CN116063382A - 一种具有三阶非线性光学性能的多肽材料及其制备方法与应用 - Google Patents

一种具有三阶非线性光学性能的多肽材料及其制备方法与应用 Download PDF

Info

Publication number
CN116063382A
CN116063382A CN202211440900.9A CN202211440900A CN116063382A CN 116063382 A CN116063382 A CN 116063382A CN 202211440900 A CN202211440900 A CN 202211440900A CN 116063382 A CN116063382 A CN 116063382A
Authority
CN
China
Prior art keywords
polypeptide
nonlinear optical
order nonlinear
polypeptide material
acetonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211440900.9A
Other languages
English (en)
Inventor
董明东
邵畯
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202211440900.9A priority Critical patent/CN116063382A/zh
Publication of CN116063382A publication Critical patent/CN116063382A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2299/00Coordinates from 3D structures of peptides, e.g. proteins or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种具有三阶非线性光学性能的多肽材料及其制备方法与应用。本发明多肽材料的制备方法,包括步骤:将多肽单体充分分散于水、乙腈和三氟乙酸的混合液中,孵育,得到多肽溶液;然后经过滤、干燥得到具有三阶非线性光学性能的多肽材料;本发明制备多肽材料的方法操作简便,成本低廉;所得多肽材料具有良好的化学和物理稳定性;同时拥有优异的非线性光学性质。

Description

一种具有三阶非线性光学性能的多肽材料及其制备方法与应用
技术领域
本发明属于非线性光学材料技术领域,具体涉及一种具有三阶非线性光学性能的多肽材料及其制备方法与应用。
背景技术
非线性光学材料是指折射率、吸收系数和极化率等光学参数明显依赖于入射光强的材料。非线性光学材料的种类非常多,根据非线性效应可以分为二阶非线性光学材料、三阶非线性光学材料和高阶非线性光学材料,根据材料的物理状态可以分为液体非线性光学材料、固体非线性光学材料和气体非线性光学材料,等等。非线性光学材料因其优异的折射率,高非线性,快速响应,机械、光化学和化学稳定性,相干蓝光和绿光,在很多领域有着重要应用,如在显示器,高分辨率打印和信号处理等方面的诸多应用。但现有非线性光学材料在环保、生物亲和等方面有待进一步研究,限制了非线性光学材料的生物应用。
多肽纳米材料作为一种新型的生物材料,拥有诸多优势,如生物亲和性,制备简便,稳定性好等。而多肽纳米材料用于三阶非线性光学领域鲜有报道。
因此,亟需研发一种环保、生物亲和的非线性光学材料。
发明内容
针对现有技术存在的不足,本发明提供一种具有三阶非线性光学性能的多肽材料及其制备方法与应用。本发明制备多肽材料的方法操作简便,成本低廉;所得多肽材料具有良好的化学和物理稳定性;同时拥有优异的非线性光学性质。
本发明的技术方案如下:
一种具有三阶非线性光学性能的多肽材料,所述多肽材料的微观形貌是:管径为35-70nm,长度为2-10μm的纳米管。
上述具有三阶非线性光学性能的多肽材料的制备方法,包括步骤:
将多肽单体充分分散于水、乙腈和三氟乙酸的混合液中,孵育,得到多肽溶液;然后经过滤、干燥得到具有三阶非线性光学性能的多肽材料;
所述多肽单体的结构式如下:
Figure BDA0003948202580000021
根据本发明优选的,水、乙腈和三氟乙酸的混合液中,水、乙腈和三氟乙酸的体积比为1:1-2:0.01-0.02,混合液的pH为1.5-2;优选的,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125,混合液的pH为1.7。
根据本发明优选的,多肽单体的质量和混合液的体积比为0.2-2mg/mL。
根据本发明优选的,多肽单体的充分分散方法包括步骤:将水、乙腈和三氟乙酸的混合液加入多肽单体中,室温下涡旋1-3min,超声10-20min。
根据本发明优选的,孵育温度为35-40℃,孵育时间为20-30h;优选的,孵育温度为37℃,孵育时间为24h。
根据本发明优选的,分散以及孵育均是在密封环境中进行。
根据本发明,所述多肽单体可直接市购获得。
上述具有三阶非线性光学性能的多肽材料的应用,作为三阶非线性光学材料应用于非线性光学器件。
本发明的技术特点及有益效果如下:
1、本发明将特定结构的多肽单体充分分散于水、乙腈和三氟乙酸的混合液中,多肽单体分子之间通过氢键和芳香基团间的π-π堆积作用,在溶液中自组装形成多肽纳米管晶体结构。其中,水和乙腈的混合溶液有利于多肽单体粉末的溶解,利于多肽单体的自组装;三氟乙酸调节pH值,提供酸性的孵育环境,利于多肽单体的自组装;本发明水、乙腈和三氟乙酸共同作用实现本发明特定结构多肽单体的自组装。本发明适宜恒定的温度可以增加多肽自组装的速度。本发明自组装方法只针对本发明特定结构的多肽分子。本发明制备方法简单,条件温和,成本较低,绿色环保。
2、本发明得到的自组装体是管径为35-70nm,长度为2-10μm的纳米管,在宏观上规整有序。本发明制备的多肽材料化学,光学稳定性好,并具有优异的三阶非线性光学性质,可用于制备非线性光学器件。本发明制备的多肽材料有望成为环保、生物亲和的光防护生物材料,为设计和开发光学和半导体材料以及生物应用提供新思路。
附图说明
图1是实施例1制备的多肽材料的透射电子显微镜图。
图2是实施例1制备的多肽材料的三阶非线性光学吸收图(左)和折射图(右)。
图3是对比例1制备的多肽材料的原子力显微镜图。
图4是对比例2制备的多肽材料的原子力显微镜图。
图5是对比例3制备的多肽材料的原子力显微镜图。
具体实施方式
下面结合具体实施例对本发明做进一步说明。但不限于此。同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例中所用多肽单体,合肥国肽生物科技有限公司有售。
实施例1
一种具有三阶非线性光学性能的多肽材料的制备方法,包括步骤:
(1)向多肽单体粉末中加入水,乙腈,三氟乙酸的混合液,获得0.2mg/mL的多肽溶液,封口膜密封。水、乙腈和三氟乙酸的混合液中,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125,混合液的pH为1.7。
(2)将多肽溶液在室温下涡旋2min,超声15min,溶液放于37℃恒温孵育器孵育24h得到多肽溶液。然后经过滤、干燥得到具有三阶非线性光学性能的多肽材料。
利用透射电子显微镜,取10微升上述多肽溶液滴于铜网上,等待2min,吸干残留的液体,在铜网上滴10微升新制备的质量浓度为0.15%的醋酸双氧铀溶液,对多肽进行染色,用于透射电子显微镜测试,等待2min后吸干。铜网室温下放置12h后进行测试。由图1可知,多肽自组装形成有序的纳米管结构,管径60nm左右,长约5微米。
三阶非线性光学性能的测试:将上述多肽溶液取30微升滴于新撕的云母片上,等待干燥。干燥后,将云母片放于波长532nm的激光束下进行Z-扫描测试。如图2(左)所示,样品从负方向沿正方向移动,靠近焦点时,光强增加,总的吸收系数越来越大,透过样品的能量减少,当样品处于焦点时透过能量达到最小值,形成一个谷。样品经过焦点之后,随着光强的不断减小,吸收系数逐渐变小,透过样品的能量逐渐增加,在远离焦点的地方恢复线性吸收,最终表现为一条关于焦点对称的单谷反饱和吸收曲线。如图2(右)所示,样品从负方向到正方向移动,随着样品向焦点靠近,作用在样品上的光强不断增加,在光斑的作用区域的样品会产生透镜效应,使在焦点之前的光束准直,经过焦点后使得光束会聚,使得透过率先变大后变小,表现为先峰后谷的负的非线性折射曲线。上述表明本发明多肽材料具有优异的三阶非线性光学性能。
实施例2
一种具有三阶非线性光学性能的多肽材料的制备方法,包括步骤:
(1)向多肽单体粉末中加入水,乙腈,三氟乙酸的混合液,获得2mg/mL的多肽溶液,封口膜密封。水、乙腈和三氟乙酸的混合液中,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125,混合液的pH为1.7。
(2)将多肽溶液在室温下涡旋2min,超声15min,溶液放于37℃恒温孵育器孵育24h得到多肽溶液。然后经过滤、干燥得到具有三阶非线性光学性能的多肽材料。
实施例3
一种具有三阶非线性光学性能的多肽材料的制备方法,包括步骤:
(1)向多肽单体粉末中加入水,乙腈,三氟乙酸的混合液,获得1.5mg/mL的多肽溶液,封口膜密封。水、乙腈和三氟乙酸的混合液中,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125,混合液的pH为1.7。
(2)将多肽溶液在室温下涡旋2min,超声15min,溶液放于37℃恒温孵育器孵育24h得到多肽溶液。然后经过滤、干燥得到具有三阶非线性光学性能的多肽材料。
对比例1
一种多肽材料的制备方法,包括步骤:
(1)制备水,乙腈和三氟乙酸的混合液,其中,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125;然后加入浓度为200mmol/L的氢氧化钠水溶液调至混合液的pH为4。向多肽单体粉末中加入上述混合液,获得0.2mg/mL的多肽溶液,封口膜密封。
(2)将多肽溶液在室温下涡旋2min,超声15min,溶液放于37℃恒温孵育器孵育24h得到多肽溶液。然后经过滤、干燥得到多肽材料。
本对比例制备的多肽材料的原子力显微镜照片如图3所示,所制备的多肽材料的微观形貌不如本发明实施例1制备的多肽材料。
对比例2
一种多肽材料的制备方法,包括步骤:
(1)制备水,乙腈和三氟乙酸的混合液,其中,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125;然后加入浓度为200mmol/L的氢氧化钠水溶液调至混合液的pH为6。向多肽单体粉末中加入上述混合液,获得0.2mg/mL的多肽溶液,封口膜密封。
(2)将多肽溶液在室温下涡旋2min,超声15min,溶液放于37℃恒温孵育器孵育24h得到多肽溶液。然后经过滤、干燥得到多肽材料。
本对比例制备的多肽材料的原子力显微镜照片如图4所示,所制备的多肽材料的微观形貌不如本发明实施例1制备的多肽材料。
对比例3
一种多肽材料的制备方法,包括步骤:
(1)制备水,乙腈和三氟乙酸的混合液,其中,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125;然后加入浓度为200mmol/L的氢氧化钠水溶液调至混合液的pH为13。向多肽单体粉末中加入上述混合液,获得0.2mg/mL的多肽溶液,封口膜密封。
(2)将多肽溶液在室温下涡旋2min,超声15min,溶液放于37℃恒温孵育器孵育24h得到多肽溶液。然后经过滤、干燥得到多肽材料。
本对比例制备的多肽材料的原子力显微镜照片如图5所示,所制备的多肽材料的微观形貌不如本发明实施例1制备的多肽材料。

Claims (8)

1.一种具有三阶非线性光学性能的多肽材料,其特征在于,所述多肽材料的微观形貌是:管径为35-70nm,长度为2-10μm的纳米管。
2.如权利要求1所述具有三阶非线性光学性能的多肽材料的制备方法,包括步骤:
将多肽单体充分分散于水、乙腈和三氟乙酸的混合液中,孵育,得到多肽溶液;然后经过滤、干燥得到具有三阶非线性光学性能的多肽材料;
所述多肽单体的结构式如下:
Figure FDA0003948202570000011
3.根据权利要求2所述具有三阶非线性光学性能的多肽材料的制备方法,其特征在于,水、乙腈和三氟乙酸的混合液中,水、乙腈和三氟乙酸的体积比为1:1-2:0.01-0.02,混合液的pH为1.5-2;优选的,水、乙腈和三氟乙酸的体积比为1:1.5:0.0125,混合液的pH为1.7。
4.根据权利要求2所述具有三阶非线性光学性能的多肽材料的制备方法,其特征在于,多肽单体的质量和混合液的体积比为0.2-2mg/mL。
5.根据权利要求2所述具有三阶非线性光学性能的多肽材料的制备方法,其特征在于,多肽单体的充分分散方法包括步骤:将水、乙腈和三氟乙酸的混合液加入多肽单体中,室温下涡旋1-3min,超声10-20min。
6.根据权利要求2所述具有三阶非线性光学性能的多肽材料的制备方法,其特征在于,孵育温度为35-40℃,孵育时间为20-30h;优选的,孵育温度为37℃,孵育时间为24h。
7.根据权利要求2所述具有三阶非线性光学性能的多肽材料的制备方法,其特征在于,分散以及孵育均是在密封环境中进行。
8.如权利要求1所述具有三阶非线性光学性能的多肽材料的应用,其特征在于,作为三阶非线性光学材料应用于非线性光学器件。
CN202211440900.9A 2022-11-17 2022-11-17 一种具有三阶非线性光学性能的多肽材料及其制备方法与应用 Pending CN116063382A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211440900.9A CN116063382A (zh) 2022-11-17 2022-11-17 一种具有三阶非线性光学性能的多肽材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211440900.9A CN116063382A (zh) 2022-11-17 2022-11-17 一种具有三阶非线性光学性能的多肽材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN116063382A true CN116063382A (zh) 2023-05-05

Family

ID=86168995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211440900.9A Pending CN116063382A (zh) 2022-11-17 2022-11-17 一种具有三阶非线性光学性能的多肽材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116063382A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098155A1 (en) * 2005-05-05 2009-04-16 Garsky Victor M Peptide conjugate compositions and methods for the prevention and treatment of alzheimer's disease
US20110263479A1 (en) * 2010-04-23 2011-10-27 Universitetet I Oslo Peptides
CN111171115A (zh) * 2020-01-06 2020-05-19 山东大学 一种通过调节酸碱度控制多肽晶体可逆组装的方法
CN113461696A (zh) * 2021-04-16 2021-10-01 同济大学 一种卟啉酞菁共价双功能化石墨烯非线性纳米杂化材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098155A1 (en) * 2005-05-05 2009-04-16 Garsky Victor M Peptide conjugate compositions and methods for the prevention and treatment of alzheimer's disease
US20110263479A1 (en) * 2010-04-23 2011-10-27 Universitetet I Oslo Peptides
CN111171115A (zh) * 2020-01-06 2020-05-19 山东大学 一种通过调节酸碱度控制多肽晶体可逆组装的方法
CN113461696A (zh) * 2021-04-16 2021-10-01 同济大学 一种卟啉酞菁共价双功能化石墨烯非线性纳米杂化材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IAN W HAMLEY: "Peptide Nanotubes", ANGEW. CHEM. INT. ED., vol. 53, no. 27, 11 June 2014 (2014-06-11), pages 6866 - 6881, XP072078189, DOI: 10.1002/anie.201310006 *
MING NI等: "Self-assembling amyloid-like peptides as exogenous second harmonic probes for bioimaging applications", J. BIOPHOTONICS., vol. 12, no. 12, 19 June 2019 (2019-06-19), pages 201900065 *
W. SETH CHILDERS等: "Peptides Organized as Bilayer Membranes", ANGEW. CHEM. INT. ED., vol. 49, no. 24, 1 June 2010 (2010-06-01), pages 4104 - 4107, XP072085359, DOI: 10.1002/anie.201000212 *
刘磊等: "淀粉样多肽分子自组装结构调控研究", 中国化学会第29届学术年会摘要集——第32分会:纳米表征与检测技术, 4 August 2014 (2014-08-04), pages 37 - 38 *

Similar Documents

Publication Publication Date Title
US5871872A (en) Dye incorporated pigments and products made from same
US6350515B1 (en) Biomolecular synthesis of quantum dot composites
Sui et al. Multi-responsive nanocomposite membranes of cellulose nanocrystals and poly (N-isopropyl acrylamide) with tunable chiral nematic structures
Yan et al. Poly (acrylic acid)-Lined Nanotubes of Poly (butyl methacrylate)-b lock-poly (2-cinnamoyloxyethyl methacrylate)
CN110286090B (zh) 基于Au@Pd纳米颗粒的光纤氢气传感器及其制备方法和应用
CN105778145B (zh) 大面积有序多孔膜的制备方法
CN109364774B (zh) 一种离子型聚合物和氧化石墨烯纳米复合膜及其制备方法和应用
Yang et al. Hybrid organic-inorganic dyeionogels: Reversibly pH-responsive materials based dye-ionic liquids with improved structural stability and flexibility
Li et al. A photo-switchable and photo-tunable microlens based on chiral liquid crystals
Li et al. Controlled tuning of LCST based on poly (N-isopropylacrylamide)/Hydroxypropyl cellulose temperature-sensitive hydrogel by electron beam pre-radiation method
Dehkordi et al. CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation
Shi et al. Coordination-bond-driven fabrication of crack-free photonic crystals
Liu et al. Facile design of renewable lignin copolymers by photoinitiated RAFT polymerization as Pickering emulsion stabilizers
CN116063382A (zh) 一种具有三阶非线性光学性能的多肽材料及其制备方法与应用
CN109772183B (zh) 一种阴离子化合物插层g-C3N4复合膜的制备方法及其应用
TWI520766B (zh) 奈米粒子轉相方法
CN113045780B (zh) 光调控可逆形貌转变的聚合物材料及其制备方法和应用
Xu et al. Thermo-sensitive hydrogels for forward osmosis with NIR light-induced freshwater recovery
CN109848438A (zh) 一种双模粒径纳米银颗粒及其制备方法
CN110240146A (zh) 一种基于碳点修饰构建pH敏感型碳纳米管复合材料的方法及其应用
CN114534749B (zh) 一种具有压电效应的CA_MoS2@TNr纳米纤维膜及其制备方法
CN109455757A (zh) 一种不同尺寸SnO2空心纳米球的制备方法和应用
CN108303758A (zh) 一种可见到红外波段宽带吸收器及其制备方法
Shi et al. Micro assembly strategies for enhancing solid-state emission of cellulose nanocrystals and application in photoluminescent inks
CN116943446A (zh) 一种复合纳滤膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination