CN116085685A - 保证用气高峰时段天然气稳定供气的方法和系统 - Google Patents

保证用气高峰时段天然气稳定供气的方法和系统 Download PDF

Info

Publication number
CN116085685A
CN116085685A CN202310247647.3A CN202310247647A CN116085685A CN 116085685 A CN116085685 A CN 116085685A CN 202310247647 A CN202310247647 A CN 202310247647A CN 116085685 A CN116085685 A CN 116085685A
Authority
CN
China
Prior art keywords
air
gas
source
consumption
change data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310247647.3A
Other languages
English (en)
Other versions
CN116085685B (zh
Inventor
孟辉
栾星
王子峥
栾东晓
周翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Three Zero Four Zero Technology Co ltd
Original Assignee
Shanghai Three Zero Four Zero Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Three Zero Four Zero Technology Co ltd filed Critical Shanghai Three Zero Four Zero Technology Co ltd
Priority to CN202310247647.3A priority Critical patent/CN116085685B/zh
Publication of CN116085685A publication Critical patent/CN116085685A/zh
Application granted granted Critical
Publication of CN116085685B publication Critical patent/CN116085685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/18Arrangements for supervising or controlling working operations for measuring the quantity of conveyed product
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了保证用气高峰时段天然气稳定供气的方法和系统,方法包括根据当前供气数据预测未来n小时的压力变化数据;根据当前耗气数据预测未来n小时的流量变化数据;对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量;基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;从耗气源未来n小时的压力变化数据筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1,t2,…,tm],其中tm表示第m个补气时间点;基于时间序列[t1,t2,…,tm],进行补气操作。本发明解决耗气源每日用气压力不足甚至供气停止的问题。

Description

保证用气高峰时段天然气稳定供气的方法和系统
技术领域
本发明属于天然气调峰保供技术领域,尤其涉及一种保证用气高峰时段天然气稳定供气的方法、系统、设备及介质。
背景技术
天然气作为一种高效清洁的能源,在需求量上不断的增长。由于早期规划的天然气管网没有考虑到后续扩充的问题,在后续新增更多耗气源时,导致管网不断增大,管网末端耗气源在用气高峰的早中晚时段,容易出现末端压力不足导致的用气不足问题,因此迫切需要一种稳定供气的解决方案。
液化天然气(liquefied natural gas, LNG)存储量大、运输方便,在用气高峰时,用气需求往往超负荷,因此LNG成为管网末端保证天然气供气的主要方式和手段,从而满足耗气源的用气需求,通过LNG补气的动作称作调峰。
目前现有的调峰技术有以下四种:
一是从源头出发,按目前主要的几种气源分类做调峰,如:地下储气库调峰、液化天然气(LNG)调峰、液化石油气(LPG) 调峰、上游及管道调峰、管束调峰、储气罐调峰,对其中之一或某几个的组合做调峰;
二是从终端出发进行调峰,如:中断耗气源、或提高用气高峰时段天然气价格;
三是建立将储罐压力调节和调峰技术相结合的 LNG汽化站控制系统,并针对储罐压力系统因存在液气转换、大滞后、时变等特点而易失控的问题,以单值广义预测模糊控制算法为核心,采用模糊控制进行动态反馈补偿的控制策略,结合 DSP和 FPGA器件高速数据处理的特点,以达到储罐压力实时、精确控制的目的。
四是通过预测各类耗气源的年用气量,得出用气规律并得出高峰小时流量的计算方法,其次研究LNG气化站联合输气管道调峰的问题,从而得到其运行规律,进而对调峰进行反馈指导。
综上所述现有技术多从宏观的角度论述了调峰保供的策略和方案,并没有结合具体耗气源用气压力值以及供气源和耗气源每日用气计划量等指标进行调峰的具体技术方案,难以解决每日用气高峰时段,管网中耗气源用气压力不足甚至供气停止的问题。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种保证用气高峰时段天然气稳定供气的策略,结合具体耗气源用气压力值以及供气源和耗气源的用气计划量,计算出耗气源具体的缺气时间点,为精准补气提供参考,以解决每日用气高峰时段,管网中耗气源用气压力不足甚至供气停止的问题。
本发明第一方面公开了一种保证用气高峰时段天然气稳定供气的方法,包括以下步骤:
步骤1、获取供气源的当前供气数据,并根据当前供气数据预测未来n小时的压力变化数据;
获取耗气源的当前耗气数据,并根据当前耗气数据预测未来n小时的流量变化数据;
步骤2、对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;
步骤3、基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;
步骤4、对耗气源未来n小时的压力变化数据进行筛选,筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1, t2, …, tm],其中tm表示第m个补气时间点;
步骤5、基于时间序列[t1, t2, …, tm],进行补气操作。
上述保证用气高峰时段天然气稳定供气的方法,步骤2还包括:
步骤2a、对供气源的压力变化数据进行瞬态仿真计算,获得供气源的流量变化数据;
步骤2b、判断供气源未来n小时的预测供气量是否等于供气源未来n小时的计划供气量,若否,进入步骤2c,若是,进入步骤2e;
步骤2c、记录一次迭代次数,并判断是否达到设定迭代次数,若是进入步骤2d,若否,根据供气源预测供气量和计划供气量的差值对供气源的压力变化数据进行修正,然后进入步骤2a;
步骤2d、取适应度最小值对应的瞬态仿真计算对应的压力变化数据为当前压力变化数据;
步骤2e、取当前压力变化数据为供气源未来n小时执行供气的执行数据。
上述保证用气高峰时段天然气稳定供气的方法,步骤3中计算耗气源未来n小时的压力变化数据时,基于的供气源未来n小时的压力变化数据为步骤2e中的压力变化数据。
上述保证用气高峰时段天然气稳定供气的方法,步骤2c中,对供气源的压力变化数据进行修正时,包括以下步骤:
根据公式:
计算供气源未来n小时预测供气量和计划供气量的差值率;
根据公式:
计算修正后的供气源未来n小时压力变化数据,
为未来n小时内第i个时间点供气源修正后的压力值;
为未来n小时内第i个时间点供气源修正前的压力值;
供气源的压力变化数据由K个时间点的压力值组成。
上述保证用气高峰时段天然气稳定供气的方法,步骤2中,对耗气源的流量变化数据进行修正时,计算每小时预测耗气量和计划耗气量的平均差值/n,基于平均差值对耗气源的流量变化数据进行修正。
上述保证用气高峰时段天然气稳定供气的方法,步骤5基于时间序列[t1, t2,…, tm],进行补气操作,包括以下步骤:
步骤5-1、根据溯源追踪算法,获取对当前耗气源供气的L个供气源及每个供气源对该耗气源未来n小时的有效供气的压力变化数据;
步骤5-2、根据耗气源时间序列[t1, t2, …, tm]对应的压力值序列[puser1,puser2, …, puserm],从每个供气源的有效供气的压力变化数据中筛选出与时间序列[t1,t2, …, tm]对应的有效供气压力序列[pgas1, pgas2, …, pgasm];对有效供气压力序列[pgas1, pgas2, …, pgasm]进行更新,更新计算过程为:
:耗气源第i个时间点的压力增加比率;
:耗气源允许的最低耗气压力值;
:为耗气源第i个时间点的耗气压力值;
:供气源更新后的第i个时间点的有效供气压力值;
:供气源的第i个时间点的有效供气压力值;
步骤5-3、基于更新后的每个供气源的有效供气压力序列[pgas1, pgas2, …,pgasm]对供气源的未来n小时的有效供气的压力变化数据进行更新。
上述保证用气高峰时段天然气稳定供气的方法,步骤5基于时间序列[t1, t2,…, tm],进行补气操作,还可用以下步骤进行:
步骤5a、计算耗气源的补气总量
:供气源的预测供气量;
:耗气源的计划耗气量;
步骤5b、计算每个补气时间点的补气量
D: 总的补气量;
r:为补气时长;
m:为补气时间点数量;
步骤5c、基于每个补气时间点的补气量,在未来n小时内使用补气源进行补气操作。
本发明第二方面公开了一种保证用气高峰时段天然气稳定供气的系统,包括数据预测模块、修正模块、瞬态计算模块、筛选模块和补气模块;
数据预测模块,用于获取供气源的当前供气数据,并根据当前供气数据预测未来n小时的压力变化数据;还用于获取耗气源的当前耗气数据,并根据当前耗气数据预测未来n小时的流量变化数据;
修正模块,用于对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;
瞬态计算模块,用于基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;
筛选模块,用于对耗气源未来n小时的压力变化数据进行筛选,筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1, t2, …, tm],其中tm表示第m个补气时间点;
补气模块,用于基于时间序列[t1, t2, …, tm],进行补气操作。
本发明第三方面提供一种电子设备,包括:存储器和处理器,所述处理器和所述存储器连接;所述存储器用于存储程序;所述处理器调用存储于所述存储器中的程序,以执行上述第一方面实施例和/或结合第一方面实施例的任一种可能的实施例提供的方法。
本发明第四方面提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机运行时执行第一方面实施例和/或结合第一方面实施例的任一种可能的实施例提供的方法。
本发明与现有技术相比具有以下优点:本发明结合具体耗气源用气压力值以及供气源和耗气源的用气计划量,计算出耗气源具体的缺气时间点,为精准补气提供参考,以解决每日用气高峰时段,管网中耗气源用气压力不足甚至供气停止的问题。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例1的方法流程图。
图2为供气管网的示意图。
图3为单个供气源虚拟出多个供气子源的示意图。
图4为本发明实施例2的系统架构图。
具体实施方式
实施例1
如图1所示,一种保证用气高峰时段天然气稳定供气的方法,包括以下步骤:
步骤1、获取供气源的当前供气数据,并根据当前供气数据预测未来n小时的压力变化数据;
获取耗气源的当前耗气数据,并根据当前耗气数据预测未来n小时的流量变化数据;
需要说明的是,预测供气源的未来n小时的压力变化数据和预测耗气源的未来n小时的流量变化数据采用现有技术中的机器学习技术,通过历史供气数据和耗气数据训练出预测模型,然后进行预测得到供气源的未来n小时的压力变化数据和预测耗气源的未来n小时的流量变化数据,预测模型可采用LSTM算法模型;
实际实施中,未来n小时为24小时,供气源的压力变化数据为24小时内每5分钟一体的压力数据组成,共计288条,同样的耗气源的流量变化数据为24小时内每5分钟一体的流量数据组成,共计288条;据此可以得到未来1天内的供气源压力变化曲线和耗气源的流量变化曲线;
步骤2、对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;
需要说明的是,对耗气源的流量变化数据进行修正时,保持流量变化曲线的曲率变化不变,让流量变化曲线在坐标系中整体上下移动,改变对应的积分面积,从而使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;具体操作时,采用二分法逐步减小流量变化曲线每次上下移动的距离,多次移动使流量变化曲线对应的积分面积逐步逼近计划耗气量;
也可以,在对耗气源的流量变化数据进行修正时,计算每小时预测耗气量和计划耗气量的平均差值,基于平均差值对耗气源的流量变化数据进行修正,即将耗气源未来n小时的流量变化数据每小时的流量值算出[q1,q2,…, qn],再对[q1,q2,…, qn]加上平均差值得到修正的流量变化数据。
也还可以,根据公式:
计算耗气源未来n小时预测供气量和计划供气量的差值率;
根据公式:
为未来n小时内第i个时间点耗气源修正后的流量值;
为未来n小时内第i个时间点耗气源修正前的流量值;
得到修正的流量变化数据;
耗气源的流量变化数据由K个时间点的流量值组成,优选的,未来n小时为24小时时,K=288。
步骤3、基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;
需要说明的是,计算耗气源未来n小时的压力变化数据,采用瞬态仿真计算方法,瞬态仿真计算就是采用离散的手段将无法直接得到解析解的描述天然气管道流动的偏微分方程(连续性方程、动量方程和能量方程)转化为一系列离散代数方程组,借助于计算机完成数值求解,再通过对数值结果的分析再现管道内天然气的流动状态。详细技术参见[王鹏、童睿康等人在天然气管道瞬态仿真研究综述中给出了目前天然气管道仿真数学模型的计算公式];
步骤4、对耗气源未来n小时的压力变化数据进行筛选,筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1, t2, …, tm],其中tm表示第m个补气时间点;
需要说明的是,实际应用中,时间序列[t1, t2, …, tm]的m个时间点属于24小时内的288个时间点,相邻两个时间点之间时间差为5分钟。
步骤5、基于时间序列[t1, t2, …, tm],进行补气操作。
上述技术方案,可以更明确的得到具体时间点以及该时间点补气的参考压力,解决了以往盲目经验化的补气问题,有助于对燃气管道的压力控制,避免过压和欠压对管道的损伤。
本实施例中,步骤2还包括:
步骤2a、对供气源的压力变化数据进行瞬态仿真计算,获得供气源的流量变化数据;
步骤2b、判断供气源未来n小时的预测供气量是否等于供气源未来n小时的计划供气量,若否,进入步骤2c,若是,进入步骤2e;
步骤2c、记录一次迭代次数,并判断是否达到设定迭代次数,若是进入步骤2d,若否,根据供气源预测供气量和计划供气量的差值对供气源的压力变化数据进行修正,然后进入步骤2a;
步骤2d、取适应度最小值对应的瞬态仿真计算应用的压力变化数据为当前压力变化数据;
步骤2e、取当前压力变化数据为供气源未来n小时执行供气的执行数据。
需要说明的是,每次步骤2a进行瞬态仿真计算后,计算适应度值为瞬态仿真计算得到的供气源的流量变化数据对应的预测供气量,为供气源计划供气量;适应度值越小,表明当前压力变化数据对应的预测供气量越接近计划供气量。
上述技术方案,可以在保持计划供气量变化较小的情况下,以最合适的压力变化曲线进行供气。
本实施例中,步骤3中计算耗气源未来n小时的压力变化数据时,基于的供气源未来n小时的压力变化数据为步骤2e中的压力变化数据。
上述技术方案,可以在以计划供气量和计划耗气量保持一定程度的稳定状态下,精确计算出需要补气的时间点。
本实施例中,步骤2c中,对供气源的压力变化数据进行修正时,计算每小时预测供气量和计划供气量的平均差值,基于平均差值对供气源的压力变化数据进行修正。
需要说明的是,平均差值还可以更细化为每分钟的平均差值、每秒钟的平均差值,对压力变化数据进行修正时,基于平均差值对供气源的压力变化曲线在坐标系的y轴方向进行移动,进而继续基于修正后的压力变化曲线进行瞬态计算获得流量变化曲线继续迭代。
需要说明的是,平均差值还可以更细化为每分钟的平均差值、每秒钟的平均差值,对压力变化数据进行修正时,基于平均差值对流量变化曲线在坐标系的y轴方向进行移动。
本实施例中,步骤2c中,对供气源的压力变化数据进行修正时,还可用以下步骤进行:
根据公式:
计算供气源未来n小时预测供气量和计划供气量的差值率;
根据公式:
计算修正后的供气源未来n小时压力变化数据,
为未来n小时内第i个时间点供气源修正后的压力值;
为未来n小时内第i个时间点供气源修正前的压力值。
供气源的压力变化数据由K个时间点的压力值组成。
本实施例中,步骤5基于时间序列[t1, t2, …, tm],进行补气操作,包括以下步骤:
步骤5-1、根据溯源追踪算法,获取对当前耗气源供气的L个供气源及每个供气源对该耗气源未来n小时的有效供气的压力变化数据;
参考图3所示,具体的,有效供气的压力变化数据,相当于供气源的一个供气子源,供气源由虚拟的多个供气子源组成;溯源追踪算法可计算出耗气源来自供气源的供气占比,基于供气占比虚拟出供气子源,再根据供气占比乘以耗气源的流量变化数据,计算出供气子源的流量变化数据,最后基于瞬态仿真计算方法,从供气子源的流量变化数据和耗气源的压力变化数据,计算出供气子源的压力变化数据,即供气源对该耗气源未来n小时的有效供气的压力变化数据;
步骤5-2、根据耗气源时间序列[t1, t2, …, tm]对应的压力值序列[puser1,puser2, …, puserm],从每个供气源的有效供气的压力变化数据中筛选出与时间序列[t1,t2, …, tm]对应的有效供气压力序列[pgas1, pgas2, …, pgasm];对有效供气压力序列[pgas1, pgas2, …, pgasm]进行更新,更新计算过程为:
:耗气源第i个时间点的压力增加比率;
:耗气源允许的最低耗气压力值;
:为耗气源第i个时间点的耗气压力值;
:供气源更新后的第i个时间点的有效供气压力值;
:供气源的第i个时间点的有效供气压力值;
步骤5-3、基于更新后的每个供气源的有效供气压力序列[pgas1, pgas2, …,pgasm]对供气源的未来n小时的有效供气的压力变化数据进行更新。
需要说明的是,单个耗气源可以由多个供气源进行补气,通过溯源追踪算法可以得到该耗气源的耗气量对应的每个供气源的供气比例,进一步得到每个供气源针对该耗气源的有效供气的压力变化数据,通过上述技术方案进行计算可得到更新后的每个供气源的有效供气压力序列[pgas1, pgas2, …, pgasm],进一步基于有效供气压力序列[pgas1, pgas2,…, pgasm]调整供气源未来n小时的压力变化数据,具体的,多个供气子源的压力变化数据合并后即为供气源未来n小时的压力变化数据。
上述技术方案,可以在不增加补气源的情况下,实现精准的供气。
本实施例的另一个替代实施方式中,步骤5基于时间序列[t1, t2, …, tm],进行补气操作,包括以下步骤:
步骤5a、计算耗气源的补气总量
:供气源的预测供气量;
:耗气源的计划耗气量;
步骤5b、计算每个补气时间点的补气量
D: 总的补气量;
r:为补气时长;可以取0.5小时、0.3小时等,按实际需要操作。
m:为补气时间点数量;
步骤5c、基于每个补气时间点的补气量,在未来n小时内使用补气源进行补气操作。
需要说明的是,参考图2所示,供气源可以有多个,耗气源也可以有多个,补气总量为多个供气源的预测供气总量减去多个耗气源的计划耗气总量;每个耗气源需要补气的时间点均来自24小时内的288个时间点,时间序列[t1, t2, …, tm]为多个耗气源的并集,相同的时间t只取一个。
上述技术方案,可以为供气管网中引入外部移动补气源补气提供参考。
实施例2
如图4所示,一种保证用气高峰时段天然气稳定供气的系统,包括数据预测模块、修正模块、瞬态计算模块、筛选模块和补气模块;
数据预测模块,用于获取供气源的当前供气数据,并根据当前供气数据预测未来n小时的压力变化数据;还用于获取耗气源的当前耗气数据,并根据当前耗气数据预测未来n小时的流量变化数据;
修正模块,用于对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;
瞬态计算模块,用于基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;
筛选模块,用于对耗气源未来n小时的压力变化数据进行筛选,筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1, t2, …, tm],其中tm表示第m个补气时间点;
补气模块,用于基于时间序列[t1, t2, …, tm],进行补气操作。
本实施例中,修正模块还用于执行以下步骤:
步骤2a、对供气源的压力变化数据进行瞬态仿真计算,获得供气源的流量变化数据;
步骤2b、判断供气源未来n小时的预测供气量是否等于供气源未来n小时的计划供气量,若否,进入步骤2c,若是,进入步骤2e;
步骤2c、记录一次迭代次数,并判断是否达到设定迭代次数,若是进入步骤2d,若否,根据供气源预测供气量和计划供气量的差值对供气源的压力变化数据进行修正,然后进入步骤2a;
步骤2d、取适应度最小值对应的瞬态仿真计算对应的压力变化数据为当前压力变化数据;
步骤2e、取当前压力变化数据为供气源未来n小时执行供气的执行数据。
本实施例中,瞬态计算模块计算耗气源未来n小时的压力变化数据时,基于的供气源未来n小时的压力变化数据为步骤2e中的压力变化数据。
本实施例中,步骤2c中,对供气源的压力变化数据进行修正时,包括以下步骤:
根据公式:
计算供气源未来n小时预测供气量和计划供气量的差值率;
根据公式:
计算修正后的供气源未来n小时压力变化数据,
为未来n小时内第i个时间点供气源修正后的压力值;
为未来n小时内第i个时间点供气源修正前的压力值。
供气源的压力变化数据由K个时间点的压力值组成。
本实施例中,修正模块对耗气源的流量变化数据进行修正时,计算每小时预测耗气量和计划耗气量的平均差值/n,基于平均差值对耗气源的流量变化数据进行修正。
本实施例中,补气模块基于时间序列[t1, t2, …, tm],进行补气操作,包括以下步骤:
步骤5-1、根据溯源追踪算法,获取对当前耗气源供气的L个供气源及每个供气源对该耗气源未来n小时的有效供气的压力变化数据;
步骤5-2、根据耗气源时间序列[t1, t2, …, tm]对应的压力值序列[puser1,puser2, …, puserm],从每个供气源的有效供气的压力变化数据中筛选出与时间序列[t1,t2, …, tm]对应的有效供气压力序列[pgas1, pgas2, …, pgasm];对有效供气压力序列[pgas1, pgas2, …, pgasm]进行更新,更新计算过程为:
:耗气源第i个时间点的压力增加比率;
:耗气源允许的最低耗气压力值;
:为耗气源第i个时间点的耗气压力值;
:供气源更新后的第i个时间点的有效供气压力值;
:供气源的第i个时间点的有效供气压力值;
步骤5-3、基于更新后的每个供气源的有效供气压力序列[pgas1, pgas2, …,pgasm]对供气源的未来n小时的有效供气的压力变化数据进行更新。
本实施例中,补气模块基于时间序列[t1, t2, …, tm],进行补气操作,还可用以下步骤执行:
步骤5-1、计算耗气源的补气总量
:供气源的预测供气量;
:耗气源的计划耗气量;
步骤5-2、计算每个补气时间点的补气量
D: 总的补气量;
r:为补气时长;
m:为补气时间点数量;
步骤5-3、基于每个补气时间点的补气量,在未来n小时内使用补气源进行补气操作。
本实施例提供的保证用气高峰时段天然气稳定供气的系统,其实现原理及产生的技术效果与实施例1中的方法实施例相同,为简要描述,系统实施例部分未提及之处,可参考实施例1中相应内容。
实施例3
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机运行时执行上述实施例1中保证用气高峰时段天然气稳定供气的方法。
实施例4
一种电子设备,包括:存储器和处理器,所述处理器和所述存储器连接;所述存储器用于存储程序;所述处理器调用存储于所述存储器中的程序,以执行如实施例1中所述保证用气高峰时段天然气稳定供气的法。
需要说明的是,所述电子设备,可以是,但不限于个人电脑(personal computer,PC)、平板电脑、移动上网设备(mobile internet device,MID)等设备。
应当注意的是,处理器、存储器以及其他可能出现于电子设备的组件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,处理器、存储器以及其他可能出现的组件相互之间可通过一条或多条通讯总线或信号线实现电性连接。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和方法,也可以通过其它的方式实现。以上所描述的系统实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,笔记本电脑,服务器,手机,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器 (ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

1.一种保证用气高峰时段天然气稳定供气的方法,其特征在于,包括以下步骤:
步骤1、获取供气源的当前供气数据,并根据当前供气数据预测未来n小时的压力变化数据;
获取耗气源的当前耗气数据,并根据当前耗气数据预测未来n小时的流量变化数据;
步骤2、对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;
步骤3、基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;
步骤4、对耗气源未来n小时的压力变化数据进行筛选,筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1, t2, …, tm],其中tm表示第m个补气时间点;
步骤5、基于时间序列[t1, t2, …, tm],进行补气操作。
2.按照权利要求1所述的一种保证用气高峰时段天然气稳定供气的方法,其特征在于,步骤2还包括:
步骤2a、对供气源的压力变化数据进行瞬态仿真计算,获得供气源的流量变化数据;
步骤2b、判断供气源未来n小时的预测供气量是否等于供气源未来n小时的计划供气量,若否,进入步骤2c,若是,进入步骤2e;
步骤2c、记录一次迭代次数,并判断是否达到设定迭代次数,若是进入步骤2d,若否,根据供气源预测供气量和计划供气量的差值对供气源的压力变化数据进行修正,然后进入步骤2a;
步骤2d、取适应度最小值对应的瞬态仿真计算对应的压力变化数据为当前压力变化数据;
步骤2e、取当前压力变化数据为供气源未来n小时执行供气的执行数据。
3.按照权利要求2所述的一种保证用气高峰时段天然气稳定供气的方法,其特征在于,步骤3中计算耗气源未来n小时的压力变化数据时,基于的供气源未来n小时的压力变化数据为步骤2e中的压力变化数据。
4.按照权利要求2或3所述的一种保证用气高峰时段天然气稳定供气的方法,其特征在于,步骤2c中,对供气源的压力变化数据进行修正时,包括以下步骤:
根据公式:
计算供气源未来n小时预测供气量和计划供气量的差值率;
根据公式:
计算修正后的供气源未来n小时压力变化数据,
为未来n小时内第i个时间点供气源修正后的压力值;
为未来n小时内第i个时间点供气源修正前的压力值;
供气源的压力变化数据由K个时间点的压力值组成。
5.按照权利要求1所述的一种保证用气高峰时段天然气稳定供气的方法,其特征在于,步骤2中,对耗气源的流量变化数据进行修正时,计算每小时预测耗气量和计划耗气量的平均差值/n,基于平均差值对耗气源的流量变化数据进行修正。
6.按照权利要求1所述的一种保证用气高峰时段天然气稳定供气的方法,其特征在于,步骤5基于时间序列[t1, t2, …, tm],进行补气操作,包括以下步骤:
步骤5-1、根据溯源追踪算法,获取对当前耗气源供气的L个供气源及每个供气源对该耗气源未来n小时的有效供气的压力变化数据;
步骤5-2、根据耗气源时间序列[t1, t2, …, tm]对应的压力值序列[puser1, puser2,…, puserm],从每个供气源的有效供气的压力变化数据中筛选出与时间序列[t1, t2, …,tm]对应的有效供气压力序列[pgas1, pgas2, …, pgasm];对有效供气压力序列[pgas1,pgas2, …, pgasm]进行更新,更新计算过程为:
:耗气源第i个时间点的压力增加比率;
:耗气源允许的最低耗气压力值;
:为耗气源第i个时间点的耗气压力值;
:供气源更新后的第i个时间点的有效供气压力值;
:供气源的第i个时间点的有效供气压力值;
步骤5-3、基于更新后的每个供气源的有效供气压力序列[pgas1, pgas2, …, pgasm]对供气源的未来n小时的有效供气的压力变化数据进行更新。
7.按照权利要求1所述的一种保证用气高峰时段天然气稳定供气的方法,其特征在于,步骤5基于时间序列[t1, t2, …, tm],进行补气操作,包括以下步骤:
步骤5a、计算耗气源的补气总量
:供气源的预测供气量;
:耗气源的计划耗气量;
步骤5b、计算每个补气时间点的补气量
D: 总的补气量;
r:为补气时长;
m:为补气时间点数量;
步骤5c、基于每个补气时间点的补气量,在未来n小时内使用补气源进行补气操作。
8.一种保证用气高峰时段天然气稳定供气的系统,其特征在于,包括数据预测模块、修正模块、瞬态计算模块、筛选模块和补气模块;
数据预测模块,用于获取供气源的当前供气数据,并根据当前供气数据预测未来n小时的压力变化数据;还用于获取耗气源的当前耗气数据,并根据当前耗气数据预测未来n小时的流量变化数据;
修正模块,用于对耗气源的流量变化数据进行修正,使流量变化数据对应的预测耗气量等于未来n小时耗气源的计划耗气量,获得流量修正数据;
瞬态计算模块,用于基于耗气源的流量修正数据和供气源未来n小时的压力变化数据,计算出耗气源未来n小时的压力变化数据;
筛选模块,用于对耗气源未来n小时的压力变化数据进行筛选,筛选出压力值低于最低耗气压力值的时间点,获得时间序列[t1, t2, …, tm],其中tm表示第m个补气时间点;
补气模块,用于基于时间序列[t1, t2, …, tm],进行补气操作。
9.一种电子设备,其特征在于,包括:存储器和处理器,所述处理器和所述存储器连接;所述存储器用于存储程序;所述处理器调用存储于所述存储器中的程序,以执行如权利要求1-7中任一项所述的方法。
10.一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机运行时执行如权利要求1-7中任一项所述的方法。
CN202310247647.3A 2023-03-15 2023-03-15 保证用气高峰时段天然气稳定供气的方法和系统 Active CN116085685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310247647.3A CN116085685B (zh) 2023-03-15 2023-03-15 保证用气高峰时段天然气稳定供气的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310247647.3A CN116085685B (zh) 2023-03-15 2023-03-15 保证用气高峰时段天然气稳定供气的方法和系统

Publications (2)

Publication Number Publication Date
CN116085685A true CN116085685A (zh) 2023-05-09
CN116085685B CN116085685B (zh) 2023-06-23

Family

ID=86204729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310247647.3A Active CN116085685B (zh) 2023-03-15 2023-03-15 保证用气高峰时段天然气稳定供气的方法和系统

Country Status (1)

Country Link
CN (1) CN116085685B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116974308A (zh) * 2023-07-31 2023-10-31 深圳粤能能源技术有限公司 一种用于天然气计量阀的控制装置及方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570659A (en) * 1994-09-28 1996-11-05 Slant/Fin Corpoiration Domestic gas-fired boiler
CN1647000A (zh) * 2002-01-30 2005-07-27 普莱克斯技术有限公司 管道输送的气体分配系统的控制
CN108694254A (zh) * 2017-04-06 2018-10-23 中国石油化工股份有限公司 一种变产变压生产气井产量经验递减曲线分析方法
CN108733090A (zh) * 2017-04-18 2018-11-02 气体产品与化学公司 满足能源消耗限制的天然气管道网络中的控制系统
CN210601053U (zh) * 2019-08-27 2020-05-22 瑞星久宇燃气设备(成都)有限公司 一种多气源智能保供调压站
WO2020136476A1 (en) * 2018-12-27 2020-07-02 Atlas Copco Airpower, Naamloze Vennootschap Method for determining and monitoring the gas consumption in a gas network under pressure or under vacuum and gas network
CN113129164A (zh) * 2021-04-13 2021-07-16 中海石油气电集团有限责任公司 一种天然气管网天然气流量压力调度决策指标的计算方法
CN113420967A (zh) * 2021-06-08 2021-09-21 上海城投水务(集团)有限公司 一种基于预测的城市供水管网运行评估方法
CN113962050A (zh) * 2021-09-16 2022-01-21 中冶赛迪技术研究中心有限公司 一种结合产耗预测及管网计算的氧气调度计算方法
CN114091723A (zh) * 2021-10-09 2022-02-25 中国石油大学(北京) 基于交叉熵理论的天然气管网供气可靠性检测方法及装置
CN114119279A (zh) * 2021-11-23 2022-03-01 江南大学 一种工业能源介质调配方法
WO2022088890A1 (zh) * 2020-10-28 2022-05-05 中国电力科学研究院有限公司 电网中长期检修计划的校核方法、系统、设备及存储介质
CN114484557A (zh) * 2022-01-22 2022-05-13 天津大学 一种基于目标能耗管控的建筑群供热负荷调控方法
CN114659028A (zh) * 2022-03-23 2022-06-24 乔治洛德方法研究和开发液化空气有限公司 用于控制气体供应系统的气体供应的方法和设备
CN114912721A (zh) * 2022-07-18 2022-08-16 国网江西省电力有限公司经济技术研究院 一种储能调峰需求的预测方法及系统
CN115358461A (zh) * 2022-08-18 2022-11-18 上海叁零肆零科技有限公司 天然气负荷预测方法、装置、设备、介质
CN115471014A (zh) * 2022-10-24 2022-12-13 国网重庆市电力公司电力科学研究院 一种基于深度神经网络的电网企业度电碳耗预测方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570659A (en) * 1994-09-28 1996-11-05 Slant/Fin Corpoiration Domestic gas-fired boiler
CN1647000A (zh) * 2002-01-30 2005-07-27 普莱克斯技术有限公司 管道输送的气体分配系统的控制
CN108694254A (zh) * 2017-04-06 2018-10-23 中国石油化工股份有限公司 一种变产变压生产气井产量经验递减曲线分析方法
CN108733090A (zh) * 2017-04-18 2018-11-02 气体产品与化学公司 满足能源消耗限制的天然气管道网络中的控制系统
WO2020136476A1 (en) * 2018-12-27 2020-07-02 Atlas Copco Airpower, Naamloze Vennootschap Method for determining and monitoring the gas consumption in a gas network under pressure or under vacuum and gas network
CN210601053U (zh) * 2019-08-27 2020-05-22 瑞星久宇燃气设备(成都)有限公司 一种多气源智能保供调压站
WO2022088890A1 (zh) * 2020-10-28 2022-05-05 中国电力科学研究院有限公司 电网中长期检修计划的校核方法、系统、设备及存储介质
CN113129164A (zh) * 2021-04-13 2021-07-16 中海石油气电集团有限责任公司 一种天然气管网天然气流量压力调度决策指标的计算方法
CN113420967A (zh) * 2021-06-08 2021-09-21 上海城投水务(集团)有限公司 一种基于预测的城市供水管网运行评估方法
CN113962050A (zh) * 2021-09-16 2022-01-21 中冶赛迪技术研究中心有限公司 一种结合产耗预测及管网计算的氧气调度计算方法
CN114091723A (zh) * 2021-10-09 2022-02-25 中国石油大学(北京) 基于交叉熵理论的天然气管网供气可靠性检测方法及装置
CN114119279A (zh) * 2021-11-23 2022-03-01 江南大学 一种工业能源介质调配方法
CN114484557A (zh) * 2022-01-22 2022-05-13 天津大学 一种基于目标能耗管控的建筑群供热负荷调控方法
CN114659028A (zh) * 2022-03-23 2022-06-24 乔治洛德方法研究和开发液化空气有限公司 用于控制气体供应系统的气体供应的方法和设备
CN114912721A (zh) * 2022-07-18 2022-08-16 国网江西省电力有限公司经济技术研究院 一种储能调峰需求的预测方法及系统
CN115358461A (zh) * 2022-08-18 2022-11-18 上海叁零肆零科技有限公司 天然气负荷预测方法、装置、设备、介质
CN115471014A (zh) * 2022-10-24 2022-12-13 国网重庆市电力公司电力科学研究院 一种基于深度神经网络的电网企业度电碳耗预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘恩斌;刘宇婷;杨毅;: "天然气管道瞬态运行优化技术研究进展", 科学技术与工程, no. 21 *
姜笃志: "输气管道的储气与调峰", 油气储运, no. 08 *
林峰: "城市规划用气负荷预测研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, no. 2015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116974308A (zh) * 2023-07-31 2023-10-31 深圳粤能能源技术有限公司 一种用于天然气计量阀的控制装置及方法

Also Published As

Publication number Publication date
CN116085685B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Zhang et al. Dynamic energy conversion and management strategy for an integrated electricity and natural gas system with renewable energy: Deep reinforcement learning approach
Pao et al. Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model
Jia et al. Convex optimization of integrated power-gas energy flow model with applications to probabilistic energy flow
CN116085685B (zh) 保证用气高峰时段天然气稳定供气的方法和系统
CN112131782B (zh) 一种多回路智能工厂边缘侧数字孪生场景耦合装置
CN109993361B (zh) 一种基于pmu的配电网运行趋势预测方法
CN112906974A (zh) 一种负荷电量及其碳排放预测与校验方法
CN109858798B (zh) 关联改造措施与电压指标的电网投资决策建模方法及装置
CN114784823A (zh) 基于深度确定性策略梯度的微电网频率控制方法及系统
CN107015900B (zh) 一种视频网站的服务性能预测方法
CN113988481B (zh) 一种基于动态矩阵预测控制的风功率预测方法
CN115481856A (zh) 考虑综合需求响应的综合能源系统多尺度调度方法及系统
CN114491388A (zh) 电力系统的数据处理方法、装置、设备和存储介质
CN112783865A (zh) 一种半监督人机结合的运维故障库生成方法及系统
CN112365074A (zh) 一种基于电网调控数据的人工智能决策方法
CN107545321A (zh) 一种基于小波变换的arma‑rbf副产煤气发生量组合预测方法
Zadeh et al. Multi-thread security constraint economic dispatch with exact loss formulation
Liu The forecast of household power load based on genetic algorithm optimizing BP neural network
CN115347621A (zh) 联合发电系统的调度方法、装置、电子设备、介质
CN112085399B (zh) 能源系统可靠性确定方法、装置和设备
CN105447598A (zh) 一种基于误差修正模型的电力系统中负荷预测装置及方法
Cao et al. Optimal control with deep reinforcement learning for shunt compensations to enhance voltage stability
CN104037781A (zh) 电网无功协调控制方法及装置
Wu et al. Development of an industrial forecasting tool in wind power
Price et al. Practical approach to water system optimal operation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant