CN116139089A - 一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用 - Google Patents

一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用 Download PDF

Info

Publication number
CN116139089A
CN116139089A CN202211709882.XA CN202211709882A CN116139089A CN 116139089 A CN116139089 A CN 116139089A CN 202211709882 A CN202211709882 A CN 202211709882A CN 116139089 A CN116139089 A CN 116139089A
Authority
CN
China
Prior art keywords
chitosan
preparation
nano
nanometer
chinese medicine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211709882.XA
Other languages
English (en)
Inventor
金花
黄功华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Medical University
Original Assignee
Guangdong Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Medical University filed Critical Guangdong Medical University
Priority to CN202211709882.XA priority Critical patent/CN116139089A/zh
Publication of CN116139089A publication Critical patent/CN116139089A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/40Shaping or working of foodstuffs characterised by the products free-flowing powder or instant powder, i.e. powder which is reconstituted rapidly when liquid is added
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明公开了一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用。属于保健食品技术领域。将姜黄素和白藜芦醇加入油相,使用匀浆机剪切分散后,得到初级Cur‑RV纳米晶混悬液,再使用高压均质机制备Cur‑RV纳米晶混悬液。将水相(包括聚乙烯醇、壳聚糖和冰醋酸)加入Cur‑RV纳米晶混悬液中,匀浆得到Cur‑RV纳米初乳,再将Cur‑RV纳米初乳加入高压均质机中,制备得到壳聚糖与纳米中药配伍的纳米制剂。本发明制备的纳米制剂同时负载了两种中药活性成分,能在较长时间内保持中药活性成分的缓慢释放,减少给药次数,同时,增加了壳聚糖的配伍,提高了纳米制剂的安全性和生物利用度。

Description

一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用
技术领域
本发明涉及保健食品技术领域,更具体的说是涉及一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用。
背景技术
姜黄素(Curcumin,Cur)是一种从姜黄属植物如姜黄、莪术、菖蒲、郁金等根茎中提取出的酸性多酚类化合物,它具有抗炎、抗菌、抗氧化、抗肿瘤、保肝利胆、调节血脂等药理活性。然而,姜黄素属于亲脂类物质,水溶性差,以固体颗粒、悬浮液等方式服入体内生物利用率低,难以达到应有的保健作用。
白藜芦醇(Resveratrol,Res)是来源于植物的一种非黄酮类多酚化合物,主要用于治疗原发性肝癌、乳腺癌、皮肤癌、心血管疾病和高血压等。其自身具有易氧化、代谢快、半衰期短等特点,导致给药后生物利用度低,不能达到理想的有效治疗水平。
综上,如何提供一种合适的药物输送系统以提高姜黄素和白藜芦醇的稳定性及生物利用度是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用。将姜黄素和白藜芦醇原料药(Cur-RV),加入油相(溶解有聚乳酸-羟基乙酸共聚物(PLGA)的二氯甲烷溶液),使用匀浆机剪切分散后,得到初级Cur-RV纳米晶混悬液,再使用高压均质机制备Cur-RV纳米晶混悬液。将水相(聚乙烯醇的质量浓度为0.1~3%,壳聚糖的质量浓度为0.1~2%,冰醋酸的体积浓度占水相的0.1~2%)加入Cur-RV纳米晶混悬液中,匀浆得到Cur-RV纳米初乳,再将Cur-RV纳米初乳加入高压均质机中,制备得到壳聚糖与纳米中药配伍的纳米制剂。
为了实现上述目的,本发明采用如下技术方案:
一种壳聚糖与纳米中药配伍的纳米制剂,包括姜黄素、白藜芦醇、油相和水相;
所述油相为溶解有聚乳酸-羟基乙酸共聚物的二氯甲烷溶液;
所述水相包括聚乙烯醇、壳聚糖和冰醋酸。
所取得的有益效果:纳米载药体系能够有效发挥材料对药物的保护作用,协助药物跨越黏膜屏障,通过高通透性和滞留(Enhancedpermeabilityand retention,EPR)效应增强药物在靶点部位的累积,改变药物在体内的分布,减少系统性毒性,目前已成为现代药物研究的重要方向。因此,本发明利用纳米球或微球递送系统通过缓释和控释来克服姜黄素和白藜芦醇的自身缺陷,同时跟壳聚糖配伍,达到协同增效的目的。
进一步的,所述聚乳酸-羟基乙酸共聚物与二氯甲烷的质量体积比为2~5:10g/ml。
进一步的,所述水相中聚乙烯醇的质量浓度为0.1~3%,壳聚糖的质量浓度为0.1~2%,冰醋酸的体积浓度占水相的0.1~2%。
进一步的,所述聚乙烯醇的脱乙酰度为85~95%。
进一步的,所述壳聚糖的Mw为9kDa~100kDa。
进一步的,还包括甘露糖。
上述的壳聚糖与纳米中药配伍的纳米制剂的制备方法,包括如下步骤:
(1)将聚乳酸-羟基乙酸共聚物溶解在二氯甲烷中,得到油相;
(2)将姜黄素和白藜芦醇加入到油相中,高压均质,得到Cur-RV纳米晶混悬液;
(3)溶解聚乙烯醇至水中,同时加入冰醋酸和壳聚糖,得到水相;
(4)将Cur-RV纳米晶混悬液加入到水相中,高压均质,得到乳剂A;
(5)将乳剂A加入甘露糖溶液后冷冻干燥,即得壳聚糖与纳米中药配伍的纳米制剂。
进一步的,所述步骤(2)中高压均质的时间为1min;
所述步骤(4)中高压均质的时间为5min。
进一步的,所述甘露糖溶液的质量浓度为5%。
上述的壳聚糖与纳米中药配伍的纳米制剂在制备治疗肺部炎症药物中的应用。
经由上述的技术方案可知,与现有技术相比,本发明取得的有益效果为:本发明所制备的纳米制剂同时负载了两种中药活性成分,能在较长时间内保持中药活性成分的缓慢释放,减少给药次数,经纳米乳化后,显著提高了难溶性小分子药物的水溶性,细胞吸收及生物利用度;壳聚糖本身难溶于水,有腥味,粉末状,很难下咽,且吸收效果差。通过纳米制剂共载后,可以极大提高其生物利用度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明壳聚糖与纳米中药配伍的纳米制剂的制备流程图;
图2附图为本发明实施例1所制备的纳米制剂的表征结果,其中:A为粒径分布结果,B为扫描电镜结果,C为紫外吸收光谱;
图3附图为本发明实施例1所制备的纳米制剂抑制小鼠肺部炎症实验结果,其中:A为构建小鼠肺炎/急性肺损伤模型图,B为肺部图;
图4附图为本发明实施例1所制备的纳米制剂生物利用度结果,其中:A为显微镜下图片,B为各个器官图;
图5附图为本发明实施例1所制备的纳米制剂的安全性评价结果,其中:A为细胞的活性结果,B为红细胞溶血实验结果,C为对血清内谷丙转氨酶(ALT)、谷草转氨酶(AST)的影响。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所需药剂为常规实验药剂,采购自市售渠道;未提及的实验方法为常规实验方法,在此不再一一赘述。
实施例1
(1)称取1.0gPLGA分散在10ml二氯甲烷中,得到油相。
(2)将150姜黄素和150mg白藜芦醇加入油相,使用匀浆机剪切分散后,得到初级Cur-RV纳米晶混悬液,再使用高压均质机乳化1min制备Cur-RV纳米晶混悬液;
(3)溶解1%PVA(脱乙酰度85%),同时加入0.2%的冰醋酸溶液及壳聚糖,壳聚糖浓度为0.5%,水相体积50ml,作为水相;
(4)水相加入Cur-RV纳米晶混悬液中,匀浆得到Cur-RV纳米初乳,再将Cur-RV纳米初乳加入高压均质机中乳化5min,得到乳剂A;
(5)所得乳剂A加入5%甘露糖冷冻干燥,得到壳聚糖与纳米中药配伍的纳米制剂,4℃冰箱中保存;
(6)使用时,将纳米制剂分散在2%壳聚糖溶液中,与壳聚糖配伍联合增效。
实验1
对实施例1制备的纳米制剂进行表征,方法如下:
将纳米制剂分散在生理盐水中,采用激光纳米粒度仪(ZetasizerNano ZS)检测纳米制剂的粒径分布。
扫描电镜检测纳米制剂形貌的方法:
1.样品用DI水稀释十倍后,常温下超声10分钟;
2.将超声后的样品滴到硅片(SiliconChip)上;并在常温下于洁净台上过夜挥发;
3.将载有样品的硅片镀金(CoatingPt)后黏附于载物台并传送至SEM样品分析仓。
紫外可见吸收谱的检测方法:将纳米制剂以或中药成分,分散在介质中(水或二甲基亚砜),采用紫外分光光度计进行全波长扫描。
结果如图2所示。
图2A表明纳米球粒径大概分布在500nm左右;图2B表明扫描电镜显示呈规则的球形;图2C的紫外吸收光谱显示,纳米制剂成功负载了姜黄素(Cur)和白藜芦醇(RV)。
下面的实验2-实验4,是将纳米制剂分散到壳聚糖溶液中使用。
实验2
探究实施例1制备的纳米制剂对肺炎小鼠模型的作用。
8周龄C57野生型小鼠经腹腔注射脂多醣(Lipopolysaccharide,LPS)(剂量8mg/kg)24小时,构建小鼠肺炎/急性肺损伤模型。造膜前三小时,小鼠滴鼻原药或纳米制剂干预(图3A),其中,原药:姜黄素(5mg/kg)和白藜芦醇(5mg/kg)的混合物;纳米制剂:5mg/kg(以包载在纳米粒中的姜黄素和白藜芦醇的浓度计量)。
结果如图3B所示,经滴鼻给药后,与鼻原药相比,纳米制剂显著降低了肺部炎性细胞的浸润。
实验3
探究实施例1制备的纳米制剂的生物利用度。结果如图4所示。
纳米制剂可以显著提高药物在细胞和机体内的生物利用度。图4A采用肺泡上皮细胞HBE与标记荧光maker的中药共同孵育3小时后,PBS洗3遍,去除未被吸收的中药,在活细胞荧光显微镜下成像。图4A可以观察到,纳米中药可以更多被细胞吸收。图4B构建小鼠肺炎模型,滴鼻荧光标记的纳米中药后4小时后,收集各个器官,图中可以观察到,纳米载体可以显著增加药物在肺组织的富集和滞留,从而较长时间发挥药效。
实验4
探究实施例1制备的纳米制剂的安全性。结果如图5所示。
图5A表明中药或纳米中药跟HBE细胞孵育24小时后,对细胞的活性不会造成影响。图5B为红细胞溶血实验:通过中药跟红细胞孵育3小时后发现,中药和纳米化中药都不会引起红细胞溶血,说明体内安全性良好。图5C为肺炎小鼠滴鼻中药制剂24小时后,对血清内谷丙转氨酶(ALT)、谷草转氨酶(AST)不会造成显著影响,说明中药制剂不会造成肝功能受损。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种壳聚糖与纳米中药配伍的纳米制剂,其特征在于,包括姜黄素、白藜芦醇、油相和水相;
所述油相为溶解有聚乳酸-羟基乙酸共聚物的二氯甲烷溶液;
所述水相包括聚乙烯醇、壳聚糖和冰醋酸。
2.如权利要求1所述的壳聚糖与纳米中药配伍的纳米制剂,其特征在于,所述聚乳酸-羟基乙酸共聚物与二氯甲烷的质量体积比为2~5:10g/ml。
3.如权利要求1所述的壳聚糖与纳米中药配伍的纳米制剂,其特征在于,所述水相中聚乙烯醇的质量浓度为0.1~3%,壳聚糖的质量浓度为0.1~2%,冰醋酸的体积浓度占水相的0.1~2%。
4.如权利要求1所述的壳聚糖与纳米中药配伍的纳米制剂,其特征在于,所述聚乙烯醇的脱乙酰度为85~95%。
5.权利要求1~4任一所述的壳聚糖与纳米中药配伍的纳米制剂,其特征在于,还包括甘露糖。
6.权利要求5所述的壳聚糖与纳米中药配伍的纳米制剂的制备方法,其特征在于,包括如下步骤:
(1)将聚乳酸-羟基乙酸共聚物溶解在二氯甲烷中,得到油相;
(2)将姜黄素和白藜芦醇加入到油相中,高压均质,得到Cur-RV纳米晶混悬液;
(3)溶解聚乙烯醇至水中,同时加入冰醋酸和壳聚糖,得到水相;
(4)将Cur-RV纳米晶混悬液加入到水相中,高压均质,得到乳剂A;
(5)将乳剂A加入甘露糖溶液后冷冻干燥,即得成品。
7.如权利要求6所述的制备方法,其特征在于,所述步骤(2)中高压均质的时间为1min;
所述步骤(4)中高压均质的时间为5min。
8.如权利要求6所述的制备方法,其特征在于,所述甘露糖溶液的质量浓度为5%。
9.权利要求5所述的壳聚糖与纳米中药配伍的纳米制剂、权利要求6~8任一所述的制备方法制备的壳聚糖与纳米中药配伍的纳米制剂在制备治疗肺部炎症药物中的应用。
CN202211709882.XA 2022-12-29 2022-12-29 一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用 Pending CN116139089A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211709882.XA CN116139089A (zh) 2022-12-29 2022-12-29 一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211709882.XA CN116139089A (zh) 2022-12-29 2022-12-29 一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN116139089A true CN116139089A (zh) 2023-05-23

Family

ID=86350034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211709882.XA Pending CN116139089A (zh) 2022-12-29 2022-12-29 一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116139089A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117298052A (zh) * 2023-10-16 2023-12-29 广东医科大学 一种口服黄芪甲苷纳米制剂的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711740A (zh) * 2009-12-18 2010-05-26 苏州大学 一种溃疡性结肠炎靶向姜黄素纳米粒的制备方法
CN106963743A (zh) * 2016-10-31 2017-07-21 澳门科技大学 Plga纳米复合物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711740A (zh) * 2009-12-18 2010-05-26 苏州大学 一种溃疡性结肠炎靶向姜黄素纳米粒的制备方法
CN106963743A (zh) * 2016-10-31 2017-07-21 澳门科技大学 Plga纳米复合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZHANG等: "In Vitro and In Vivo Comparison of Curcumin-Encapsulated Chitosan-Coated Poly(lactic-co-glycolic acid) Nanoparticles and Curcumin/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes Administered Intranasally as Therapeutic Strategies for Alzheimer’s Disease", MOLECULAR PHARMACEUTICS, vol. 17, no. 11, pages 4256 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117298052A (zh) * 2023-10-16 2023-12-29 广东医科大学 一种口服黄芪甲苷纳米制剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
Gupta et al. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness
Rani et al. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes
Wei et al. Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10
Yang et al. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability
Sonaje et al. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats
Das et al. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells
Wang et al. Formulation and particle size reduction improve bioavailability of poorly water-soluble compounds with antimalarial activity
CN106943379A (zh) 一种藤黄酸白蛋白纳米粒及其制备方法
CN116139089A (zh) 一种壳聚糖与纳米中药配伍的纳米制剂及其制备方法与应用
Ghumman et al. Chitosan-Linseed mucilage polyelectrolyte complex nanoparticles of Methotrexate: In vitro cytotoxic efficacy and toxicological studies
Naik et al. Development and evaluation of ibuprofen loaded hydrophilic biocompatible polymeric nanoparticles for the taste masking and solubility enhancement
Takeuchi et al. Drug delivery properties of nanocomposite particles for inhalation: Comparison of drug concentrations in lungs and blood
Sharma et al. Development and in-vitro, in-vivo evaluation of Pioglitazone-loaded polymeric nanoparticles using central composite design surface response methodology
Vadakkan et al. Cationic, amphiphilic dextran nanomicellar clusters as an excipient for dry powder inhaler formulation
EP3616726A1 (en) Protein particle wrapped with medicine insoluble in water and preparation method therefor
Pareek et al. Development of a new inhaled swellable microsphere system for the dual delivery of naringenin-loaded solid lipid nanoparticles and doxofylline for the treatment of asthma
CN104826129A (zh) 一种纳米型中药槲皮素-plga及其制备方法
Luo et al. Improving the in vivo bioavailability and in vitro anti-inflammatory activity of tanshinone IIA by alginate solid dispersion
Rahmat et al. HEC-cysteamine particles: influence of particle size, zeta potential, morphology and sulfhydryl groups on permeation enhancing properties
Prakash et al. Development, characterization and toxicity evaluation of nanoparticles of andrographolide
Rabima et al. Entrapment efficiency and drug loading of curcumin nanostructured lipid carrier (NLC) formula
Sharma et al. Lignin nanoparticles as a novel carrier for efficacious delivery of toll like receptor 7/8 agonist: Physicochemical and in-vitro evaluation
KUMAR et al. Bioavailability and dissolution enhancement of glyburide nanosuspension
CN114712343B (zh) 一种携载光甘草定的脾靶向纳米药物的制备方法及应用
Alshawwa et al. Solid lipid Lyo-Nanosuspension: A promising stabilized oral delivery system for the antihyperglycemic extract of mistletoe Plicosepalus acacia

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination