CN116122950A - 一种发动机水温控制方法 - Google Patents

一种发动机水温控制方法 Download PDF

Info

Publication number
CN116122950A
CN116122950A CN202310178611.4A CN202310178611A CN116122950A CN 116122950 A CN116122950 A CN 116122950A CN 202310178611 A CN202310178611 A CN 202310178611A CN 116122950 A CN116122950 A CN 116122950A
Authority
CN
China
Prior art keywords
water temperature
thermostat
temperature
engine
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310178611.4A
Other languages
English (en)
Inventor
周伟
葛林杉
张鹏飞
刘甲一
杜立东
杨雨晨
赵中南
崔英杰
林万国
于泽浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAW Bestune Car Co Ltd
Original Assignee
FAW Bestune Car Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAW Bestune Car Co Ltd filed Critical FAW Bestune Car Co Ltd
Priority to CN202310178611.4A priority Critical patent/CN116122950A/zh
Publication of CN116122950A publication Critical patent/CN116122950A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明属于汽车技术领域,具体的说是一种发动机水温控制方法。一种发动机水温控制方法,包括:对发动机水温进行快速调节;具体为:当发动机水温≤70℃,对节温器进行开环控制;当70℃<发动机水温<85℃时,节温器打开20%‑30%的开度;当发动机水温≥85℃时,对节温器进行闭环控制;对发动机水温进行精细调节;具体为:对节温器进行PI动态调节。本发明通过对实时发动机水温进行监控,在低水温及低环境温度进行开环小循环控制,在高水温及高进气温度进行闭环大循环控制,该方法有利于水温的快速上升,达到发动机最佳工作温度,也有利于高温下的精准调控。

Description

一种发动机水温控制方法
技术领域
本发明属于汽车技术领域,具体的说是一种发动机水温控制方法。
背景技术
随着国六排放法规的实施,对发动机控制的精准度提出了更高的要求,国内各大主流整车厂为提高发动机燃烧效率多采用高压缩比设计,但同时高压缩比设计方案也加剧了发动机产生早燃及爆震等异常燃烧的风险,而早燃爆震的产生与发动机水温及进气温度冷却强相关,随之对冷却及热管理系统的控制提出了新的要求
发动机水温及进气温度控制属于汽车冷却及热管理系统技术领域,包括节温器、水温传感器、进气温度传感器、环境温度传感器、风扇控制器等。
传统的控制方式一般通过简单查表计算得到节温器及风扇占空比,此种控制方式显然已不能满足当前的需求,因此,亟需一种更加精确的控制方法。
发明内容
本发明提供了一种发动机水温控制方法,通过对实时发动机水温进行监控,在低水温及低环境温度进行开环小循环控制,在高水温及高进气温度进行闭环大循环控制,该方法有利于水温的快速上升,达到发动机最佳工作温度,也有利于高温下的精准调控,解决了现有发动机水温控制方法不能满足当前需求的问题。
本发明技术方案结合附图说明如下:
一种发动机水温控制方法,包括:
对发动机水温进行快速调节;具体如下:
当发动机水温≤70℃,对节温器进行开环控制;
当70℃<发动机水温<85℃时,节温器打开20%-30%的开度;
当发动机水温≥85℃时,对节温器进行闭环控制;
对发动机水温进行精细调节;具体如下:
对节温器进行PI动态调节。
所述对节温器进行开环控制的方法如下:
当发动机水温≤70℃,节温器关闭。
所述对节温器进行闭环控制的方法如下:
以环境温度为区分,对节温器进行单独控制;具体为:
设置环境温度在35℃以上为高温区间,30℃以下为低温区间;并且单独设置30℃以下及35℃以上两张基础目标水温表加以区分控制,在30-35℃区间时进行取两张基础目标水温表的平均值进行处理。
所述对节温器进行PI动态调节的具体方法如下:
当前工况下的目标水温对应的节温器开度同时加上P部分和I部分;
所述P部分:以实际水温和目标水温的偏差值为基准,得到节温器开度的变化量;在温差为负值时说明水温未达到目标水温,此时需减少节温器开度,在温差为正值时说明水温超过目标水温,节温器开度增加,增加散热;
所述I部分:当存在实际温度和目标温度的差值时,以此时刻为起点,对温差值进行积分计算,只要未达到水温目标值,积分值就会不断增加,当积分值达到某个值时,需要减少节温器开度,反之则需要加大节温器开度;不同积分值对应不同的系数,将此系数×P项的节温器变化量,即能够实现不同温差下,节温器的动态调节。
本发明的有益效果为:
本发明通过对实时发动机水温进行监控,在低水温及低环境温度进行开环小循环控制,在高水温及高进气温度进行闭环大循环控制,该方法有利于水温的快速上升,达到发动机最佳工作温度,也有利于高温下的精准调控。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明所述的一种发动机水温控制方法的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
参阅图1,一种发动机水温控制方法,包括:
对发动机水温进行快速调节;具体如下:
发动机的最佳工作温度一般在85℃以上;
通过整车装载的各类传感器采集实时的外部环境温度、发动机水温信号以及节温器占空比等信号。
当发动机水温≤70℃,对节温器进行开环控制,节温器关闭,目的是使发动机水温尽快上升,从冷机状态快速到达热机状态(即85℃);节温器关闭,发动机冷却水循环为小循环(即发动机内部冷却水路)。
节温器的功能是根据发动机冷却液的温度变化,对流进散热器进行散热的冷却液量进行调节,从而保证发动机工作在合适的温度范围内,在长时间停车后水温较低时,调节较小开度节温器,使发动机水温较快的上升,达到较佳的工作温度。
当70℃<发动机水温<85℃时,节温器打开一定开度,一般为20%-30%的开度;开度过大会导致水温迅速下降,过小不利于整体温度上升,最终目的是和大循环(即发动机+冷却管路+冷却水壶)内冷却水进行热传递,带动大循环内冷却液温度,实现水温的事实控制。具体设置可依据实验进行标定,评价标准为水温成梯度上升、常温23℃启动后怠速热机在8min内水温达到75℃、低温-30℃启动后怠速热机在20min内达到75℃.通过实验将合适的节温器开度填入表1中,表1为一汽某一量产车型的实例,实际控制时通过查表得到节温器开度,再依据节温器特性曲线反算出节温器控制电压信号,对节温器开度进行控制。
表1
Figure BDA0004101835270000051
Figure BDA0004101835270000061
当发动机水温≥85℃时,对节温器进行闭环控制;
所述对节温器进行闭环控制的方法如下:
以环境温度为区分,对节温器进行闭环控制,同时对环境温度进行区分,以环境温度为区分,对节温器进行单独控制,使得发动机一直工作在最佳水温区间;一般情况下环境温度在35℃以上为高温区间,30℃以下为低温区间,可以单独设置30℃以下及35℃以上两张基础目标水温表加以区分控制,在30-35℃区间时可以进行取两张表的平均值进行处理。原因在于不同环境温度下发动机的最佳工作水温有所不同,特别是高环境温度下非常影响发动机的散热,进而影响工作效率。采取该区分的目的在于发挥发动机最大的工作效率,更加精准的控制发动机的水温。通过实验获得发动机在不同工况(转速+负荷)下的最佳工作水温,以此为准将其填入表中,表2和表3为一汽某自主车型30℃以下及35℃以上两张表的实例,实际运行时,通过发动机转速及负荷查表得到当前的目标控制水温。
表2
Figure BDA0004101835270000062
Figure BDA0004101835270000071
表3
Figure BDA0004101835270000072
对发动机水温进行精细调节;具体如下:
对节温器进行PI动态调节。
所述对节温器进行PI动态调节的具体方法如下:
通过上述部分得到了当前运行工况下的最佳工作水温,针对水温的控制我们采取PI控制模式。通过水温保持实验可以得到当前工况和目标水温下,维持目标水温的节温器开度值,将此值作为预设值填入表中,评价标准为当前节温器开度下,水温在±7℃内波动。以一汽某车型为例,得到表4:
表4
Figure BDA0004101835270000073
Figure BDA0004101835270000081
在维持目标水温时,实际水温和目标水温依旧有一定的偏差,此时需要对节温器的开度进行精准控制,为此我们引入PI调节控制,具体控制方式为:通过上述得到当前工况下的目标水温对应的节温器开度,同时加上P部分(基于实际水温,和水温偏差量)及I部分(基于水温偏差的积分)。在水温达到最佳的工作温度附近时,对节温器进行PI动态调节,以目标水温与实际水温的差值增加P部分偏移量,同时加以积分控制,因水温控制较缓慢,不需要对其进行D部分进行控制。
P部分:以实际水温和目标水温的偏差值为基准,得到节温器开度的变化量。在温差为负值时说明水温未达到目标水温,此时需减少节温器开度,在温差为正值时说明水温超过目标水温,节温器开度增加,增加散热;在温差不大时,节温器开度变化量调小,使其缓慢变化,在温差较大时,节温器开度变化量调大,使其快速变化。综上,以一汽某车型为例我们得到表5:
表5
Figure BDA0004101835270000082
Figure BDA0004101835270000091
I部分:通过以上部分能够将温度维持在目标水温附近,但实际中还会有1-3℃左右的偏差,为了更加精准的控制稳态情况下的水温,我们引入I项控制。当存在实际温度和目标温度的差值时,以该时刻为起点,对温差值进行积分计算,只要未达到水温目标值,积分值就会不断增加,当积分值达到某个值时,说明水温上升较慢,需要减少节温器开度,反之则需要加大节温器开度。不同积分值对应不同的系数,将此系数×P项的节温器变化量,即可实现不同温差下,节温器的动态调节。以一汽某车型为例我们得到如表6的系数:
表6(X为温差,y为I项系数)
Figure BDA0004101835270000092
综上所述,通过开环控制可以在水温和环境温度较低时,实现水温的快速上升;通过闭环PI控制,可以实现水温的精准调节,以达到让发动机工作在最佳状态的目的。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明的保护范围并不局限于上述实施方式中的具体细节,在本发明的技术构思范围内,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (4)

1.一种发动机水温控制方法,其特征在于,包括:
对发动机水温进行快速调节;具体如下:
当发动机水温≤70℃,对节温器进行开环控制;
当70℃<发动机水温<85℃时,节温器打开20%-30%的开度;
当发动机水温≥85℃时,对节温器进行闭环控制;
对发动机水温进行精细调节;具体如下:
对节温器进行PI动态调节。
2.根据权利要求1所述的一种发动机水温控制方法,其特征在于,所述对节温器进行开环控制的方法如下:
当发动机水温≤70℃,节温器关闭。
3.根据权利要求1所述的一种发动机水温控制方法,其特征在于,所述对节温器进行闭环控制的方法如下:
以环境温度为区分,对节温器进行单独控制;具体为:
设置环境温度在35℃以上为高温区间,30℃以下为低温区间;并且单独设置30℃以下及35℃以上两张基础目标水温表加以区分控制,在30-35℃区间时进行取两张基础目标水温表的平均值进行处理。
4.根据权利要求1所述的一种发动机水温控制方法,其特征在于,所述对节温器进行PI动态调节的具体方法如下:
当前工况下的目标水温对应的节温器开度同时加上P部分和I部分;
所述P部分:以实际水温和目标水温的偏差值为基准,得到节温器开度的变化量;在温差为负值时说明水温未达到目标水温,此时需减少节温器开度,在温差为正值时说明水温超过目标水温,节温器开度增加,增加散热;
所述I部分:当存在实际温度和目标温度的差值时,以此时刻为起点,对温差值进行积分计算,只要未达到水温目标值,积分值就会不断增加,当积分值达到某个值时,需要减少节温器开度,反之则需要加大节温器开度;不同积分值对应不同的系数,将此系数×P项的节温器变化量,即能够实现不同温差下,节温器的动态调节。
CN202310178611.4A 2023-02-28 2023-02-28 一种发动机水温控制方法 Pending CN116122950A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310178611.4A CN116122950A (zh) 2023-02-28 2023-02-28 一种发动机水温控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310178611.4A CN116122950A (zh) 2023-02-28 2023-02-28 一种发动机水温控制方法

Publications (1)

Publication Number Publication Date
CN116122950A true CN116122950A (zh) 2023-05-16

Family

ID=86306358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310178611.4A Pending CN116122950A (zh) 2023-02-28 2023-02-28 一种发动机水温控制方法

Country Status (1)

Country Link
CN (1) CN116122950A (zh)

Similar Documents

Publication Publication Date Title
CN111520227B (zh) 一种发动机电子水泵的控制方法
CN107627875B (zh) 一种电动汽车动力电池智能温度控制系统及控制方法
CN107869383B (zh) 汽车发动机热管理系统建模及控制方法
CN110949088B (zh) 汽车电子膨胀阀控制方法和装置以及热泵系统
CN107664058B (zh) 发动机的冷却系统控制方法、系统及车辆
CN109028676B (zh) 一种新能源汽车的电动压缩机的控制方法、装置及系统
CN109578129B (zh) 一种发动机冷却水温控制系统及方法
CN113464263B (zh) 一种商用车电子节温器控制方法及系统
CN110805487B (zh) 一种发动机电子水泵的控制方法和系统
CN115020765B (zh) 一种燃料电池的热管理控制方法
CN113193267A (zh) 一种电池包液冷系统及其水温控制方法
CN111365114B (zh) 一种发动机自动冷却控制系统及控制方法
CN111608786A (zh) 一种重型汽车电控硅油离合器风扇标定方法
CN113700546B (zh) 一种发动机热管理控制方法
CN112177753B (zh) 发动机暖机工况下热管理模块的控制方法和控制装置
WO2019105079A1 (zh) 柴油机变海拔变流量冷却系统及其控制过程
CN103904384B (zh) 一种混合动力汽车车载动力电池的冷却控制方法
CN106894882A (zh) 一种汽车发动机冷却控制系统及控制方法
CN105781812A (zh) Egr冷却闭环控制系统及对egr气体进行冷却的方法
CN116505141A (zh) 一种储能电池用热管理控制系统及其控制方法
CN107288735A (zh) 一种建立汽车电子风扇转速控制函数的方法
CN108692946B (zh) 一种发动机台架试验用水冷中冷装置及其控制方法
CN116122950A (zh) 一种发动机水温控制方法
CN116538743B (zh) 一种冷水机的控制方法
CN110459818B (zh) 一种车辆电池温度控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 130012 no.4888, Yushan Road, Changchun high tech Development Zone, Jilin Province

Applicant after: FAW Besturn Automotive Co.,Ltd.

Address before: No. 4888, Yushan Road, Changchun high tech Industrial Development Zone, Changchun City, Jilin Province

Applicant before: FAW Pentium Car Co.,Ltd.

Country or region before: China