CN116111047A - 一种吡啶类钒配合物改性钠金属负极及其制备方法 - Google Patents

一种吡啶类钒配合物改性钠金属负极及其制备方法 Download PDF

Info

Publication number
CN116111047A
CN116111047A CN202211090946.2A CN202211090946A CN116111047A CN 116111047 A CN116111047 A CN 116111047A CN 202211090946 A CN202211090946 A CN 202211090946A CN 116111047 A CN116111047 A CN 116111047A
Authority
CN
China
Prior art keywords
sodium metal
sodium
pyridine
vanadium
vanadium complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211090946.2A
Other languages
English (en)
Inventor
芮先宏
陈开治
郑坤雄
姚楷橦
刘琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202211090946.2A priority Critical patent/CN116111047A/zh
Publication of CN116111047A publication Critical patent/CN116111047A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种改性钠金属负极材料及其制备方法,属于电化学技术领域。本发明所采用的制备方法,其步骤为:将研磨后的吡啶类钒配合物粉末均匀涂覆在钠金属表面,搁置一定时间后,钠金属和吡啶类钒配合物反应生成含无机化合物(钠盐、钒氮合金)和有机化合物的人工界面层。无机化合物能有效提高人工界面层机械强度,促进钠离子的均匀沉积,有效抑制钠枝晶生长,而且有机化合物的存在能有效保护钠金属负极不受电解液腐蚀,提高电池的循环寿命。此外,该制备方法具有可操作性强,成本低廉,可规模化应用的潜力。

Description

一种吡啶类钒配合物改性钠金属负极及其制备方法
技术领域
本发明属于钠金属电池领域,更具体地说,涉及一种吡啶类钒配合物改性钠金属负极方法及性能优化。
背景技术
生活中人们对电子产品的需求与日俱增,锂离子电池作为当前电子产品的主要供电电源,因具有高的能量密度和功率密度而被广泛应用。但锂资源匮乏、分布不均和价格高的问题制约了锂电池的规模化应用。钠和锂属于同一主族,具有相似的电化学性质。使用钠作为负极替代锂具有成本低,储量丰富的优势。钠离子电池负极材料通常使用钛基材料,碳基材料,有机类材料和合金类材料等。在众多钠离子电池负极材料中,钠金属负极具有高的理论比容量(1166mA h g-1)和低的氧化还原电位(-2.71V vs.标准氢电极电位)而被认为是最有潜力的负极材料。
钠金属活性较高,作为钠金属阳极时,容易和碳酸盐电解液反应,形成疏松多孔的固体电解质界面层(Solid Electrolyte Interphase,SEI)。充放电循环过程中钠金属负极体积膨胀大,易引起SEI膜开裂,新鲜钠金属重新暴露在电解液中,进一步消耗钠源和电解液,导致后续电镀/剥离过程库仑效率降低。此外,钠金属表面不均匀的电荷分布导致钠离子富集区域在初始循环后出现微小的枝晶,枝晶持续生长最终刺穿隔膜,引起短路。目前抑制钠枝晶生长的方式主要有构筑三维结构的集流体、人工界面层和自愈合静电屏蔽层。例如,中国专利申请号为CN202111039647.1申请案公开了一种硼氧基界面膜保护的碱金属负极。该专利使用硼酸溶液和碱金属反应,在碱金属负极的表面原位形成一层复合保护层。该复合保护层起到促进碱金属离子传导和诱导碱金属离子在负极表面均匀沉积的作用。然而,该界面膜主要依靠碱金属和电解液自发反应形成,均匀性和机械强度较差,在电镀剥离过程中容易破裂,使新鲜的碱金属重新暴露于电解液中,进一步发生副反应消耗电解液和钠,降低比容量,而且随SEI层厚度的增加,碱金属离子扩散困难,导致电池的循环性能和倍率性能较差。
相比之下,人工SEI层不仅具有良好的离子传导性,能缓解钠离子局部富集现象,利于钠离子均匀沉积,而且人工SEI层还具有高的机械强度,能有效抑制钠枝晶的生长,提高电池循环稳定性。
发明内容
为了达到上述目的,本发明通过在钠金属表面涂覆吡啶类钒配合物构造人工SEI层,旨在抑制钠金属在电镀剥离过程中容易产生枝晶的问题,提供了一种改性钠金属负极及其制备方法。采用本发明的构造的人工SEI层具有方法简单、成本低、机械强度高、均匀性好、副反应少、电化学性能优异等优势。
为实现上述发明目的,本发明的第一个目的是,提供一种改性钠金属负极材料,通过采用吡啶类钒配合物对钠金属表面进行改性得到,所述吡啶类钒配合物与钠金属质量比为1:3-1:6。
所述吡啶类钒配合物优选为吡啶甲酸氧钒、吡啶二羧酸钒、吡啶亚胺钒中的一种或它们的组合。
本发明的第二个目的是,提供一种改性钠金属负极材料的制备方法,具体制备步骤为:
(1)将钠金属块擀压成长方形纳金属薄片;
(2)将一定量吡啶类钒配合物粉末置于手套箱中充分研磨后涂覆于长方形钠金属薄片上并进行反应;
(3)待反应结束后,长方形钠金属薄片表面生成一层人工界面膜,即得到吡啶类钒配合物改性钠金属负极材料。
所述长方形钠金属薄片的尺寸为宽5cm,长8-12cm,厚度为200-400nm;所述吡啶类钒配合物粉末研磨时间为15-60min,使用量为40-80mg,涂覆完毕后搁置10-24h,使其发生自发反应。
本发明的第三个目的是,提供一种纽扣式对称电池,包含正极、负极和电解液。
所述负极为将上述吡啶类钒配合物改性钠金属负极材料切成直径为10mm的原片得到;
所述电解液为1M NaClO4-EC/DEC/5%FEC,为1摩尔的高氯酸钠溶解在溶剂碳酸乙酯(EC),溶剂碳酸二乙酯(DEC)和添加剂氟代碳酸乙酯(FEC)中得到。
进一步地,电解液中EC和DEC体积比为1:1,添加剂FEC加入量为5%,电解液使用量为200μL。
本申请将吡啶类钒配合物涂覆在钠金属负极表面构造人工SEI层。该类化合物中吡啶基团作为“缺π杂环”,具有难氧化,易还原的特性,容易被钠还原为烯类有机物,而且吡啶环上的N原子能与金属钒离子配位形成具有高亲钠性的钒氮合金,诱导钠离子吸附。吡啶类钒配合物在钠金属表面均匀涂覆后,与钠反应原位形成无机化合物钠盐和有机化合物。无机组分能有效提高SEI层机械强度,而含有有机化合物的人工界面层能有效保护钠金属负极不被电解液腐蚀。在有效抑制枝晶生长的同时提高钠金属电池的循环寿命。此外,本申请所采取的物理涂覆构造人工SEI层的方法具有操作简便,成本低的优点,便于大规模生产。
相比于现有技术,本发明的有益效果为:
(1)本发明发明人创造性地将含有机官能团和含金属元素钒的吡啶类钒配合物涂覆于钠金属表面,吡啶类钒配合物和钠金属反应后得到的改性钠金属负极材料具有高硬度的无机化合物和具有高可调节性的有机化合物,两者协同作用不仅能有效保护钠金属负极不受电解液腐蚀,而且还提高了SEI的机械强度,有效抑制钠枝晶的生长,提升钠金属电池在充放电过程中的循环稳定性。
(2)本发明的吡啶类钒配合物改性钠金属负极材料的制备方法,是通过简单地的物理手段将吡啶类钒配合物均匀涂覆在钠金属表面,具有操作简便,成本低的优点,便于大规模生产应用。
附图说明
(1)图1为本发明实施例1钠金属表面涂覆吡啶甲酸氧钒后的前后对比图,A为纯钠,B为吡啶甲酸氧钒涂覆于钠金属表面;
(2)图2为本发明实施例1涂覆吡啶甲酸氧钒后的钠片的C1s、O 1s、N 1s和Na 1s的X射线光电子能谱(XPS)图;
(3)图3为本发明实施例1涂覆吡啶甲酸氧钒所得钠片组装成对称电池后在0.5mAcm-2电流密度、容量为1mAh cm-2下的时间电压图;
(4)图4为本发明实施例2涂覆吡啶二羧酸钒所得钠片组装成对称电池后在0.5mAcm-2电流密度、容量为1mAh cm-2下的时间电压图;
(5)图5为本发明实施例3涂覆吡啶亚胺钒所得钠片组装成对称电池后在0.5mAcm-2电流密度、容量为1mAh cm-2下的时间电压图;
(6)图6为本发明实施例4涂覆吡啶甲酸氧钒和吡啶二羧酸钒所得钠片组装成对称电池后在0.5mA cm-2电流密度、容量为1mAh cm-2下的时间电压图。
具体实施方式
为进一步了解本发明的内容,现结合具体实施例对本发明作详细描述。
实施例1
称取40mg的吡啶甲酸氧钒粉末,在手套箱中仔细研磨60min,均匀涂覆在宽5cm、长8cm、厚度为200nm的长方形钠片表面构造人工SEI层。随后将钠片置于手套箱中搁置24h。反应完后,将钠片裁成10mm的圆片,分别用作正负极组装纽扣对称电池。电池所用电解液为1MNaClO4-EC/DEC/5%FEC,使用量为200μL。组装完毕后将扣式电池在电流密度为0.5mA cm-2,容量为1mAh cm-2的条件下运行,测试其充放电过程中的循环稳定性。
图1为原始钠片和涂覆吡啶甲酸氧钒后的钠片对比图。原始钠金属表面具有金属光泽,在涂覆蓝色的吡啶甲酸氧钒粉末后钠金属表面颜色发生改变,由银灰色转变为黑色,表明涂覆吡啶甲酸氧钒后发生了化学反应。
图2为钠金属表面涂覆吡啶甲酸氧钒后的C 1s、O 1s、N 1s和Na 1s的XPS图谱。结果表明吡啶甲酸氧钒会发生分解并和钠反应生成有机化合物甲基丙烯酸钠(NaOC(O)CCH3CH2)和无机化合物碳酸钠和钒氮合金。有机化合物在SEI中可有效保护钠金属负极不受电解液腐蚀,而无机化合物碳酸钠分散于SEI中能有效提高SEI的机械强度。此外,钒氮合金能诱导钠离子吸附,促进钠离子的均匀沉积。
图3为本发明所得到的改性钠金属圆片分别作为正负极组装对称电池后的时间电压图,在0.5mA cm-2电流密度、容量为1mAh cm-2的条件下运行,发现其过电位和纯钠相比,从150mV降到了100mV,且循环寿命从120h延长到了300h以上。表明涂覆吡啶甲酸氧钒粉末构造人工SEI层不仅促进钠离子的均匀沉积,还抑制了钠枝晶的生长,提高SEI的稳定性,进而延长电池的循环寿命。
实施例2
称取80mg的吡啶二羧酸钒粉末,在手套箱中仔细研磨25min后,均匀涂覆在宽5cm、长12cm、厚度为400nm的钠片表面构造人工SEI层。随后将钠片置于手套箱中搁置10h。反应完后,将钠片裁成10mm的圆片,分别用作正负极组装纽扣对称电池。电池所用电解液为1MNaClO4-EC/DEC/5%FEC,使用量为200μL。组装完毕后将扣式电池在电流密度为0.5mA cm-2,容量为1mAh cm-2的条件下运行,测试其充放电过程中的循环稳定性。
图4为涂覆吡啶二羧酸钒所得到的改性钠金属圆片在0.5mA cm-2电流密度、容量为1mAh cm-2的条件下运行得到的时间电压图,其过电位和纯钠相比,从150mV降到了100mV,且循环寿命从120h延长到了240h以上。
实施例3
称取60mg的吡啶亚胺钒粉末,在手套箱中仔细研磨15min,均匀涂覆在宽5cm、长10cm、厚度为300nm的钠片表面构造人工SEI层。随后将钠片置于手套箱中搁置16h。反应完后,将钠片裁成10mm的圆片,分别用作正负极组装纽扣对称电池。电池所用电解液为1MNaClO4-EC/DEC/5%FEC,使用量为200μL。组装完毕后将扣式电池在电流密度为0.5mA cm-2,容量为1mAh cm-2的条件下运行,测试其充放电过程中的循环稳定性。
图5为涂覆吡啶亚胺钒所得到的改性钠金属圆片在0.5mA cm-2电流密度、容量为1mAh cm-2的条件下运行得到的时间电压图,其过电位和纯钠相比,从150mV降到了100mV,且循环寿命从120h延长到了400h以上。
实施例4
称取30mg的吡啶甲酸氧钒和30mg的吡啶二羧酸钒粉末,在手套箱中仔细研磨40min后,均匀涂覆在宽5cm、长11cm、厚度为300nm的钠片表面构造人工SEI层。随后将钠片置于手套箱中搁置20h。反应完后,将钠片裁成10mm的圆片,分别用作正负极组装纽扣对称电池。电池所用电解液为1M NaClO4-EC/DEC/5%FEC,使用量为200μL。组装完毕后将扣式电池在电流密度为0.5mA cm-2,容量为1mAh cm-2的条件下运行,测试其充放电过程中的循环稳定性。
图6为涂覆吡啶甲酸氧钒和吡啶二羧酸钒所得到的改性钠金属圆片在0.5mA cm-2电流密度、容量为1mAh cm-2的条件下运行得到的时间电压图,其过电位和纯钠相比,从150mV降到了100mV,且循环寿命从120h延长到了350h以上。

Claims (6)

1.一种改性钠金属负极材料,其特征在于,通过采用吡啶类钒配合物对钠金属表面进行改性得到,所述吡啶类钒配合物与钠金属质量比为1:3-1:6。
2.根据权利要求1所述的改性钠金属负极材料,其特征在于,所述吡啶类钒配合物为吡啶甲酸氧钒、吡啶二羧酸钒、吡啶亚胺钒中的一种或它们的组合。
3.一种权利要求1所述改性钠金属负极材料的制备方法,其特征在于,具体制备步骤为:
(1)将钠金属块擀压成长方形纳金属薄片;
(2)将一定量吡啶类钒配合物粉末置于手套箱中充分研磨后涂覆于长方形钠金属薄片上并进行反应;
(3)待反应结束后,长方形钠金属薄片表面生成一层人工界面膜,即得到改性钠金属负极材料。
4.根据权利要求3所述的改性钠金属负极材料的制备方法,其特征在于,所述长方形钠金属薄片的尺寸为宽5cm,长8-12cm,厚度为200-400nm;所述吡啶类钒配合物粉末研磨时间为15-60min,使用量为40-80mg,涂覆完毕后搁置10-24h,使其发生自发反应。
5.一种纽扣式对称电池,其特征在于,所述电池包含正极、负极和电解液,所述负极为将权利要求1-2任一项所述改性钠金属负极材料或权利要求3-4任一项所述改性钠金属负极材料的制备方法得到的改性钠金属负极材料切成直径为10mm的原片得到。
6.根据权利要求5所述对称电池,其特征在于,所述电解液为1MNaClO4-EC/DEC/5%FEC,为1摩尔的高氯酸钠溶解在溶剂碳酸乙酯(EC),溶剂碳酸二乙酯(DEC)和添加剂氟代碳酸乙酯(FEC)中得到;
所述电解液中EC和DEC体积比为1:1,添加剂FEC加入量为5%,电解液使用量为200μL。
CN202211090946.2A 2022-09-07 2022-09-07 一种吡啶类钒配合物改性钠金属负极及其制备方法 Pending CN116111047A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211090946.2A CN116111047A (zh) 2022-09-07 2022-09-07 一种吡啶类钒配合物改性钠金属负极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211090946.2A CN116111047A (zh) 2022-09-07 2022-09-07 一种吡啶类钒配合物改性钠金属负极及其制备方法

Publications (1)

Publication Number Publication Date
CN116111047A true CN116111047A (zh) 2023-05-12

Family

ID=86253365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211090946.2A Pending CN116111047A (zh) 2022-09-07 2022-09-07 一种吡啶类钒配合物改性钠金属负极及其制备方法

Country Status (1)

Country Link
CN (1) CN116111047A (zh)

Similar Documents

Publication Publication Date Title
Zhang et al. Study of zinc electrodes for single flow zinc/nickel battery application
Park et al. Bismuth oxide as an excellent anode additive for inhibiting dendrite formation in zinc-air secondary batteries
CN113629236B (zh) 一种复合金属锂负极及其制备方法和应用
Jiang et al. In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries
EP3199667B1 (en) Method for producing silicon-plated metal plate
CN110071284A (zh) 锂金属电极的保护方法
Zhang et al. Novel polymer-graphite composite grid as a negative current collector for lead-acid batteries
CN112695339B (zh) 一种析氢催化电极、其制备方法及其应用
CN102912174A (zh) 一种铅石墨烯复合材料
CN108550808A (zh) 一种复合金属锂负极及其制备方法
Wen et al. Preliminary study on zinc–air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction
Ghaemi et al. New advances on bipolar rechargeable alkaline manganese dioxide–zinc batteries
Wen et al. The inhibition of the spongy electrocrystallization of zinc from doped flowing alkaline zincate solutions
CN111769251A (zh) 金属电极的保护方法
CN112786842A (zh) 一种含人工固态电解质界面层的碱金属负极及其制备方法和应用
CN114373917A (zh) 一种钠离子电池正极复合材料及其制备方法与应用
Gyenge et al. High specific surface area, reticulated current collectors for lead–acid batteries
CN113540395B (zh) 一种可充镁电池负极表面人工sei膜的成膜液及制备方法
Qiu et al. Long-life zinc electrodes achieved by oxygen plasma functionalization
CN110137430A (zh) 三维多孔阵列结构的Co3O4/rGO/Ni foam复合电极材料及其制备方法
CN115764007B (zh) 一种大面积制备锌@氧化钒复合薄膜的方法及其在水系锌电池中的应用
CN108987673B (zh) 一种含导电保护薄膜的锂负极及其制备方法和应用
Zhao et al. Lattice-matching Ni-based scaffold with a spongy cover for uniform electric field against lithium dendrites
CN116111068A (zh) 一种三维锑/氧化锑复合层修饰的锌负极材料及其制备方法和应用
CN116111047A (zh) 一种吡啶类钒配合物改性钠金属负极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination