CN116068793A - A photonic crystal structural color thin film based on phase change material and its preparation method - Google Patents
A photonic crystal structural color thin film based on phase change material and its preparation method Download PDFInfo
- Publication number
- CN116068793A CN116068793A CN202310076613.2A CN202310076613A CN116068793A CN 116068793 A CN116068793 A CN 116068793A CN 202310076613 A CN202310076613 A CN 202310076613A CN 116068793 A CN116068793 A CN 116068793A
- Authority
- CN
- China
- Prior art keywords
- film
- layer
- phase change
- color
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012782 phase change material Substances 0.000 title claims abstract description 47
- 239000004038 photonic crystal Substances 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000010409 thin film Substances 0.000 title description 22
- 230000008859 change Effects 0.000 claims abstract description 171
- 239000000463 material Substances 0.000 claims description 135
- 239000000758 substrate Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 34
- 238000000137 annealing Methods 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 21
- 238000013461 design Methods 0.000 claims description 19
- -1 sodium aluminum fluoride Chemical compound 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 8
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 8
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 8
- 239000005083 Zinc sulfide Substances 0.000 claims description 6
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 5
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- XWJRCNQFQUBEAV-UHFFFAOYSA-N 5-fluoropent-2-ene Chemical group CC=CCCF XWJRCNQFQUBEAV-UHFFFAOYSA-N 0.000 claims description 4
- 229920002284 Cellulose triacetate Polymers 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 claims description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 4
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 3
- QCCDYNYSHILRDG-UHFFFAOYSA-K cerium(3+);trifluoride Chemical compound [F-].[F-].[F-].[Ce+3] QCCDYNYSHILRDG-UHFFFAOYSA-K 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 229920003225 polyurethane elastomer Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 claims description 3
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 230000004075 alteration Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 265
- 239000010408 film Substances 0.000 description 159
- 238000010586 diagram Methods 0.000 description 45
- 238000001228 spectrum Methods 0.000 description 26
- 238000002310 reflectometry Methods 0.000 description 25
- 230000003287 optical effect Effects 0.000 description 20
- 239000003086 colorant Substances 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 230000008033 biological extinction Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910005900 GeTe Inorganic materials 0.000 description 2
- 229910017629 Sb2Te3 Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101100348958 Caenorhabditis elegans smf-3 gene Proteins 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229910017557 NdF3 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021175 SmF3 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- NNBFNNNWANBMTI-UHFFFAOYSA-M brilliant green Chemical compound OS([O-])(=O)=O.C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 NNBFNNNWANBMTI-UHFFFAOYSA-M 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
- G02B1/005—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Filters (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光学技术领域,尤其涉及一种基于相变材料的光子晶体结构色薄膜及其制备方法。The present invention relates to the field of optical technology, and in particular to a photonic crystal structural color film based on phase change material and a preparation method thereof.
背景技术Background Art
可相变材料是指在一定温度范围内可以通过改变其温度引起材料物理结构发生改变,且具有几乎固定的相变温度。相变材料的工作原理是当环境温度高于相变温度时,其进行热量的储存;当环境温度低于相变温度时,它会释放其所储存的能量。目前相变材料已经广泛应用于储能、医学领域、数据存储领域等。在光学薄膜领域,相变材料多已应用在航天领域的吸热保温以及军事领域的中远红外伪装等。Phase-changeable materials refer to materials whose physical structure can be changed by changing their temperature within a certain temperature range, and have an almost fixed phase change temperature. The working principle of phase-change materials is that when the ambient temperature is higher than the phase change temperature, they store heat; when the ambient temperature is lower than the phase change temperature, they release the stored energy. Currently, phase-change materials have been widely used in energy storage, medical fields, data storage, etc. In the field of optical films, phase-change materials have been mostly used in heat absorption and insulation in the aerospace field and mid- and far-infrared camouflage in the military field.
可相变材料由其工作原理可知其主要的一些相变方法为直接或间接的对物体进行加热,可运用高温退火工艺、电加热、光刺激(激光脉冲相变)完成相变。为了衡量一个材料的相变性能,通常采用相变优度值(FOM)来定义其相变能力的好坏。FOM值越大,要求两种材料在非晶态和晶态下的折射率差越大;同时,薄膜在晶态下的消光系数也越小越好。为了让光子晶体薄膜呈现出较好的相变性能以及较高饱和度和更大的相变色差,需要采用相变材料,但目前基于相变材料在光学领域上的研究也比较少。From the working principle of phase-changeable materials, we know that the main phase change methods are to heat the object directly or indirectly. The phase change can be completed by high-temperature annealing process, electric heating, and light stimulation (laser pulse phase change). In order to measure the phase change performance of a material, the phase change goodness of man (FOM) is usually used to define the quality of its phase change ability. The larger the FOM value, the greater the refractive index difference between the two materials in the amorphous and crystalline states; at the same time, the smaller the extinction coefficient of the film in the crystalline state, the better. In order to make the photonic crystal film show better phase change performance, higher saturation and greater phase change chromatic aberration, phase change materials are needed, but there are relatively few studies based on phase change materials in the optical field.
典型的相变材料如以Ge2Sb2Te5(简称GST)为代表的硫族半导体材料,GST材料可以通过电脉冲和光脉冲实现亚纳秒级的相变,由于其相变可以快速和反复地切换,其光学以及电气特性也能呈现两种不同的状态,这让其成为制作非易失性存储器的可靠材料。虽然GST材料在非易失性显示器、光学开关、光子存储器、全光学计算机等光子器件中有着广泛应用,但是在可相变薄膜结构色领域的应用就比较少。Typical phase change materials include chalcogenide semiconductor materials represented by Ge2Sb2Te5 (GST for short). GST materials can achieve sub-nanosecond phase change through electrical pulses and optical pulses. Since its phase change can be switched quickly and repeatedly, its optical and electrical properties can also present two different states, which makes it a reliable material for making non-volatile memory. Although GST materials are widely used in photonic devices such as non-volatile displays, optical switches, photonic memories, and all-optical computers, they are rarely used in the field of phase-changeable thin film structural colors.
在GST这一经典相变材料(PCM)的基础上进行掺杂和改性。经实验表明,将Ge2Sb2Te5中的部分Te用Se替代能减小材料在可见光区域的消光系数,从而增强所构成薄膜结构色的明度,但是过多的Se也同时会导致材料失去相变能力。Ge2Sb2Se4Te1(简称GSST)是在尽可能减少材料吸收的前提下,保证其具有可相变能力的临界材料。Doping and modification are performed on the basis of GST, a classic phase change material (PCM). Experiments have shown that replacing part of Te in Ge2Sb2Te5 with Se can reduce the extinction coefficient of the material in the visible light region, thereby enhancing the brightness of the film structure color, but too much Se will also cause the material to lose its phase change ability. Ge2Sb2Se4Te1 (GSST for short) is a critical material that ensures its phase change ability while minimizing material absorption as much as possible.
GSST作为一种比经典相变材料GST具有显著光学性能优势的新型材料已经被运用于制作硅基三维波导模式光开关(CN114995010A)、基于相变布拉格光栅的多参数可调谐滤波器(CN216248399U)、基于DBS算法的可编程任意功率分配器(CN113191115A)等。但是在可相变薄膜结构色领域,GSST这种材料还有很大的运用前景。As a new material with significant optical performance advantages over the classic phase change material GST, GSST has been used to make silicon-based three-dimensional waveguide mode optical switches (CN114995010A), multi-parameter tunable filters based on phase change Bragg gratings (CN216248399U), programmable arbitrary power dividers based on DBS algorithms (CN113191115A), etc. However, in the field of phase-changeable thin film structural colors, GSST still has great application prospects.
专利号为CN202011061690的中国发明专利公开了一种兼具非易失性、多结构色、多档位及高透射率对比度的谐振腔膜系及制备方法,该复合双腔膜系运用了两种不同的PCM材料来达到高透射率和多档位的目标,并且两种PCM材料必须采用(GeTe)x(Sb2Te3)1-x的元素组成,考虑到GeTe和Sb2Te3的FOM值都不如GST以及GSST,故该膜系很难设计出明度高、饱和度高、相变差异大的结构色。The Chinese invention patent with patent number CN202011061690 discloses a resonant cavity film system and a preparation method that have non-volatility, multi-structural colors, multi-levels and high transmittance contrast. The composite dual-cavity film system uses two different PCM materials to achieve the goals of high transmittance and multi-levels, and the two PCM materials must adopt the elemental composition of (GeTe)x(Sb2Te3)1-x. Considering that the FOM values of GeTe and Sb2Te3 are not as good as GST and GSST, it is difficult to design a structural color with high brightness, high saturation and large phase change difference for this film system.
目前现有的一些新型电致变色材料被提出,例如CN202211003546设计的一种电致变结构色,通过调节外加电压大小和方向,可以控制金属颗粒在透明电极上沉积和溶解,从而改变其膜系结构中的厚度使其从可见光呈现透明色到有一定颜色。这种调节方法能够实现的颜色转变是非常有限的,并且是其相变颜色也是较为单一的,如何设计一个能够在不改变已生成薄膜结构的基础上完成较大颜色相变的薄膜是现阶段研究的一个热点。At present, some new electrochromic materials have been proposed, such as an electrochromic structural color designed in CN202211003546. By adjusting the size and direction of the applied voltage, the metal particles can be deposited and dissolved on the transparent electrode, thereby changing the thickness of its film structure to change it from transparent color to a certain color. The color change that can be achieved by this adjustment method is very limited, and its phase change color is also relatively single. How to design a film that can complete a large color phase change without changing the structure of the generated film is a hot topic of research at this stage.
发明内容Summary of the invention
有鉴于此,本发明的目的在于提出一种基于相变材料的光子晶体结构色薄膜,通过相变层发生相变使制备的薄膜在相变前后都能拥有较大色差的结构色。In view of this, the purpose of the present invention is to propose a photonic crystal structural color film based on phase change material, which can achieve structural colors with large color difference before and after the phase change by causing phase change in the phase change layer.
为了实现上述的技术目的,本发明所采用的技术方案为:一种基于相变材料的光子晶体结构色薄膜,所述薄膜的结构为:(HP)sL(PH)s,该薄膜的结构为以L为中心的对称结构,其中,H表示高折射率介质层,P表示相变层,L表示低折射率介质层,每组(HP)或(PH)构成等效高折射率单元,每组等效高折射率单元由高折射率介质层H和相变层P堆叠而成,s表示等效高折射率单元重复堆叠次数,s为正整数。In order to achieve the above-mentioned technical objectives, the technical solution adopted by the present invention is: a photonic crystal structural color film based on phase change material, the structure of the film is: (HP) s L(PH) s , the structure of the film is a symmetrical structure centered on L, wherein H represents a high refractive index medium layer, P represents a phase change layer, and L represents a low refractive index medium layer. Each group of (HP) or (PH) constitutes an equivalent high refractive index unit, and each group of equivalent high refractive index units is formed by stacking a high refractive index medium layer H and a phase change layer P. s represents the number of times the equivalent high refractive index unit is repeatedly stacked, and s is a positive integer.
进一步的,所述高折射率介质层H为在400nm~780nm范围内折射率大于或等于1.55的材料膜层,采用钛酸镧、非晶硅、氧化铟锡、二氧化钛、五氧化二钽、二氧化铪、二氧化锆、硫化锌或者一氧化硅;所述高折射率介质层H的厚度范围为20-500nm。Furthermore, the high refractive index medium layer H is a material film layer with a refractive index greater than or equal to 1.55 in the range of 400nm to 780nm, and is made of lanthanum titanate, amorphous silicon, indium tin oxide, titanium dioxide, tantalum pentoxide, hafnium dioxide, zirconium dioxide, zinc sulfide or silicon monoxide; the thickness range of the high refractive index medium layer H is 20-500nm.
进一步的,所述相变层P采用GSST材料或GST材料,该GSST材料在不同的温度下具有两种不同的晶态,分别为不定型态和结晶态;该GST材料在不同的温度下具有三种不同的晶态,分别为非晶态、亚稳态和结晶态;所述相变层P的厚度范围为5-30nm。Furthermore, the phase change layer P adopts GSST material or GST material, and the GSST material has two different crystalline states at different temperatures, namely, an amorphous state and a crystalline state; the GST material has three different crystalline states at different temperatures, namely, an amorphous state, a metastable state and a crystalline state; the thickness range of the phase change layer P is 5-30nm.
进一步的,所述低折射率介质层L为在400nm~780nm范围内折射率小于1.55的材料膜层,采用二氧化硅、氟化镁、氟化铈、氟化镧、氟化钠铝、氟化钕、氟化钞、氟化钡、氟化钙或氟化锂;所述低折射率介质层L的厚度范围为20nm~600nm。Furthermore, the low refractive index medium layer L is a material film layer with a refractive index less than 1.55 in the range of 400nm to 780nm, and is made of silicon dioxide, magnesium fluoride, cerium fluoride, lanthanum fluoride, sodium aluminum fluoride, neodymium fluoride, banknote fluoride, barium fluoride, calcium fluoride or lithium fluoride; the thickness of the low refractive index medium layer L ranges from 20nm to 600nm.
进一步的,所述等效高折射率单元重复堆叠次数s的范围为1~5;当s的数量为2~5时,(HP)s中的s层高折射率介质层H为完全相同材料或至少两层相同材料或完全不同材料,(HP)s中的s层相变层P为完全相同材料或至少两层相同材料或完全不同材料。Furthermore, the number of repeated stacking times s of the equivalent high refractive index unit is in the range of 1 to 5; when the number s is 2 to 5, the s high refractive index medium layers H in (HP) s are made of exactly the same material or at least two layers of the same material or completely different materials, and the s phase change layers P in (HP) s are made of exactly the same material or at least two layers of the same material or completely different materials.
本发明还提供了一种基于相变材料的光子晶体结构色薄膜的制备方法,包括如下步骤:The present invention also provides a method for preparing a photonic crystal structure color film based on a phase change material, comprising the following steps:
步骤1、根据用户需求设计基于相变材料的光子晶体结构色薄膜,所述薄膜的结构为:(HP)sL(PH)s,该薄膜的结构为以L为中心的对称结构,其中,H表示高折射率介质层,P表示相变层,L表示低折射率介质层,每组(HP)或(PH)构成等效高折射率单元,每组等效高折射率单元由高折射率介质层H和相变层P堆叠而成,s表示等效高折射率单元重复堆叠次数,s为正整数;Step 1. Design a photonic crystal structural color film based on phase change material according to user needs. The structure of the film is: (HP) s L(PH) s . The structure of the film is a symmetrical structure centered on L, wherein H represents a high refractive index medium layer, P represents a phase change layer, and L represents a low refractive index medium layer. Each group of (HP) or (PH) constitutes an equivalent high refractive index unit. Each group of equivalent high refractive index units is formed by stacking a high refractive index medium layer H and a phase change layer P. s represents the number of times the equivalent high refractive index unit is repeatedly stacked, and s is a positive integer.
步骤2、调整所述薄膜的结构中每一层的厚度和材料,进而使得所述薄膜在不同的温度范围内呈现出不同的颜色变化;Step 2, adjusting the thickness and material of each layer in the structure of the film, so that the film exhibits different color changes within different temperature ranges;
步骤3、根据设计结果确定出制备所述薄膜所需的结构参数;Step 3, determining the structural parameters required for preparing the film according to the design results;
步骤4、以表面平整物体作为基底,放置于成膜设备腔体中;当所述薄膜无需脱膜处理时,执行步骤5;当所述薄膜需要脱膜处理时,执行步骤6;Step 4, using a flat surface object as a substrate and placing it in the film forming equipment cavity; when the film does not need to be demolded, perform step 5; when the film needs to be demolded, perform step 6;
步骤5、根据所述结构参数在基底上生长所述薄膜的第一层、第二层……直到最后一层,第一层至第2s层之间是根据s的数量对高折射率介质层H和相变层P进行依次交叉堆叠,最中间层为低折射率介质层L,最中间层到最后一层是以L为中心对称生长;完成所述薄膜的制备;Step 5, growing the first layer, the second layer, ... until the last layer of the thin film on the substrate according to the structural parameters, wherein the high refractive index medium layer H and the phase change layer P are stacked in sequence according to the number s between the first layer to the 2s layer, the middle layer is the low refractive index medium layer L, and the middle layer to the last layer are grown symmetrically with L as the center; completing the preparation of the thin film;
步骤6、接着生长一层脱膜剂于基底上;根据所述结构参数在脱膜剂上生长所述薄膜的第一层、第二层……直到最后一层;第一层至第2s层之间是根据s的数量对高折射率介质层H和相变层P进行依次交叉堆叠,最中间层为低折射率介质层L,最中间层到最后一层是以L为中心对称生长;使用脱膜剂对应的溶剂将脱膜剂溶解,使所述薄膜与脱膜剂脱离,得到单独的所述薄膜,完成所述薄膜的制备。Step 6, then grow a layer of release agent on the substrate; grow the first layer, the second layer... until the last layer of the thin film on the release agent according to the structural parameters; between the first layer to the 2s layer, the high refractive index medium layer H and the phase change layer P are stacked in sequence according to the number s, the middle layer is the low refractive index medium layer L, and the middle layer to the last layer are grown symmetrically with L as the center; use the solvent corresponding to the release agent to dissolve the release agent, so that the thin film is separated from the release agent to obtain the separate thin film, and complete the preparation of the thin film.
进一步的,所述步骤2具体包括:Furthermore, the step 2 specifically includes:
步骤21、设计所述薄膜的结构中每一层的厚度和材料;Step 21, designing the thickness and material of each layer in the structure of the film;
步骤22、根据(HP)s中的s层相变层P所采用的材料确定出不同的温度阈值,若s层所述相变层P均为GSST材料,则确定出温度阈值为T1,进入步骤23;若s层所述相变层P均为GST材料,则确定出温度阈值为T2和T3,进入步骤24;若s层所述相变层P同时有GSST材料和GST材料,则确定出温度阈值为T2、T1和T3,进入步骤25;Step 22, determining different temperature thresholds according to the materials used by the s-layer phase change layer P in (HP) s . If the phase change layers P in the s-layer are all GSST materials, the temperature threshold is determined to be T1, and the process goes to step 23; if the phase change layers P in the s-layer are all GST materials, the temperature thresholds are determined to be T2 and T3, and the process goes to step 24; if the phase change layers P in the s-layer have both GSST materials and GST materials, the temperature thresholds are determined to be T2, T1 and T3, and the process goes to step 25;
步骤23、在小于T1的温度范围内记录所述薄膜所呈现的第一种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T1的温度范围内,再次记录此时所述薄膜所呈现的第二种颜色,对比相变前后的颜色变化,若色差变化大,则说明设计的所述薄膜的结构中每一层的厚度和材料是合理的;若色差变化小,则进入步骤21重新调整所述薄膜的结构中每一层的厚度和材料;Step 23, recording the first color presented by the film within a temperature range less than T1, then performing a phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T1, and again recording the second color presented by the film at this time, and comparing the color changes before and after the phase change. If the color difference changes greatly, it means that the thickness and material of each layer in the structure of the designed film are reasonable; if the color difference changes little, entering step 21 to readjust the thickness and material of each layer in the structure of the film;
步骤24、在小于T2的温度范围内记录所述薄膜所呈现的第一种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T2且小于T3的温度范围内,再次记录此时所述薄膜所呈现的第二种颜色,接着对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T3的温度范围内,再次记录此时所述薄膜所呈现的第三种颜色,对比相变过程的颜色变化,若色差变化大,则说明设计的所述薄膜的结构中每一层的厚度和材料是合理的;若色差变化小,则进入步骤21重新调整所述薄膜的结构中每一层的厚度和材料;Step 24, recording the first color presented by the film within a temperature range less than T2, then performing phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T2 and less than T3, again recording the second color presented by the film at this time, then performing phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T3, again recording the third color presented by the film at this time, and comparing the color changes during the phase change process. If the color difference changes greatly, it means that the thickness and material of each layer in the designed structure of the film are reasonable; if the color difference changes little, entering step 21 to readjust the thickness and material of each layer in the structure of the film;
步骤25、在小于T2的温度范围内记录所述薄膜所呈现的第一种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T2且小于T1的温度范围内,再次记录此时所述薄膜所呈现的第二种颜色,接着对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T1且小于T3的温度范围内,再次记录此时所述薄膜所呈现的第三种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T3的温度范围内,再次记录此时所述薄膜所呈现的第四种颜色;对比相变过程的颜色变化,若色差变化大,则说明设计的所述薄膜的结构中每一层的厚度和材料是合理的;若色差变化小,则进入步骤21重新调整所述薄膜的结构中每一层的厚度和材料。Step 25, recording the first color presented by the film within a temperature range less than T2, then performing phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T2 and less than T1, and recording again the second color presented by the film at this time, then performing phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T1 and less than T3, and recording again the third color presented by the film at this time, then performing phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T3, and recording again the fourth color presented by the film at this time; comparing the color changes during the phase change process, if the color difference changes greatly, it means that the thickness and material of each layer in the designed structure of the film are reasonable; if the color difference changes little, entering step 21 to readjust the thickness and material of each layer in the structure of the film.
进一步的,所述相变层P发生相变过程是通过高温退火工艺、电加热或激光脉冲相变方式完成相变的。Furthermore, the phase change process of the phase change layer P is completed by a high temperature annealing process, electric heating or laser pulse phase change.
进一步的,所述结构参数包括总层数、每层采用的材料、每一层的厚度和各层之间的分布情况;所述温度阈值T1为310度,所述温度阈值T2为220度,所述温度阈值T3为400度。Furthermore, the structural parameters include the total number of layers, the material used for each layer, the thickness of each layer and the distribution between the layers; the temperature threshold T1 is 310 degrees, the temperature threshold T2 is 220 degrees, and the temperature threshold T3 is 400 degrees.
进一步的,所述基底的材料采用抛光的玻璃、抛光不锈钢、抛光镜面铝、聚对苯二甲酸乙二醇酯、三醋酸纤维素、聚甲基丙烯酸甲酯、聚碳酸酯/聚甲基丙烯酸甲酯复合材料、聚酰亚胺、聚丙烯、聚氯乙烯、聚乙烯醇缩丁醛、乙烯醋酸乙烯共聚物、聚氨酯弹性体、聚四氟乙烯、氟代乙基丙烯或聚二氟乙烯;所述脱膜剂的材料采用易溶于水的氟化物、氯化物或者可溶于水的有机物材料。Furthermore, the material of the substrate is polished glass, polished stainless steel, polished mirror aluminum, polyethylene terephthalate, cellulose triacetate, polymethyl methacrylate, polycarbonate/polymethyl methacrylate composite material, polyimide, polypropylene, polyvinyl chloride, polyvinyl butyral, ethylene vinyl acetate copolymer, polyurethane elastomer, polytetrafluoroethylene, fluoroethyl propylene or polyvinylidene fluoride; the material of the demolding agent is fluoride, chloride or water-soluble organic material that is easily soluble in water.
采用上述的技术方案,本发明与现有技术相比,其具有的有益效果为:本发明是根据相变材料的光学特性制作出在可见光区域能够不改变薄膜结构的基础上,使用可相变材料(GSST或GST)制备在不改变薄膜结构基础上,仅通过高温或者激光脉冲进行加热或者激光光照使得相变层发生相变,从而改变薄膜颜色的光子晶体薄膜结构色器件,最终能使制备的薄膜在相变前后都能拥有较大色差的结构色。By adopting the above-mentioned technical scheme, the present invention has the following beneficial effects compared with the prior art: the present invention is based on the optical properties of phase change materials to produce a photonic crystal thin film structural color device that can remain unchanged in the visible light region without changing the film structure, and uses phase changeable materials (GSST or GST) to prepare a phase change layer without changing the film structure, and only heats the phase change layer through high temperature or laser pulses or irradiates the phase change layer with laser light, thereby changing the color of the film. Ultimately, the prepared film can have a structural color with a large color difference before and after the phase change.
并且通过设计一种对称膜系结构制作出一种可用于器件涂敷并能实现较大颜色相变的结构色薄膜,在该设计结构的基础上能够制备出红、橙、黄、绿、蓝、靛、紫等多种颜色的可相变薄膜,该结构将硫族可相变材料GSST运用于薄膜结构色领域,不仅创新性的提出了该材料在可调谐结构色领域的运用,还可以改善传统相变材料如GST等在可调谐结构色运用中色彩展示能力不足、相变效果不明显的一些问题。不仅如此,正是因为本设计结构能够做出的十分丰富的颜色,这为其在彩色打印领域以及微纳彩色显示中的应用提供了一种可调谐的新型方案。GSST作为一种半导体材料,其在光学器件上的运用也十分广泛,结合其电学与光学的特性可在一些特殊的光学器件上实现多样的颜色显示,使其电学等其他特性在运用场景里为其相变提供可视化反馈。与以往的研究相比,本发明提出的方法具有可调谐结构多、可调谐效果好、易于大规模生产等优点。这些优点使得这种非易失性、高饱和度的彩色滤光片在色彩显示面板、光电探测器、车漆、彩色印刷等领域具有广泛的应用潜力。And by designing a symmetrical film system structure, a structural color film that can be used for device coating and can achieve a large color phase change is produced. On the basis of this design structure, phase-changeable films of various colors such as red, orange, yellow, green, blue, indigo, and purple can be prepared. This structure applies the sulfide phase-changeable material GSST to the field of thin film structural color, which not only innovatively proposes the application of this material in the field of tunable structural color, but also can improve some problems of traditional phase change materials such as GST in the application of tunable structural color, such as insufficient color display ability and unclear phase change effect. Not only that, it is precisely because this design structure can produce very rich colors, which provides a new tunable solution for its application in the field of color printing and micro-nano color display. As a semiconductor material, GSST is also widely used in optical devices. Combining its electrical and optical properties, it can realize a variety of color displays on some special optical devices, so that its electrical and other properties can provide visual feedback for its phase change in the application scenario. Compared with previous studies, the method proposed in the present invention has the advantages of many tunable structures, good tunable effects, and easy large-scale production. These advantages make this non-volatile, high-saturation color filter have broad application potential in color display panels, photodetectors, car paint, color printing and other fields.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的一种基于相变材料的光子晶体结构色薄膜的结构示意图(含有基底)。FIG1 is a schematic structural diagram of a photonic crystal structural color film based on phase change material provided by the present invention (including a substrate).
图2是本发明提供的一种基于相变材料的光子晶体结构色薄膜的结构示意图(含有基底和脱膜剂)。FIG2 is a schematic structural diagram of a photonic crystal structural color film based on phase change material provided by the present invention (including a substrate and a release agent).
图3是本发明提供的一种基于相变材料的光子晶体结构色薄膜的制备方法流程图。FIG3 is a flow chart of a method for preparing a photonic crystal structural color film based on phase change material provided by the present invention.
图4是本发明提供的一种基于相变材料的光子晶体结构色薄膜的结构示意图(无基底和脱膜剂,s的数量为1)。FIG4 is a schematic structural diagram of a photonic crystal structural color film based on phase change material provided by the present invention (without substrate and release agent, the number s is 1).
图5是本发明提供的一种基于相变材料的光子晶体结构色薄膜的结构示意图(无基底和脱膜剂,s的数量为2)。FIG5 is a schematic structural diagram of a photonic crystal structural color film based on phase change material provided by the present invention (without substrate and release agent, and the number of s is 2).
图6是本发明提供的GSST相变材料在可见光范围内非晶态的光学常数。FIG. 6 shows the optical constants of the amorphous state of the GSST phase change material provided by the present invention in the visible light range.
图7是本发明提供的GSST相变材料在可见光范围内晶态的光学常数。FIG. 7 shows the optical constants of the crystalline state of the GSST phase change material provided by the present invention in the visible light range.
图8为实施例1在垂直入射下非晶态的反射光谱图。FIG8 is a reflection spectrum diagram of the amorphous state of Example 1 under vertical incidence.
图9为实施例1在垂直入射下晶态的反射光谱图。FIG. 9 is a reflection spectrum diagram of the crystalline state of Example 1 under vertical incidence.
图10为实施例1在垂直入射下非晶态的及色品坐标图。FIG. 10 is a chromaticity coordinate diagram of the amorphous state of Example 1 under vertical incidence.
图11为实施例1在垂直入射下晶态的及色品坐标图。FIG. 11 is a chromaticity coordinate diagram of the crystal state of Example 1 under vertical incidence.
图12为实施例2在垂直入射下非晶态的反射光谱图。FIG. 12 is a reflection spectrum diagram of the amorphous state of Example 2 under vertical incidence.
图13为实施例2在垂直入射下晶态的反射光谱图。FIG. 13 is a reflection spectrum diagram of the crystalline state of Example 2 under vertical incidence.
图14为实施例2在垂直入射下非晶态的及色品坐标图。FIG. 14 is a chromaticity coordinate diagram of the amorphous state of Example 2 under vertical incidence.
图15为实施例2在垂直入射下晶态的及色品坐标图。FIG. 15 is a chromaticity coordinate diagram of the crystal state of Example 2 under vertical incidence.
图16为实施例3在垂直入射下非晶态的反射光谱图。FIG. 16 is a reflection spectrum diagram of the amorphous state of Example 3 under vertical incidence.
图17为实施例3在垂直入射下晶态的反射光谱图。FIG. 17 is a reflection spectrum diagram of the crystalline state of Example 3 under vertical incidence.
图18为实施例3在垂直入射下非晶态的及色品坐标图。FIG. 18 is a chromaticity coordinate diagram of the amorphous state of Example 3 under vertical incidence.
图19为实施例3在垂直入射下晶态的及色品坐标图。FIG. 19 is a chromaticity coordinate diagram of the crystal state of Example 3 under vertical incidence.
图20为实施例4在垂直入射下非晶态的反射光谱图。FIG. 20 is a reflection spectrum diagram of the amorphous state of Example 4 under vertical incidence.
图21为实施例4在垂直入射下晶态的反射光谱图。FIG. 21 is a reflection spectrum diagram of the crystalline state of Example 4 under vertical incidence.
图22为实施例4在垂直入射下非晶态的及色品坐标图。FIG. 22 is a chromaticity coordinate diagram of the amorphous state of Example 4 under vertical incidence.
图23为实施例4在垂直入射下晶态的及色品坐标图。FIG. 23 is a chromaticity coordinate diagram of the crystal state of Example 4 under vertical incidence.
图24为实施例5在垂直入射下非晶态的反射光谱图。FIG. 24 is a reflection spectrum diagram of the amorphous state of Example 5 under vertical incidence.
图25为实施例5在垂直入射下晶态的反射光谱图。FIG. 25 is a reflection spectrum diagram of the crystalline state of Example 5 under vertical incidence.
图26为实施例5在垂直入射下非晶态的及色品坐标图。FIG. 26 is a chromaticity coordinate diagram of the amorphous state of Example 5 under vertical incidence.
图27为实施例5在垂直入射下晶态的及色品坐标图。FIG. 27 is a chromaticity coordinate diagram of the crystal state of Example 5 under vertical incidence.
图28为实施例6在垂直入射下非晶态的反射光谱图。FIG. 28 is a reflection spectrum diagram of the amorphous state of Example 6 under vertical incidence.
图29为实施例6在垂直入射下亚稳态的反射光谱图。FIG. 29 is a reflection spectrum diagram of the metastable state of Example 6 under vertical incidence.
图30为实施例6在垂直入射下晶态的反射光谱图。FIG30 is a reflection spectrum diagram of the crystalline state of Example 6 under vertical incidence.
图31为实施例6在垂直入射下非晶态的色品坐标图。FIG. 31 is a chromaticity coordinate diagram of the amorphous state of Example 6 under vertical incidence.
图32为实施例6在垂直入射下亚稳态的色品坐标图。FIG. 32 is a chromaticity coordinate diagram of the metastable state of Example 6 under vertical incidence.
图33为实施例6在垂直入射下结晶态的色品坐标图。FIG. 33 is a chromaticity coordinate diagram of the crystalline state of Example 6 under vertical incidence.
图34为实施例7在垂直入射下常温下的反射光谱图。FIG34 is a reflection spectrum diagram of Example 7 at room temperature under vertical incidence.
图35为实施例7在垂直入射下退火到220℃后的反射光谱图。FIG35 is a reflection spectrum diagram of Example 7 after annealing to 220° C. under vertical incidence.
图36为实施例7在垂直入射下310℃下的反射光谱图。FIG36 is a reflection spectrum diagram of Example 7 at 310° C. under vertical incidence.
图37为实施例7在垂直入射下退火到400℃后的反射光谱图。FIG37 is a reflection spectrum diagram of Example 7 after annealing to 400° C. under vertical incidence.
图38为实施例7在垂直入射下常温下的色品坐标图。FIG38 is a chromaticity coordinate diagram of Example 7 at room temperature under vertical incidence.
图39为实施例7在垂直入射下退火到220℃后的色品坐标图。FIG. 39 is a chromaticity coordinate diagram of Example 7 after annealing to 220° C. under vertical incidence.
图40为实施例7在垂直入射下退火到310℃后的色品坐标图。FIG. 40 is a chromaticity coordinate diagram of Example 7 after annealing to 310° C. under vertical incidence.
图41为实施例7在垂直入射下退火到400℃的色品坐标图。FIG. 41 is a chromaticity coordinate diagram of Example 7 annealed to 400° C. under vertical incidence.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例,对本发明作进一步的详细描述。特别指出的是,以下实施例仅用于说明本发明,但不对本发明的范围进行限定。同样的,以下实施例仅为本发明的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The present invention will be further described in detail below in conjunction with the accompanying drawings and examples. It is particularly noted that the following examples are only used to illustrate the present invention, but are not intended to limit the scope of the present invention. Similarly, the following examples are only partial embodiments of the present invention rather than all embodiments, and all other embodiments obtained by those of ordinary skill in the art without creative work are within the scope of protection of the present invention.
请参见图1、图2、图4和图5,本发明的一种基于相变材料的光子晶体结构色薄膜,所述薄膜的结构为:(HP)sL(PH)s,该薄膜的结构为以L为中心的对称结构,其中,H表示高折射率介质层,P表示相变层,L表示低折射率介质层,每组(HP)或(PH)构成等效高折射率单元,每组等效高折射率单元由高折射率介质层H和相变层P堆叠而成,s表示等效高折射率单元重复堆叠次数,s为正整数。Please refer to Figures 1, 2, 4 and 5. The present invention is a photonic crystal structural color film based on phase change material, the structure of the film is: (HP) s L(PH) s , the structure of the film is a symmetrical structure centered on L, wherein H represents a high refractive index medium layer, P represents a phase change layer, and L represents a low refractive index medium layer. Each group of (HP) or (PH) constitutes an equivalent high refractive index unit, and each group of equivalent high refractive index units is formed by stacking a high refractive index medium layer H and a phase change layer P. s represents the number of times the equivalent high refractive index unit is repeatedly stacked, and s is a positive integer.
在本实施例中,所述高折射率介质层H为在400nm~780nm范围内折射率大于或等于1.55的材料膜层,采用钛酸镧(H4)、非晶硅(a-Si)、氧化铟锡(ITO)、二氧化钛(TiO2)、五氧化二钽(Ta2O5)、二氧化铪(HfO2)、二氧化锆(ZrO2)、硫化锌(ZnS)或者一氧化硅(SiO);所述高折射率介质层H的厚度范围为20-500nm。In this embodiment, the high refractive index medium layer H is a material film layer with a refractive index greater than or equal to 1.55 in the range of 400nm to 780nm, and is made of lanthanum titanate (H4), amorphous silicon (a-Si), indium tin oxide (ITO), titanium dioxide ( TiO2 ), tantalum pentoxide ( Ta2O5 ), hafnium dioxide ( HfO2 ) , zirconium dioxide ( ZrO2 ), zinc sulfide (ZnS) or silicon monoxide (SiO); the thickness of the high refractive index medium layer H is in the range of 20-500nm.
在本实施例中,所述相变层P采用GSST材料(相变层P选用硫族可相变材料,其中以GSST(Ge2Sb2Se4Te1)为首选材料)或GST材料,该GSST材料在不同的温度下具有两种不同的晶态,分别为不定型态和结晶态;该GST材料在不同的温度下具有三种不同的晶态,分别为非晶态、亚稳态和结晶态;所述相变层P的厚度范围为5-30nm。In this embodiment, the phase change layer P adopts GSST material (the phase change layer P uses chalcogenide phase change material, among which GSST (Ge2Sb2Se4Te1) is the preferred material) or GST material. The GSST material has two different crystalline states at different temperatures, namely, an amorphous state and a crystalline state; the GST material has three different crystalline states at different temperatures, namely, amorphous state, metastable state and crystalline state; the thickness range of the phase change layer P is 5-30nm.
GSST的不定型态的非晶形成能力相较于GST有所增强,这增加了非晶态的热稳定性,延长了膜层相变保存期限,也增加了可相变材料的最大使用厚度。但从另一方面来说,GSST由于其非晶态热稳定性的增强,其也失去了GST在亚稳态的面心立方(FCC)相,在310℃高温退火之后直接转化成终稳态六方晶相,也就是说其相变温度有了很大程度的升高,这也为该膜系在特殊高温场景的运用提供了可能。经实验表明,GSST在310℃以前都保持非晶态结构,其单层光学常数如图6所示。在310℃高温退火以后GSST结构转化成六方晶态,其光学常数如图7所示。The amorphous amorphous forming ability of GSST is enhanced compared to GST, which increases the thermal stability of the amorphous state, prolongs the phase change shelf life of the film layer, and also increases the maximum use thickness of the phase change material. But on the other hand, due to the enhanced thermal stability of its amorphous state, GSST also loses the metastable face-centered cubic (FCC) phase of GST, and directly transforms into the final stable hexagonal phase after high-temperature annealing at 310°C, that is, its phase transition temperature has been greatly increased, which also provides the possibility for the use of this film system in special high-temperature scenarios. Experiments have shown that GSST maintains an amorphous structure before 310°C, and its single-layer optical constants are shown in Figure 6. After high-temperature annealing at 310°C, the GSST structure is transformed into a hexagonal crystal state, and its optical constants are shown in Figure 7.
本结构也可采用相变材料GST,其在常温下会呈现出一种非晶态,在220℃高温下会呈现出亚稳态,在400℃高温退火后会呈现出结晶态,这运用于本设计的结构中能呈现出三种颜色变化。不仅如此,本设计中的结构也可将不同相变层P采用GSST与GST混合搭配,通过不同的退火温度的控制让其呈现出更多种相变颜色。比如s为2时,(HP)s中具有2层相变层P结构,其中,P1和P2的材料可以选用不同的GSST或GST材料,如P1选用GSST材料而P2选用GST材料或者是P1选用GST材料而P2选用GSST材料。The structure can also use the phase change material GST, which will present an amorphous state at room temperature, a metastable state at a high temperature of 220°C, and a crystalline state after high temperature annealing at 400°C. This can be applied to the structure of this design to present three color changes. In addition, the structure in this design can also mix and match different phase change layers P using GSST and GST, and allow it to present more phase change colors by controlling different annealing temperatures. For example, when s is 2, (HP) s has a 2-layer phase change layer P structure, in which the materials of P1 and P2 can be selected from different GSST or GST materials, such as P1 using GSST material and P2 using GST material, or P1 using GST material and P2 using GSST material.
在本实施例中,所述低折射率介质层L为在400nm~780nm范围内折射率小于1.55的材料膜层,所述低折射率介质层L与高折射率介质层H相导纳匹配;采用二氧化硅(SiO2)、氟化镁(MgF2)、氟化铈(CeF3)、氟化镧(LaF3)、氟化钠铝(Na3AIF或者NasAlFA)、氟化钕(NdF3)、氟化钞(SmF3)、氟化钡(BaF2)、氟化钙(CaF2)或氟化锂(LiF);所述低折射率介质层L的厚度范围为20nm~600nm。在本实施例中,所述等效高折射率单元重复堆叠次数s的范围为1~5,s的数量越多,相变前后结构色变化越不明显;当s的数量为2~5时,(HP)s中的s层高折射率介质层H为完全相同材料或至少两层相同材料或完全不同材料,(HP)s中的s层相变层P为完全相同材料或至少两层相同材料或完全不同材料。本发明是通过调节每一层的材料和厚度可以设计出不同颜色的结构色薄膜。In this embodiment, the low refractive index medium layer L is a material film layer with a refractive index less than 1.55 in the range of 400nm to 780nm, and the low refractive index medium layer L is admittance matched with the high refractive index medium layer H; silicon dioxide ( SiO2 ), magnesium fluoride ( MgF2 ), cerium fluoride ( CeF3 ), lanthanum fluoride ( LaF3 ), sodium aluminum fluoride ( Na3AIF or NasAlFA), neodymium fluoride ( NdF3 ), silicon dioxide ( SmF3 ), barium fluoride ( BaF2 ), calcium fluoride ( CaF2 ) or lithium fluoride (LiF) are used; the thickness of the low refractive index medium layer L is in the range of 20nm to 600nm. In this embodiment, the equivalent high refractive index unit is repeatedly stacked for a number of times s ranging from 1 to 5. The greater the number of s, the less obvious the structural color change before and after the phase change. When the number of s is 2 to 5, the s layers of high refractive index medium layers H in (HP) s are made of the same material or at least two layers of the same material or completely different materials, and the s layers of phase change layers P in (HP) s are made of the same material or at least two layers of the same material or completely different materials. The present invention can design structural color films of different colors by adjusting the material and thickness of each layer.
本实施例以s为1进行说明,具体结构如图4所示。膜层结构从基底往上依次是高折射率介质层H、相变层P、中间介质层L、相变层P和高折射率介质层H。由于相变层P所需的材料具有易氧化性质,故不能将相变层P直接放在表层与空气接触,因此相变层P介于高折射率介质层H与中间介质层L之间。根据膜系对称设计,中间介质层L上下对称的两层高折射率介质层H的厚度以及材料相同,中间介质层L上下对称的相变层P的厚度以及材料相同。This embodiment is described with s being 1, and the specific structure is shown in FIG4 . The film layer structure is a high refractive index medium layer H, a phase change layer P, an intermediate medium layer L, a phase change layer P, and a high refractive index medium layer H from the substrate upward. Since the material required for the phase change layer P is easily oxidized, the phase change layer P cannot be placed directly on the surface in contact with the air, so the phase change layer P is between the high refractive index medium layer H and the intermediate medium layer L. According to the symmetrical design of the film system, the thickness and material of the two layers of high refractive index medium layers H symmetrically arranged above and below the intermediate medium layer L are the same, and the thickness and material of the phase change layers P symmetrically arranged above and below the intermediate medium layer L are the same.
F-P薄膜滤波器是一种简单的窄带滤波器,是在法布里-珀罗干涉仪的基础上改进得到的。这种滤波器主要由中间平行腔层加上两端高反射率层组成,根据两端高反层的材料可以将其分成两种:金属-介质型结构和全介质型结构。金属-介质型F-P滤波器主要由两个平行金属层和中间的一层介质间隔层共同构成,下面根据薄膜反射透射理论计算F-P滤波器的主要参数。The F-P thin film filter is a simple narrowband filter, which is improved on the basis of the Fabry-Perot interferometer. This filter is mainly composed of a parallel cavity layer in the middle and high reflectivity layers at both ends. According to the materials of the high reflective layers at both ends, it can be divided into two types: metal-dielectric structure and full dielectric structure. The metal-dielectric F-P filter is mainly composed of two parallel metal layers and a dielectric spacer layer in the middle. The main parameters of the F-P filter are calculated based on the thin film reflection and transmission theory.
在滤波器的各项性能参数中,描述其特征的主要包括中心波长λ0,波峰半高全宽(FWHM),中心波长的透射率T与自由光谱范围(Free Spectral Range)FSR。Among the various performance parameters of the filter, the main ones that describe its characteristics include the central wavelength λ 0 , the full width at half maximum (FWHM) of the peak, the transmittance T of the central wavelength and the free spectral range (FSR).
F-P滤波器透过率表达式:F-P filter transmittance expression:
式中,T1、T2、R1和R2分别为两个金属反射层的透射率和反射率(如:第一个金属反射层的透射率和反射率分别为T1和R1,第二个金属反射层的透射率和反射率分别为T2和R2);Wherein, T 1 , T 2 , R 1 and R 2 are the transmittance and reflectance of the two metal reflective layers respectively (eg, the transmittance and reflectance of the first metal reflective layer are T 1 and R 1 respectively, and the transmittance and reflectance of the second metal reflective layer are T 2 and R 2 respectively);
其中为间隔层的位相厚度,而和分别为两层反射的反射位相。 in is the phase thickness of the spacer layer, and and They are the reflection phases of the two layers of reflection.
最大透射率处波长,即中心波长表达式:The wavelength at maximum transmittance, that is, the central wavelength expression:
F-P薄膜滤波器的自由光谱范围(FSR)表示的是两个最大透射峰之间的光谱范围,其在光学中主要用来表示防止不同级干涉条纹重叠的最大分波波长差,具体计算公式为:The free spectral range (FSR) of the F-P thin film filter represents the spectral range between the two maximum transmission peaks. In optics, it is mainly used to indicate the maximum wavelength difference of the sub-wavelengths to prevent the overlap of interference fringes of different levels. The specific calculation formula is:
ΔλFSR=λ2/(2nd)Δλ FSR =λ 2 /(2nd)
波峰半高全宽(FWHM)简称半峰宽,其表示的是滤波波形透射或反射峰一半处的通带宽度,代表通带的宽窄,计算公式为:The full width at half maximum (FWHM) is referred to as the half-peak width. It represents the passband width at half of the transmission or reflection peak of the filter waveform, representing the width of the passband. The calculation formula is:
其中其中,R1和R2分别为介质层和反射层的反射率。in Wherein, R1 and R2 are the reflectivity of the dielectric layer and the reflective layer respectively.
由于R+T+A=1,A吸收近似为定值,传统的F-P薄膜滤波器结构色薄膜为了提升膜系整体的反射率性能,根据透射率表达式需要降低透过率,一是增加两层金属层的反射率,二是调节中间间隔介质层的位相厚度。但是由于金属本身的固有大吸收以及中间间隔介质层的位相匹配要求来控制光谱波峰半高全宽以及自由光谱范围,这使得传统F-P薄膜滤波器结构色要实现高反射率的多种颜色较为困难。Since R+T+A=1, the absorption of A is approximately a constant. In order to improve the overall reflectivity performance of the film system, the traditional F-P thin film filter structural color film needs to reduce the transmittance according to the transmittance expression. One is to increase the reflectivity of the two metal layers, and the other is to adjust the phase thickness of the intermediate dielectric layer. However, due to the inherent large absorption of the metal itself and the phase matching requirements of the intermediate dielectric layer to control the half-maximum full width of the spectral peak and the free spectral range, it is difficult for the traditional F-P thin film filter structural color to achieve multiple colors with high reflectivity.
本发明利用介质膜的干涉效应,利用对称膜系结构折射率和相位厚度的等效特性,可以通过计算机优化设计,通过改变高折射率介质层和中间介质层的材料种类和物理厚度达到所需要的折射率。我们知道当在折射率为ng的基片上镀上光学厚度为λ0/4的高折射率膜层后,由于空气/膜层和膜层/基片界面的反射光同位相,使反射率能够大大增加。对于中心波长λ0,单层膜和基片的等效组合的导纳为n1 2/ng,垂直入射的反射率为:The present invention utilizes the interference effect of dielectric film and the equivalent characteristics of the refractive index and phase thickness of the symmetrical film structure. The required refractive index can be achieved by changing the material type and physical thickness of the high refractive index dielectric layer and the intermediate dielectric layer through computer optimization design. We know that when a high refractive index with an optical thickness of λ 0 /4 is plated on a substrate with a refractive index of n g , After the film layer is formed, the reflectivity can be greatly increased because the reflected light at the air/film layer and film layer/substrate interface is in phase. For the central wavelength λ 0 , the admittance of the equivalent combination of a single film and substrate is n 1 2 / ng , and the reflectivity at vertical incidence is:
其中,在本设计的膜系中,将每组(HP)或(PH)构成等效高折射率单元,用高、低折射率层交替每层λ0/4的多层膜能够得到更高的反射率。这是因为从所有界面上反射的光束回到界面时具有相同的相位,从而产生相长干涉,根据此理论可以获得不同的反射率。在本结构中用nH表示高折射率层的折射率,用nL表示低折射率层的折射率。则在中心波长λ0处整个膜系结构的等效界面导纳Y为:Among them, in the film system of this design, each group (HP) or (PH) constitutes an equivalent high refractive index unit, and a multilayer film with high and low refractive index layers alternating for each layer of λ 0 /4 can obtain a higher reflectivity. This is because the light beams reflected from all interfaces have the same phase when they return to the interface, thus generating constructive interference. According to this theory, different reflectivities can be obtained. In this structure, n H is used to represent the refractive index of the high refractive index layer, and n L is used to represent the refractive index of the low refractive index layer. Then the equivalent interface admittance Y of the entire film system structure at the center wavelength λ 0 is:
式中2s+1是多层膜的层数,中心波长λ0的反射率即极大值反射率为:Where 2s+1 is the number of layers of the multilayer film, and the reflectivity of the central wavelength λ 0 , i.e., the maximum reflectivity, is:
根据本结构设计的膜层,选用最外层为高折射率膜层的吸收公式,其吸收损耗为:According to the film layer designed in this structure, the absorption formula of the outermost layer is selected as the high refractive index film layer, and its absorption loss is:
之所以选用最外层为高折射率膜层是因为相比于最外层为低折射率膜层根据其吸收公式会有更大的吸收,导致反射率降低。式中的kH为高折射率介质层的消光系数,kL为低折射率层的消光系数。通过吸收和极大值反射率的公式可以看出,本结构中的高折射率介质层H与相变层P中的折射率和消光系数共同影响着中心波长的反射率。通过改变高折射率介质层H与相变层P的物理厚度也能使膜层极大值反射率处于不同中心波长位置,从而改变膜层的颜色。nH与nL比值的不同也会改变中心波长反射率的最大值,故选取不同的材料也能改变本设计结构中的反射率峰值大小。将制备完成后的薄膜经过310℃高温退火可以让相变层P中GSST从非晶态转变为晶态,其折射率和消光系数都会发生改变,根据上式反射率的公式特点可以明显看出中心波长的反射率会发生改变,从而使膜系展现出的结构色发生改变,达到薄膜制备完成之后进行颜色变化的功能。The reason why the outermost layer is selected as a high refractive index film layer is that compared with the outermost layer of a low refractive index film layer, according to its absorption formula, it will have greater absorption, resulting in a lower reflectivity. In the formula, kH is the extinction coefficient of the high refractive index medium layer, and kL is the extinction coefficient of the low refractive index layer. It can be seen from the absorption and maximum reflectivity formulas that the refractive index and extinction coefficient of the high refractive index medium layer H and the phase change layer P in this structure jointly affect the reflectivity of the central wavelength. By changing the physical thickness of the high refractive index medium layer H and the phase change layer P, the maximum reflectivity of the film layer can also be located at different central wavelength positions, thereby changing the color of the film layer. The difference in the ratio of nH to nL will also change the maximum value of the central wavelength reflectivity, so choosing different materials can also change the peak reflectivity size in this design structure. Annealing the prepared film at 310°C can change the GSST in the phase change layer P from an amorphous state to a crystalline state, and its refractive index and extinction coefficient will change. According to the characteristics of the above reflectivity formula, it can be clearly seen that the reflectivity of the central wavelength will change, thereby changing the structural color of the film system, achieving the function of color change after the film is prepared.
考虑到设计的薄膜之后可用于其他器件上实现各种颜色相关功能,本发明设计了一种能够从制备基底上剥离,之后可用于器件涂敷的对称膜系结构。该结构的好处在不论从正面还是反面观察其薄膜结构色都能呈现出所设计的颜色,并不像其他传统结构色膜系基于F-P薄膜滤波器的结构需要底层的厚金属作为反射层,虽然底层有一层厚金属层能够提供更高的峰值反射率,但也给其应用场景以及制备过程提供了不同的难题。Considering that the designed thin film can be used in other devices to realize various color-related functions, the present invention designs a symmetrical film structure that can be peeled off from the preparation substrate and can be used for device coating. The advantage of this structure is that the thin film structural color can show the designed color whether it is observed from the front or back. Unlike other traditional structural color film systems based on the F-P thin film filter structure, which requires a thick metal layer at the bottom as a reflective layer, although a thick metal layer at the bottom can provide a higher peak reflectivity, it also provides different difficulties for its application scenarios and preparation process.
如图3所示,本发明还提供了一种基于相变材料的光子晶体结构色薄膜的制备方法,包括如下步骤:As shown in FIG. 3 , the present invention also provides a method for preparing a photonic crystal structural color film based on a phase change material, comprising the following steps:
步骤1、根据用户需求设计基于相变材料的光子晶体结构色薄膜,所述薄膜的结构为:(HP)sL(PH)s,该薄膜的结构为以L为中心的对称结构,其中,H表示高折射率介质层,P表示相变层,L表示低折射率介质层,每组(HP)或(PH)构成等效高折射率单元,每组等效高折射率单元由高折射率介质层H和相变层P堆叠而成,s表示等效高折射率单元重复堆叠次数,s为正整数;Step 1, designing a photonic crystal structural color film based on phase change material according to user needs, wherein the structure of the film is: (HP) s L(PH) s , the structure of the film is a symmetrical structure centered on L, wherein H represents a high refractive index medium layer, P represents a phase change layer, and L represents a low refractive index medium layer. Each group of (HP) or (PH) constitutes an equivalent high refractive index unit, and each group of equivalent high refractive index units is formed by stacking a high refractive index medium layer H and a phase change layer P. s represents the number of times the equivalent high refractive index unit is repeatedly stacked, and s is a positive integer;
步骤2、调整所述薄膜的结构中每一层的厚度和材料,进而使得所述薄膜在不同的温度范围内呈现出不同的颜色变化;相变层P采用相变材料,根据相变材料的光学特性制作出在可见光区域能够不改变薄膜结构的基础上,使用可相变材料(GSST或GST)制备在不改变薄膜结构基础上,仅通过高温或者激光脉冲进行加热或者激光光照使得相变层发生相变,从而改变薄膜颜色的光子晶体薄膜结构色器件,最终能使制备的薄膜在相变前后都能拥有较大色差的结构。Step 2, adjust the thickness and material of each layer in the structure of the film, so that the film shows different color changes in different temperature ranges; the phase change layer P adopts phase change material, and is produced according to the optical properties of the phase change material. On the basis of not changing the film structure in the visible light region, a photonic crystal thin film structural color device is prepared using a phase changeable material (GSST or GST) to change the color of the film by heating the phase change layer only by high temperature or laser pulses or laser irradiation without changing the film structure. Finally, the prepared film can have a structure with a large color difference before and after the phase change.
按照有色物体对光吸收与否,可以将有色物体的成色分为色素成色与结构成色两种。色素成色主要包括了涉及配位场效应跃迁的吸收,其体现的颜色也成为化学色。结构成色则主要包括了光栅、单层膜、多层膜、光子晶体、瑞利散射、米式散射等物理光学效应,其体现的颜色我们成为结构色。According to whether the colored object absorbs light or not, the color of the colored object can be divided into two types: pigment color and structural color. Pigment color mainly includes the absorption involving coordination field effect transition, and the color it reflects is also called chemical color. Structural color mainly includes physical optical effects such as gratings, single-layer films, multi-layer films, photonic crystals, Rayleigh scattering, Mie scattering, etc., and the color it reflects is called structural color.
使用GSST材料实现的光子晶体结构色薄膜并未被开发研究,考虑到这种方法具备制备的薄膜具有相变速度快、非易失性好、吸收小、相变区间大、颜色种类多样、设计结构简单等优点,其在光学器件、彩色打印、光学显示、等领域都有重要的应用前景。Photonic crystal structural color films made using GSST materials have not been developed and researched. Considering that the films prepared by this method have the advantages of fast phase change speed, good non-volatility, small absorption, large phase change range, diverse colors, and simple design structure, it has important application prospects in optical devices, color printing, optical display, and other fields.
在本实施例中,所述步骤2具体包括:In this embodiment, step 2 specifically includes:
步骤21、设计所述薄膜的结构中每一层的厚度和材料;Step 21, designing the thickness and material of each layer in the structure of the film;
步骤22、根据(HP)s中的s层相变层P所采用的材料确定出不同的温度阈值,若s层所述相变层P均为GSST材料,则确定出温度阈值为T1,进入步骤23;若s层所述相变层P均为GST材料,则确定出温度阈值为T2和T3,进入步骤24;若s层所述相变层P同时有GSST材料和GST材料,则确定出温度阈值为T2、T1和T3,进入步骤25;Step 22, determining different temperature thresholds according to the materials used by the s-layer phase change layer P in (HP) s . If the phase change layers P in the s-layer are all GSST materials, the temperature threshold is determined to be T1, and the process goes to step 23; if the phase change layers P in the s-layer are all GST materials, the temperature thresholds are determined to be T2 and T3, and the process goes to step 24; if the phase change layers P in the s-layer have both GSST materials and GST materials, the temperature thresholds are determined to be T2, T1 and T3, and the process goes to step 25;
步骤23、在小于T1的温度范围内记录所述薄膜所呈现的第一种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T1的温度范围内,再次记录此时所述薄膜所呈现的第二种颜色,对比相变前后的颜色变化,若色差变化大,则说明设计的所述薄膜的结构中每一层的厚度和材料是合理的,此时若将温度降低至小于T1的温度范围内,颜色会还原回第一种颜色;若色差变化小,则进入步骤21重新调整所述薄膜的结构中每一层的厚度和材料;Step 23, recording the first color presented by the film within a temperature range less than T1, then performing a phase change treatment on the film so that the temperature of the film rises to a temperature range not less than T1, and recording the second color presented by the film again, and comparing the color changes before and after the phase change. If the color difference changes greatly, it means that the thickness and material of each layer in the structure of the designed film are reasonable. At this time, if the temperature is lowered to a temperature range less than T1, the color will be restored to the first color; if the color difference changes little, entering step 21 to readjust the thickness and material of each layer in the structure of the film;
步骤24、在小于T2的温度范围内记录所述薄膜所呈现的第一种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T2且小于T3的温度范围内,再次记录此时所述薄膜所呈现的第二种颜色,接着对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T3的温度范围内,再次记录此时所述薄膜所呈现的第三种颜色,对比相变过程的颜色变化,若色差变化大,则说明设计的所述薄膜的结构中每一层的厚度和材料是合理的,此时若将温度降低至不小于T2且小于T3的温度范围内,颜色会还原回第二种颜色,若将温度降低至小于T2的温度范围内,颜色会还原回第一种颜色;若色差变化小,则进入步骤21重新调整所述薄膜的结构中每一层的厚度和材料;Step 24, recording the first color presented by the film within a temperature range less than T2, then performing phase change treatment on the film so that the temperature of the film is increased to a temperature range not less than T2 and less than T3, and again recording the second color presented by the film at this time, then performing phase change treatment on the film so that the temperature of the film is increased to a temperature range not less than T3, and again recording the third color presented by the film at this time, and comparing the color change during the phase change process, if the color difference changes greatly, it means that the thickness and material of each layer in the structure of the designed film are reasonable, and at this time, if the temperature is reduced to a temperature range not less than T2 and less than T3, the color will be restored to the second color, and if the temperature is reduced to a temperature range less than T2, the color will be restored to the first color; if the color difference changes little, then entering step 21 to readjust the thickness and material of each layer in the structure of the film;
步骤25、在小于T2的温度范围内记录所述薄膜所呈现的第一种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T2且小于T1的温度范围内,再次记录此时所述薄膜所呈现的第二种颜色,接着对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T1且小于T3的温度范围内,再次记录此时所述薄膜所呈现的第三种颜色,然后对所述薄膜进行相变处理,使得所述薄膜的温度升高至不小于T3的温度范围内,再次记录此时所述薄膜所呈现的第四种颜色;对比相变过程的颜色变化,若色差变化大,则说明设计的所述薄膜的结构中每一层的厚度和材料是合理的,此时若将温度降低至不小于T1且小于T3的温度范围内,颜色会还原回第三种颜色,若将温度降低至不小于T2且小于T1的温度范围内,颜色会还原回第二种颜色,若将温度降低至小于T2的温度范围内,颜色会还原回第一种颜色;若色差变化小,则进入步骤21重新调整所述薄膜的结构中每一层的厚度和材料。Step 25, recording the first color presented by the film within a temperature range less than T2, then performing phase change treatment on the film so that the temperature of the film is increased to a temperature range not less than T2 and less than T1, and recording the second color presented by the film at this time again, then performing phase change treatment on the film so that the temperature of the film is increased to a temperature range not less than T1 and less than T3, and recording the third color presented by the film at this time again, then performing phase change treatment on the film so that the temperature of the film is increased to a temperature range not less than T3, and recording the fourth color presented by the film at this time again; comparing the color changes during the phase change process, if the color difference changes greatly, it means that the thickness and material of each layer in the structure of the designed film are reasonable, and at this time, if the temperature is reduced to a temperature range not less than T1 and less than T3, the color will be restored to the third color, if the temperature is reduced to a temperature range not less than T2 and less than T1, the color will be restored to the second color, and if the temperature is reduced to a temperature range less than T2, the color will be restored to the first color; if the color difference changes little, entering step 21 to readjust the thickness and material of each layer in the structure of the film.
在本实施例中,所述相变层P发生相变过程是通过高温退火工艺、电加热或激光脉冲相变方式完成相变的;所述温度阈值T1为310度,所述温度阈值T2为220度,所述温度阈值T3为400度。In this embodiment, the phase change process of the phase change layer P is completed by high temperature annealing process, electric heating or laser pulse phase change; the temperature threshold T1 is 310 degrees, the temperature threshold T2 is 220 degrees, and the temperature threshold T3 is 400 degrees.
步骤3、根据设计结果确定出制备所述薄膜所需的结构参数,所述结构参数包括总层数、每层采用的材料、每一层的厚度和各层之间的分布情况;Step 3, determining the structural parameters required for preparing the film according to the design results, wherein the structural parameters include the total number of layers, the material used for each layer, the thickness of each layer and the distribution between the layers;
步骤4、以表面平整物体作为基底,放置于成膜设备腔体中;当所述薄膜无需脱膜处理时,执行步骤5;当所述薄膜需要脱膜处理时,执行步骤6;Step 4, using a flat surface object as a substrate and placing it in the film forming equipment cavity; when the film does not need to be demolded, perform step 5; when the film needs to be demolded, perform step 6;
在本实施例中,所述基底的材料采用抛光的玻璃、抛光不锈钢、抛光镜面铝、聚对苯二甲酸乙二醇酯(PET)、三醋酸纤维素(TAC)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯/聚甲基丙烯酸甲酯复合材料(PC/PMMA)、聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乙烯醇缩丁醛(PVB)、乙烯醋酸乙烯共聚物(EVA)、聚氨酯弹性体(TPU)、聚四氟乙烯(PTFE)、氟代乙基丙烯(FEP)或聚二氟乙烯(PVDF);In this embodiment, the material of the substrate is polished glass, polished stainless steel, polished mirror aluminum, polyethylene terephthalate (PET), triacetyl cellulose (TAC), polymethyl methacrylate (PMMA), polycarbonate/polymethyl methacrylate composite (PC/PMMA), polyimide (PI), polypropylene (PP), polyvinyl chloride (PVC), polyvinyl butyral (PVB), ethylene vinyl acetate copolymer (EVA), polyurethane elastomer (TPU), polytetrafluoroethylene (PTFE), fluoroethyl propylene (FEP) or polyvinyl difluoride (PVDF);
步骤5、根据所述结构参数在基底上生长所述薄膜的第一层、第二层……直到最后一层,第一层至第2s层之间是根据s的数量对高折射率介质层H和相变层P进行依次交叉堆叠,最中间层为低折射率介质层L,最中间层到最后一层是以L为中心对称生长;完成所述薄膜的制备;Step 5, growing the first layer, the second layer, ... until the last layer of the thin film on the substrate according to the structural parameters, wherein the high refractive index medium layer H and the phase change layer P are stacked in sequence according to the number s between the first layer to the 2s layer, the middle layer is the low refractive index medium layer L, and the middle layer to the last layer are grown symmetrically with L as the center; completing the preparation of the thin film;
步骤6、接着生长一层脱膜剂于基底上,所述脱膜剂的材料采用易溶于水的氟化物、氯化物或者可溶于水的有机物材料;根据所述结构参数在脱膜剂上生长所述薄膜的第一层、第二层……直到最后一层;第一层至第2s层之间是根据s的数量对高折射率介质层H和相变层P进行依次交叉堆叠,最中间层为低折射率介质层L,最中间层到最后一层是以L为中心对称生长;使用脱膜剂对应的溶剂将脱膜剂溶解,使所述薄膜与脱膜剂脱离,得到单独的所述薄膜,完成所述薄膜的制备。Step 6, then grow a layer of release agent on the substrate, the material of the release agent adopts fluoride, chloride or water-soluble organic material that is easily soluble in water; grow the first layer, the second layer... until the last layer of the film on the release agent according to the structural parameters; between the first layer to the 2s layer, the high refractive index medium layer H and the phase change layer P are stacked in sequence according to the number s, the middle layer is the low refractive index medium layer L, and the middle layer to the last layer are grown symmetrically with L as the center; use the solvent corresponding to the release agent to dissolve the release agent, so that the film is separated from the release agent, and the separate film is obtained, thereby completing the preparation of the film.
步骤7、所述薄膜的制备出来后,将所述薄膜涂在设备的外表面,此时设备的外表面在不同温度下就具有不同的颜色;若相变层P仅采用GSST材料,则在小于310度的温度范围内,所述设备的外表面呈现出第一种颜色,具体呈现什么颜色是根据每一层的厚度和材料决定,从结晶态转变成非晶态可以通过高温退火至不小于310度的温度范围内,所述设备的外表面呈现出第二种颜色,呈现不同颜色是由步骤1-2的具体设计要求和情况实现的。在不小于310度下呈现第二种颜色后继续供热使得温度缓慢降低至常温时,薄膜的结构不会发生变化,颜色会持续在第二种颜色;若想让第二种颜色还原回第一种颜色,则可以将薄膜先加热到高于310度的温度后进行快速降温至常温,此过程可采用激光脉冲的方法进行实现。由此能够实现膜系结构从相变后颜色变回相变前的结构色,实现重复结构色相变调节。同样的,若相变层P仅采用GST材料,则在小于220度的温度范围内,所述设备的外表面呈现出第一种颜色,具体呈现什么颜色是根据每一层的厚度和材料决定,再通过高温退火至不小于220度至小于400度的温度范围内,所述设备的外表面呈现出第二种颜色,再通过高温退火至不小于400度的温度范围内,所述设备的外表面呈现出第三种颜色,呈现不同颜色是由步骤1-2的具体设计要求和情况实现的。在不小于400度下呈现第三种颜色后继续供热使得温度缓慢降低至常温时,薄膜的结构不会发生变化,颜色会持续在第三种颜色;若想让第三种颜色还原回第一种颜色,可以将薄膜先加热到高于400度的温度后进行快速降温至常温。快速降温可采用激光脉冲的方法进行实现。由此能够实现膜系结构从相变后颜色变回相变前的结构色,实现重复结构色相变调节。Step 7, after the film is prepared, the film is coated on the outer surface of the device. At this time, the outer surface of the device has different colors at different temperatures; if the phase change layer P only uses GSST material, then within the temperature range of less than 310 degrees, the outer surface of the device presents the first color. The specific color is determined by the thickness and material of each layer. The transformation from the crystalline state to the amorphous state can be achieved by high-temperature annealing to a temperature range of not less than 310 degrees. The outer surface of the device presents the second color. The presentation of different colors is achieved by the specific design requirements and conditions of steps 1-2. After the second color is presented at not less than 310 degrees, the heat is continued to be supplied so that the temperature is slowly reduced to room temperature. The structure of the film will not change, and the color will continue to be the second color; if the second color is to be restored to the first color, the film can be heated to a temperature higher than 310 degrees and then quickly cooled to room temperature. This process can be achieved by the laser pulse method. In this way, the film structure can be changed from the color after the phase change to the structural color before the phase change, and repeated structural color phase change adjustment can be achieved. Similarly, if the phase change layer P is made of GST material only, then within a temperature range of less than 220 degrees, the outer surface of the device presents a first color. The specific color is determined by the thickness and material of each layer. After high-temperature annealing to a temperature range of not less than 220 degrees to less than 400 degrees, the outer surface of the device presents a second color. After high-temperature annealing to a temperature range of not less than 400 degrees, the outer surface of the device presents a third color. The presentation of different colors is achieved by the specific design requirements and conditions of steps 1-2. After the third color is presented at not less than 400 degrees, the temperature is slowly reduced to room temperature by continuing to supply heat. The structure of the film will not change, and the color will continue to be the third color; if the third color is to be restored to the first color, the film can be heated to a temperature above 400 degrees and then quickly cooled to room temperature. Rapid cooling can be achieved by laser pulse method. In this way, the film structure can be changed from the color after the phase change to the structural color before the phase change, and repeated structural color phase change adjustment can be achieved.
下面结合附图对本发明进行进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
实施例1Example 1
如图4所示,该结构色器件由基底Sub(未图示)、基底上的高折射率介质层H(TiO2)、相变层P(GSST)、低折射率介质层L(MgF2)、相变层P(GSST)、高折射率介质层H(TiO2)组成,基底采用直径为80毫米、厚度为2毫米、表面质量为20/10的K9玻璃沉积薄膜。其每一层的具体厚度由表1给出。按照表1给出的厚度值可以制备出一种小于310度的温度下观察为红色,在高温退火到温度不小于310度的结晶态后观察为紫红色。图8、图9为实施例1在小于310度的非晶态和不小于310度的结晶态时的反射光谱图,图10、图11为实例1非晶态和结晶态在垂直入射角度下的色品坐标图。从图中可以看出相变后反射光谱在极大值反射率从74%下降到了56%,在300nm处的反射率从10%增加到了30%,有了明显变化。呈现在色品坐标点的移动较大,从(0.37,0.5)移动到了(0.38,0.45)表现出良好的颜色改变特性。As shown in FIG4 , the structural color device is composed of a substrate Sub (not shown), a high refractive index dielectric layer H (TiO 2 ) on the substrate, a phase change layer P (GSST), a low refractive index dielectric layer L (MgF 2 ), a phase change layer P (GSST), and a high refractive index dielectric layer H (TiO 2 ). The substrate is a K9 glass deposited film with a diameter of 80 mm, a thickness of 2 mm, and a surface quality of 20/10. The specific thickness of each layer is given in Table 1. According to the thickness values given in Table 1, a color that is observed as red at a temperature less than 310 degrees and observed as purple-red after high temperature annealing to a crystalline state at a temperature not less than 310 degrees can be prepared. FIG8 and FIG9 are reflection spectra of Example 1 in an amorphous state less than 310 degrees and a crystalline state not less than 310 degrees, and FIG10 and FIG11 are chromaticity coordinate diagrams of the amorphous state and the crystalline state of Example 1 at a vertical incident angle. It can be seen from the figure that after the phase change, the maximum reflectivity of the reflectance spectrum dropped from 74% to 56%, and the reflectivity at 300nm increased from 10% to 30%, which is a significant change. The movement of the chromaticity coordinate point is large, from (0.37, 0.5) to (0.38, 0.45), showing good color change characteristics.
表1Table 1
实施例2Example 2
实施例2保持与实施例1相同的材料,通过改变其高折射率介质层H和低折射率介质层L的厚度使相变前后呈现出不同的颜色。该结构色器件由基底Sub、基底上的高折射率介质层H(TiO2)、相变层P(GSST)、低折射率介质层L(MgF2)、相变层P(GSST)、高折射率介质层H(TiO2)组成,基底采用直径为80毫米、厚度为2毫米、表面质量为20/10的K9玻璃沉积薄膜。其每一层的具体厚度由表2给出。按照表2给出的厚度值可以制备出一种在小于310度下观察为橙色,在高温退火后温度不小于310度变到结晶态后观察为灰紫色。图12、图13为实施例2在小于310度的非晶态和不小于310度的结晶态时的反射光谱图,图14、图15为实例2非晶态和结晶态在垂直入射角度下的色品坐标图。从图中可以看出相变后反射光谱在可见光范围内反射率极大值的位置从735nm转移到了400nm,色品坐标也从(0.33,0.51)移动到了(0.24,0.4)点的移动较大,表现出良好的颜色改变特性。Example 2: The same materials as Example 1 are maintained, and different colors are presented before and after the phase change by changing the thickness of the high refractive index medium layer H and the low refractive index medium layer L. The structural color device is composed of a substrate Sub, a high refractive index medium layer H (TiO 2 ) on the substrate, a phase change layer P (GSST), a low refractive index medium layer L (MgF 2 ), a phase change layer P (GSST), and a high refractive index medium layer H (TiO 2 ). The substrate is a K9 glass deposition film with a diameter of 80 mm, a thickness of 2 mm, and a surface quality of 20/10. The specific thickness of each layer is given in Table 2. According to the thickness values given in Table 2, a device can be prepared that is observed as orange at less than 310 degrees, and is observed as gray-purple after high-temperature annealing at a temperature not less than 310 degrees and changes to a crystalline state. Figures 12 and 13 are reflection spectra of Example 2 in the amorphous state less than 310 degrees and the crystalline state not less than 310 degrees, and Figures 14 and 15 are chromaticity coordinates of the amorphous state and the crystalline state at a vertical incident angle of Example 2. It can be seen from the figure that after the phase change, the position of the maximum reflectivity of the reflection spectrum in the visible light range is transferred from 735nm to 400nm, and the chromaticity coordinates are also moved from (0.33, 0.51) to (0.24, 0.4). The movement of the point is large, showing good color change characteristics.
表2Table 2
实施例3Example 3
实施例3采用与实施例1高低折射率介质层完全不同的材料。该结构色器件由基底Sub、基底上的高折射率介质层H(ZnS)、相变层P(GSST)、低折射率介质层L(SiO2)、相变层P(GSST)、高折射率介质层H(ZnS)组成,基底与之前使用的材料相同。其每一层的具体厚度由表3给出。按照表3给出的厚度值可以制备出一种在小于310度下观察为黄色,在高温退火升温至不小于310度后变到结晶态后观察为棕色。图16、图17为实施例3在小于310度的非晶态和不小于310度的结晶态时的反射光谱图,图18、图19为实例3非晶态和结晶态在垂直入射角度下的色品坐标图。从图中可以看出相变后反射光谱在可见光范围内反射率极大值的位置从600nm转移到了631nm,反射率峰值大小也有很大程度的改变。Example 3 uses completely different materials from the high and low refractive index dielectric layers of Example 1. The structural color device consists of a substrate Sub, a high refractive index dielectric layer H (ZnS) on the substrate, a phase change layer P (GSST), a low refractive index dielectric layer L (SiO 2 ), a phase change layer P (GSST), and a high refractive index dielectric layer H (ZnS). The substrate is the same material as previously used. The specific thickness of each layer is given in Table 3. According to the thickness values given in Table 3, a yellow color can be prepared that is observed at less than 310 degrees, and brown after being annealed at high temperature and heated to not less than 310 degrees and then changed to a crystalline state. Figures 16 and 17 are reflection spectra of Example 3 in an amorphous state of less than 310 degrees and a crystalline state of not less than 310 degrees, and Figures 18 and 19 are chromaticity coordinate diagrams of the amorphous and crystalline states of Example 3 at vertical incidence angles. It can be seen from the figure that after the phase change, the position of the maximum reflectivity of the reflection spectrum in the visible light range is transferred from 600nm to 631nm, and the peak value of the reflectivity has also changed to a great extent.
表3Table 3
实施例4Example 4
实施例4由基底Sub、基底上的高折射率介质层H(Ta2O5)、相变层P(GSST)、低折射率介质层L(SiO2)、相变层P(GSST)、高折射率介质层H(Ta2O5)组成,基底与之前使用的材料相同。其每一层的具体厚度由表4给出。按照表4给出的厚度值可以制备出一种在小于310度下观察为粉色,在高温退火升温至不小于310度后变到结晶态后观察为蓝紫色。图20、图21为实施例4在小于310度的非晶态和不小于310度的结晶态时的反射光谱图,图22、图23为实例4非晶态和结晶态在垂直入射角度下的色品坐标图,从色品坐标图上可以很明显的看出颜色的变化,坐标从(0.31,0.45)移动到(0.18,0.26)。Example 4 is composed of a substrate Sub, a high refractive index medium layer H (Ta 2 O 5 ) on the substrate, a phase change layer P (GSST), a low refractive index medium layer L (SiO 2 ), a phase change layer P (GSST), and a high refractive index medium layer H (Ta 2 O 5 ). The substrate is the same material as previously used. The specific thickness of each layer is given in Table 4. According to the thickness values given in Table 4, a material can be prepared that is pink when observed at less than 310 degrees, and blue-purple when observed after high-temperature annealing and heating to not less than 310 degrees and changing to a crystalline state. Figures 20 and 21 are reflection spectra of Example 4 in an amorphous state of less than 310 degrees and a crystalline state of not less than 310 degrees. Figures 22 and 23 are chromaticity coordinate diagrams of the amorphous state and the crystalline state of Example 4 at a vertical incident angle. The color change can be clearly seen from the chromaticity coordinate diagram, and the coordinate moves from (0.31, 0.45) to (0.18, 0.26).
表4Table 4
实施例5Example 5
实施例5的材料与实施例1相同,仅对每层的厚度有一定的调整。由基底Sub、基底上的高折射率介质层H(TiO2)、相变层P(GSST)、低折射率介质层L(MgF2)、相变层P1(GSST)、高折射率介质层H1(TiO2)组成,基底与之前使用的材料相同。其每一层的具体厚度由表5给出。按照表5给出的厚度值可以制备出一种在小于温度310度下观察为紫色,在高温退火升温至不小于310度后变到结晶态后观察为蓝色。图24、图25为实施例5在小于310度非晶态和不小于310度的结晶态时的反射光谱图,图26、图27为实例5非晶态和结晶态在垂直入射角度下的色品坐标图。The materials of Example 5 are the same as those of Example 1, and only the thickness of each layer is adjusted to a certain extent. It is composed of a substrate Sub, a high refractive index medium layer H (TiO 2 ) on the substrate, a phase change layer P (GSST), a low refractive index medium layer L (MgF 2 ), a phase change layer P1 (GSST), and a high refractive index medium layer H1 (TiO 2 ), and the substrate is the same as the material used before. The specific thickness of each layer is given in Table 5. According to the thickness values given in Table 5, a material can be prepared that is observed as purple at a temperature less than 310 degrees, and is observed as blue after being annealed at high temperature and heated to not less than 310 degrees and then changed to a crystalline state. Figures 24 and 25 are reflection spectra of Example 5 in an amorphous state less than 310 degrees and a crystalline state not less than 310 degrees, and Figures 26 and 27 are chromaticity coordinate diagrams of the amorphous and crystalline states of Example 5 at vertical incidence angles.
表5Table 5
实施例6Example 6
实施例6的相变层P采用GST材料。由基底Sub、基底上的高折射率介质层H(Ta2O5)、相变层P(GST)、低折射率介质层L(SiO2)、相变层P(GST)、高折射率介质层H(Ta2O5)组成,基底与之前使用的材料相同。其每一层的具体厚度由表6给出。按照表6给出的厚度值可以制备出一种在小于220度下观察为橙色,在高温到不小于220度且小于400度后呈现橘黄色,高温退火到不小于400度后变到结晶态后观察为褐色。图28、图29、图30为实施例6在小于220度的非晶态、不小于220度且小于400度的亚稳态、不小于400度的结晶态时的反射光谱图,图31、图32、图33为实例6非晶态、亚稳态、结晶态在垂直入射角度下的色品坐标图。The phase change layer P of Example 6 is made of GST material. It is composed of a substrate Sub, a high refractive index medium layer H (Ta 2 O 5 ) on the substrate, a phase change layer P (GST), a low refractive index medium layer L (SiO 2 ), a phase change layer P (GST), and a high refractive index medium layer H (Ta 2 O 5 ). The substrate is the same material as previously used. The specific thickness of each layer is given in Table 6. According to the thickness values given in Table 6, a material can be prepared that is orange when observed at less than 220 degrees, orange-yellow after being heated to not less than 220 degrees and less than 400 degrees, and brown when observed after being annealed at a high temperature of not less than 400 degrees and changing to a crystalline state. Figures 28, 29 and 30 are reflection spectra of Example 6 in an amorphous state less than 220 degrees, a metastable state not less than 220 degrees and less than 400 degrees, and a crystalline state not less than 400 degrees. Figures 31, 32 and 33 are chromaticity coordinate diagrams of Example 6 in amorphous, metastable and crystalline states at vertical incident angles.
表6Table 6
实施例7Example 7
实施例7的相变层P采用GST与GSST相结合材料。由基底Sub、基底上依次为的高折射率介质层H(Ta2O5)、相变层P(GSST)、高折射率介质层H(Ta2O5)、相变层P(GST)、低折射率介质层L(SiO2)、相变层P(GST)、高折射率介质层H(Ta2O5)、相变层P(GSST)和高折射率介质层H(Ta2O5)组成,基底与之前使用的材料相同。其每一层的具体厚度由表7给出。按照表7给出的厚度值可以制备出一种在小于220度下观察为黄绿色,在高温退火到220~310度后呈现翠绿色,高温退火到310~400度后呈现棕色,高温退火到400摄氏度后变到结晶态后观察为褐色。图34、图35、图36、图37为实施例7在小于220、220-310度、310-400度、不小于400度高温退火后的反射光谱图,图38、图39、图40、图41为实例7在小于220、220-310度、310-400度、不小于400度高温退火后垂直入射角度下的色品坐标图。The phase change layer P of Example 7 uses a combination of GST and GSST. It consists of a substrate Sub, a high refractive index medium layer H (Ta 2 O 5 ) on the substrate, a phase change layer P (GSST), a high refractive index medium layer H (Ta 2 O 5 ), a phase change layer P (GST), a low refractive index medium layer L (SiO 2 ), a phase change layer P (GST), a high refractive index medium layer H (Ta 2 O 5 ), a phase change layer P (GSST) and a high refractive index medium layer H (Ta 2 O 5 ), and the substrate is the same as the material used before. The specific thickness of each layer is given in Table 7. According to the thickness values given in Table 7, a yellow-green color can be prepared when observed at less than 220 degrees, emerald green after high-temperature annealing to 220-310 degrees, brown after high-temperature annealing to 310-400 degrees, and brown after high-temperature annealing to 400 degrees Celsius and changing to a crystalline state. Figures 34, 35, 36 and 37 are reflection spectra of Example 7 after high-temperature annealing at less than 220, 220-310, 310-400 and not less than 400 degrees. Figures 38, 39, 40 and 41 are chromaticity coordinate diagrams of Example 7 at vertical incident angles after high-temperature annealing at less than 220, 220-310, 310-400 and not less than 400 degrees.
表7Table 7
以上所述仅为本发明的部分实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only some embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any equivalent device or equivalent process transformation made using the contents of the present invention specification and drawings, or directly or indirectly applied in other related technical fields, are also included in the patent protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310076613.2A CN116068793A (en) | 2023-01-17 | 2023-01-17 | A photonic crystal structural color thin film based on phase change material and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310076613.2A CN116068793A (en) | 2023-01-17 | 2023-01-17 | A photonic crystal structural color thin film based on phase change material and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116068793A true CN116068793A (en) | 2023-05-05 |
Family
ID=86179822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310076613.2A Pending CN116068793A (en) | 2023-01-17 | 2023-01-17 | A photonic crystal structural color thin film based on phase change material and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116068793A (en) |
-
2023
- 2023-01-17 CN CN202310076613.2A patent/CN116068793A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107942540B (en) | Phase-change-material-based optical modulation device with dynamic color display and preparation method thereof | |
JPH10509832A (en) | Anti-reflective coating for temperature sensitive substrates | |
CN111624829A (en) | Colorful electrochromic structure, preparation method and application thereof | |
CN111761897B (en) | Absorption Interference Type All-Dielectric Structural Color Films | |
BR112017014539B1 (en) | METHOD TO PRODUCE AN OPTICAL ELEMENT | |
CN112826183B (en) | Color-controllable multi-color intelligent bracelet and method for controlling color change | |
CN114253039B (en) | High brightness, saturation and purity multi-color electrochromic structure, device and manufacturing method | |
CN112180648B (en) | Optical film structure, preparation method and application thereof | |
Li et al. | Deformable thermo-responsive smart windows based on a shape memory polymer for adaptive solar modulations | |
CN116449629A (en) | Pixel structure and display driving method thereof | |
Lin et al. | Multilayer structure for highly transmissive angle-tolerant color filter | |
CN116068793A (en) | A photonic crystal structural color thin film based on phase change material and its preparation method | |
CN112162405B (en) | A resonant cavity film system with non-volatile, multi-structural color, multi-level and high transmittance contrast ratio and preparation method | |
Shimabukuro et al. | Fabrication of absorbing Nb-Ti suboxide anti-reflective thin film stacks | |
Huang et al. | Nonvolatile phase-change materials color display designed by evolutionary search | |
Xu et al. | Design and Optimization of Red-light Reflector Using Simulation Software. | |
CN112130391B (en) | Multilayer film capable of realizing real-time accurate color change based on electric field control | |
CN116626955A (en) | An electrically tunable optical film | |
Weng et al. | Effect of different stacking orders of Ta2O5 and SiO2 films on the reflective properties of a blue distributed Bragg reflector | |
KR101573016B1 (en) | Colored and low-reflective optical lens with multi-layer thin coating, and its preparation method | |
CN109597152B (en) | Narrow-band reflective film | |
CN109597150B (en) | Narrow-band reflective film | |
CN221883930U (en) | An all-dielectric structural color film | |
Lyu et al. | Multi-color modulation in solid-state display based on phase changing materials | |
CN117784449B (en) | Filtering structure based on phase change material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |