CN116053305B - 一种具有双层异质结构的混合阳极GaN整流芯片及制备方法 - Google Patents

一种具有双层异质结构的混合阳极GaN整流芯片及制备方法 Download PDF

Info

Publication number
CN116053305B
CN116053305B CN202310040186.2A CN202310040186A CN116053305B CN 116053305 B CN116053305 B CN 116053305B CN 202310040186 A CN202310040186 A CN 202310040186A CN 116053305 B CN116053305 B CN 116053305B
Authority
CN
China
Prior art keywords
layer
metal electrode
gan
ohmic contact
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310040186.2A
Other languages
English (en)
Other versions
CN116053305A (zh
Inventor
王文樑
侯冬曼
周润杰
李国强
林廷钧
赖全光
肖嘉莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202310040186.2A priority Critical patent/CN116053305B/zh
Publication of CN116053305A publication Critical patent/CN116053305A/zh
Application granted granted Critical
Publication of CN116053305B publication Critical patent/CN116053305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种具有双层异质结构的混合阳极GaN整流芯片及制备方法,由下至上依次层叠设置衬底、GaN层、第一势垒层及第二势垒层,所述第一势垒层与GaN层形成异质结,所述第二势垒层与第一势垒层形成异质结,双层异质结形成双层二维电子气,实现电子气的展宽,所述第二势垒层的上表面设置阴极结构和肖特基混合阳极结构。本发明与传统的SBD整流芯片相比,具有低开启电压、高工作电流等优点。

Description

一种具有双层异质结构的混合阳极GaN整流芯片及制备方法
技术领域
本发明涉及二极管器件领域,特别涉及一种具有双层异质结构的混合阳极GaN整流芯片及制备方法。
背景技术
GaN是第三代宽禁带半导体的代表之一,正受到人们的广泛关注,其优越的性能主要表现在:高的临界击穿电场(~3.5×106V/cm)、高电子迁移率(~2000cm2/V·s)、高的二维电子气(2DEG)浓度(~1013cm2)、高的高温工作能力。GaN材料的禁带宽度高达3.4eV,3倍于Si材料的禁带宽度,2.5倍于GaAs材料,半导体材料的本征载流子浓度随禁带宽度和温度的增加而呈指数增长,因此,在一定的温度范围内,其半导体材料禁带宽度越大,便拥有越小的本征载流子浓度,这可以使器件具有非常低的泄漏电流。另外,氮化镓(GaN)材料化学性质稳定、耐高温、抗腐蚀,在高频、大功率、抗辐射应用领域具有先天优势。基于AlGaN/GaN异质结的高电子迁移率晶体管(HEMT)(或异质结场效应晶体管HFET,调制掺杂场效应晶体管MODFET)在半导体领域已经取得广泛应用。该类器件具有反向阻断电压高、正向导通电阻低、工作频率高等特性,因此可以满足系统对半导体器件更大功率、更高频率、更小体积工作的要求。
肖特基二极管在半导体领域占有极其重要的地位,近年来由于工艺和材料等的进步,基于氮化镓异质结材料的肖特基二极管已经取得了较大的发展。对于高效功率开关应用,开启电压是二极管的关键指标。传统的氮化镓异质结肖特基二极管(AlGaN/GaN SBD),由于肖特基势垒和AlGaN/GaN异质结的存在使得器件开启电压通常大于1V。为减小电力电子系统的功耗,提高系统效率,有必要减小二极管的开启电压。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种实现低开启电压及高工作电流的具有双层异质结构的混合阳极GaN整流芯片及制备方法。
本发明的目的通过以下技术方案实现:
一种具有双层异质结构的混合阳极GaN整流芯片,由下至上依次层叠设置衬底、GaN层、第一势垒层及第二势垒层,所述第一势垒层与GaN层形成异质结,所述第二势垒层与第一势垒层形成异质结,双层异质结形成双层二维电子气,实现电子气的展宽,所述第二势垒层的上表面设置阴极结构和肖特基混合阳极结构。
进一步,所述第一势垒层为Al0.2Ga0.8N层,所述第二势垒层为Al0.3Ga0.7N层。
进一步,Al0.2Ga0.8N层厚度为20~25nm,Al0.3Ga0.7N层厚度为10~15nm。
进一步,所述阴极结构在第二势垒层上表面形成欧姆接触的第一金属电极。
进一步,所述肖特基混合阳极结构包括欧姆接触结构及肖特基接触结构,所述肖特基接触结构为在距离GaN层上表面2nm处形成肖特基接触的第三金属电极,所述欧姆接触结构为在第二势垒层上形成欧姆接触的第二金属电极。
进一步,所述第二金属电极与第三金属电极之间进行电气连接,两者之间保持相同电位。
进一步,在外延层器件的表面沉积钝化层。
进一步,第一金属电极及第三金属电极之间的距离为10~15μm。
进一步,第一金属电极长度为8~10μm,厚度为30~35nm;第二金属电极长度为8~10μm,厚度为30~35nm,第三金属电极长度为5~7μm,厚度为58~63nm。
进一步,第三金属电极的长度为5~7μm,厚度为58~63nm。
一种制备所述的混合阳极GaN整流芯片的方法,包括如下步骤:
在外延高阻硅衬底,利用利用MOCVD设备在外延高阻衬底上依次生长GaN缓冲层、第一势垒层、第二势垒层得到外延片;
利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/6nmAl/6nmNi/15nmAu多金属层,形成欧姆接触的第一金属电极;
利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/6nmAl/6nmNi/15nmAu多金属层,形成欧姆接触的第二金属电极;
肖特基接触处通过光刻并利用电子束蒸镀制备肖特基接触,其结构为15nmNi/43nmAu,形成第三金属电极;
在外延器件的表面利用PECVD沉积钝化层,并且打孔使得阳极和阴极金属露出。
与现有技术相比,本发明具有以下优点和有益效果:
双层异质结构形成了双层的二维电子气,而且两层二维电子气之间的势垒层高度很低,电子可以较容易地穿过势垒层,从一个沟道运动到另一个沟道,实现了对电子气的展宽。多样的电子运动途径,对二维电子气的展宽有着极大的帮助,减少了电子的杂志散射,使得电子的迁移率得到了提升,在器件的参数上体现在电流的增大,串联电阻的减少,体现在正向工作电流方面,与传统的AlGaN/GaN SBD整流芯片相比,上升了近两个数量级。
混合阳极结构巧妙借鉴HEMT的工作原理,器件的开启电压不在依赖于阳极肖特基势垒高度,而取决于沟道二维电子气的导通与截止,即沟道的阈值电压,体现在开启电压方面,与传统的AlGaN/GaN SBD整流芯片相比,减小了1V。该混合结构AlGaN/GaN肖特基二极管突破了传统AlGaN/GaN肖特基二极管的工作机制,对AlGaN/GaN肖特基二极管研究具有重要的参考价值。
本发明提出的具有双层异质结构的混合阳极GaN整流芯片与传统的SBD整流芯片相比,具有低开启电压(0.2V)、高工作电流(相较于传统的AlGaN/GaN SBD整流芯片上升了近两个数量级)等优点。
附图说明
图1为本发明一种具有双层异质结构的混合阳极GaN整流芯片结构示意图;
图2为本发明在衬底表面外延GaN层结构示意图;
图3为本发明在GaN层表面外延生长一层Al0.2Ga0.8N层示意图;
图4为本发明在Al0.2Ga0.8N层表面外延生长一层Al0.3Ga0.7N层示意图;
图5为本发明在Al0.3Ga0.7N层表面生长两个欧姆接触的结构示意图;
图6为本发明刻蚀Al0.3Ga0.7N层和Al0.2Ga0.8N层并淀积肖特基接触阳极电极的结构示意图;
图7为本发明在Al0.3Ga0.7N层生长钝化层并且在电极阴阳极上方打孔的结构示意图;
图8为常规AlGaN/GaN SBD整流芯片结构示意图;
图9为本发明在Al0.3Ga0.7N层厚度为10nm和Al0.2Ga0.8N层厚度为20nm时,与常规AlGaN/GaN SBD的Al0.3Ga0.7N层厚度为30nm时的IV特性曲线。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本发明的整流芯片的结构如图1所示,本发明提出的是一种具有双层异质结构的混合阳极GaN整流芯片。在本发明提出的具有双层异质结构的混合阳极GaN整流芯片中,Al0.2Ga0.8N层厚度为20nm,Al0.3Ga0.7N层厚度为10nm。
所述混合阳极GaN整流芯片由下至上依次层叠设置的衬底1、GaN层2和第一势垒层即Al0.2Ga0.8N层3,第二势垒层即Al0.3Ga0.7N层4、阴极结构、混合阳极结构及钝化层;所述阴极结构和混合阳极结构分别位于器件两端;所述阴极结构是由在Al0.3Ga0.7N层的上层形成欧姆接触的第一金属电极5构成;所述混合阳极结构包括欧姆接触结构和肖特基接触结构,所述欧姆接触结构由在Al0.3Ga0.7N上层形成欧姆接触的第二金属电极6构成,所述肖特基接触结构为在距离GaN层2上层2nm处形成肖特基接触的第三金属电极7构成,该第二金属电极6与第三金属电极7之间进行电气连接,两者之间保持相同电位;所述钝化层8由淀积在Al0.3Ga0.7N层4表面的SiN层构成。其中,所述Al0.2Ga0.8N层3与GaN层2形成异质结,Al0.3Ga0.7N层4与Al0.2Ga0.8N层3形成异质结。
进一步的,所述衬底1采用的材料为硅、蓝宝石,碳化硅和氮化镓中的一种,本实施例中采用高阻硅。
进一步的,GaN层2厚度为2~4μm。
进一步的,Al0.2Ga0.8N层3厚度为20~25nm,Al0.3Ga0.7N层4厚度为10~15nm。
进一步的,欧姆接触的第一金属电极5为Cr、Ti、Al、Au、Ag、Pt中的一种或者两种以上;欧姆接触的第二金属电极6为Cr、Ti、Al、Au、Ag、Pt中的一种或者两种以上。
进一步的,所述肖特基接触的第三金属电极7为Ni、Au中的一种或者两种。
进一步的,欧姆接触的第一金属电极及第二金属电极直接垫积在Al0.3Ga0.7N层4上方。
进一步的,肖特基接触的第三金属电极7凹槽刻蚀到距离Al0.3Ga0.7N层4上方2nm处。
进一步的,欧姆接触的第一金属电极5长度为8~10μm,厚度为30~35nm;欧姆接触的第二金属电极6长度为8~10μm,厚度为30~35nm。
进一步的,所述肖特基接触的第三金属电极7长度为5~7μm,厚度为58~63nm。
进一步的,阳极的肖特基第三金属电极7右端和阴极欧姆接触的第一金属电极5左端之间的距离为10~15μm。
上述方案中,衬底1和GaN层2之间可以存在其他的材料。
这样的双层异质结构形成了双层的二维电子气,而且两层二维电子气之间的势垒层高度很低,电子可以较容易地穿过势垒层,从一个沟道运动到另一个沟道,实现了对电子气的展宽。本发明上层的异质结是由Al0.3Ga0.7N和Al0.2Ga0.8N构成的,由于两种材料仅仅是组分上的改变,所以极化效应较小,势垒高度低。
多样的电子运动途径,对二维电子气的展宽有着极大的帮助,减少了电子的杂志散射,使得电子的迁移率得到了提升,在器件的参数上体现在电流的增大,串联电阻的减少。混合阳极结构巧妙借鉴HEMT的工作原理,器件的开启电压不在依赖于阳极肖特基势垒高度,而取决于沟道二维电子气的导通与截止,即沟道的阈值电压。该混合结构AlGaN/GaN肖特基二极管突破了传统AlGaN/GaN肖特基二极管的工作机制,对AlGaN/GaN肖特基二极管研究具有重要的参考价值。
实施例2
本实施例的一种具有双层异质结构的混合阳极GaN整流芯片的制备方法,如图2-图7所示,包括:
(1)取厚度为500μm的外延高阻硅衬底,利用MOCVD设备在外延高阻衬底1上依次生长GaN缓冲层2、Al0.2Ga0.8N层3、Al0.3Ga0.7N层4,得到外延片,所述GaN缓冲层2厚度为2μm、Al0.2Ga0.8N层厚度为20nm、Al0.3Ga0.7N层厚度为10nm;
(2)在欧姆接触第一金属电极5处利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/6nmAl/6nmNi/15nmAu多金属层,然后在N2气氛和850℃下退火30s,制备欧姆接触的第一金属电极5,欧姆接触的第一金属电极5的厚度为30nm;
(3)在欧姆接触的第二金属电极6处利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/6nmAl/6nmNi/15nmAu多金属层,然后在N2气氛和850℃下退火30s,制备欧姆接触的第二金属电极6,欧姆接触的第二金属电极6的厚度为30nm;
(4)在肖特基接触的第三金属电极7处通过光刻并利用电子束蒸镀制备肖特基接触,其结构为15nmNi/43nmAu,制备具有肖特基接触的第三金属电极7,肖特基接触第三金属电极7厚度为58nm;
(5)在外延器件的表面利用PECVD沉积30nm厚的SiN层构成钝化层8,并且打孔使得阳极和阴极金属露出;
本实施例为本发明的优选实施例。
图8为常规AlGaN/GaN SBD整流芯片结构示意图;
图9所示为本发明提出的,一种具有双层异质结构的混合阳极GaN整流芯片与常规AlGaN/GaN SBD整流芯片对比IV曲线图。本发明采用了双层变铝组分势垒层(分别为Al0.2Ga0.8N层和Al0.3Ga0.7N)异质结结构,形成了双层的二维电子气沟道。与常规AlGaN/GaNSBD对比,仿真结果表明,提出的具有双层异质结构的混合阳极GaN整流芯片,在开启电压方面,与传统的AlGaN/GaN SBD整流芯片相比,减小了1V;在正向工作电流方面,与传统的AlGaN/GaN SBD整流芯片相比,上升了近两个数量级。上述结果说明本发明提出的一种具有双层异质结构的混合阳极GaN整流芯片的有效性和可实施性。
实施例3
本实施例的一种具有双层异质结构的混合阳极GaN整流芯片的制备方法,包括:
(1)取厚度为500μm的外延高阻硅衬底,利用MOCVD设备在外延高阻衬底1上依次生长GaN缓冲层2、Al0.2Ga0.8N层3、Al0.3Ga0.7N层4,得到外延片,所述GaN缓冲层2厚度为3μm、Al0.2Ga0.8N层厚度为20nm、Al0.3Ga0.7N层厚度为10nm;
(2)在欧姆接触处利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/7nmAl/7nmNi/15nmAu多金属层,然后在N2气氛和850℃下退火30s,制备欧姆接触,形成第一金属电极5,欧姆接触的厚度为32nm;
(3)在欧姆接触处利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/7nmAl/7nmNi/15nmAu多金属层,然后在N2气氛和850℃下退火30s,制备欧姆接触的第二电极6,第二金属电极6的厚度为32nm;
(4)在肖特基接触处通过光刻并利用电子束蒸镀制备肖特基接触,其结构为16nmNi/44nmAu,制备具有肖特基接触的第三金属电极7,第三金属电极7厚度为60nm;
(5)在外延器件的表面利用PECVD沉积30nm厚的SiN层形成钝化层8,并且打孔使得阳极和阴极金属露出;
实施例4
本实施例的一种具有双层异质结构的混合阳极GaN整流芯片的制备方法,包括:
(1)取厚度为500μm的外延高阻硅衬底,利用MOCVD设备在外延高阻衬底上依次生长GaN缓冲层2、Al0.2Ga0.8N层3、Al0.3Ga0.7N层4,得到外延片,所述GaN缓冲层2厚度为4μm、Al0.2Ga0.8N势垒层厚度为20nm、Al0.3Ga0.7N势垒层厚度为10nm;
(2)在欧姆接触第一金属电极5处利用电子束蒸镀沉积欧姆接触,其结构为4nmTi/7nmAl/7nmNi/17nmAu多金属层,然后在N2气氛和850℃下退火30s,制备欧姆接触第一金属电极5,欧姆接触第一金属电极5的厚度为35nm;
(3)在欧姆接触第二金属电极6处利用电子束蒸镀沉积欧姆接触,其结构为4nmTi/7nmAl/7nmNi/17nmAu多金属层,然后在N2气氛和850℃下退火30s,制备欧姆接触第二金属电极6,欧姆接触第二金属电极6的厚度为35nm;
(4)在肖特基接触第三金属电极7处通过光刻并利用电子束蒸镀制备肖特基接触,其结构为17nmNi/45nmAu,制备具有肖特基接触电极第三金属电极7,肖特基接触第三金属电极7厚度为62nm;
(5)在外延器件的表面利用PECVD沉积30nm厚的SiN层,形成钝化层8,并且打孔使得阳极和阴极金属露出。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种具有双层异质结构的混合阳极GaN整流芯片,其特征在于,由下至上依次层叠设置衬底、GaN层、第一势垒层及第二势垒层,所述第一势垒层与GaN层形成异质结,所述第二势垒层与第一势垒层形成异质结,所述第二势垒层的上表面设置阴极结构和肖特基混合阳极结构;
所述第一势垒层为Al0.2Ga0.8N层,所述第二势垒层为Al0.3Ga0.7N层;
所述Al0.2Ga0.8N层厚度为20nm,Al0.3Ga0.7N层厚度为10nm;GaN层厚度为2~4μm;
整流芯片的开启电压为0.2V;
所述肖特基混合阳极结构包括欧姆接触结构及肖特基接触结构,所述肖特基接触结构为在距离GaN层上表面2nm处形成肖特基接触的第三金属电极,所述欧姆接触结构为在第二势垒层上形成欧姆接触的第二金属电极;
阴极欧姆接触的第一金属电极长度为8~10μm,厚度为30~35nm;欧姆接触的第二金属电极长度为8~10μm,厚度为30~35nm;
所述肖特基接触的第三金属电极长度为5~7μm,厚度为58~63nm;
阳极的肖特基第三金属电极和阴极欧姆接触的第一金属电极之间的距离为10~15μm;
双层异质结形成双层二维电子气,两层二维电子气之间的势垒层高度很低,电子较容易地穿过势垒层,从一个沟道运动到另一个沟道,电子运动途径多样化,实现了对电子气的展宽。
2.根据权利要求1所述的混合阳极GaN整流芯片,其特征在于,所述阴极结构在第二势垒层上表面形成欧姆接触的第一金属电极。
3.根据权利要求1所述的混合阳极GaN整流芯片,其特征在于,所述第二金属电极与第三金属电极之间进行电气连接,两者之间保持相同电位。
4.根据权利要求1-3任一项所述的混合阳极GaN整流芯片,其特征在于,在外延层器件的表面沉积钝化层。
5.一种制备权利要求1-4任一项所述的混合阳极GaN整流芯片的方法,其特征在于,包括如下步骤:
在外延高阻硅衬底,利用MOCVD设备在外延高阻衬底上依次生长GaN缓冲层、第一势垒层、第二势垒层得到外延片;
利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/6nmAl/6nmNi/15nmAu多金属层,形成欧姆接触的第一金属电极;
利用电子束蒸镀沉积欧姆接触,其结构为3nmTi/6nmAl/6nmNi/15nmAu多金属层,形成欧姆接触的第二金属电极;
肖特基接触处通过光刻并利用电子束蒸镀制备肖特基接触,其结构为15nmNi/43nmAu,形成第三金属电极;
在外延器件的表面利用PECVD沉积钝化层,并且打孔使得阳极和阴极金属露出。
CN202310040186.2A 2023-01-13 2023-01-13 一种具有双层异质结构的混合阳极GaN整流芯片及制备方法 Active CN116053305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310040186.2A CN116053305B (zh) 2023-01-13 2023-01-13 一种具有双层异质结构的混合阳极GaN整流芯片及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310040186.2A CN116053305B (zh) 2023-01-13 2023-01-13 一种具有双层异质结构的混合阳极GaN整流芯片及制备方法

Publications (2)

Publication Number Publication Date
CN116053305A CN116053305A (zh) 2023-05-02
CN116053305B true CN116053305B (zh) 2024-04-19

Family

ID=86117779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310040186.2A Active CN116053305B (zh) 2023-01-13 2023-01-13 一种具有双层异质结构的混合阳极GaN整流芯片及制备方法

Country Status (1)

Country Link
CN (1) CN116053305B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114320A (ja) * 2010-11-26 2012-06-14 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体電界効果トランジスタ
CN104241400A (zh) * 2014-09-05 2014-12-24 苏州捷芯威半导体有限公司 场效应二极管及其制备方法
CN110233103A (zh) * 2018-03-06 2019-09-13 英飞凌科技奥地利有限公司 具有深载流子气接触结构的高电子迁移率晶体管
KR20190112526A (ko) * 2018-03-26 2019-10-07 홍익대학교 산학협력단 이종접합 전계효과 트랜지스터 및 그 제조 방법
CN114497207A (zh) * 2020-11-12 2022-05-13 中国科学院宁波材料技术与工程研究所 GaN基双沟道HEMT器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114320A (ja) * 2010-11-26 2012-06-14 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体電界効果トランジスタ
CN104241400A (zh) * 2014-09-05 2014-12-24 苏州捷芯威半导体有限公司 场效应二极管及其制备方法
CN110233103A (zh) * 2018-03-06 2019-09-13 英飞凌科技奥地利有限公司 具有深载流子气接触结构的高电子迁移率晶体管
KR20190112526A (ko) * 2018-03-26 2019-10-07 홍익대학교 산학협력단 이종접합 전계효과 트랜지스터 및 그 제조 방법
CN114497207A (zh) * 2020-11-12 2022-05-13 中国科学院宁波材料技术与工程研究所 GaN基双沟道HEMT器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射;张雪冰;刘乃漳;姚若河;;物理学报(15);全文 *

Also Published As

Publication number Publication date
CN116053305A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
KR102011761B1 (ko) 이중 금속의 부분 리세스된 전극을 갖는 GaN계 쇼트키 다이오드
CN104813479B (zh) 具有部分凹陷阳极的GaN基肖特基二极管
CN107978642B (zh) 一种GaN基异质结二极管及其制备方法
US20120091508A1 (en) Compound semiconductor device
US20240088284A1 (en) High electron mobility transistor (hemt) with a back barrier layer
CN109166929A (zh) 一种具有P型GaN帽层的GaN基肖特基势垒二极管
CN114823888A (zh) 高电子迁移率晶体管及其制作方法
CN108831932B (zh) 一种氮化镓横向mis-肖特基混合阳极二极管
CN110416318A (zh) 一种氮化镓基二极管结构及其制备方法
CN116053305B (zh) 一种具有双层异质结构的混合阳极GaN整流芯片及制备方法
CN114530492A (zh) 具有混合高k介质场板的横向氮化镓肖特基二极管结构
JP4925596B2 (ja) 窒化物半導体装置
CN116936645B (zh) 一种p沟道肖特基势垒二极管及其制作方法
CN118016665B (zh) 集成SBD的SiC衬底上增强型GaN HEMT器件
CN216849947U (zh) 具有混合高k介质场板的横向氮化镓肖特基二极管结构
CN114400259B (zh) 结势垒肖特基二极管
US20120007053A1 (en) Nitride-based semiconductor device and method for manufacturing the same
CN109346529A (zh) 一种具有复合势垒层的GaN基肖特基势垒二极管
CN114823850B (zh) P型混合欧姆接触的氮化镓晶体管
CN118099226A (zh) 一种具有混合阳极结构的肖特基势垒二极管及其制备方法和应用
US20220005939A1 (en) Semiconductor device and fabrication method thereof
CN116936644A (zh) 一种n极性肖特基势垒二极管及其制备方法和应用
CN118099225A (zh) 一种多阳极肖特基势垒二极管及其制备方法和应用
CN117525121A (zh) 一种基于ito欧姆接触的整流芯片及其制备方法
CN115084280A (zh) 一种极化结与极化掺杂结构的双沟道sbd器件与制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant