又は金属鉄による放射性物質の吸着剤及びその吸着方法
CN107012474A (zh) * 2016-01-28 2017-08-04 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN108554458A (zh) * 2018-05-29 2018-09-21 江苏海川卓越密封材料有限公司 核/膜型钒酸铋复合光催化剂及其制备方法
CN110747639A (zh) * 2019-09-09 2020-02-04 东华大学 一种基于共价键结合的光催化剂负载织物的制备方法
CN111747480A (zh) * 2020-06-29 2020-10-09 暨南大学 一种可见光强化三价铁活化过硫酸盐处理有机废水的方法
CN114904529A (zh) * 2022-05-18 2022-08-16 南京大学 一种用于降解吡啶的光催化材料、改性光催化填料及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138057A1 (en) * 2004-12-23 2006-06-29 Council Of Scientific And Industrial Research Eco-friendly photo-fenton catalyst-immobilized Fe(III) over HY-zeolite
CN101318700A (zh) * 2008-07-16 2008-12-10 武汉大学 一种钒酸铋粉体及其制备方法
JP2014186028A (ja) * 2013-02-19 2014-10-02 Optech:Kk 無機鉄化合物及び又は金属鉄による放射性物質の吸着剤及びその吸着方法
CN107012474A (zh) * 2016-01-28 2017-08-04 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN108554458A (zh) * 2018-05-29 2018-09-21 江苏海川卓越密封材料有限公司 核/膜型钒酸铋复合光催化剂及其制备方法
CN110747639A (zh) * 2019-09-09 2020-02-04 东华大学 一种基于共价键结合的光催化剂负载织物的制备方法
CN111747480A (zh) * 2020-06-29 2020-10-09 暨南大学 一种可见光强化三价铁活化过硫酸盐处理有机废水的方法
CN114904529A (zh) * 2022-05-18 2022-08-16 南京大学 一种用于降解吡啶的光催化材料、改性光催化填料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN GAO ET AL.: "Self-induced Fenton reaction constructed by Fe(III) grafted BiVO4 nanosheets with improved photocatalytic performance and mechanism insight", APPLIED SURFACE SCIENCE, vol. 467, 22 October 2018 (2018-10-22), pages 673 - 683 *

Similar Documents

Publication Publication Date Title
Alfred et al. Solar-active clay-TiO2 nanocomposites prepared via biomass assisted synthesis: Efficient removal of ampicillin, sulfamethoxazole and artemether from water
Balarak et al. Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide
Sharma et al. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review
Wu et al. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals
Li et al. Degradation of p-nitrophenol by Fe0/H2O2/persulfate system: Optimization, performance and mechanisms
Das et al. Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect
Khuntia et al. Removal of ammonia from water by ozone microbubbles
Tian et al. New insight into a Fenton-like reaction mechanism over sulfidated β-FeOOH: key role of sulfidation in efficient iron (III) reduction and sulfate radical generation
Nawi et al. Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system
Li et al. Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater
Norzaee et al. Photocatalytic degradation of aniline in water using CuO nanoparticles
Castañeda-Juárez et al. Synthesis of TiO2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis
Farzadkia et al. Investigation of photocatalytic degradation of clindamycin antibiotic by using nano-ZnO catalysts
Sun et al. Simultaneous removal of colorless micropollutants and hexavalent chromium by pristine TiO2 under visible light: An electron transfer mechanism
Hung et al. Decolorization of methylene blue by persulfate activated with FeO magnetic particles
Zhang et al. g–C3N4 induced acceleration of Fe3+/Fe2+ cycles for enhancing metronidazole degradation in Fe3+/peroxymonosulfate process under visible light
Alfred et al. Sunlight-active Cu/Fe@ ZnWO4-kaolinite composites for degradation of acetaminophen, ampicillin and sulfamethoxazole in water
Mengelizadeh et al. Heterogeneous activation of peroxymonosulfate by GO-CoFe2O4 for degradation of reactive black 5 from aqueous solutions: optimization, mechanism, degradation intermediates and toxicity
He et al. Tungsten disulfide (WS2) is a highly active co-catalyst in Fe (III)/H2O2 Fenton-like reactions for efficient acetaminophen degradation
Betancourt-Buitrago et al. Anoxic photocatalytic treatment of synthetic mining wastewater using TiO 2 and scavengers for complexed cyanide recovery
Shokri et al. Using α-Fe2O3/SiO2 as a heterogeneous Fenton catalyst for the removal of chlorophenol in aqueous environment: Thermodynamic and kinetic studies
Dung et al. Mechanism insight into the photocatalytic degradation of fluoroquinolone antibiotics by the ZIF-8@ Bi 2 MoO 6 heterojunction
Akbarzadeh et al. Highly efficient visible-driven reduction of Cr (VI) by a novel black TiO 2 photocatalyst
Ning et al. Enhanced H2O2 upcycling into hydroxyl radicals with GO/Ni: FeOOH-coated silicon nanowire photocatalysts for wastewater treatment
de Melo Costa-Serge et al. Simultaneous disinfection of urban wastewater and antibiotics degradation mediated by CuMgFe-B (OH) 4 layered double hydroxide with different oxidizing agents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination