CN116068006A - An experimental system and method for nuclear magnetic resonance core measurement - Google Patents
An experimental system and method for nuclear magnetic resonance core measurement Download PDFInfo
- Publication number
- CN116068006A CN116068006A CN202310115749.XA CN202310115749A CN116068006A CN 116068006 A CN116068006 A CN 116068006A CN 202310115749 A CN202310115749 A CN 202310115749A CN 116068006 A CN116068006 A CN 116068006A
- Authority
- CN
- China
- Prior art keywords
- pressure
- temperature
- core
- nuclear magnetic
- magnetic resonance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005481 NMR spectroscopy Methods 0.000 title claims abstract description 78
- 238000005259 measurement Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title abstract description 12
- 239000000523 sample Substances 0.000 claims abstract description 91
- 238000002474 experimental method Methods 0.000 claims abstract description 59
- 239000007788 liquid Substances 0.000 claims abstract description 54
- 238000001816 cooling Methods 0.000 claims abstract description 24
- 239000002699 waste material Substances 0.000 claims abstract description 6
- 238000006073 displacement reaction Methods 0.000 claims description 93
- 239000012530 fluid Substances 0.000 claims description 41
- 239000003921 oil Substances 0.000 claims description 39
- 239000011435 rock Substances 0.000 claims description 35
- 239000010720 hydraulic oil Substances 0.000 claims description 25
- 238000012360 testing method Methods 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 7
- 229920001971 elastomer Polymers 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000012565 NMR experiment Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 238000013401 experimental design Methods 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010997 low field NMR spectroscopy Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
- G01N24/081—Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
技术领域technical field
本发明属于油气勘探开发领域,具体涉及一种基于动态调整的模拟井下高温高压环境的核磁共振岩心测量实验系统和方法。The invention belongs to the field of oil and gas exploration and development, and in particular relates to a dynamic adjustment-based nuclear magnetic resonance core measurement experiment system and method for simulating an underground high-temperature and high-pressure environment.
背景技术Background technique
核磁共振作为一种重要技术手段,经过几十年的发展,已经广泛应用于油气探测领域,其岩心实验分析和井下核磁共振快速测量对常规、非常规储层的评估都有重要的应用价值,能够提供孔隙度、渗透率、含油饱和度等重要储层评价参数,其无损、快速的特性深受一线油气工作者和广大科研人员的青睐。随着钻井技术的进步和深层、超深层油气藏的开发,不断对现有仪器设备提出新的要求。随着地层深度的增加,地层温度、压力也会随之增加,其温度压力对孔隙流体性质可能产生一定影响,如温度会改变原油粘度,改变流体在岩石孔隙表面的赋存状态,压力会影响气体的压缩体积等等,因此,大力发展与之相配套的高温高压实验系统十分迫切。As an important technical means, nuclear magnetic resonance has been widely used in the field of oil and gas detection after decades of development. Its core experiment analysis and fast downhole nuclear magnetic resonance measurement have important application value for the evaluation of conventional and unconventional reservoirs. It can provide important reservoir evaluation parameters such as porosity, permeability, and oil saturation. Its non-destructive and fast characteristics are favored by front-line oil and gas workers and researchers. With the advancement of drilling technology and the development of deep and ultra-deep oil and gas reservoirs, new requirements are constantly put forward for existing instruments and equipment. With the increase of formation depth, the formation temperature and pressure will also increase, and its temperature and pressure may have a certain impact on the properties of pore fluids. Therefore, it is very urgent to vigorously develop the matching high temperature and high pressure experimental system.
经过大量调研和实践发现,现有的核磁共振高温或者高压实验设备设计温度多在100℃以上,设计压力多在35MPa以上,围压循环流体多使用氟油。循环液采用无核磁信号的全氟油,其沸点约为155℃,热膨胀系数为正值,即温度升高体积增大,氟油的膨胀系数很大,系统压力会随温度升高迅速增加几十个MPa,这样系统内部压力瞬间过高,可超出仪器承受范围,而导致仪器寿命减少和实验安全较低的问题。同时经过实践还发现,在实验过程中,岩心夹持器入口处流体的温度往往会高于实验设计温度,而热传导又会导致低场核磁共振岩心分析仪射频线圈和磁体温度升高。而射频线圈工作时本身功率就很大,磁体也需要在恒定温度条件下工作。由于磁体的磁性会受到温度影响,需要维持在35℃,温度偏移将会导致主频发生偏移,从而影响了实验测量结果。After a lot of investigation and practice, it is found that the design temperature of the existing high-temperature or high-pressure nuclear magnetic resonance experimental equipment is mostly above 100°C, the design pressure is mostly above 35MPa, and fluorine oil is mostly used for the confining pressure circulating fluid. The circulating fluid adopts perfluorinated oil without nuclear magnetic signal, its boiling point is about 155°C, and its coefficient of thermal expansion is positive, that is, the volume increases when the temperature rises. The expansion coefficient of fluorine oil is very large, and the system pressure will increase rapidly by several degrees with the increase of temperature. Ten MPa, in this way, the internal pressure of the system is too high instantaneously, which may exceed the tolerance range of the instrument, resulting in the problems of reduced instrument life and low experimental safety. At the same time, it is also found through practice that during the experiment, the temperature of the fluid at the inlet of the core holder is often higher than the design temperature of the experiment, and heat conduction will lead to an increase in the temperature of the RF coil and magnet of the low-field NMR core analyzer. The radio frequency coil itself has a lot of power when it works, and the magnet also needs to work under constant temperature conditions. Since the magnetism of the magnet will be affected by the temperature, it needs to be maintained at 35°C, and the temperature deviation will cause the main frequency to shift, thus affecting the experimental measurement results.
发明内容Contents of the invention
为了解决上述全部或部分问题,本发明目的在于提供一种核磁共振岩心测量实验系统和方法,其能够模拟井下高温高压环境,并能够进行动态调整井下高温高压环境。In order to solve all or part of the above problems, the object of the present invention is to provide a nuclear magnetic resonance core measurement experiment system and method, which can simulate the downhole high temperature and high pressure environment, and can dynamically adjust the downhole high temperature and high pressure environment.
根据本申请的第一方面,提供了一种核磁共振岩心测量实验系统,包括计算机控制系统、连续高压系统、高温循环系统、辅助降温系统、岩心夹持器、高温高压探头、低场核磁共振岩心分析仪、循环液收集容器,其中:计算机控制系统与连续高压系统、高温循环系统、辅助降温系统电连接,以用于对各系统进行控制;连续高压系统与高温循环系统相连,并用于对岩心夹持器的内部提供稳定的围压,同时,用于对岩心夹持器内的岩心进行驱替实验;高温循环系统用于对岩心夹持器内部提供稳定温度;辅助降温系统用于辅助降低高温高压探头的温度;岩心夹持器固定于高温高压探头上,用于放置岩心样品;高温高压探头部分设置于低场核磁共振岩心分析仪空腔内,用于更换实验所需的岩心样品;循环液收集容器用于实验废液的回收。According to the first aspect of the present application, a nuclear magnetic resonance core measurement experiment system is provided, including a computer control system, a continuous high-pressure system, a high-temperature circulation system, an auxiliary cooling system, a core holder, a high-temperature and high-pressure probe, and a low-field nuclear magnetic resonance core Analyzer, circulating fluid collection container, wherein: the computer control system is electrically connected with the continuous high-pressure system, high-temperature circulation system, and auxiliary cooling system for controlling each system; the continuous high-pressure system is connected with the high-temperature circulation system and used for core The inside of the holder provides a stable confining pressure, and at the same time, it is used for the displacement experiment of the core in the core holder; the high temperature circulation system is used to provide a stable temperature inside the core holder; the auxiliary cooling system is used to assist in reducing The temperature of the high-temperature and high-pressure probe; the core holder is fixed on the high-temperature and high-pressure probe for placing the core sample; the high-temperature and high-pressure probe is partly set in the cavity of the low-field nuclear magnetic resonance core analyzer for replacing the core sample required for the experiment; The circulating liquid collection container is used for the recovery of experimental waste liquid.
在一些实施例中,连续高压系统包括连续围压系统,连续围压系统包括围压液容器、围压系统中间容器、液压油容器以及两个围压系统恒速恒压泵,其中:围压液容器通过管线依次连接第一手动阀门、气动阀门和围压系统中间容器;围压系统中间容器的出液口分为第一路和第二路,第一路通过第二手动阀门与液压油容器连接,第二路再分为两路,两路分别通过气动阀门与两个围压系统恒速恒压泵的进液口连接,两个围压系统恒速恒压泵的补液口通过管线与液压油容器连接;第一手动阀门通过围压管线与岩心夹持器的围压入口连接,围压管线上设置有压力传感器。In some embodiments, the continuous high-pressure system includes a continuous confining pressure system, and the continuous confining pressure system includes a confining pressure liquid container, a confining pressure system intermediate container, a hydraulic oil container, and two confining pressure system constant speed and constant pressure pumps, wherein: the confining pressure The liquid container is sequentially connected to the first manual valve, the pneumatic valve and the intermediate container of the confining pressure system through the pipeline; the liquid outlet of the intermediate container of the confining pressure system is divided into the first road and the second road. The oil container is connected, and the second road is further divided into two roads. The two roads are respectively connected to the liquid inlets of the constant speed and constant pressure pumps of the two confining pressure systems through pneumatic valves, and the liquid replenishment ports of the two constant speed and constant pressure pumps of the confining pressure systems are passed through. The pipeline is connected to the hydraulic oil container; the first manual valve is connected to the confining pressure inlet of the core holder through the confining pressure pipeline, and a pressure sensor is arranged on the confining pressure pipeline.
在一些实施例中,连续高压系统还包括连续驱替系统,连续驱替系统包括驱替液容器、驱替系统中间容器以及两个驱替系统恒速恒压泵,其中:驱替液容器通过管线依次连接第三手动阀门、气动阀门和驱替系统中间容器;驱替系统中间容器的出液口分为第三路和第四路,第三路通过第四手动阀门与液压油容器连接,第四路再分为两路,两路分别通过气动阀门与两个驱替系统恒速恒压泵的进液口连接,两个驱替系统恒速恒压泵的补液口通过管线与液压油容器连接;第三手动阀门通过驱替管线与岩心夹持器的驱替入口连接,驱替管线上设置有压力传感器。In some embodiments, the continuous high-pressure system further includes a continuous displacement system, and the continuous displacement system includes a displacement liquid container, an intermediate container of the displacement system, and two constant-speed and constant-pressure pumps of the displacement system, wherein: the displacement liquid container passes through The pipeline is connected to the third manual valve, the pneumatic valve and the intermediate container of the displacement system in sequence; the liquid outlet of the intermediate container of the displacement system is divided into the third and fourth channels, and the third channel is connected to the hydraulic oil container through the fourth manual valve. The fourth road is further divided into two roads, the two roads are respectively connected to the liquid inlets of the two displacement system constant speed and constant pressure pumps through pneumatic valves, and the liquid replenishment ports of the two displacement system constant speed and constant pressure pumps are connected to the hydraulic oil through pipelines. The container is connected; the third manual valve is connected with the displacement inlet of the core holder through a displacement pipeline, and a pressure sensor is arranged on the displacement pipeline.
在一些实施例中,驱替液容器通过管线依次连接的第三手动阀门、气动阀门和驱替系统中间容器构造为均可拆卸。In some embodiments, the third manual valve, the pneumatic valve, and the intermediate container of the displacement system, which are sequentially connected to the displacement fluid container through pipelines, are all detachable.
在一些实施例中,高温循环系统包括高温循环泵、恒温油浴加热器、三通气动球阀,其中:连续高压系统的围压出口通过管线依次连接第五手动阀门、高温循环泵、恒温油浴加热器、背压阀、三通气动球阀、第六手动阀门,连续高压系统的围压出口与第五手动阀门之间的管线上设置有温度传感器,恒温油浴加热器与背压阀之间的管线上设置有温度传感器和压力传感器,第六手动阀门与连续高压系统的围压入口之间的管线上设置有压力传感器和温度传感器。In some embodiments, the high-temperature circulation system includes a high-temperature circulation pump, a constant temperature oil bath heater, and a three-way pneumatic ball valve, wherein: the confining pressure outlet of the continuous high-pressure system is sequentially connected to the fifth manual valve, the high-temperature circulation pump, and the constant temperature oil bath through pipelines Heater, back pressure valve, three-way pneumatic ball valve, sixth manual valve, a temperature sensor is installed on the pipeline between the confining pressure outlet of the continuous high pressure system and the fifth manual valve, and a temperature sensor is installed between the constant temperature oil bath heater and the back pressure valve. A temperature sensor and a pressure sensor are arranged on the pipeline, and a pressure sensor and a temperature sensor are arranged on the pipeline between the sixth manual valve and the confining pressure inlet of the continuous high pressure system.
在一些实施例中,循环液收集容器分别设置于岩心夹持器的围压出口、岩心夹持器的驱替出口以及高温循环系统的三通气动球阀的下方,其中,岩心夹持器的围压出口还设置有第七手动阀门;岩心夹持器的驱替出口还设置有背压阀、第八手动阀门和天平;三通气动球阀通过管线与循环液收集容器相连。In some embodiments, the circulating fluid collection container is arranged respectively under the confining pressure outlet of the core holder, the displacement outlet of the core holder, and the three-way pneumatic ball valve of the high temperature circulation system, wherein the surrounding pressure of the core holder The pressure outlet is also provided with a seventh manual valve; the displacement outlet of the core holder is also provided with a back pressure valve, an eighth manual valve and a balance; the three-way pneumatic ball valve is connected to the circulating fluid collection container through a pipeline.
在一些实施例中,辅助降温系统包括:两个梯度线圈和磁体组,分别间隔设置于高温高压探头的两侧;两个温度传感器,分别用于测量两个梯度线圈和磁体组的温度;制冷机,通过管线分别延伸至高温高压探头与两个梯度线圈和磁体组之间的夹缝。In some embodiments, the auxiliary cooling system includes: two gradient coils and magnet groups, respectively arranged at intervals on both sides of the high temperature and high pressure probe; two temperature sensors, respectively used to measure the temperature of the two gradient coils and magnet groups; The machine extends through pipelines to the gap between the high temperature and high pressure probe and the two gradient coils and magnet groups.
在一些实施例中,岩心夹持器包括:热缩管,其内设置有岩心样品,热缩管的两端通过岩心柱塞进行密封,岩心柱塞上设有用于密封连接的密封胶圈和垫片;岩心柱塞上连接有驱替管线;其中,高温高压探头间隔且平行设置于热缩管的两侧,两侧的高温高压探头的两端通过堵头进行密封连接,以使得两侧的高温高压探头之间形成有密封腔体,两侧的堵头上分别设置有围压出口、围压入口;堵头上还设置有压力计、温度传感器以及泄压阀,驱替管线穿过堵头,并通过密封螺栓与堵头固定。In some embodiments, the core holder includes: a heat-shrinkable tube with a core sample inside, and the two ends of the heat-shrinkable tube are sealed by a core plunger, and the core plunger is provided with a sealing rubber ring for sealing connection and gasket; the core plunger is connected with a displacement pipeline; wherein, the high-temperature and high-pressure probes are arranged at intervals and in parallel on both sides of the heat-shrinkable tube, and the two ends of the high-temperature and high-pressure probes on both sides are sealed and connected through plugs, so that both sides A sealed cavity is formed between the high-temperature and high-pressure probes, and the plugs on both sides are respectively provided with a confining pressure outlet and a confining pressure inlet; The plug is fixed with the plug by the sealing bolt.
在一些实施例中,高温高压探头可拆卸的设置有低场核磁共振岩心分析仪的空腔内。In some embodiments, the high temperature and high pressure probe is detachably arranged in the cavity of the low field nuclear magnetic resonance core analyzer.
根据本申请的第二方面,提供了一种核磁共振岩心测量实验方法,应用于上述核磁共振岩心测量实验系统,核磁共振岩心测量实验方法包括:步骤一,制备标准柱塞岩心样品,并对岩心样品进行预处理;步骤二,低场核磁共振岩心分析仪标定和测量参数设置;步骤三,安装岩心样品;步骤四,试压和管线密封性检测;步骤五,加压加温实验;步骤六,驱替实验;步骤七,核磁共振实验数据处理。According to the second aspect of the present application, a kind of nuclear magnetic resonance rock core measurement experimental method is provided, which is applied to the above-mentioned nuclear magnetic resonance rock core measurement experimental system. The nuclear magnetic resonance rock core measurement experimental method includes: step 1, preparing a standard plunger core sample, and performing a test on the core Sample pretreatment;
在一些实施例中,步骤五进一步包括:In some embodiments, step five further includes:
设置围压压力和温度;Set confining pressure and temperature;
系统以预设压力梯度升至目标压力,判断是否达到目标围压压力,若否,则继续升压;The system rises to the target pressure with the preset pressure gradient, and judges whether the target confining pressure is reached, and if not, continues to raise the pressure;
系统以预设温度梯度将油浴升至目标温度,判断油浴加热器温度是否达到目标温度,若否,则继续升温;The system raises the oil bath to the target temperature with the preset temperature gradient, and judges whether the temperature of the oil bath heater reaches the target temperature, and if not, continues to heat up;
判断系统压力是否稳定,若是:判断岩心夹持器内部是否达到目标温度,若否,则泄压或补压,或判断循环泵是否达到最大转速;进一步的:若循环泵达到最大转速,则油浴继续以预设温度梯度升温或降温;Determine whether the system pressure is stable, if so: determine whether the inside of the core holder reaches the target temperature, if not, release or replenish pressure, or determine whether the circulation pump reaches the maximum speed; further: if the circulation pump reaches the maximum speed, the oil The bath continues to heat up or cool down with a preset temperature gradient;
判断系统压力是否稳定,若否:泄压或补压;Judging whether the system pressure is stable, if not: pressure relief or supplementary pressure;
判断岩心夹持器内部温度预设时间内的变化范围,若否,则油浴继续以预设温度梯度升温或降温;若是,则开始核磁共振测量试验。Judging the change range of the internal temperature of the core holder within a preset time, if not, the oil bath continues to heat up or cool down with a preset temperature gradient; if so, start the nuclear magnetic resonance measurement test.
由上述技术方案可知,本发明的模拟井下高温高压环境的核磁共振岩心测量实验系统和方法,提供了一种在高温高压储层核磁共振评价的方法和系统,在高温高压储层核磁共振评价发挥了重要的作用。It can be seen from the above technical scheme that the NMR core measurement experiment system and method for simulating the downhole high-temperature and high-pressure environment of the present invention provide a method and system for NMR evaluation of high-temperature and high-pressure reservoirs. played an important role.
附图说明Description of drawings
图1为本发明实施例的核磁共振岩心测量实验系统的系统连接示意图;Fig. 1 is the system connection schematic diagram of the nuclear magnetic resonance rock core measurement experiment system of the embodiment of the present invention;
图2为本发明实施例的连续高压系统的系统连接示意图;Fig. 2 is the system connection schematic diagram of the continuous high pressure system of the embodiment of the present invention;
图3为本发明实施例的高温循环系统的系统连接示意图;Fig. 3 is a schematic diagram of the system connection of the high temperature circulation system of the embodiment of the present invention;
图4为本发明实施例的辅助降温系统的系统连接示意图;4 is a schematic diagram of the system connection of the auxiliary cooling system of the embodiment of the present invention;
图5为本发明实施例的岩心夹持器的结构示意图;Fig. 5 is the structural representation of the core holder of the embodiment of the present invention;
图6为本发明实施例的核磁共振岩心测量实验方法的流程示意图;Fig. 6 is the schematic flow sheet of the nuclear magnetic resonance rock core measurement experimental method of the embodiment of the present invention;
图7为本发明实施例的加压加温实验的方法流程图。Fig. 7 is a flow chart of the method of the pressurization and heating experiment of the embodiment of the present invention.
具体实施方式Detailed ways
为了更好的了解本发明的目的、结构及功能,下面结合附图,对本发明的一种模拟井下高温高压环境的核磁共振岩心测量实验系统做进一步详细的描述。In order to better understand the purpose, structure and function of the present invention, a nuclear magnetic resonance core measurement experimental system simulating the downhole high temperature and high pressure environment of the present invention will be further described in detail in conjunction with the accompanying drawings.
图1为本发明实施例的核磁共振岩心测量实验系统100的系统连接示意图。结合图1所示,该核磁共振岩心测量实验系统100,包括计算机控制系统1、连续高压系统2、高温循环系统3、辅助降温系统4、岩心夹持器5、高温高压探头7、低场核磁共振岩心分析仪8、循环液收集容器6,其中:计算机控制系统1与连续高压系统2、高温循环系统3、辅助降温系统4电连接,以用于对各系统进行控制;连续高压系统2与高温循环系统3相连,并用于对岩心夹持器5的内部提供稳定的围压,同时,用于对岩心夹持器5内的岩心进行驱替实验;高温循环系统3用于对岩心夹持器5内部提供稳定温度;辅助降温系统4用于辅助降低高温高压探头7的温度;岩心夹持器5固定于高温高压探头7上,用于放置岩心样品;高温高压探头7部分设置于低场核磁共振岩心分析仪8空腔内,用于更换实验所需的岩心样品;循环液收集容器6用于实验废液的回收。FIG. 1 is a schematic diagram of the system connection of a nuclear magnetic resonance core measurement
本申请中所提到的计算机控制系统1与连续高压系统2、高温循环系统3和辅助降温系统4通过线缆相连接,用于设置温度、压力、高温循环泵31转速等参数,选择压力模式,控制各系统上气动阀门201,监测各节点上的压力、温度,通过一定的反馈机制,动态控制升温过程系统中的温度和压力。The computer control system 1 mentioned in this application is connected with the continuous high-
图2为本发明实施例的连续高压系统2的系统连接示意图。结合图2所示,在一些实施例中,连续高压系统2可包括连续围压系统,连续围压系统包括围压液容器21、围压系统中间容器22、液压油容器23以及两个围压系统恒速恒压泵24,其中:围压液容器21通过管线依次连接第一手动阀门25、气动阀门201和围压系统中间容器22;围压系统中间容器22的出液口分为第一路和第二路,第一路通过第二手动阀门26与液压油容器23连接,第二路再分为两路,两路分别通过气动阀门201与两个围压系统恒速恒压泵24的进液口连接,两个围压系统恒速恒压泵24的补液口通过管线与液压油容器23连接;第一手动阀门25通过围压管线与岩心夹持器5的围压入口连接,围压管线上设置有压力传感器202。Fig. 2 is a schematic diagram of the system connection of the continuous
继续参照图2所示,在一些实施例中,连续高压系统2还可包括连续驱替系统,连续驱替系统包括驱替液容器27、驱替系统中间容器28以及两个驱替系统恒速恒压泵29,其中:驱替液容器27通过管线依次连接第三手动阀门211、气动阀门201和驱替系统中间容器28;驱替系统中间容器28的出液口分为第三路和第四路,第三路通过第四手动阀门212与液压油容器23连接,第四路再分为两路,两路分别通过气动阀门201与两个驱替系统恒速恒压泵29的进液口连接,两个驱替系统恒速恒压泵29的补液口通过管线与液压油容器23连接;第三手动阀门211通过驱替管线与岩心夹持器5的驱替入口连接,驱替管线上设置有压力传感器202。Continuing to refer to Fig. 2, in some embodiments, the continuous high-
本申请中,连续高压系统2包括连续围压系统和连续驱替系统两部分,两部分系统均受到计算机控制系统1的控制,并与高温循环系统3相连,连续围压系统用于给岩心夹持器5内部提供稳定围压,连续驱替系统用于给岩心进行连续驱替实验。In this application, the continuous high-
本申请中的连续围压系统,围压液容器21内填充有液体,其用于在实验准备阶段给围压系统中间容器22补充围压液,补充围压液时会带动围压系统中间容器22内的活塞向下移动。围压系统中间容器22通过第二手动阀门26和液压油容器23连接,用于在升压阶段向围压系统中间容器22内补充液压油,围压系统中间容器22又通过气动阀门201与两个围压系统恒速恒压泵24连接,用于给围压系统中间容器22提供稳定连续压力,围压系统恒速恒压泵24通过管线与液压油容器23连接,用于补充液压油;连续围压系统的围压出口通过管线与压力传感器202和岩心夹持器5的围压入口连接。In the continuous confining pressure system in this application, the confining pressure
本申请中的连续驱替系统,驱替液容器27内填充有液体,其用于在实验准备阶段给驱替系统中间容器28补充围压液,补充驱替液时会带动驱替系统中间容器28内的活塞向下移动;驱替系统中间容器28通过第四手动阀门212和液压油容器23连接,用于在驱替升压阶段向驱替系统中间容器28内补充液压油,驱替系统中间容器28又通过气动阀门201与两个驱替系统恒速恒压泵29连接,用于给驱替系统中间容器28提供稳定连续压力,两个驱替系统恒速恒压泵29通过管线与液压油容器23连接,用于补充液压油;连续驱替系统的驱替出口通过管线与压力传感器202和岩心夹持器5的驱替入口连接。In the continuous displacement system in this application, the displacement liquid container 27 is filled with liquid, which is used to replenish the confining pressure liquid to the
在一些实施例中,围压系统恒速恒压泵24和驱替系统恒速恒压泵29还连接有另一个液压油容器23。In some embodiments, the constant speed and
在一些实施例中,驱替液容器27通过管线依次连接的第三手动阀门211、气动阀门201和驱替系统中间容器28构造为均可拆卸。通过该设置,可便于更换其它驱替流体。In some embodiments, the third
图3为本发明实施例的高温循环系统3的系统连接示意图。结合图3所示,在一些实施例中,高温循环系统3可包括高温循环泵31、恒温油浴加热器32、三通气动球阀33。其中:连续高压系统2的围压出口通过管线依次连接第五手动阀门34、高温循环泵31、恒温油浴加热器32、背压阀301、三通气动球阀33、第六手动阀门35,连续高压系统2的围压出口与第五手动阀门34之间的管线上设置有温度传感器302,恒温油浴加热器32与背压阀301之间的管线上设置有温度传感器302和压力传感器202,第六手动阀门35与连续高压系统2的围压入口之间的管线上设置有压力传感器202和温度传感器302。Fig. 3 is a schematic diagram of the system connection of the high
本申请中,高温循环系统3用于给岩心夹持器5的内部提供稳定的温度,其接收计算机控制系统1的控制,并与连续高压系统2相连。温度传感器302分别用于监测高温循环入口(围压出口)、油浴加热后和高温循环出口(围压入口)处温度,背压阀301为保障实验安全所设置,三通气动球阀33和背压阀301用于泄放系统升温过程中所产生的压力。In this application, the high-
请参照图1至图3所示,在一些实施例中,循环液收集容器6可分别设置于岩心夹持器5的围压出口、岩心夹持器5的驱替出口以及高温循环系统3的三通气动球阀33的下方,其中,岩心夹持器5的围压出口还可设置有第七手动阀门213;岩心夹持器5的驱替出口还可设置有背压阀301、第八手动阀门214和天平215;三通气动球阀33通过管线与循环液收集容器6相连。通过该设置,设置的循环液收集容器6可用于在实验结束后回收液体,该液体可以为连续围压系统内的围压液体、连续驱替系统内的驱替液体,也可以为模拟井下高温高压环境的核磁共振岩心测量实验系统在泄压降温后,管线和岩心夹持器5的内部所存储流体,即用于实验所用氟油和各种废液的回收。Please refer to Figures 1 to 3, in some embodiments, the circulating
图4为本发明实施例的辅助降温系统4的系统连接示意图。结合图4所示,在一些实施例中,辅助降温系统4可包括:两个梯度线圈和磁体组41,分别间隔设置于高温高压探头7的两侧;两个温度传感器302,分别用于测量两个梯度线圈和磁体组41的温度;制冷机42,通过管线分别延伸至高温高压探头7与两个梯度线圈和磁体组41之间的夹缝43。Fig. 4 is a schematic diagram of the system connection of the
本申请的辅助降温系统4用于辅助降低低场核磁共振岩心分析仪8中的梯度线圈和磁体组41的温度,其接收计算机控制系统1的控制。制冷机42可由两个高精度红外温度传感器302、测量的梯度线圈和磁体组41的温度进行逻辑控制,制冷机42可通过管线稳定输出约为35℃气体(该气体的问题可根据具体的需求由制冷机42进行控制),气体通过管线通往探头与梯度线圈和磁体组41之间的夹缝43,从而对梯度线圈和磁体组41进行降温,以起到辅助降温的作用。The
在一些实施例中,低场核磁共振岩心分析仪8采用主频为2MHz的岩心分析仪8。In some embodiments, the low-field nuclear magnetic resonance core analyzer 8 adopts a core analyzer 8 with a main frequency of 2 MHz.
在一些实施例中,高温高压探头7可拆卸的设置有低场核磁共振岩心分析仪8的空腔内。In some embodiments, the high temperature and
图5为本发明实施例的岩心夹持器5的结构示意图。结合图5所示,在一些实施例中,岩心夹持器5包括:热缩管59,其内设置有岩心样品55,热缩管59的两端通过岩心柱塞54进行密封,岩心柱塞54上设有用于密封连接的密封胶圈和垫片;岩心柱塞54上连接有驱替管线57;高温高压探头7间隔且平行设置于热缩管59的两侧,两侧的高温高压探头7的两端通过堵头53进行密封连接,以使得两侧的高温高压探头7之间形成有密封腔体511,两侧的堵头53上分别设置有围压出口58、围压入口513;其中,堵头53上还设置有压力计52、温度传感器302以及泄压阀512,驱替管线57穿过堵头53,并通过密封螺栓51与堵头53固定。Fig. 5 is a schematic structural view of a
本申请中,岩心夹持器5固定于高温高压探头7上。岩心夹持器5构造为可耐高温高压,岩心夹持器5在实验过程中用于放置岩心样品,其内部可容纳1英寸(约2.5cm)和1.5英寸(约3.8cm)两种不同直径大小的标准岩心样品。In this application, the
本申请中,高温高压探头7置于低场核磁共振岩心分析仪8空腔内并构造为可拆卸,以用于更换实验所需岩心样品。高温高压探头7需通过接头、接线与低场核磁共振岩心分析仪8谱仪部分相连。In this application, the high-temperature and high-
本申请中,低场核磁共振岩心分析仪8可采用主频为2MHz的岩心分析仪8,其仪器内部腔体大,并专门为高温高压实验做了优化设计。In this application, the low-field nuclear magnetic resonance core analyzer 8 can use a core analyzer 8 with a main frequency of 2 MHz, which has a large internal cavity and is specially optimized for high-temperature and high-pressure experiments.
图6为本发明实施例的核磁共振岩心测量实验方法200的流程示意图。下面将结合上述的核磁共振岩心测量实验系统100,具体提供一种模拟井下高温高压环境的核磁共振岩心测量实验方法200。该模拟井下高温高压环境的核磁共振岩心测量实验方法200,具体包括:FIG. 6 is a schematic flowchart of an
步骤一S01,制备标准柱塞岩心样品,并对岩心样品进行预处理;Step 1 S01, preparing a standard plunger core sample, and performing pretreatment on the core sample;
在一些实施例中,步骤一S01进一步包括:将岩心制作成标准尺寸的岩心样品;对岩心样品进行编号,并测量岩心样品的岩样体积、气测孔隙度;对岩心样品进行洗油、洗盐处理;放入恒温箱中烘干至恒重为止;将制备好的岩心样品放入真空饱和仪中,饱和完成后置入盛有相应饱和溶液的容器中密封存放。In some embodiments, step 1 S01 further includes: making the core into a standard size core sample; numbering the core sample, and measuring the rock sample volume and gas porosity of the core sample; Salt treatment; drying in a constant temperature box until constant weight; put the prepared core sample into a vacuum saturator, and put it into a container filled with a corresponding saturated solution for sealed storage after saturation.
具体的:将人造岩心制作成直径为38mm(1.5in)或25.4mm(1in)、长度为30-100mm的标准尺寸岩心样品,样品表面应光洁、平整,并对样品编号,测量岩样体积,气测孔隙度,而后对标准岩心样品进行洗油洗盐处理,然后放入恒温箱中烘干,烘干至恒重为止,然后根据实验所需溶液矿化度制备20000ml所需溶质的溶液,将上述制备好的岩心样品放入真空饱和仪中,为确保样品充分饱和,抽真空时长应不低于8小时,饱和加压时长不低于48小时,对于低孔低渗岩心样品,上述时间应该视情况而增长,饱和完成后置入盛有相应饱和溶液的容器中密封存放。Concrete: the artificial core is made into a standard size core sample with a diameter of 38mm (1.5in) or 25.4mm (1in) and a length of 30-100mm. The surface of the sample should be smooth and smooth, and the sample number is used to measure the volume of the rock sample. The porosity is measured by air, and then the standard core sample is washed with oil and salt, and then put into a constant temperature box to dry until it reaches a constant weight, and then prepare a solution of 20000ml of the required solute according to the salinity of the solution required for the experiment. Put the core sample prepared above into a vacuum saturator. In order to ensure that the sample is fully saturated, the vacuuming time should not be less than 8 hours, and the saturation pressurization time should not be less than 48 hours. For low-porosity and low-permeability core samples, the above time It should be grown according to the situation. After the saturation is completed, put it in a container filled with the corresponding saturated solution and store it tightly.
步骤二S02,低场核磁共振岩心分析仪8标定和测量参数设置;
在一些实施例中,步骤二S02进一步包括:调整磁场中心位置,使探头最佳谐振频率与核磁共振频率一致;放入岩心样品,使用自由衰减脉冲序列调整核磁共振偏移值、脉冲宽度和幅度;对相同或相似物性参数的岩心样品进行预测量,以确定相应实验测量参数;对于岩心样品的采集参数通常设置回波间隔、取点数;对于岩心样品的扩散时间的采集参数设置磁场梯度。In some embodiments,
具体的:调整磁场中心位置,使探头最佳谐振频率与核磁共振频率一致,放入标样使用自由衰减脉冲序列调整核磁共振偏移值O1和90°、180°脉冲宽度和幅度,对相同或相似物性参数岩心样品的T2、T1、扩散系数等进行预测量,以确定相应实验测量参数,对于岩心样品T2的采集参数通常设置回波间隔≤0.2,完全恢复时间视孔隙结构和饱和流体的性质决定,回波个数以增强长弛豫组分的分辨率为原则设置,重复次数和增益应以保证信噪比在100以上为原则设置;对于岩心样品T1的采集参数通常设置取点数不低于10个,最短时间以0.05ms为宜,最长时间应大于5倍的T1,恢复时间也应大于T2测量时的恢复时间;对于岩心样品扩散时间的采集参数通常设置最小磁场梯度不小于0.058T/m,其他参数可参照T2和T1测量相应参数酌情设置。Specifically: adjust the center position of the magnetic field so that the best resonance frequency of the probe is consistent with the nuclear magnetic resonance frequency, put in the standard sample and use the free decay pulse sequence to adjust the nuclear magnetic resonance offset value O1 and 90°, 180° pulse width and amplitude, for the same or Pre-measure the T2, T1, diffusion coefficient, etc. of the core sample with similar physical parameters to determine the corresponding experimental measurement parameters. For the acquisition parameters of the core sample T2, the echo interval is usually set to ≤0.2, and the complete recovery time depends on the pore structure and the nature of the saturated fluid. It was decided that the number of echoes should be set on the principle of enhancing the resolution of long relaxation components, and the number of repetitions and gain should be set on the principle of ensuring that the signal-to-noise ratio is above 100; for the acquisition parameters of core sample T1, the number of points usually set is not low For 10, the shortest time should be 0.05ms, the longest time should be greater than 5 times of T1, and the recovery time should also be greater than the recovery time of T2 measurement; for the acquisition parameters of core sample diffusion time, the minimum magnetic field gradient is usually set not less than 0.058 T/m, other parameters can be set as appropriate with reference to the corresponding parameters measured by T2 and T1.
步骤三S03,安装岩心样品;
在一些实施例中,步骤三S03进一步包括:将饱和好的岩心样品放在两个岩心柱塞中间;使用热缩管将岩心样品和岩心柱塞包裹起来,加热热缩管直至热缩管、岩心样品和岩心柱塞完全贴合;安装岩心夹持器5下堵头,使岩心柱塞上的驱替管线穿过下堵头管线通道,固定好后安装岩心夹持器5上堵头,并上下调整岩心位置到岩心夹持器5中部;岩心样品安装完毕后,将高温高压探头7安装到仪器腔体中并固定,同时,连接电源、发射、接收线路端口;在低场核磁共振岩心分析仪8上操作测量FID进行信号测试。In some embodiments,
具体的:将饱和好的岩心样品放在两个岩心柱塞中间,测量其长度,然后裁剪略长于岩样加两头柱塞长度的热缩管,将岩样和柱塞包裹起来,然后用设置不超过200℃温度的电热风枪均匀、缓慢地加热热缩管直至热缩管和岩样、柱塞完全贴合,加热完毕冷却到室温后去掉多余部分,然后安装岩心夹持器5下堵头,使柱塞上的驱替管线穿过下堵头管线通道,固定好后安装岩心夹持器5上堵头,然后上下调整岩心位置到岩心夹持器5中部,以保证测量时岩样全部位于射频线圈和磁体中间并能够获得最大测量信号,岩心样品安装完毕后,再将高温高压探头7安装到仪器腔体中,上好固定螺栓,连接电源、发射、接收线路端口,最后在低场核磁共振岩心分析仪8上操作测量FID进行信号测试。Specifically: put the saturated core sample between the two core plungers, measure its length, then cut a heat-shrinkable tube slightly longer than the length of the rock sample plus the two plungers, wrap the rock sample and the plunger, and then use the setting The electric heat gun with a temperature not exceeding 200°C heats the heat-shrinkable tube evenly and slowly until the heat-shrinkable tube is completely attached to the rock sample and the plunger. Make the displacement pipeline on the plunger pass through the pipeline channel of the lower plug, install the upper plug of the
步骤四S04,试压和管线密封性检测;
在一些实施例中,步骤四S04进一步包括:保持围压液常温状态,增加固定压力值,直到围压压力值达到高于实验设计所需的压力的预设范围,并在最大压力处保持压力不少于2倍的核磁实验测量所需时间的时间;观察所有管线及接口处是否有漏液现象,同时观察各压力监测点的读数是否瞬间产生高于预设值的变化,若出现漏液或压力值以预设范围进行变化的情况,则停止试压实验并进行泄压进行故障排查。In some embodiments,
具体的:试压过程中,全程在计算机系统端操作,不增加温度,保持围压液常温状态,每次增加1-5MPa压力,直到围压压力值达到略高于实验设计所需的压力,并在最大压力处保持压力不少于2倍的核磁实验测量所需时间的时间,试压过程中密切关注体统所有管线及接口处是否有漏液现象,同时观察各压力监测点的读数是否瞬间产生高于0.1MPa的变化,如有出现漏液或压力值变化较大的情况,则应立即停止试压实验并进行泄压,马上排查漏压点,并对泄露处进行零部件更换或封堵,泄压时建议每次减小1-5MPa压力,过快的泄压速度将可能导致连续驱替泵失灵,再次试压没有问题后,安装可拆卸的各接口部位的管线保温带后继续进行下一步。Specifically: During the pressure test, the whole process is operated on the computer system side, without increasing the temperature, maintaining the normal temperature of the confining pressure fluid, and increasing the pressure by 1-5MPa each time until the confining pressure value reaches a pressure slightly higher than the pressure required by the experimental design. And keep the pressure at the maximum pressure for not less than 2 times the time required for the nuclear magnetic test measurement. During the pressure test, pay close attention to whether there is any leakage at all pipelines and interfaces of the system, and observe whether the readings of each pressure monitoring point are instantaneous. If there is a change higher than 0.1MPa, if there is a liquid leakage or a large change in the pressure value, the pressure test should be stopped immediately and the pressure should be released, and the leak point should be checked immediately, and parts should be replaced or replaced at the leak. Plugging, it is recommended to reduce the pressure by 1-5MPa each time when releasing the pressure. Excessive pressure relief speed may cause the continuous displacement pump to fail. Proceed to the next step.
步骤五S05,加压加温实验;
请参照图7所示,在一些实施例中,步骤五S05进一步包括:Please refer to FIG. 7, in some embodiments,
设置围压压力和温度,系统以预设压力梯度升至目标压力,预设压力可为1-5MPa。判断是否达到目标围压压力,若否,则继续升压;若是则设置温度。系统以预设温度梯度将油浴升至目标温度,预设温度可为1-5℃。判断油浴加热器温度是否达到目标温度,若否,则继续以预设温度梯度将油浴升至目标温度;Set the confining pressure and temperature, the system rises to the target pressure with the preset pressure gradient, and the preset pressure can be 1-5MPa. Determine whether the target confining pressure is reached, if not, continue to increase the pressure; if so, set the temperature. The system raises the oil bath to the target temperature with a preset temperature gradient, and the preset temperature can be 1-5°C. Determine whether the temperature of the oil bath heater reaches the target temperature, if not, continue to raise the oil bath to the target temperature with the preset temperature gradient;
判断系统压力是否稳定,若是:判断岩心夹持器内部是否达到目标温度,若否,则泄压或补压,或判断循环泵是否达到最大转速;进一步的:若循环泵达到最大转速,则油浴继续以预设温度梯度升温或降温,该预设温度可为1℃;判断系统压力是否稳定,若否:泄压或补压;Determine whether the system pressure is stable, if so: determine whether the inside of the core holder reaches the target temperature, if not, release or replenish pressure, or determine whether the circulation pump reaches the maximum speed; further: if the circulation pump reaches the maximum speed, the oil The bath continues to heat up or cool down with a preset temperature gradient, the preset temperature can be 1°C; judge whether the system pressure is stable, if not: release or replenish pressure;
判断岩心夹持器内部温度预设时间内的变化范围,还变化范围可设置为:1分钟内变化≤0.2℃。若否,则油浴继续以预设温度梯度升温或降温,该预设温度可为1℃;若是,则开始核磁共振测量试验。Judging the change range of the internal temperature of the core holder within a preset time, the change range can also be set to: change within 1 minute ≤ 0.2°C. If not, the oil bath continues to heat up or cool down with a preset temperature gradient, the preset temperature may be 1° C.; if so, start the nuclear magnetic resonance measurement test.
具体的:进行高温高压实验时,可全程在计算机系统端进行操作,首先设置背压阀301高于实验设计压力5MPa,然后在设置系统围压压力达到实验设计所需压力后,再设置实验所需温度,计算机控制系统1会自动调节恒温油浴加热器32温度和高温循环泵31的转速,升高恒温油浴加热器32温度和提高高温循环泵31的转速都可以使岩心夹持器5内部的温度增加,随着温度的升高,氟油会逐渐膨胀并使系统内部压力增加,此时连续高压系统2会因为检测到压力超出设定值而自动进行降压操作,但是其降压效率十分有限,所以有集成在计算机控制系统1中的自动控制系统动态地调整岩心夹持器5内部压力和温度,其工作逻辑是,当在系统中设置好实验设计所需的温度后,系统不会立即让岩心夹持器5内部温度上升,而是逐渐增加恒温油浴加热器32的温度和高温循环泵31的转速,当压力传感器202检测到压力上升超过0.1MPa后会自动打开三通气动阀门201进行泄压,此时系统内部压力会减小,当系统内部压力值减小超过设定值0.1MPa后,又会自动关闭气动阀门201,如此往复便可以达到温度循环上升,并能够动态实时调整岩心夹持器5内部压力,在达到实验所需压力和温度后,可以利用低场核磁共振岩心分析仪8记录岩心样品的一维T2谱、T1谱、扩散系数、二维T1-T2谱、D-T2谱等,确定内部流体的原始情况。Specifically: when conducting high-temperature and high-pressure experiments, the whole process can be operated on the computer system side. First, set the
步骤六S06,驱替实验;
在一些实施例中,步骤六S06进一步包括:设置驱替和围压压差不超过预设值;选择驱替液体,打开阀门,连续驱替出预设倍数的孔隙体积的流体,以达到完全驱替;观测驱替液的体积,驱替排出流体的重量,利用低场核磁共振岩心分析仪8记录岩心样品的相关参数,以确定岩样内部的流体运移情况。In some embodiments,
具体的:设置驱替和围压压差不超过2MPa,选择某种驱替液体,打开阀门,连续驱替出2倍孔隙体积的流体,认为达到完全驱替,观测驱替液的体积,驱替排出流体的重量,利用低场核磁共振岩心分析仪8记录岩心样品的一维T2谱、T1谱、扩散系数、二维T1-T2谱、D-T2谱等,确定岩样内部的流体运移情况。驱替出的流体做废液处理,高精度恒速恒压泵可以计算驱替流体体积。Specifically: set the pressure difference between displacement and confining pressure to not exceed 2MPa, select a certain displacement liquid, open the valve, and continuously displace the fluid twice the pore volume. Instead of the weight of the discharged fluid, use the low-field nuclear magnetic resonance core analyzer 8 to record the one-dimensional T2 spectrum, T1 spectrum, diffusion coefficient, two-dimensional T1-T2 spectrum, D-T2 spectrum, etc. of the core sample to determine the fluid movement inside the rock sample. Move the situation. The displaced fluid is treated as waste liquid, and the high-precision constant-speed constant-pressure pump can calculate the volume of the displaced fluid.
步骤七S07,核磁共振实验数据处理。
在一些实施例中,步骤七S07进一步包括:测量完成后,由处理程序对结果进行处理;结果处理完成后,保存相关数据及图片,编写测试报告。In some embodiments,
具体的:测量完成后,由处理程序求出一维T2、T1分布和二维核磁共振T1-T2、D-T2分布,一维分布点数不少于128个,二维分布点数不少于64×64个。结果处理完成后,保存相关数据及图片,编写测试报告。Specifically: after the measurement is completed, the processing program will calculate the one-dimensional T2, T1 distribution and the two-dimensional nuclear magnetic resonance T1-T2, D-T2 distribution, the number of one-dimensional distribution points shall not be less than 128, and the number of two-dimensional distribution points shall not be less than 64 ×64 pcs. After the result processing is completed, save the relevant data and pictures, and write the test report.
在一些实施例中,核磁共振岩心测量实验方法200还包括:实验完毕后,待系统温度冷却,先关闭连续驱替系统阀门和连续围压系统阀门;打开驱替液排放阀门将管线中的液体进行回收;打开围压液排放阀门,将岩心夹持器5内腔中的围压液排放进行回收,回收后的围压液进行过滤处理;将与岩心夹持器5相连接的管线和探头与核磁共振谱仪连接线拆除,从低场核磁共振岩心分析仪8腔体中取出高温高压探头7,拆卸岩心夹持器5的堵头、岩心柱塞等零部件,去除热缩管,取出岩心样品,清洗夹持器内腔,更换胶圈和垫片。In some embodiments, the nuclear magnetic resonance core measurement
具体的:实验完毕后,等系统温度冷却下来后,先关闭连续驱替系统阀门和连续围压系统阀门,然后打开驱替液排放阀门将管线中的液体进行回收,之后,打开围压液排放阀门,将岩心夹持器5内腔中的围压液排放进行回收,回收后的围压液进行过滤处理,以备下次实验使用,最后将与岩心夹持器5相连接的管线和探头与核磁共振谱仪连接线拆除,从低场核磁共振岩心分析仪8腔体中取出高温高压探头7,拆卸岩心夹持器5的堵头、岩心柱塞等零部件,去除热缩管,取出岩心样品,清洗夹持器内腔,更换胶圈和垫片,以备下次实验使用。Specifically: After the experiment is completed, after the system temperature cools down, first close the continuous displacement system valve and the continuous confining pressure system valve, then open the displacement fluid discharge valve to recover the liquid in the pipeline, and then open the confining pressure fluid discharge The valve is used to discharge the confining pressure fluid in the inner cavity of the
根据本发明实施例的基于动态调整的模拟井下高温高压环境的核磁共振岩心测量实验系统100。该核磁共振岩心测量实验系统100通过计算机控制系统11控制连续高压系统2、高温循环系统3、辅助降温系统4及系统上各个阀门,监测系统各处温度和压力并在计算机上显示,并集成有温压动态调整机制,模拟地层压力和温度,在给定高温高压条件下进行实时核磁共振测量,实验过程中将待测岩心放置在岩心夹持器5内,使用高温高压探头7和低场核磁共振岩心分析仪8对实验进行测量和记录,获得一维、二维核磁共振数据,使用辅助降温系统44辅助射频线圈和磁体降温。本发明实施例的基于动态调整的模拟井下高温高压环境的核磁共振岩心测量实验系统100在高温高压储层核磁共振评价发挥了重要的作用。According to an embodiment of the present invention, an NMR core
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。It should be noted that, unless otherwise specified, the technical terms or scientific terms used in this application shall have the usual meanings understood by those skilled in the art to which the present invention belongs.
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present application, it is to be understood that the terms "central", "longitudinal", "transverse", "upper", "lower", "top", "bottom", "inner", "outer" etc. indicate The orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation or be configured in a specific orientation. and operation, and therefore should not be construed as limiting the invention.
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In this application, terms such as "installation", "connection", "connection" and "fixation" should be interpreted in a broad sense, for example, it can be a fixed connection or a detachable connection, unless otherwise clearly specified and limited. , or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. All of them should be covered by the scope of the claims and description of the present invention. In particular, as long as there is no structural conflict, the technical features mentioned in the various embodiments can be combined in any manner. The present invention is not limited to the specific embodiments disclosed herein, but includes all technical solutions falling within the scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310115749.XA CN116068006A (en) | 2023-02-14 | 2023-02-14 | An experimental system and method for nuclear magnetic resonance core measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310115749.XA CN116068006A (en) | 2023-02-14 | 2023-02-14 | An experimental system and method for nuclear magnetic resonance core measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116068006A true CN116068006A (en) | 2023-05-05 |
Family
ID=86181789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310115749.XA Pending CN116068006A (en) | 2023-02-14 | 2023-02-14 | An experimental system and method for nuclear magnetic resonance core measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116068006A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116625906A (en) * | 2023-07-20 | 2023-08-22 | 中国科学院地质与地球物理研究所 | Dual-channel rock core top plug, pressure simulation device and nuclear magnetic resonance online displacement system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101907586A (en) * | 2010-06-11 | 2010-12-08 | 中国石油天然气股份有限公司 | High-temperature and high-pressure holder for nuclear magnetic resonance test of rock core |
CN106908470A (en) * | 2017-04-25 | 2017-06-30 | 北京青檬艾柯科技有限公司 | A kind of nuclear magnetic resonance HTHP rock displacement system and method |
CN109254028A (en) * | 2018-11-07 | 2019-01-22 | 苏州纽迈分析仪器股份有限公司 | Nuclear magnetic resonance test macro |
CN112213345A (en) * | 2020-09-18 | 2021-01-12 | 中国石油大学(华东) | Nuclear magnetic resonance system and method for simulating high-temperature and high-pressure conditions |
CN112505084A (en) * | 2020-11-30 | 2021-03-16 | 中国石油大学(华东) | Evaluation model, evaluation method and application for improving shale oil mobility through gas injection |
CN112834544A (en) * | 2020-10-12 | 2021-05-25 | 苏州纽迈分析仪器股份有限公司 | A gripper for nuclear magnetic resonance system |
-
2023
- 2023-02-14 CN CN202310115749.XA patent/CN116068006A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101907586A (en) * | 2010-06-11 | 2010-12-08 | 中国石油天然气股份有限公司 | High-temperature and high-pressure holder for nuclear magnetic resonance test of rock core |
CN106908470A (en) * | 2017-04-25 | 2017-06-30 | 北京青檬艾柯科技有限公司 | A kind of nuclear magnetic resonance HTHP rock displacement system and method |
CN109254028A (en) * | 2018-11-07 | 2019-01-22 | 苏州纽迈分析仪器股份有限公司 | Nuclear magnetic resonance test macro |
CN112213345A (en) * | 2020-09-18 | 2021-01-12 | 中国石油大学(华东) | Nuclear magnetic resonance system and method for simulating high-temperature and high-pressure conditions |
CN112834544A (en) * | 2020-10-12 | 2021-05-25 | 苏州纽迈分析仪器股份有限公司 | A gripper for nuclear magnetic resonance system |
CN112505084A (en) * | 2020-11-30 | 2021-03-16 | 中国石油大学(华东) | Evaluation model, evaluation method and application for improving shale oil mobility through gas injection |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116625906A (en) * | 2023-07-20 | 2023-08-22 | 中国科学院地质与地球物理研究所 | Dual-channel rock core top plug, pressure simulation device and nuclear magnetic resonance online displacement system |
CN116625906B (en) * | 2023-07-20 | 2023-10-20 | 中国科学院地质与地球物理研究所 | Dual-channel core top plug, pressure simulation device and nuclear magnetic resonance online displacement system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107807143B (en) | Low-field nuclear magnetic resonance multi-probe quantitative test system and method special for hydrate | |
CN110057739A (en) | High temperature and pressure coal petrography supercritical carbon dioxide pressure break-creep-seepage flow test device | |
CN108519399B (en) | Device for researching fluid phase change generation between pores by combining nuclear magnetic resonance technology | |
CN102879306B (en) | A Method for Detecting Gas-Liquid Diffusion Process Using Magnetic Resonance Imaging Technology | |
CN108414560A (en) | A kind of method of the fine and close oily filling process of nuclear-magnetism-displacement combined apparatus evaluation | |
CN107894383A (en) | Permeability measuring apparatus containing hydrate sediment and its method under condition of triaxial stress | |
CN108801870A (en) | It is a kind of can under simulation stratum condition reservoir rock imbibition experimental provision and method | |
CN110057740A (en) | High temperature and pressure coal petrography supercritical carbon dioxide pressure break-creep-seepage tests method | |
US11885186B2 (en) | High-temperature and high-pressure drilling fluid inhibition evaluation device and usage method thereof | |
CN112485282B (en) | Measuring system and method for soil-water characteristic curve of gas hydrate-containing sediment | |
CN103645129B (en) | A kind of high-temperature ultralow permeability measuring instrument | |
CN111693676B (en) | System and method for measuring bubble point pressure of crude oil in porous medium | |
CN109142418A (en) | A kind of nuclear magnetic resonance experiment system and method under deep mining high-temperature and high-pressure conditions | |
CN108827853A (en) | Compact reservoir rock electrical measurement and measurement method based on nuclear magnetic resonance | |
CN113358683B (en) | An experimental device and method for water flooding oil for studying the effect of core end face | |
CN112098231A (en) | A large-scale triaxial mechanical test device and test method for coarse-grained soil simulating freeze-thaw cycles | |
CN116068006A (en) | An experimental system and method for nuclear magnetic resonance core measurement | |
CN116660306B (en) | Experimental method for measuring shale gas content based on plunger samples and crushed samples | |
CN112858018A (en) | Device and method for testing lateral pressure creep of hydrate-containing sediment | |
CN110082388A (en) | The Triaxial tester and its method of thermal coefficient and infiltration coefficient can be measured | |
CN201464391U (en) | Special device for core sample analysis temperature control | |
Sivakumar et al. | Twin-cell stress path apparatus for testing unsaturated soils | |
CN211955049U (en) | A device for detecting mechanical properties of hydrate-containing sediments | |
CN108226009A (en) | A sample cylinder for bentonite waterproof blanket and a permeability coefficient measuring device containing the sample cylinder | |
CN218470405U (en) | Experimental device for measuring mechanical properties of hydrate deposits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |