CN116082653A - 一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用 - Google Patents

一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用 Download PDF

Info

Publication number
CN116082653A
CN116082653A CN202211725168.XA CN202211725168A CN116082653A CN 116082653 A CN116082653 A CN 116082653A CN 202211725168 A CN202211725168 A CN 202211725168A CN 116082653 A CN116082653 A CN 116082653A
Authority
CN
China
Prior art keywords
mofs
pdcov
solution
concentration
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211725168.XA
Other languages
English (en)
Other versions
CN116082653B (zh
Inventor
王坤
肖利亭
朱巍然
洪红红
马寒玉
袁瑞霜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202211725168.XA priority Critical patent/CN116082653B/zh
Publication of CN116082653A publication Critical patent/CN116082653A/zh
Application granted granted Critical
Publication of CN116082653B publication Critical patent/CN116082653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/165Coronaviridae, e.g. avian infectious bronchitis virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/10Detection of antigens from microorganism in sample from host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于功能纳米材料制备领域,公开了一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用。本发明利用MOFs材料的独特优势,通过调控Ce3+/Ce4+比例,掺杂铁作为活性中心结合煅烧调控策略,制备双金属MOFs(Ce@Fe‑C)材料,获得了优异的过氧化物酶活性。结合抗原抗体的特异性识别能力,可以实现PDCoV灵敏、高选择性的检测。

Description

一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用
技术领域
本发明属于功能纳米材料制备领域,涉及一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用,尤其涉及双金属MOFs(Ce@Fe-C)的制备方法及对猪德尔塔冠状病毒(PDCoV)酶联免疫检测应用。
背景技术
PDCoV自2012年首次发现后,已成为常见的猪腹泻致病病原。因其具有高传染性和破坏性的特性,可造成猪严重的腹泻、呕吐、脱水甚至仔猪大量死亡。目前PDCoV的检测方法包括免疫分析法、聚合酶链式反应、环介导等温扩增等方法,虽然这些方法检测的灵敏度高,特异性强,但不可避免地存在检测设备昂贵、需要专业人员操作,检测步骤繁琐等不足,难以实现PDCoV快速的现场分析。鉴于PDCoV感染形势严峻,开发灵敏、快速、操作简单、低成本的分析检测技术,对于保证养殖商户的利益以及预防疾病传播具有重要意义。
在此背景下,基于酶化学反应和抗原抗体特异性结合的酶联免疫法受到了广泛关注,相比于前文中提到的分析检测技术,它具有检测速度快、费用低廉、简单便携等独特优势。其原理是,目标抗原存在时会与固定在基底的酶标抗体进行特异性结合,通过酶对显色底物的催化作用产生颜色上的变化,依据显色程度与目标物浓度的比例关系进行定量检测。该方法由于天然酶的使用,也存在着相应的缺点,比如稳定性差,循环使用性差,成本高等。随着纳米科学的发展,一些材料被发现具有类似天然酶的催化性能,如超氧化物歧化酶、过氧化物酶、葡萄糖氧化酶等。尽管它们克服了天然酶稳定性差的缺点,但催化活性与天然酶相比仍有差距。研究人员发现Ce和Fe基纳米材料能够表达优秀的过氧化物酶活性,如CeO2,Fe3O4能够实现对碱性磷酸酶活性测定和水溶液中的砷酸盐的灵敏检测。在此,我们设想Ce、Fe双催化中心的一体构建对于催化性能的有利贡献,一方面提高PDCoV检测的灵敏度,另一方面拓宽检测的线性范围。在现存众多的纳米材料中,金属有机框架(MOFs)作为一种由金属离子或团簇与有机配体通过配位键自组装形成的有机无机杂化材料,在功能催化剂的设计制备中具有独特优势:(1)金属离子及有机配体的选择多样性,赋予了催化活性以及功能性定制的可能;(2)MOFs大的比表面积和可调的孔隙结构为底物和产物的传质运输提供了便利的通道;(3)MOFs周期性的框架组成使得催化位点能够均匀分布,避免了由于聚集引起的活性损失。MOFs为Ce和Fe双金属催化中心的集成构建提供了良好的平台。
在此,我们开发了有利于抗体结合的二维片状结构的双金属MOFs(Ce@Fe-C),通过Ce与Fe双金属催化中心的集成构建,进一步结合煅烧调控策略,使得过氧化氢能够同时被双位点捕获和催化,实现POD活性的增强,进一步实现了10^2~10^5TCID50 mL-1范围内PDCoV的快速灵敏的比色检测。该思路还未见公开报道。
发明内容
本文旨在开发一种具有优异过氧化物酶活性的双金属MOFs(Ce@Fe-C),以PDCoV为应用模型,用于其酶联免疫检测。
本发明中具有过氧化物酶活性双金属MOFs的制备方法,包含如下步骤:
(1)双金属MOFs(Ce@Fe)的制备:
首先,取一定量的六水合硝酸铈和九水硝酸铁溶于去离子水/乙醇(v/v=1:1)混合液中,超声分散形成均匀的溶液A;
继而取一定量的均苯四甲酸溶于去离子水/乙醇(v/v=1:1)混合液中,超声分散形成均匀的溶液B;
将溶液A与溶液B混合,在室温下(≈298K)磁力搅拌充分混合,通过高速离心得到产物;最后,经过超纯水和乙醇的多次清洗,干燥后,得到双金属MOFs(Ce@Fe)。
(2)双金属MOFs(Ce@Fe)煅烧调控:
将双金属MOFs(Ce@Fe)置于管式炉中通过设定的升温程序进行煅烧,得到的粉末样品记为双金属MOFs(Ce@Fe-C),即具有过氧化物酶活性MOFs。
步骤(1)中,
溶液A中,六水合硝酸铈、九水硝酸铁及去离子水/乙醇混合液的用量比为0.2171g:0.2020g:20mL;
溶液B中,均苯四甲酸及去离子水/乙醇混合液的用量比为0.2541g:5mL;
溶液A和溶液B的体积比为4:1;
磁力搅拌器的转速设置为500rpm,时长为2.5h;
离心机的转速设置为10000r/min,时长为10min,
真空干燥箱内于80℃干燥12h。
步骤(2)中,煅烧气氛为氮气,煅烧温度为300℃,时长为1h,升温速率为5℃/min。
进一步地,将本发明制备的双金属MOFs(Ce@Fe-C)用于对猪德尔塔冠状病毒的酶联免疫检测的应用,步骤为:
步骤S1、双金属MOFs(Ce@Fe-C)与PDCoV抗体的功能组装
首先,取一定量的N-羟基硫代琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐添加到双MOFs(Ce@Fe-C)的分散液中,在室温下充分振荡,用于活化羧基;随后加入PDCoV抗体振荡过夜,之后加入牛血清白蛋白充分振荡,以封闭活性位点,减少非特异性结合,随后离心分离,用水洗涤后重新分散备用。
步骤S2、PDCoV抗原抗体检测
将不同浓度的PDCoV添加到含有磷酸缓冲溶液、过氧化氢、连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)中的混合溶液,振荡使PDCoV抗原抗体充分结合,再加入3,3',5,5'-四甲基联苯胺,37℃下反应10min。离心分离,测定上清液在650nm处的吸光值。
步骤S1中,N-羟基硫代琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐的浓度均为200μmol/L,用量均为100μL;37℃振荡时间为2h;
双金属MOFs(Ce@Fe-C)分散液的浓度为2mg/mL,用量为5mL;
PDCoV抗体的浓度为9μg/mL,用量为20μL;
牛血清白蛋白的质量分数为3%,用量为200μL;
振荡温度为37℃,时间为1h;
离心的转速和时间分别为8000r/min,10min。
步骤S2中,PDCoV的浓度范围为10^2~10^5TCID50 mL-1,用量20μL;
磷酸缓冲溶液的浓度为pH=4.0,100mmol/L,用量为400μL;
过氧化氢的浓度和用量分别为100mmol/L和50μL;
连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的浓度和用量分别为2mg/mL和20μL;
振荡的温度和时间分别为37℃和45min;
3,3',5,5'-四甲基联苯胺的浓度及用量分别为8mmol/L和30μL,37℃下反应10min,13000r/min离心5min。
本发明开发的基于双金属MOFs(Ce@Fe-C)抗原抗体检测猪小肠样品中的PDCoV,具体的技术解决方案如下:
步骤1:猪小肠样品的前处理
在检测猪小肠样品前,需要对样品进行前处理,方法如下:取一定量的猪小肠组织用剪刀剪碎与研钵中,向研钵中加入一定量的磷酸缓冲溶液研磨剪碎的小肠,再转移至离心管中,储存于-20℃下,反复冻融3次摇匀,最后取组织液到新的离心管中,离心分离,取上清液作为配制PDCoV实际样的溶剂。将已知浓度的PDCoV用以上提到的溶剂稀释至实验所需浓度。
步骤2:PDCoV抗原抗体检测
将PDCoV实际样溶液加入到含有磷酸缓冲溶液、过氧化氢、连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的混合溶液中,振荡使PDCoV抗原抗体充分结合,再加入3,3',5,5'-四甲基联苯胺,37℃下反应10min。离心分离,测定上清液在650nm处的吸光值,将所得数据对比标准曲线得到猪小肠样品中PDCoV的浓度。
步骤1中猪小肠的用量为5g;磷酸缓冲溶液浓度和用量分别为pH=4.0,100mmol/L和5mL;离心转速为12000r/min,时长为5min。
步骤2中PDCoV实际样溶液的用量为20μL;磷酸缓冲溶液的浓度为pH=4.0,100mmol/L,用量为400μL;过氧化氢的浓度和用量分别为100mmol/L和50μL;连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的浓度和用量分别为2mg/mL和20μL;振荡的温度和时间分别为37℃和45min;3,3',5,5'-四甲基联苯胺的浓度及用量分别为8mmol/L和30μL。本发明的有益效果为:
(1)本发明通过调控Ce3+/Ce4+的比例,掺杂铁作为活性中心结合煅烧调控策略制备得到的双金属MOFs(Ce@Fe-C)不仅具有优异的过氧化物酶活性,并且材料的稳定性也得到很大提升。
(2)本发明制备的双金属MOFs(Ce@Fe-C)可实现PDCoV的灵敏检测,在10^2~10^5TCID50 mL-1的浓度区间内,PDCoV浓度的对数与反应液在650nm处的紫外吸收峰强度呈现良好的线性相关性(R2=0.985),检出限低至33.33TCID50 mL-1
(3)与传统检测方法相比,本发明中所提及的PDCoV的酶联免疫检测方法具有操作简便,设备简单,检测成本低,检出时间短等优点。
附图说明
图1(A)为单金属MOFs(Ce)的扫描电镜图;(B)为双金属MOFs(Ce@Fe)的扫描电镜图;(C)为经过热处理得到的双金属MOFs(Ce@Fe-C)的扫描电镜图;(D)为双金属MOFs(Ce@Fe)的元素分布图。
图2为(a)空白对照,(b)单金属MOFs(Ce),(c)双金属MOFs(Ce@Fe-C)和(d)双金属MOFs(Ce@Fe-C)的过氧化物酶活性对比图。
图3为PDCoV浓度与反应液于650nm紫外吸收峰强度的对应关系图(内嵌图为其线性关系图)。
图4为(A)PDCoV抗体浓度、(B)磷酸缓冲溶液pH、(C)显色剂3,3',5,5'-四甲基联苯胺浓度的优化图。
图5为基于MOFs(Ce@Fe-C)酶联免疫检测PDCoV的选择性分析图。
具体实施方式
具体实施:在优化条件下,当目标物存在时,基于PDCoV浓度与比色信号的紫外吸收峰强度的线性相关性,实现对PDCoV的灵敏检测。
实施例一:
(1)双金属MOFs(Ce@Fe)的制备
称取0.2171g六水合硝酸铈和0.2020g九水合硝酸铁溶于20mL去离子水/乙醇(1:1)中,超声分散形成均匀的溶液A;随后称取0.2541g均苯四甲酸溶于5mL去离子水/乙醇(1:1)中,超声分散形成均匀的溶液B;将溶液A与溶液B混合,在室温下(≈298K)磁力搅拌充分混合,转速为500rpm,时长为2.5h;反应结束后,10000r/min离心10min,用水和乙醇洗涤3次。在真空干燥箱内于80℃干燥12h,得到双金属MOFs(Ce@Fe)。
(2)双金属MOFs(Ce@Fe)煅烧调控
将步骤1中制备的双金属MOFs(Ce@Fe)装入坩埚,放入管式炉中,在氮气氛围中于300℃煅烧1h,升温速率为5℃/min;煅烧后得到的固体粉末记为MOFs(Ce@Fe-C)。
双金属MOFs(Ce@Fe-C)与PDCoV抗体的功能组装
向5mLMOFs(Cu@Mn-C)(2mg/mL)的分散液中分别加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(200μmol/L)和100μL N-羟基硫代琥珀酰亚胺(200μmol/L),37℃振荡2h,以活化羧基,随后加入20μL PDCoV抗体(9μg/mL)振荡过夜,之后加入200μL牛血清白蛋白(BSA,ω=3%)37℃振荡1h,以封闭活性位点,减少非特异性结合,随后8000r/min离心10min,用水洗涤3次后重新分散备用。
PDCoV标准曲线的建立
将20μL浓度为10^2TCID50 mL-1,5*10^2TCID50 mL-1,10^3TCID50 mL-1,5*10^3TCID50 mL-1,10^4TCID50 mL-1,5*10^4TCID50 mL-1,10^5TCID50 mL-1的PDCoV加入到含有磷酸缓冲溶液(pH=4.0,100mmol/L,400μL)、过氧化氢(100mmol/L,50μL)、20μL连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的缓冲溶液中,37℃恒温振荡45min,再加入3,3',5,5'-四甲基联苯胺(8mmol/L,30μL),37℃反应10min,13000r/min离心5min,测定上清液在650nm处的紫外吸收峰强度,以PDCoV浓度为横坐标,650nm处的吸收峰强度为纵坐标建立PDCoV的标准曲线。
实施例二:
PDCoV酶联免疫检测
(1)猪小肠样品前处理
在检测猪小肠样品之前,需要对样品进行前处理,方法如下:取5g的猪小肠组织用剪刀剪碎与研钵中,向研钵中加入5mL的磷酸缓冲溶液(pH=4.0,100mmol/L)研磨剪碎的小肠,再转移至离心管中,储存于-20℃下,反复冻融3次摇匀,最后取组织液到新的离心管中,在转速为12000r/min离心5min,取上清液作为配制PDCoV实际样的溶剂。将已知浓度的PDCoV用以上提到的溶剂稀释至实验所需浓度。
(2)PDCoV抗原抗体检测
将20μL PDCoV实际样溶液添加到含有磷酸缓冲溶液(pH=4.0,100mmol/L,400μL)、过氧化氢(100mmol/L,50μL)、20μL连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的混合溶液中,37℃恒温振荡45min,再加入3,3',5,5'-四甲基联苯胺(8mmol/L,30μL),37℃反应10min,13000r/min离心5min,测定上清液在650nm处的紫外吸收峰强度,对比标准曲线得到PDCoV的浓度。
实施例三:
选择性分析
(1)猪小肠样品的前处理
在检测猪小肠样品之前,需要对样品进行前处理,方法如下:取5g的猪小肠组织用剪刀剪碎与研钵中,向研钵中加入5mL的磷酸缓冲溶液(pH=4.0,100mmol/L)研磨剪碎的小肠,再转移至离心管中,储存于-20℃下,反复冻融3次摇匀,最后取组织液到新的离心管中,在转速为12000r/min离心5min,取上清液作为配制PDCoV实际样的溶剂。最后,添加PDCoV标准样品制备PDCoV加标溶液,PDCoV浓度为10^2TCID50 mL-1。以同样的方法制备猪传染性胃肠炎病毒(TGEV)、猪流行性腹泻病毒(PEDV)、猪圆环病毒(PCV)和猪蓝耳病毒(PRRSV)的加标溶液,病毒浓度均为10^3TCID50 mL-1
(2)选择性分析
将20μL病毒加标溶液添加到含有磷酸缓冲溶液(pH=4.0,100mmol/L,400μL)、过氧化氢(100mmol/L,50μL)、20μL连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的混合溶液中,37℃恒温振荡45min,再加入3,3',5,5'-四甲基联苯胺(8mmol/L,30μL),37℃反应10min,13000r/min离心5min,测定上清液在650nm处的紫外吸收峰强度,对比标准曲线得到病毒的浓度。
图1(A)为单金属MOFs(Ce)的扫描电镜图,(B)为双金属MOFs(Ce@Fe)的扫描电镜图,可以看出材料为二维片状形貌。图1(C)为经过热处理得到的双金属MOFs(Ce@Fe-C)的扫描电镜图,从图中可以看出,热处理没有改变材料的基本结构。图1(D)为双金属MOFs(Ce@Fe)的元素分布图,证实了Fe元素的成功掺杂。
图2为反应液的紫外吸收光谱图:(a)空白对照,(b)单金属MOFs(Ce)(c)双金属MOFs(Ce@Fe),(d)双金属MOFs(Ce@Fe-C)。从图可以看出,与其他相比,经过煅烧得到的双金属MOFs(Ce@Fe-C)的吸光度明显上升,表明双金属MOFs(Ce@Fe-C)的催化性能更强。
图3为PDCoV浓度与反应液于650nm处吸收峰强度的对应关系图。从图中可以看出,随着PDCoV浓度的增加,650nm处的吸收峰强度逐渐降低,当浓度高于10^5TCID50 mL-1时,基本保持不变。内嵌图为其线性校准图,在10^2~10^5TCID50 mL-1的区间内,PDCoV浓度与吸光度呈现良好的线性相关性(R2=0.985)。
图4为反应条件优化。从图中可以看出,PDCoV抗体浓度为9μg/mL,pH为4,显色底物浓度为8mmol/L是最优条件。
图5为选择性对比图。从图中可以看出虽然PDCoV的浓度仅为其他病毒的百分之一,但是其对反应液在650nm处吸收峰强度的影响远大于其他病毒,这表明基于MOFs(Ce@Fe-C)的比色平台应用于PDCoV的检测具有良好的选择性。

Claims (9)

1.一种具有过氧化物酶活性MOFs的制备方法,其特征在于,包括如下步骤:
(1)双金属MOFs(Ce@Fe)的制备:
首先,取一定量的六水合硝酸铈和九水硝酸铁溶于去离子水/乙醇混合液中,超声分散形成均匀的溶液A;
继而取一定量的均苯四甲酸溶于去离子水/乙醇混合液中,超声分散形成均匀的溶液B;
将溶液A与溶液B混合,在室温下磁力搅拌充分混合,通过高速离心得到产物;经过超纯水和乙醇的多次清洗,干燥后,得到双金属MOFs(Ce@Fe);
(2)通过煅烧调控制备双金属MOFs(Ce@Fe-C):
将步骤(1)所得的双金属MOFs(Ce@Fe)置于管式炉中通过设定的升温程序进行煅烧,得到的固体粉末为双金属MOFs(Ce@Fe-C),即具有过氧化物酶活性MOFs。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中,
溶液A中,六水合硝酸铈、九水硝酸铁及去离子水/乙醇混合液的用量比为0.2171g:0.2020g:20mL;
溶液B中,均苯四甲酸及去离子水/乙醇混合液的用量比为0.2541g:5mL;
溶液A和溶液B的体积比为4:1。
3.如权利要求1所述的制备方法,其特征在于,步骤(1)中,
磁力搅拌器的转速设置为500rpm,时长为2.5h;
离心机的转速设置为10000r/min,时长为10min,
真空干燥箱内于80℃干燥12h;
去离子水/乙醇的混合液中,去离子水和乙醇的混合液为1:1。
4.如权利要求1所述的制备方法,其特征在于,步骤(2)中,煅烧气氛为氮气,煅烧温度为300℃,时长为1h,升温速率为5℃/min。
5.将权利要求1~4任一项所述制备方法制得的双金属MOFs(Ce@Fe-C)用于对猪德尔塔冠状病毒的酶联免疫检测的应用。
6.如权利要求5所述的应用,其特征在于,步骤为:
步骤S1、双金属MOFs(Ce@Fe-C)与PDCoV抗体的功能组装
首先,取一定量的N-羟基硫代琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐添加到双金属MOFs(Ce@Fe-C)的分散液中,在室温下充分振荡,用于活化羧基;随后加入PDCoV抗体振荡过夜,之后加入牛血清白蛋白充分振荡,以封闭活性位点,减少非特异性结合,随后离心分离,用水洗涤后重新分散备用;
步骤S2、PDCoV抗原抗体检测
将不同浓度的PDCoV添加到含有磷酸缓冲溶液、过氧化氢、连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)中的混合溶液,振荡使PDCoV抗原抗体充分结合,再加入3,3',5,5'-四甲基联苯胺反应,离心分离,测定上清液在650nm处的吸光值。
7.如权利要求6所述的应用,其特征在于,
步骤S1中,N-羟基硫代琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐的浓度均为200μmol/L,用量均为100μL;37℃振荡时间为2h;
双金属MOFs(Ce@Fe-C)分散液的浓度为2mg/mL,用量为5mL;
PDCoV抗体的浓度为9μg/mL,用量为20μL;
牛血清白蛋白的质量分数为3%,用量为200μL;
振荡温度为37℃,时间为1h;离心的转速和时间分别为8000r/min,10min。
8.如权利要求6所述的应用,其特征在于,
步骤S2中,PDCoV的浓度范围为10^2~10^5TCID50 mL-1,用量20μL;
磷酸缓冲溶液的浓度为pH=4.0,100mmol/L,用量为400μL;
过氧化氢的浓度和用量分别为100mmol/L和50μL;
连接有PDCoV抗体的双金属MOFs(Ce@Fe-C)的浓度和用量分别为2mg/mL和20μL;
振荡的温度和时间分别为37℃和45min。
9.如权利要求6所述的应用,其特征在于,步骤S2中,
3,3',5,5'-四甲基联苯胺的浓度及用量分别为8mmol/L和30μL,37℃下反应10min。13000r/min离心5min。
CN202211725168.XA 2022-12-30 2022-12-30 一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用 Active CN116082653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211725168.XA CN116082653B (zh) 2022-12-30 2022-12-30 一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211725168.XA CN116082653B (zh) 2022-12-30 2022-12-30 一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用

Publications (2)

Publication Number Publication Date
CN116082653A true CN116082653A (zh) 2023-05-09
CN116082653B CN116082653B (zh) 2024-05-10

Family

ID=86209705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211725168.XA Active CN116082653B (zh) 2022-12-30 2022-12-30 一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用

Country Status (1)

Country Link
CN (1) CN116082653B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052239A1 (en) * 1999-05-10 2000-11-15 Mitsubishi Gas Chemical Company, Inc. Process for producing pyromellitic acid
US20020151745A1 (en) * 1999-05-10 2002-10-17 Kazuo Tanaka Process for producing pyromellitic acid
WO2011129419A1 (ja) * 2010-04-16 2011-10-20 住友化学株式会社 複合金属酸化物、正極活物質、正極およびナトリウム二次電池
JP2021041314A (ja) * 2019-09-06 2021-03-18 旭化成株式会社 収着材料、収着材料の製造方法および特定物質捕捉システム
CN113522287A (zh) * 2021-06-24 2021-10-22 中科合成油技术有限公司 具有分级孔结构的碳载金属催化剂、其制备方法和用途
CN114797798A (zh) * 2022-04-14 2022-07-29 中国科学院青岛生物能源与过程研究所 一种mof/玉米秸秆复合材料及器件的制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052239A1 (en) * 1999-05-10 2000-11-15 Mitsubishi Gas Chemical Company, Inc. Process for producing pyromellitic acid
US20020151745A1 (en) * 1999-05-10 2002-10-17 Kazuo Tanaka Process for producing pyromellitic acid
WO2011129419A1 (ja) * 2010-04-16 2011-10-20 住友化学株式会社 複合金属酸化物、正極活物質、正極およびナトリウム二次電池
JP2021041314A (ja) * 2019-09-06 2021-03-18 旭化成株式会社 収着材料、収着材料の製造方法および特定物質捕捉システム
CN113522287A (zh) * 2021-06-24 2021-10-22 中科合成油技术有限公司 具有分级孔结构的碳载金属催化剂、其制备方法和用途
CN114797798A (zh) * 2022-04-14 2022-07-29 中国科学院青岛生物能源与过程研究所 一种mof/玉米秸秆复合材料及器件的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周健;谢林华;豆义波;李建荣;: "MOFs基材料在超级电容器中的应用", 化工进展, no. 09, 5 September 2016 (2016-09-05), pages 2830 - 2838 *

Also Published As

Publication number Publication date
CN116082653B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
Liang et al. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs
Tang et al. Carbon dots prepared from Litchi chinensis and modified with manganese dioxide nanosheets for use in a competitive fluorometric immunoassay for aflatoxin B 1
US5637508A (en) Biomolecules bound to polymer or copolymer coated catalytic inorganic particles, immunoassays using the same and kits containing the same
CN104280542B (zh) 基于金属增强发光及纳米粒子标记放大的双增强化学发光免疫分析法
WO1993004196A1 (en) Sol-gel encapsulated enzyme
Wang et al. Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification
Lu et al. Fluorescence ELISA based on CAT-regulated fluorescence quenching of CdTe QDs for sensitive detection of FB 1
Takemura et al. A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus
Wang et al. Nanobody and nanozyme‐enabled immunoassays with enhanced specificity and sensitivity
CN107271518B (zh) 一种电流型电化学传感器及其制备方法和应用
CN103913573A (zh) 一种基于纳米金和氧化石墨烯的双信号放大elisa检测方法
CN113244916A (zh) 一种纳米酶及其应用
Shao et al. Recent advances in enzyme-enhanced immunosensors
CN110540984A (zh) 一种HRP/Co3O4@ZIF-8复合催化剂及其制备方法
CN106940315A (zh) 有机磷农药检测方法及试剂盒
Li et al. Luminol, horseradish peroxidase and antibody ternary codified gold nanoparticles for a label-free homogenous chemiluminescent immunoassay
CN103513027A (zh) 新型超灵敏性elisa方法的建立
CN116082653B (zh) 一种具有过氧化物酶活性MOFs的制备方法及对猪德尔塔冠状病毒的酶联免疫检测应用
Xu et al. In Situ Enzyme Immobilization with Oxygen‐Sensitive Luminescent Metal–Organic Frameworks to Realize “All‐in‐One” Multifunctions
Li et al. Magnetic Large‐Mesoporous Nanoreactors Enable Enzymatically Regulated Background‐Free and Persistently Signalling Diseases Diagnosis
Luo et al. Development of a gold nanoparticles based chemiluminescence imaging assay and its application
Lv et al. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays
CN109342420A (zh) Fe3O4@C一维纳米线的应用
Zhou et al. Nanoplatinum-enclosed gold nanocores as catalytically promoted nanolabels for sensitive electrochemical immunoassay
CN112903995A (zh) 一种比色/荧光探针、检测玉米赤霉烯酮的试纸条及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant