CN116060017A - 一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用 - Google Patents

一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用 Download PDF

Info

Publication number
CN116060017A
CN116060017A CN202310002236.8A CN202310002236A CN116060017A CN 116060017 A CN116060017 A CN 116060017A CN 202310002236 A CN202310002236 A CN 202310002236A CN 116060017 A CN116060017 A CN 116060017A
Authority
CN
China
Prior art keywords
cerium
aluminum
antibacterial material
doped lanthanum
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310002236.8A
Other languages
English (en)
Inventor
尚荣荣
刘俊莉
张凯涛
沈佳昊
张华�
刘辉
李军奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202310002236.8A priority Critical patent/CN116060017A/zh
Publication of CN116060017A publication Critical patent/CN116060017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • A61L2101/24Inorganic materials containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于抗菌材料技术领域,具体涉及一种A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用。本发明采用溶胶‑凝胶法制备A、B位铈,铝元素共掺杂的钴酸镧纳米抗菌材料。以禁带宽度相对适中的LaCoO3为基体,通过对其采用非活性中心原子(Ce,Al)共掺杂的方式来提高抗菌活性,将非活性中心Al元素引入B位;同时,在A位引入可变氧化态(Ce4+/Ce3+)的Ce元素以诱导氧空位缺陷、增加比表面积,加快载流子运输,达到提高钴酸镧光学性能和氧化/还原性能的高缺陷、储氧能力和氧转换能力。具有安全环保、抗菌力强、持久力好等优点。

Description

一种A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用
技术领域
本发明属于抗菌材料技术领域,具体涉及一种A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用。
背景技术
近年来,随着社会和科技的不断发展,人们已经逐渐意识到自身健康的重要性。然而,细菌感染已成为威胁公众健康的最严重问题之一。其中一半以上的细菌感染是由革兰氏阴性细菌(G-)大肠杆菌(E.coli)和革兰氏阳性菌(G+)金黄色葡萄球菌(S.aureus)引起。已有研究表明,化学合成的纳米颗粒(NPs)对革兰氏阳性和革兰氏阴性细菌有抗菌作用。但由于一些纳米颗粒价格昂贵,生产成本高,具有生物毒性,后处理困难,严重制约了纳米颗粒的应用范围。因此,寻找有效的、无毒无害、对环境友好的抗菌剂至关重要。
钙钛矿型钴酸镧(LaCoO3)是一种新型、廉价、环保的半导体金属氧化物,广泛用于储能、还原氮氧化物、裂解水制氢和抗菌等领域。然而,LaCoO3相对较宽的禁带宽度极大地限制了其太阳能收集效率,光生电子-空穴对的高度络合也限制了其光催化活性。因此,开发具有可见光响应性和高活性的LaCoO3基体是半导体光催化领域面临的关键挑战之一。
由Co3+和O2-组成的BO6八面体结构和eg轨道决定了LaCoO3吸附/反应的能力。通过调整LaCoO3的电子结构,可以更有效地与吸附物相互作用。同时,Co3d轨道作为LaCoO3的导带,而调节O 2p轨道(价带)相对于费米能级的向上移动,使得晶体结构更容易形成氧缺陷,有利于氧离子的导通,修饰后的钙钛矿将表现出更好的催化效果。因此,在LaCoO3的晶格中引入其他阳离子是提高其催化性能的重要手段之一。
发明内容
本发明的目的在于提供一种A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用,采用简单的溶胶-凝胶法对钴酸镧进行A、B位Ce,Al元素共掺杂诱导氧空位缺陷,并对其进行抗菌活性评价。通过改变金属元素的掺杂量,对基体内部电子结构以及光催化活性位点进行调控,提高光响应能力和光生电子-空穴的分离效率以达到最佳的抗菌活性,安全环保。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法,包括以下步骤:
步骤一:按金属离子摩尔比为La,Ce:Co,Al=1:1依次称取六水合硝酸镧La(NO3)3·6H2O,六水合硝酸铈Ce(NO3)3·6H2O,九水合硝酸铝Al(NO3)3·9H2O,六水合硝酸钴Co(NO3)2·6H2O溶解于50mL的去离子水中搅拌30~60min,记为A溶液;以总金属离子:柠檬酸=1:1~2的摩尔比条件下,将柠檬酸C6H8O7溶解于40mL的去离子水中搅拌30~60min,记为B溶液;
步骤二:将A,B溶液缓慢混合并将其放置在85℃水浴锅中搅拌处理,直至溶胶形成湿凝胶,将所制备的湿凝胶在温度为50~120℃环境中加热15~24h形成无定形前体,将烘干后的样品经过煅烧、研磨,即得到一系列La1-xCexCo1-yAlyO3纳米颗粒,其中,y=0~0.5;x=0~0.2。
进一步地,所述步骤二中煅烧温度范围为500~900℃且保温时间为2~5h。
如上述任一种制备方法制备的A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料。
进一步地,铈,铝元素共掺杂诱导氧空位钴酸镧的形貌为纳米颗粒且尺寸在20~50nm。
进一步地,铈,铝元素共掺杂钴酸镧具有丰富的氧空位缺陷。
如上述任一种的A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料在环境污染和医疗方面的应用。
与现有技术相比,本发明具有如下有益效果:
本发明所制备的纳米抗菌材料具有安全环保、抗菌力强、持久力好等优点;采用本发明通过对钴酸镧进行A、B位铈,铝元素共掺杂诱导氧空位制备的纳米抗菌材料,在可见光照射下1mg/mL LaCoO3、LaCo0.9Al0.1O3和La0.9Ce0.1Co0.9Al0.1O3的抗菌效率分别为52%、79.9%和98.8%。因此,在A、B位共掺杂的La0.9Ce0.1Co0.9Al0.1O3纳米材料具有良好的可见光增强抗菌性能。
附图说明
图1为LaCo1-yAlyO3(y=0,0.1,0.3,0.5)纳米材料的X射线衍射(XRD)图谱及紫外-可见吸收光谱;
图2为La1-xCexCo0.9Al0.1O3(x=0.05,0.10,0.15,0.2)纳米材料的X射线衍射(XRD)图谱及LaCoO3和La1-xCexCo0.9Al0.1O3(x=0,0.05,0.1,0.15,0.2)样品的紫外-可见吸收光谱;
图3为LaCoO3,LaCo0.9Al0.1O3和La0.9Ce0.1Co0.9Al0.1O3纳米材料O1s的XPS光谱及LaCoO3和La1-xCexCo0.9Al0.1O3(x=0,0.1)纳米材料的EPR信号;
图4为La0.9Ce0.1Co0.9Al0.1O3纳米材料的TEM、HRTEM及EDS图谱;
图5为大肠杆菌空白对照样;
图6为La0.9Ce0.1Co0.9Al0.1O3纳米材料在黑暗环境下处理大肠杆菌后的生长情况照片;
图7为La0.9Ce0.1Co0.9Al0.1O3纳米材料在光照环境下处理大肠杆菌后的生长情况照片。
具体实施方式
以下结合实施例和附图对本发明的具体内容做进一步详细解释说明。
实施例1
步骤一:将0.390g六水合硝酸镧(La(NO3)3·6H2O),0.043g六水合硝酸铈(Ce(NO3)3·6H2O),0.038g九水合硝酸铝(Al(NO3)3·9H2O),0.262g六水合硝酸钴(Co(NO3)2·6H2O)溶解于50mL的去离子水中搅拌30min,记为A溶液。将0.461g柠檬酸(C6H8O7)溶解于40mL的去离子水中搅拌30min,记为B溶液。
步骤二:将A,B溶液缓慢混合并将其放置在85℃的水浴锅中搅拌处理,直至溶胶形成湿凝胶。再将所制备的湿凝胶在温度为120℃环境中加热24h形成无定形前体。将烘干后的样品经过煅烧、研磨,即得到La0.9Ce0.1Co0.9Al0.1O3纳米颗粒。
实施例2
步骤一:将0.779g六水合硝酸镧(La(NO3)3·6H2O),0.086g六水合硝酸铈(Ce(NO3)3·6H2O),0.076g九水合硝酸铝(Al(NO3)3·9H2O),0.524g六水合硝酸钴(Co(NO3)2·6H2O)溶解于50mL的去离子水中搅拌40min,记为A溶液。将0.922g柠檬酸(C6H8O7)溶解于40mL的去离子水中搅拌40min,记为B溶液。
步骤二:将A,B溶液缓慢混合并将其放置在85℃的水浴锅中搅拌处理,直至溶胶形成湿凝胶。再将所制备的湿凝胶在温度为120℃环境中加热24h形成无定形前体。将烘干后的样品经过煅烧、研磨,即得到La0.9Ce0.1Co0.9Al0.1O3纳米颗粒。
对比例1
步骤一:将4.330g六水合硝酸镧(La(NO3)3·6H2O),2.910g六水合硝酸钴(Co(NO3)2·6H2O)溶解于50mL的去离子水中搅拌50min,记为A溶液。将4.611g柠檬酸(C6H8O7)溶解于40mL的去离子水中搅拌50min,记为B溶液。
步骤二:将A,B溶液缓慢混合并将其放置在85℃的水浴锅中搅拌处理,直至溶胶形成湿凝胶。再将所制备的湿凝胶倒入培养皿中,置于加热鼓风箱中,在温度为100℃环境中加热24h形成无定形前体。将烘干后的样品经过煅烧、研磨,即得到LaCoO3纳米颗粒。
对比例2
步骤一:将2.165g六水合硝酸镧(La(NO3)3·6H2O),0.188g九水合硝酸铝(Al(NO3)3·9H2O),1.309g六水合硝酸钴(Co(NO3)2·6H2O)溶解于50mL的去离子水中搅拌30min,记为A溶液。将2.306g柠檬酸(C6H8O7)溶解于40mL的去离子水中搅拌30min,记为B溶液。
步骤二:将A,B溶液缓慢混合,将其放置在85℃的水浴锅中搅拌处理,直至溶胶形成湿凝胶。再将所制备的湿凝胶倒入培养皿中,置于加热鼓风箱中,在温度为120℃环境中加热18h形成无定形前体。将烘干后的样品经过煅烧、研磨,即得到LaCo0.9Al0.1O3纳米颗粒。
图1至图7为LaCo1-yAlyO3及La1-xCexCo1-yAlyO3纳米材料的结构表征结果。图1为LaCo1-yAlyO3(y=0,0.1,0.3,0.5)纳米抗菌材料的XRD图谱及紫外-可见吸收光谱;
从XRD图谱中可以观察到LaCo0.5Al0.5O3、LaCo0.7Al0.3O3、LaCo0.9Al0.1O3、LaCoO3纳米抗菌材料,在2θ=23.2°,33.3°,40.6°,47.5°和59.0°等出现了明显的钙钛矿结构的(012),(104),(202),(024),(214)衍射晶面,即所制备的材料与菱方相LaCoO3标准样品(JCPDSNo:48-0123)的相吻合。在其紫外-可见吸收光谱中,相比于纯相LaCoO3,掺杂Al之后的样品整体的吸光强度都有所增强。纯相LaCoO3的吸收边带出现在紫外光区域,而随着Al元素掺杂量的增加,吸收边带从紫外光区域扩展到可见光区域,且在Al掺杂量为0.1时其吸光强度最高。
图2为La1-xCexCo0.9Al0.1O3(x=0.05,0.10,0.15,0.2)纳米抗菌材料的XRD图谱及LaCoO3和La1-xCexCo0.9Al0.1O3(x=0,0.05,0.1,0.15,0.2)样品的紫外-可见吸收光谱;在XRD图谱中,La1-xCexCo0.9Al0.1O3也出现了相应的菱方相钙钛矿LaCoO3衍射峰(JCPDS No:48-0123)。随着掺杂量的增加,衍射峰的衍射强度逐渐降低,表明Ce元素的成功掺杂。从紫外-可见吸收光谱可以看出;双元素掺杂之后的LaCoO3样品对于紫外-可见光的吸收能力都明显大于纯相LaCoO3纳米材料。当Ce的掺杂量小于0.1时,随着Ce掺杂量的增多,光吸收强度逐渐增强。在Ce=0.1时,其光吸收强度最高,且光吸收范围可以扩展到可见光区域。其可能是因为Ce部分取代La的位置,产生晶格缺陷,并且增强了电子从O 2p轨道的转移。当Ce掺杂量大于0.1时,光吸收强度又开始降低。结合XRD分析可知,这是因为当Ce掺杂量大于0.1时,钴酸镧的晶体结构已被破坏。
图3为LaCoO3,LaCo0.9Al0.1O3,和La0.9Ce0.1Co0.9Al0.1O3纳米材料O1s的XPS光谱及LaCoO3和La1-xCexCo0.9Al0.1O3(x=0,0.1)样品的EPR信号;XPS光谱中O1s的高分辨图谱中显示了氧的三种化学状态,528.9eV(O1)对应样品的晶格氧,531.4eV(O2)归属于氧空位,533.2eV(O3)为表面吸附氧。随着Al,Ce元素含量的引入,样品中O2与O1的面积积分比值增大,表明了氧空位浓度的增大。从LaCoO3和La1-xCexCo0.9Al0.1O3(x=0,0.1)样品的EPR信号结果可知,g-因子=2.001处证实了氧空位峰,且随着Al,Ce元素的逐一引入,氧空位信号强度不断增强。
图4为La0.9Ce0.1Co0.9Al0.1O3纳米材料的TEM、HRTEM及EDS图谱;所制备的钙钛矿型La0.9Ce0.1Co0.9Al0.1O3的形貌为20~50nm的纳米颗粒且存在部分团聚的现象。另外,La0.9Ce0.1Co0.9Al0.1O3的高分辨TEM(图4(c))中存在明显的晶格条纹,晶面间距(0.323nm)与LaCoO3的(012)相对应。此外,样品的EDS图谱(图e~i)表明,La(青色),Ce(黄色),Co(紫色),Al(红色),O(绿色)元素分布均匀,与XRD的结果一致。即,La0.9Ce0.1Co0.9Al0.1O3纳米颗粒制备成功。
图5到图7为La0.9Ce0.1Co0.9Al0.1O3纳米材料对大肠杆菌的抗菌效果;图5为大肠杆菌空白对照样;图6为La0.9Ce0.1Co0.9Al0.1O3纳米材料在黑暗环境下处理大肠杆菌后的菌落图;图7为La0.9Ce0.1Co0.9Al0.1O3纳米材料在光照环境下处理大肠杆菌后的菌落图;如图5可知,未经样品纳米材料处理的大肠杆菌生长良好。在黑暗条件下,La0.9Ce0.1Co0.9Al0.1O3纳米材料处理的大肠杆菌也表现出一定的抗菌性能。与对照组相比,可见光照射下La0.9Ce0.1Co0.9Al0.1O3处理后大肠杆菌菌落数量明显减少且其抗菌效率可达98.8%。这说明Al、Ce元素共掺杂的纳米材料具有良好的光响应性,在可见光激发下能够产生大量的活性氧,从而达到了更好的抗菌效果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法,其特征在于,包括以下步骤:
步骤一:按金属离子摩尔比为La,Ce:Co,Al=1: 1依次称取六水合硝酸镧La(NO3)3·6H2O,六水合硝酸铈Ce(NO3)3∙6H2O,九水合硝酸铝Al(NO3)3∙9H2O,六水合硝酸钴Co(NO3)2∙6H2O溶解于50 mL的去离子水中搅拌30~60 min,记为A溶液;以总金属离子:柠檬酸=1:1~2的摩尔比条件下,将柠檬酸C6H8O7溶解于40 mL的去离子水中搅拌30~60 min,记为B溶液;
步骤二:将A,B溶液缓慢混合并将其放置在85 ℃水浴锅中搅拌处理,直至溶胶形成湿凝胶,将所制备的湿凝胶在温度为50~120 ℃环境中加热15~24 h形成无定形前体,将烘干后的样品经过煅烧、研磨,即得到一系列La1-xCexCo1-yAlyO3纳米颗粒,其中,y=0~0.5; x=0~0.2。
2.根据权利要求1所述的A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法,其特征在于,所述步骤二中煅烧温度范围为500~900 ℃且保温时间为2~5 h。
3.如权利要求1或2所述的制备方法制备的A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料
4.根据权利要求3所述A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料,其特征在于:铈,铝元素共掺杂诱导氧空位钴酸镧的形貌为纳米颗粒且尺寸在20~50 nm。
5.如权利要求4所述的A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料,其特征在于,铈,铝元素共掺杂钴酸镧具有丰富的氧空位缺陷。
6.如权利要求3~5任一项所述的A、B位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料在环境污染和医疗方面的应用。
CN202310002236.8A 2023-01-03 2023-01-03 一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用 Pending CN116060017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310002236.8A CN116060017A (zh) 2023-01-03 2023-01-03 一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310002236.8A CN116060017A (zh) 2023-01-03 2023-01-03 一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116060017A true CN116060017A (zh) 2023-05-05

Family

ID=86170993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310002236.8A Pending CN116060017A (zh) 2023-01-03 2023-01-03 一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116060017A (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180016B1 (en) * 1999-08-25 2001-01-30 Watervisions International, Inc. Microbiological water filtering
US6350421B1 (en) * 1998-08-24 2002-02-26 Dmc2 Degussa Metals Catalysts Cerdec Ag Nitrogen oxide storage material and nitrogen oxide storing catalyst prepared therefrom
JP2006089796A (ja) * 2004-09-22 2006-04-06 Japan Fine Ceramics Center 耐酸化性ユニット及び耐酸化性コーティング材
KR20060112871A (ko) * 2005-04-28 2006-11-02 임익모 토르말린, 은나노입자 및 천연향료를 함유하는 살균세척용조성물
CN101422733A (zh) * 2008-12-05 2009-05-06 厦门大学 一种碳掺杂钙钛矿型光催化剂及其制备方法
KR20100093957A (ko) * 2009-02-17 2010-08-26 삼성전자주식회사 연료극 물질, 그의 제조방법 및 이를 포함하는 고체 산화물연료전지
CN102923811A (zh) * 2012-11-12 2013-02-13 青岛科技大学 一种微波协同钙钛矿催化降解高浓度有机废水的方法
CN104316570A (zh) * 2014-10-22 2015-01-28 华中科技大学 一种掺杂钴酸镧纳米棒阵列气敏传感器的制备方法
CN104689828A (zh) * 2015-02-12 2015-06-10 柳州豪祥特科技有限公司 介孔氧化铝催化剂的制备方法
US20150244001A1 (en) * 2012-10-19 2015-08-27 Danmarks Tekniske Universitet Method and an electrode produced by infiltration
CN105688918A (zh) * 2016-01-18 2016-06-22 常州大学 一种粘土-钙钛矿复合材料的制备方法及其应用
CN107078309A (zh) * 2014-07-21 2017-08-18 Lg燃料电池系统股份有限公司 用于燃料电池电极的组合物
US20180141028A1 (en) * 2016-11-23 2018-05-24 Jiefeng Lin Catalyst for high temperature steam reforming
CN111054352A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于pta氧化尾气净化的整体式非贵金属催化剂及其制备方法
CN112110497A (zh) * 2020-09-28 2020-12-22 中国科学技术大学 一种镧系金属掺杂钴酸镧型纳米管材料及其制备方法、以及电解水制氢的方法
CN115155603A (zh) * 2022-08-04 2022-10-11 中国石油大学(北京) 一种双金属元素共掺杂的镧基钙钛矿氧化物催化剂及其制备方法和应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350421B1 (en) * 1998-08-24 2002-02-26 Dmc2 Degussa Metals Catalysts Cerdec Ag Nitrogen oxide storage material and nitrogen oxide storing catalyst prepared therefrom
US6180016B1 (en) * 1999-08-25 2001-01-30 Watervisions International, Inc. Microbiological water filtering
JP2006089796A (ja) * 2004-09-22 2006-04-06 Japan Fine Ceramics Center 耐酸化性ユニット及び耐酸化性コーティング材
KR20060112871A (ko) * 2005-04-28 2006-11-02 임익모 토르말린, 은나노입자 및 천연향료를 함유하는 살균세척용조성물
CN101422733A (zh) * 2008-12-05 2009-05-06 厦门大学 一种碳掺杂钙钛矿型光催化剂及其制备方法
KR20100093957A (ko) * 2009-02-17 2010-08-26 삼성전자주식회사 연료극 물질, 그의 제조방법 및 이를 포함하는 고체 산화물연료전지
US20150244001A1 (en) * 2012-10-19 2015-08-27 Danmarks Tekniske Universitet Method and an electrode produced by infiltration
CN102923811A (zh) * 2012-11-12 2013-02-13 青岛科技大学 一种微波协同钙钛矿催化降解高浓度有机废水的方法
CN107078309A (zh) * 2014-07-21 2017-08-18 Lg燃料电池系统股份有限公司 用于燃料电池电极的组合物
CN104316570A (zh) * 2014-10-22 2015-01-28 华中科技大学 一种掺杂钴酸镧纳米棒阵列气敏传感器的制备方法
CN104689828A (zh) * 2015-02-12 2015-06-10 柳州豪祥特科技有限公司 介孔氧化铝催化剂的制备方法
CN105688918A (zh) * 2016-01-18 2016-06-22 常州大学 一种粘土-钙钛矿复合材料的制备方法及其应用
US20180141028A1 (en) * 2016-11-23 2018-05-24 Jiefeng Lin Catalyst for high temperature steam reforming
CN111054352A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于pta氧化尾气净化的整体式非贵金属催化剂及其制备方法
CN112110497A (zh) * 2020-09-28 2020-12-22 中国科学技术大学 一种镧系金属掺杂钴酸镧型纳米管材料及其制备方法、以及电解水制氢的方法
CN115155603A (zh) * 2022-08-04 2022-10-11 中国石油大学(北京) 一种双金属元素共掺杂的镧基钙钛矿氧化物催化剂及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIU JUNLI ET AL.: "Theory-guided doping of LaCoO3 nanoparticles for enhanced antimicrobial performance", 《CHEMICAL ENGINEERING JOURNAL》, vol. 464, 1 April 2023 (2023-04-01), pages 1 - 12 *
LIU T . ET AL.: "Bactericidal efficacy of three parameters of Nd:YAP laser irradiation against Enterococcus faecalis compared with NaOCl irrigation", 《LASERS IN MEDICAL SCIENCE》, vol. 34, no. 2, 15 March 2019 (2019-03-15), pages 359 - 366 *
SOREN S ET AL.: "Evaluation of the antimicrobial potential of cerium-based perovskite (CeCuO3) synthesized by a hydrothermal method", 《NEW JOURNAL OF CHEMISTRY》, vol. 46, no. 40, 17 October 2022 (2022-10-17), pages 19147 - 19152 *
张凯涛: "改性钴酸镧基钙钛矿纳米复合材料的制备及光驱动抗菌性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, 15 April 2024 (2024-04-15), pages 020 - 196 *
王艳等: "负载型LaCoO3催化剂用于消除柴油车Soot的研究", 《金属功能材料》, vol. 24, no. 06, 15 December 2017 (2017-12-15), pages 12 - 17 *

Similar Documents

Publication Publication Date Title
Ismael Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: a review
Liu et al. Recent advances in synthesis and applications of clay-based photocatalysts: a review
Xinshu et al. Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation
Hashemzadeh et al. Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr (VI) reduction and methyl orange decolorization under visible light irradiation
Duan et al. Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity
CN107029770B (zh) 一种亚稳相铋氧化物的制备方法及其在光催化降解有机污染物中的应用
Janani et al. Visible light driven photocatalytic activity and efficient antibacterial activity of ZnFe2O4 decorated CdO nanohybrid heterostructures synthesized by ultrasonic-assisted method
CN113731430B (zh) 双Z型CuO/CuBi2O4/Bi2O3复合光催化剂及其制备方法和应用
CN108786827B (zh) 一种复合双Z型光催化剂BiFeO3/CuBi2O4/BaTiO3及其制备方法和应用
Liu et al. Mesocrystalline TiO 2/sepiolite composites for the effective degradation of methyl orange and methylene blue
Wang et al. Synthesis and photocatalytic properties of new ternary Ni–Fe–Cr hydrotalcite-like compounds
Kardeş et al. CBD grown pure and Ce-doped ZnO nanorods: Comparison of their photocatalytic degrading efficiencies on AR88 azo dye under visible light irradiation
CN110227477B (zh) 一种钴掺杂铁酸铋系化合物三相复合催化剂的制备方法及其应用
Chen et al. Visible-light-driven decomposition of antibiotic oxytetracycline and disinfection of Escherichia coli using magnetically recyclable lanthanum-nitrogen co-doped titania/calcium ferrite/diatomite heterojunction material
Aejitha et al. Effect of La-doping on NiO photocatalyst for enhancing photocatalytic degradation performance under visible light irradiation: DFT calculations and degradation mechanism
Aamir et al. Binary metal doped and graphene anchored LaCrO3 perovskite with boost light harvesting properties for environmental remediation
CN110918106A (zh) 一种BiOBr/ZnO异质结型复合光催化剂及其制备方法
An et al. The multiple roles of rare earth elements in the field of photocatalysis
Chen et al. RETRACTED ARTICLE: Visible-Light-Driven Mitigation of Rhodamine B and Disinfection of E. coli Using Magnetic Recyclable Copper–Nitrogen Co-doped Titania/Strontium Ferrite/Diatomite Heterojunction Composite
CN116060017A (zh) 一种a、b位铈,铝元素共掺杂诱导氧空位钴酸镧纳米抗菌材料的制备方法及其应用
CN115779909B (zh) 一种富含氧空位且可磁性分离的钴掺杂铈铁氧化物催化剂及其制备方法
CN115069282B (zh) 一种铋酸铜/碳酸氧铋异质结光催化剂及制备方法和应用
CN111569895A (zh) 一种具有活化多种催化作用的纳米结构化催化剂及其应用
Piriyadharsini et al. Investigating photocatalytic degradation performance of biosynthesized cobalt oxide nanoparticles with its physiochemical properties
Whang et al. Effect of Co, Ga, and Nd additions on the photocatalytic properties of TiO 2 nanopowders

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination