CN116092928B - 一种高栅压摆幅的增强型GaN功率器件及其制备方法 - Google Patents

一种高栅压摆幅的增强型GaN功率器件及其制备方法 Download PDF

Info

Publication number
CN116092928B
CN116092928B CN202310368461.3A CN202310368461A CN116092928B CN 116092928 B CN116092928 B CN 116092928B CN 202310368461 A CN202310368461 A CN 202310368461A CN 116092928 B CN116092928 B CN 116092928B
Authority
CN
China
Prior art keywords
layer
algan
gan
voltage swing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310368461.3A
Other languages
English (en)
Other versions
CN116092928A (zh
Inventor
朱廷刚
李亦衡
武乐可
夏远洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Corenergy Semiconductor Co ltd
Original Assignee
Jiangsu Corenergy Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Corenergy Semiconductor Co ltd filed Critical Jiangsu Corenergy Semiconductor Co ltd
Priority to CN202310368461.3A priority Critical patent/CN116092928B/zh
Publication of CN116092928A publication Critical patent/CN116092928A/zh
Application granted granted Critical
Publication of CN116092928B publication Critical patent/CN116092928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种高栅压摆幅的增强型GaN功率器件及其制备方法,属于半导体技术领域。本发明在P‑GaN层生长结束后,继续生长一层AlGaN‑2层,在AlGaN‑2层生长过程中进行Mg掺杂,形成P型半导体,并使Al组分为渐变的,以减小AlGaN‑2层与P‑GaN层之间的应力,减弱压电极化效应。P型半导体与金属接触时,金属的功函数相对于半导体的功函数越小,形成的肖特基接触势垒就越高。本发明利用AlGaN‑2层功函数比P‑GaN大的特点,其与栅极上方的金属形成的肖特基接触,势垒更高,从而导致栅极耐压会更强,提升了器件的栅压摆幅。

Description

一种高栅压摆幅的增强型GaN功率器件及其制备方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种高栅压摆幅的增强型GaN功率器件及其制备方法。
背景技术
GaN材料具有禁带宽度大、击穿场强高、极化系数高、电子迁移率高、电子饱和速率大等特点,是制备新一代高性能电子电力器件的新型材料。GaN基功率器件,由于AlGaN/GaN异质结的极化特性,在AlGaN/GaN界面处存在自发极化和压电极化效应,在界面处GaN一侧形成三角势阱,电子束缚在势阱中,只能在AlGaN/GaN界面的薄层中运动,即形成二维电子气,通过控制栅极电压调控栅下方的二维电子气浓度,可以实现对沟道通断的控制。增强型功率器件,在零偏置的状态下是关断的,即在非工作状态下不需要负压电源的驱动,这一方面可以很大程度降低电路的额外功率损耗,另一方面增强型的功率器件还可以简化电路设计。现阶段,GaN基增强型功率器件的商业化实现手段是采用P-GaN结构,即利用P-GaN对栅极下方二维电子气的耗尽,从而实现增强型器件。在栅极的制作过程中,通常在P-GaN上方沉积一层金属,使金属和P-GaN形成肖特基接触,以减小栅极的漏电。在形成肖特基接触时,金属的功函数相对于P-GaN的功函数越小,形成的势垒就越高,栅漏电就越小,栅压摆幅(栅压摆幅是指在栅极可加电压的范围)也就越大。目前的GaN增强功率器件,栅压摆幅为-10V~7V,范围较小。提升器件的栅压摆幅对于系统设计会更加灵活,并且在系统应用中,高的栅压摆幅,对高dv/dt开关条件下的栅压振荡或过冲,具有更强的抵抗能力,可靠性表现更好。
发明内容
本发明的目的在于提供一种高栅压摆幅的增强型GaN功率器件及其制备方法,本发明提供的增强型GaN功率器件具有高的栅压摆幅。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高栅压摆幅的增强型GaN功率器件的制备方法,包括以下步骤:
在衬底上依次外延生长缓冲层、AlGaN-1层、P-GaN层和AlGaN-2层;所述AlGaN-2层在生长过程中掺入Mg元素;所述AlGaN-2层开始生长时Al组分的摩尔百分比为0%,生长结束时Al组分的摩尔百分比为10~30%;所述AlGaN-2层中Al组分的摩尔百分比连续渐变;
将栅极以外区域的AlGaN-2层及P-GaN层刻蚀掉,退火,得到中间晶片;所述退火的温度在800℃以上,保温时间在2min以上;
在所述中间晶片表面生长SiN薄膜作为保护层,然后在源极区域和漏极区域刻蚀出凹槽,形成源极凹槽和漏极凹槽;
在所述源极凹槽和漏极凹槽沉积金属,形成欧姆接触;
刻蚀掉栅极区域的保护层,在栅极区域沉积金属,形成肖特基接触,得到高栅压摆幅的增强型GaN功率器件。
优选的,所述AlGaN-2层的厚度为0.1~100nm。
优选的,所述AlGaN-2层的厚度为10~80nm。
优选的,所述AlGaN-2层中Mg元素的掺杂浓度为5×1018/cm3~5×1019/cm3
优选的,所述缓冲层为GaN层或AlGaN层。
优选的,所述P-GaN层的厚度>50nm。
优选的,所述AlGaN-1层中Al组分的摩尔百分含量为15~25%,Al组分呈均匀分布。
优选的,所述AlGaN-1层的厚度为5~25nm。
优选的,所述退火在氮气氛围下进行。
本发明提供了上述方案所述制备方法制备得到的高栅压摆幅的增强型GaN功率器件。
本发明提供了一种高栅压摆幅的增强型GaN功率器件的制备方法,包括以下步骤:在衬底上依次外延生长缓冲层(Buffer层)、AlGaN-1层、P-GaN层和AlGaN-2层;所述AlGaN-2层在生长过程中掺入Mg元素;所述AlGaN-2层开始生长时Al组分的摩尔百分比为0%,生长结束时Al组分的摩尔百分比为10~30%;所述AlGaN-2层中Al组分的摩尔百分比连续渐变;将栅极以外区域的AlGaN-2层及P-GaN层刻蚀掉,退火,得到中间晶片;所述退火的温度在800℃以上,保温时间在2min以上;在所述中间晶片表面生长SiN薄膜作为保护层,然后在源极区域和漏极区域刻蚀出凹槽,形成源极凹槽和漏极凹槽;在所述源极凹槽和漏极凹槽沉积金属,形成欧姆接触;刻蚀掉栅极区域的保护层,在栅极区域沉积金属,形成肖特基接触,得到高栅压摆幅的增强型GaN功率器件。
本发明在P-GaN层生长结束后,继续生长一层AlGaN-2层,在AlGaN-2层生长过程中进行Mg掺杂,形成P型半导体,并使Al组分为渐变的,以减小AlGaN-2层与P-GaN层之间的应力,减弱压电极化效应。P型半导体与金属接触时,金属的功函数相对于半导体的功函数越小,形成的肖特基接触势垒就越高。本发明利用AlGaN-2层功函数比P-GaN大的特点,其与栅极上方的金属形成的肖特基接触,势垒更高,从而导致栅极耐压会更强,提升了器件的栅压摆幅。
由于P-GaN层生长完成后,接着生长了AlGaN-2层,生长AlGaN-2层的过程中,P-GaN会被钝化,导致P-GaN层中空穴浓度非常低,起不到耗尽作用,本发明利用退火将P-GaN层激活,提升P-GaN层中的空穴浓度,对栅极下方的二维电子气起到耗尽作用,其他区域的二维电子气仍然存在。
附图说明
图1为本发明在衬底上依次外延生长缓冲层、AlGaN-1层、P-GaN层和AlGaN-2层后的结构示意图;
图2为中间晶片的结构示意图;
图3为在中间晶片表面生长SiN薄膜并刻蚀出源极凹槽和漏极凹槽的结构示意图;
图4为本发明高栅压摆幅的增强型GaN功率器件的结构示意图。
具体实施方式
本发明提供了一种高栅压摆幅的增强型GaN功率器件的制备方法,包括以下步骤:
在衬底上依次外延生长缓冲层、AlGaN-1层、P-GaN层和AlGaN-2层;所述AlGaN-2层在生长过程中掺入Mg元素;所述AlGaN-2层开始生长时Al组分的摩尔百分比为0%,生长结束时Al组分的摩尔百分比为10~30%;所述AlGaN-2层中Al组分的摩尔百分比连续渐变;
将栅极以外区域的AlGaN-2层及P-GaN层刻蚀掉,退火,得到中间晶片;所述退火的温度在800℃以上,保温时间在2min以上;
在所述中间晶片表面生长SiN薄膜作为保护层,然后在源极区域和漏极区域刻蚀出凹槽,形成源极凹槽和漏极凹槽;
在所述源极凹槽和漏极凹槽沉积金属,形成欧姆接触;
刻蚀掉栅极区域的保护层,在栅极区域沉积金属,形成肖特基接触,得到高栅压摆幅的增强型GaN功率器件。
如图1所示,本发明在衬底上依次外延生长缓冲层、AlGaN-1层、P-GaN层和AlGaN-2层。
在本发明中,所述衬底优选为硅衬底。
在本发明中,所述缓冲层优选为GaN层或AlGaN层。本发明对所述缓冲层的厚度没有特殊限定。本发明对所述缓冲层的生长条件没有特殊要求,采用本领域熟知的生长条件即可。
在本发明中,所述AlGaN-1层的厚度优选为5~25nm,更优选为10~20nm,进一步优选为15nm;所述AlGaN-1层中Al组分的摩尔百分含量优选为15~25%,更优选为18~22%,进一步优选为20%,Al组分呈均匀分布。本发明对所述AlGaN-1层的生长条件没有特殊要求,采用本领域熟知的生长条件即可。
在本发明中,所述P-GaN层的厚度优选>50nm,本发明对所述P-GaN层的厚度上限没有特殊要求。本发明对所述P-GaN层的生长条件没有特殊要求,采用本领域熟知的生长条件即可。
在本发明中,所述AlGaN-2层开始生长时Al组分的摩尔百分比为0%,生长结束时Al组分的摩尔百分比为10~30%,具体可以为10%、15%、20%、25%、30%;所述AlGaN-2层中Al组分的摩尔百分比连续渐变。
本发明控制AlGaN-2层中Al组分含量在上述范围,既能防止Al组分含量太大,会导致AlGaN-2的压电极化效应增强,会在其下方的P-GaN中产生二维电子气,影响器件工作;同时还能防止Al组分含量太低导致AlGaN-2的功函数较小,对栅压摆幅的提升作用不大。
此外,本发明控制AlGaN-2生长过程中Al组分渐变,渐变的方式可以有效释放生长过程中的应力,减弱压电极化效应。
在本发明中,所述AlGaN-2层在生长过程中掺入Mg元素;所述AlGaN-2层中Mg元素的掺杂浓度优选为5×1018/cm3~5×1019/cm3,更优选为8×1018/cm3~3×1019/cm3,进一步优选为1×1019/cm3。本发明通过掺入Mg,以使AlGaN-2层为P型半导体,确保与下方的P-GaN极性一样。若AlGaN-2层为N型,其与下方的P-GaN会形成PN结,导致器件工作时有电子积累,引起阈值电压漂移过大。
本发明AlGaN-2层的生长通过控制Al源的量渐变,来实现Al组分渐变,生长过程中持续通入Mg源,实现Mg的掺杂。
在本发明中,所述AlGaN-2层的厚度优选为0.1~100nm,更优选为10~90nm,进一步优选为30~70nm。
本发明对AlGaN-2层生长的具体条件不做特殊限定,采用本领域技术人员熟知的技术手段能够确保实现上述生长规律即可。
待各层外延生长完毕后,如图2所示,本发明将栅极以外区域的AlGaN-2层及P-GaN层刻蚀掉,退火,得到中间晶片。
本发明对所述刻蚀的方法没有特殊要求,采用本领域熟知的刻蚀方法即可,具体如利用ICP刻蚀机进行刻蚀。
在本发明中,所述退火的温度在800℃以上,保温时间在2min以上。在本发明中,所述退火优选在氮气氛围下进行。本发明通过进行退火,将P-GaN层激活,提升P-GaN层中的空穴浓度,对栅极下方的二维电子气起到耗尽作用,其他区域的二维电子气仍然存在。这是由于P-GaN层生长完成后,接着生长了AlGaN-2层,生长AlGaN-2层的过程中,P-GaN层会被钝化,导致P-GaN层中空穴浓度非常低,起不到耗尽作用。
如图3所示,得到中间晶片后,本发明在所述中间晶片表面生长SiN薄膜作为保护层,然后在源极区域和漏极区域刻蚀出凹槽,形成源极凹槽和漏极凹槽。
本发明对所述SiN薄膜的厚度和生长条件没有特殊要求,此为本领域公知常识。
形成源极凹槽和漏极凹槽后,本发明在所述源极凹槽和漏极凹槽沉积金属,形成欧姆接触,也即制备出源极电极和漏极电极。在本发明中,本发明对沉积的金属没有特殊要求,本领域熟知的源极电极和漏极电极所用金属即可,具体如Ti/Al。
如图4所示,本发明刻蚀掉栅极区域的保护层,在栅极区域沉积金属,形成肖特基接触,也即形成了栅极电极,得到高栅压摆幅的增强型GaN功率器件。
本发明对所述栅极区域沉积的金属种类没有特殊要求,采用本领域熟知的栅极电极金属即可,具体的如TiN/Al。
本发明提供了上述方案所述制备方法制备得到的高栅压摆幅的增强型GaN功率器件。本发明的增强型GaN功率器件具有高的栅压摆幅。
下面结合实施例对本发明提供的高栅压摆幅的增强型GaN功率器件及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
如图1所示,将Si衬底放入MOCVD设备中,依次外延生长GaN缓冲层、AlGaN-1层、P-GaN层和AlGaN-2层;其中,GaN缓冲层的厚度为5μm;AlGaN-1层中Al组分摩尔百分比为20%,Al均匀掺杂,厚度为15nm;P-GaN层的厚度为60nm;AlGaN-2层在生长过程中需要掺Mg,以使AlGaN-2层为P型半导体,Mg掺浓度为1×1019/cm3,AlGaN-2层厚度为20nm,Al组分为渐变的,从开始生长时的0%渐变至生长结束时的10%;
利用ICP刻蚀机,将栅极区域的AlGaN-2层和P-GaN层保留,其他区域的AlGaN-2和P-GaN层刻蚀掉,暴露出下面的AlGaN-1层,然后在氮气氛围下进行退火,退火温度为800℃,保温时间为2min,将P-GaN层激活,得到中间晶片;
在所述中间晶片表面生长SiN薄膜作为保护层,然后在源极区域和漏极区域刻蚀出凹槽,形成源极凹槽和漏极凹槽;
在所述源极凹槽沉积Ti/Al金属,漏极凹槽沉积Ti/Al金属,形成欧姆接触;
刻蚀掉栅极区域的保护层,在栅极区域沉积TiN/Al金属,形成肖特基接触,得到高栅压摆幅的增强型GaN功率器件。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种高栅压摆幅的增强型GaN功率器件的制备方法,其特征在于,包括以下步骤:
在衬底上依次外延生长缓冲层、AlGaN-1层、P-GaN层和AlGaN-2层;所述AlGaN-2层在生长过程中掺入Mg元素;所述AlGaN-2层开始生长时Al组分的摩尔百分比为0%,生长结束时Al组分的摩尔百分比为10~30%;所述AlGaN-2层中Al组分的摩尔百分比连续渐变;
将栅极以外区域的AlGaN-2层及P-GaN层刻蚀掉,退火,得到中间晶片;所述退火的温度在800℃以上,保温时间在2min以上;
在所述中间晶片表面生长SiN薄膜作为保护层,然后在源极区域和漏极区域刻蚀出凹槽,形成源极凹槽和漏极凹槽;
在所述源极凹槽和漏极凹槽沉积金属,形成欧姆接触;
刻蚀掉栅极区域的保护层,在栅极区域沉积金属,形成肖特基接触,得到高栅压摆幅的增强型GaN功率器件。
2.根据权利要求1所述的制备方法,其特征在于,所述AlGaN-2层的厚度为0.1~100nm。
3.根据权利要求2所述的制备方法,其特征在于,所述AlGaN-2层的厚度为10~80nm。
4.根据权利要求1~3任一项所述的制备方法,其特征在于,所述AlGaN-2层中Mg元素的掺杂浓度为5×1018/cm3~5×1019/cm3
5.根据权利要求1所述的制备方法,其特征在于,所述缓冲层为GaN层或AlGaN层。
6.根据权利要求1所述的制备方法,其特征在于,所述P-GaN层的厚度>50nm。
7.根据权利要求1所述的制备方法,其特征在于,所述AlGaN-1层中Al组分的摩尔百分含量为15~25%,Al组分呈均匀分布。
8.根据权利要求1或7所述的制备方法,其特征在于,所述AlGaN-1层的厚度为5~25nm。
9.根据权利要求1所述的制备方法,其特征在于,所述退火在氮气氛围下进行。
10.权利要求1~9任一项所述制备方法制备得到的高栅压摆幅的增强型GaN功率器件。
CN202310368461.3A 2023-04-10 2023-04-10 一种高栅压摆幅的增强型GaN功率器件及其制备方法 Active CN116092928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310368461.3A CN116092928B (zh) 2023-04-10 2023-04-10 一种高栅压摆幅的增强型GaN功率器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310368461.3A CN116092928B (zh) 2023-04-10 2023-04-10 一种高栅压摆幅的增强型GaN功率器件及其制备方法

Publications (2)

Publication Number Publication Date
CN116092928A CN116092928A (zh) 2023-05-09
CN116092928B true CN116092928B (zh) 2023-06-30

Family

ID=86206777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310368461.3A Active CN116092928B (zh) 2023-04-10 2023-04-10 一种高栅压摆幅的增强型GaN功率器件及其制备方法

Country Status (1)

Country Link
CN (1) CN116092928B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800001693A1 (it) * 2018-01-23 2019-07-23 St Microelectronics Srl Metodo di fabbricazione di un transistore hemt di tipo normalmente spento con ridotta resistenza in stato acceso e transistore hemt
CN110690284A (zh) * 2019-11-19 2020-01-14 南方科技大学 一种氮化镓基场效应晶体管及其制备方法
CN217933804U (zh) * 2022-08-02 2022-11-29 滁州学院 一种高阈值电压增强型hemt的结构
CN218274610U (zh) * 2022-08-29 2023-01-10 厦门安麦信自动化科技有限公司 一种混合栅型GaN基的高电子迁移率晶体管

Also Published As

Publication number Publication date
CN116092928A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
JP5334149B2 (ja) 窒化物半導体電界効果トランジスタ
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
JP4398780B2 (ja) GaN系半導体装置
US9466684B2 (en) Transistor with diamond gate
JP5190923B2 (ja) GaNをチャネル層とする窒化物半導体トランジスタ及びその作製方法
EP3311414B1 (en) Doped barrier layers in epitaxial group iii nitrides
CN105720097A (zh) 增强型高电子迁移率晶体管及制备方法、半导体器件
WO2016141762A1 (zh) Iii族氮化物增强型hemt及其制备方法
CN110021661B (zh) 半导体器件及其制作方法
JP2009231395A (ja) 半導体装置および半導体装置の製造方法
CN113380623A (zh) 通过p型钝化实现增强型HEMT的方法
CN112673478A (zh) 氮化镓增强模式器件
JP4642366B2 (ja) 半導体積層構造、トランジスタ素子、およびトランジスタ素子の製造方法
JP2008078526A (ja) 窒化物半導体装置及びその製造方法
KR20190112526A (ko) 이종접합 전계효과 트랜지스터 및 그 제조 방법
CN103972061A (zh) 将掺杂剂注入到iii族氮化物结构中的方法及形成的器件
CN111653617B (zh) 一种增强型氮化物功率器件及制作方法
US11430875B2 (en) Method for manufacturing transistor
CN111223777B (zh) GaN基HEMT器件及其制作方法
US7304330B2 (en) Nitride semiconductor device
CN108807500B (zh) 一种具有高阈值电压的增强型高电子迁移率晶体管
CN113594232A (zh) 一种多插指埋栅结构的增强型高压hemt器件及其制备方法
US20230207661A1 (en) Semiconductor Device and Method of Manufacturing the Same
JP2007165590A (ja) 窒化物半導体装置
CN117219676A (zh) 一种异质pn结栅极的增强型HEMT器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant