CN116099512A - 一种用于测定水中全氟化合物的管状被动采样器吸附相 - Google Patents

一种用于测定水中全氟化合物的管状被动采样器吸附相 Download PDF

Info

Publication number
CN116099512A
CN116099512A CN202211053677.2A CN202211053677A CN116099512A CN 116099512 A CN116099512 A CN 116099512A CN 202211053677 A CN202211053677 A CN 202211053677A CN 116099512 A CN116099512 A CN 116099512A
Authority
CN
China
Prior art keywords
wax
adsorbent
water
gel
adsorption phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211053677.2A
Other languages
English (en)
Inventor
陈长二
李偲琳
刘思思
成盛铭
应光国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202211053677.2A priority Critical patent/CN116099512A/zh
Publication of CN116099512A publication Critical patent/CN116099512A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及环境监测技术领域,且公开了一种用于测定水中全氟化合物的管状被动采样器吸附相,包括以下制备步骤:S1、使用甲醇净化、活化WAX吸附剂,将WAX吸附剂上的吸附结合位点上的杂质溶解在甲醇中,后用超纯水淋洗;S2、将淋洗后的WAX吸附剂和10mL胶联剂‑聚丙烯酰胺溶胶按质量比2∶5的比例混合均匀,后依次加入160μL 10%过硫酸铵溶液和30μL催化剂N,N,N’N’四甲基乙二胺溶液,继续混匀;S3、将适当上述溶液注入PE管中,两头封上后置于滚动混匀器中,以70rpm转速滚动10min,形成凝胶后将PE管划开,将胶棒完整取出。本发明公开的一种用于测定PFAS的CFT吸附相在制备过程中无需加热,耗时短、耗能小,具有制备工艺简单、规范性高、成胶强壮等优点。

Description

一种用于测定水中全氟化合物的管状被动采样器吸附相
技术领域
本发明涉及环境监测技术领域,具体为一种用于测定水中全氟化合物的陶瓷管被动采样器(Ceramic filter tube,CFT)的吸附相。
背景技术
全氟烷基化合物(Perfluoroalkyl substances,PFAS)是自20世纪40年代末以来生产的一类人工合成化学品,并广泛应用于许多工业和商业领域。PFAS排放到环境中有直接和间接两种来源。直接来源为PFAS的工业生产和使用过程;而间接来源是PFAS以化学反应杂质的形式或物质可能降解形成PFAS。由于PFAS的化学性质非常稳定,释放到自然环境中不容易被物理、化学和生物机制分解,在全球范围内的各种环境介质(水体、土壤、大气等)中均有检出。有研究表明,PFAS具有生物积累性,可以通过食物链传递,并且有致癌性、免疫毒性和发育毒性等多种毒性。目前,PFAS污染已引起世界范围内的广泛关注,国际上许多组织以都对PFAS的生产和使用进行了规范。其中,PFOA和PFOS及相关化合物已被列入《关于持久性有机污染物的斯德哥尔摩公约》。因此,对水环境中PFAS污染水平的监测对PFAS生态风险评估和完善环境立法具有重要意义。
水环境中PFAS的检测多采用现场采样后带回实验室富集分析的方式。这种方式在样品运输过程中,污染物成分可能会发生改变,且前处理过程繁琐,需要花费大量时间、人力和资源。被动采样技术作为一种新兴的采样技术,可以集采集和富集于一体,省时省力并能提供样品在采样过程的时间加权平均浓度。陶瓷管被动采样技术是一种新兴的被动采样技术,它具有动力学采样、操作简单、不需要野外校正等特点。其核心部分为固定目标物的吸附相。目前用于管状被动采样技术的吸附相主要有吸附树脂颗粒,如Amberlite IRA、Dowex Optipore L-493、HLB等和吸附剂凝胶,如TiO2琼脂凝胶。但这些吸附相均不能有效吸附PFAS,且不可重复利用。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种用于测定水中全氟化合物的管状被动采样器吸附相,解决了上述背景技术中所存在的问题。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:一种用于测定水中全氟化合物的管状被动采样器吸附相及再生方法,包括以下制备步骤:
S1、使用甲醇净化、活化WAX吸附剂,将WAX吸附剂上的吸附结合位点上的杂质溶解在甲醇中,后用超纯水淋洗;
S2、将淋洗后的WAX吸附剂和10mL胶联剂-聚丙烯酰胺溶胶按质量比2∶5的比例混合均匀,后依次加入160μL 10%过硫酸铵溶液和30μL催化剂N,N,N’N’四甲基乙二胺溶液,继续混匀;
S3、将适当上述溶液注入PE管中,两头封上后置于滚动混匀器中,以70rpm转速滚动10min,形成凝胶后将PE管划开,将胶棒完整取出;
S4、将凝胶置于超纯水中浸泡24h,使其充分膨胀,并多次换水直至水溶液PH为7;
S5、充分膨胀后胶棒呈均匀乳白色,将凝胶切割成直径为4.5cm的胶棒,即得所需CFT吸附相。
优选的,所述胶棒的尺寸可根据陶瓷管尺寸制备,直径≥7mm,长度≥4.5cm。
优选的,所述步骤S1中活化、淋洗依次采用甲醇和超纯水进行,所用的WAX材料、甲醇和超纯水的体积比约为1∶10∶10。
优选的,所述步骤S2中的WAX吸附剂和丙烯酰胺溶胶的质量比为2∶5。
(三)有益效果
本发明提供了一种用于测定水中全氟化合物的管状被动采样器吸附相,具备以下有益效果:
(1)、本发明公开的一种用于测定PFAS的CFT吸附相可用于CFT中测定溶液中PFAS的浓度。
(2)、本发明公开的一种用于测定PFAS的CFT吸附相在制备过程中无需加热,耗时短、耗能小,具有制备工艺简单、规范性高、成胶强壮、可重复利用等优点。
附图说明
图1为组装有本发明制备的吸附相的CFT装置示意图;
图2为本发明制备的用于测定PFAS的CFT吸附相对水体中5种PFAS的吸附效果对比结果图;
图3为组装有本发明制备的用于测定PFAS的CFT吸附相采集PFAS后重复利用性图;
图4为组装有本发明制备的用于测定PFAS的CFT吸附相的CFT装置(CFT-WAX)与传统主动采样-固相萃取法(Grab-SPE)测定污水中PFAS的浓度的对比图。
图中:1、陶瓷管;2、WAX吸附胶棒;3、橡胶堵头。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将本发明所制备的WAX吸附相,置于10mL含有浓度为50μg/L 5种PFAS水溶液(PFBA、PFBS、PFHxA、PFOA和PFOS)中,于摇床震荡吸附,在吸附0min、4h、18h、24h后分别取0.1mL样品,使用超高效液相色谱质谱联用仪测定吸附前后溶液中抗生素的浓度,以计算WAX吸附胶对PFAS的吸附效率。由图2可以看出,本发明所制备的WAX吸附胶对目标PFAS的吸附在前4个小时达到了50%以上,并且在18h后都将实验水溶液中的目标PFAS完全吸附。表明本发明制备的WAX吸附胶对目标PFAS具有较高的吸附效率。
实施例2
将本发明所制备的WAX结合相,加入到10mL含有50μg/L的目标PFAS水溶液中,吸附24h后将WAX胶取出,并置于5mL 0.5%氨水甲醇和5mL乙腈中超声清洗1h。将洗脱溶液倒出后,将WAX吸附胶泡在超纯水中至复原形态。随后,在下一个吸附循环中重复使用,通过对含有目标PFAS水溶液中的吸附率判定重复使用效果。由图3中可以看出,WAX吸附胶第5次对目标PFAS的平均吸附率均>82%。表现出了良好的重复使用的可能性。
实施例3
将含有本发明所制备WAX结合相的CFT装置(CFT-WAX)如图1所示,应用于污水处理厂进水中PFAS的测定。将CFT装置置于污水处理厂进水水面30cm以下,放置2、3、5、7天,放置CFT和取出CFT的同时取水样1L进行常规固相萃取方法(Grab-SPE)测定。取回的CFT将WAX吸附胶取出,使用5mL0.5%氨水甲醇/乙腈(V:V=1:1),超声30min,重复两次,合并两次洗脱液。将洗脱液氮吹至近干,以0.5mL甲醇和0.5mL水复溶并涡旋混匀。所有样品利用超高效液相色谱质谱联用仪测定PFAS含量。目标PFAS在CFT-WAX上积累量随着时间的增加而增加,说明在7天的采样时间内,WAX吸附胶没有达到饱和,CFT-WAX在污水处理厂进水口的放置采样的持续时间可大于7天。而传统的抓取式采样和CFT-WAX采样方法均能检测到五种目标PFAS化合物(图4),CFT-WAX测量结果略高于抓取式采样的方法测定结果,由于传统抓取式采样只能反映取样时目标物的瞬时浓度,污水处理厂进水中PFAS的浓度会随时间变化有波动,所以传统抓取式采样的方法测定结果偏低,符合预期。结果表明CFT-WAX可以用于在短时间内测定水环境中PFAS的时间加权平均浓度。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种用于测定水中全氟化合物的管状被动采样器吸附相,其特征在于,包括以下制备步骤:
S1、使用甲醇净化、活化WAX吸附剂,将WAX吸附剂上的吸附结合位点上的杂质溶解在甲醇中,后用超纯水淋洗;
S2、将淋洗后的WAX吸附剂和10mL胶联剂-聚丙烯酰胺溶胶按质量比2∶5的比例混合均匀,后依次加入160μL 10%过硫酸铵溶液和30μL催化剂N,N,N’N’四甲基乙二胺溶液,继续混匀;
S3、将适当上述溶液注入PE管中,两头封上后置于滚动混匀器中,以70rpm转速滚动10min,形成凝胶后将PE管划开,将胶棒完整取出;
S4、将凝胶置于超纯水中浸泡24h,使其充分膨胀,并多次换水直至水溶液PH为7;
S5、充分膨胀后胶棒呈乳白色,吸附剂均匀分布,将凝胶切割成直径为4.5cm的胶棒,即得所需CFT吸附相。
2.根据权利要求1所述的一种用于测定水中全氟化合物的管状被动采样器吸附相,其特征在于:所述胶棒的尺寸可根据陶瓷管尺寸制备,直径≥7mm,长度≥4.5cm。
3.根据权利要求1所述的一种用于测定水中全氟化合物的管状被动采样器吸附相,其特征在于:所述步骤S1中活化、淋洗依次采用甲醇和超纯水进行,所用的WAX材料、甲醇和超纯水的体积比约为1∶10∶10。
4.根据权利要求1所述的一种用于测定水中全氟化合物的管状被动采样器吸附相,其特征在于:所述步骤S2中的WAX吸附剂和丙烯酰胺溶胶的质量比为2∶5。
CN202211053677.2A 2022-08-29 2022-08-29 一种用于测定水中全氟化合物的管状被动采样器吸附相 Pending CN116099512A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211053677.2A CN116099512A (zh) 2022-08-29 2022-08-29 一种用于测定水中全氟化合物的管状被动采样器吸附相

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211053677.2A CN116099512A (zh) 2022-08-29 2022-08-29 一种用于测定水中全氟化合物的管状被动采样器吸附相

Publications (1)

Publication Number Publication Date
CN116099512A true CN116099512A (zh) 2023-05-12

Family

ID=86264485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211053677.2A Pending CN116099512A (zh) 2022-08-29 2022-08-29 一种用于测定水中全氟化合物的管状被动采样器吸附相

Country Status (1)

Country Link
CN (1) CN116099512A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060086665A1 (en) * 2002-04-26 2006-04-27 Klaus-Dieter Wenzel Method for the accelerated dialytic recovery of foreign substances from passive collectors consisting of semipermeable membranes having different dimensions
US20110023711A1 (en) * 2007-06-18 2011-02-03 Gl Science Incorporated Monolith adsorbent and method and apparatus for adsorbing samples with the same
CN104359719A (zh) * 2014-12-09 2015-02-18 苏州汉能环保材料科技有限公司 一种水中挥发性有机物纳米连续采样器
WO2016207461A1 (es) * 2015-06-22 2016-12-29 Consejo Superior De Investigaciones Científicas (Csic) Muestreador cerámico pasivo para la medida de contaminación en aguas
CN109932462A (zh) * 2019-03-20 2019-06-25 河海大学 用于水环境中极性有机污染物的被动采样器及其采样方法
CN110514768A (zh) * 2019-08-29 2019-11-29 河海大学 用于地下水中极性有机物采集的陶瓷管采样器及采样方法
US20200096483A1 (en) * 2018-09-08 2020-03-26 Changzhou Environmental Monitoring Center In-situ passive sampling device based on physical and chemical and bio-coupling monitoring and application
CN111659358A (zh) * 2020-06-11 2020-09-15 南京大学 一种dgt吸附膜、制备方法和基于dgt技术监测全氟和多氟化合物的方法
CN113231034A (zh) * 2021-04-21 2021-08-10 华南师范大学 一种dgt结合相及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060086665A1 (en) * 2002-04-26 2006-04-27 Klaus-Dieter Wenzel Method for the accelerated dialytic recovery of foreign substances from passive collectors consisting of semipermeable membranes having different dimensions
US20110023711A1 (en) * 2007-06-18 2011-02-03 Gl Science Incorporated Monolith adsorbent and method and apparatus for adsorbing samples with the same
CN104359719A (zh) * 2014-12-09 2015-02-18 苏州汉能环保材料科技有限公司 一种水中挥发性有机物纳米连续采样器
WO2016207461A1 (es) * 2015-06-22 2016-12-29 Consejo Superior De Investigaciones Científicas (Csic) Muestreador cerámico pasivo para la medida de contaminación en aguas
US20200096483A1 (en) * 2018-09-08 2020-03-26 Changzhou Environmental Monitoring Center In-situ passive sampling device based on physical and chemical and bio-coupling monitoring and application
CN109932462A (zh) * 2019-03-20 2019-06-25 河海大学 用于水环境中极性有机污染物的被动采样器及其采样方法
CN110514768A (zh) * 2019-08-29 2019-11-29 河海大学 用于地下水中极性有机物采集的陶瓷管采样器及采样方法
CN111659358A (zh) * 2020-06-11 2020-09-15 南京大学 一种dgt吸附膜、制备方法和基于dgt技术监测全氟和多氟化合物的方法
CN113231034A (zh) * 2021-04-21 2021-08-10 华南师范大学 一种dgt结合相及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PO WANG ET AL.: ""Calibration of organic-diffusive gradients in thin films (o-DGT) passive samplers for perfluorinated alkyl acids in water"", 《CHEMOSPHERE》, vol. 263, 12 September 2020 (2020-09-12), pages 2, XP086380787, DOI: 10.1016/j.chemosphere.2020.128325 *
SHENGMING CHENG ET AL.: ""Development of ceramic filter tube for passive sampling of PFAS in waters"", 《ENVIRONMENTAL TECHNOLOGY & INNOVATION》, vol. 34, 20 March 2024 (2024-03-20), pages 1 - 10 *
杨愿愿等: ""超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物"", 《分析化学》, vol. 50, no. 8, 17 June 2022 (2022-06-17), pages 1243 - 1251 *

Similar Documents

Publication Publication Date Title
Ho Pseudo-isotherms using a second order kinetic expression constant
Sangiumsak et al. Adsorption Behavior of Heavy Metals on Various Soils.
Sivakumar et al. Packed bed column studies for the removal of Acid blue 92 and Basic red 29 using non-conventional adsorbent
Krishnan et al. Removal of EDTA from aqueous solutions using activated carbon prepared from rubber wood sawdust: Kinetic and equilibrium modeling
CN113231034A (zh) 一种dgt结合相及其制备方法和应用
CN106758520B (zh) 戊二醛交联聚乙烯亚胺纸基薄膜的制备方法
CN107541948A (zh) 一种层状双金属氢氧化物修饰的棉花纤维及其制备方法和应用
Kida et al. Study on the suitability of using low-frequency ultrasonic field for removing di (2-ethylhexyl) phthalate from bottom sediments
CN116099512A (zh) 一种用于测定水中全氟化合物的管状被动采样器吸附相
CN112755983B (zh) 一种三维多孔油水分离泡沫
Sarafraz-Yazdi et al. Development of a poly (ethylene glycol)–graphene oxide sol–gel coating for solid-phase microextraction of aromatic amines in water samples with a gas chromatography-flame ionization detector method
Aji et al. Application of activated carbon in removal of iron and manganese from Alau Dam water in Maiduguri
CN104645990A (zh) 负载Fe、Ti的膨胀珍珠岩、制备方法及其应用
Remya et al. Influence of organic matter and solute concentration on nitrate sorption in batch and diffusion-cell experiments
Vukojević Medvidović et al. Design of fixed bed column for lead removal on natural zeolite based on batch studies
Hayrapetyan et al. A method for evaluating the sorption capacity of the sorbents
Sahin Mathematical Model for Adsorption of Boric Acid on a Boron-Specific Ion Exchanger.
Abidin Ecofriendly Approach to Adsorption of Congo Red from Aqueous Media Using Chaff Powder from Jatropha curcas Seed (Isotherm and Kinetic Model)
Mise et al. Study of nitrate adsorption characteristics on red soil
Ofomaja et al. Kinetic biosorption study of cadmium onto coconut copra meal as biosorbent
Bashammakh The retention profile of phosphate ions in aqueous media onto ion pairing immobilized polyurethane foam: Kinetics, sorption and chromatographic separation
Gray et al. A framework for estimating soil water characteristic curve and hydraulic conductivity function of permeable reactive media
Paliulis et al. Effect of pH for lead removal from polluted water applying peat
CN108160054A (zh) 一种吸附重金属的尼龙膜制备方法
Alam et al. Sorption and desorption of 2, 4-D and atrazine from water environment by waste tyre rubber granules and its management

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination