CN116034176A - 成型性优异的高强度钢板及其制造方法 - Google Patents

成型性优异的高强度钢板及其制造方法 Download PDF

Info

Publication number
CN116034176A
CN116034176A CN202180043856.5A CN202180043856A CN116034176A CN 116034176 A CN116034176 A CN 116034176A CN 202180043856 A CN202180043856 A CN 202180043856A CN 116034176 A CN116034176 A CN 116034176A
Authority
CN
China
Prior art keywords
steel sheet
less
temperature
cooling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180043856.5A
Other languages
English (en)
Inventor
金成圭
朴俊澔
徐昌孝
崔乙镕
韩箱浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN116034176A publication Critical patent/CN116034176A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明提供一种作为适合用于汽车结构部件等的材料的具有低屈强比和高强度,并通过提高延展性,从而成型性优异的高强度钢板及其制造方法。

Description

成型性优异的高强度钢板及其制造方法
技术领域
本发明涉及一种适合于汽车用材料的钢,具体地涉及一种成型性优异的高强度钢板及其制造方法。
背景技术
近年来,由于各种环境管制和能源使用管制,为了提高燃油效率或耐久性,需要使用高强度钢。
特别地,随着汽车的冲击稳定性管制的扩大,就用于提高车身的耐冲击性的骨架件(member)、座椅导轨(seat rail)和柱(pillar)等结构部件而言,作为其材料应用强度优异的高强度钢。这种汽车部件根据安全性和设计而具有复杂的形状,并且主要使用冲压模具来成型并制造,因此需要高强度和高水平的成型性。
但是,钢的强度越高,具有有利于吸收冲击能量的特征,但通常强度增加时,伸长率会降低,从而具有成型加工性降低的问题。此外,在屈服强度过高的情况下,成型时模具中引入的材料减少,因此存在成型性差的问题。
另外,代表性的用作汽车用材料的高强度钢包括双相钢(Dual PhaseSteel,DP钢)、相变诱导塑性钢(Transformation Induced Plasticity Steel,TRIP钢)、复相钢(Complex Phase Steel,CP钢)、铁素体-贝氏体钢(Ferrite Bainite steel,FB钢)等。
作为超高张力钢的DP钢具有约0.5至0.6水平的低屈强比,因此易于加工,具有仅次于TRIP钢的高伸长率的优点。因此,主要应用于外门、座椅导轨、安全带、悬架、臂、轮盘等。
TRIP钢具有0.57至0.67范围的屈强比,从而具有成型性(高延展性)优异的特征,因此适于骨架件、车顶、安全带、保险杠等需要高成型性的部件。
CP钢具有低屈强比、高伸长率和弯曲加工性,因此应用于侧板、车身底部加强件等,并且FB钢具有优异的扩孔性,因此主要应用于悬架下臂或轮盘等。
其中,DP钢主要由延展性优异的铁素体和强度高的马氏体两相组织组成,并且可能会存在微量的残余奥氏体。这种DP钢的屈服强度低且拉伸强度高,从而具有低屈强比(Yield Ratio,YR)、高加工硬化率、高延展性、连续屈服行为、常温抗时效性、烘烤硬化性等优异的特性。
但是,为了确保拉伸强度为980MPa以上的超高强度,需要增加有利于提高强度的如马氏体相的硬质相(hard phase)的分数,在这种情况下,屈服强度上升,因此存在冲压成型中产生裂纹(crack)等缺陷的问题。
通常,汽车用DP钢是通过炼钢和连铸工艺制作板坯后,对该板坯进行[加热-粗轧-热精轧]以获得热轧卷材后经过退火工艺来制造最终产品。
其中,退火工艺主要是制造冷轧钢板时进行的工艺,冷轧钢板如下制造:通过对热轧卷材进行酸洗以去除表面氧化皮,并在常温下以规定的压下率进行冷轧,然后经过退火工艺和根据需要进行的进一步地平整轧制工艺来制造。
就经冷轧而获得的冷轧钢板(冷轧材料)而言,其本身是非常硬化的状态,不适合制作需要加工性的部件,因此可以通过作为后续工艺的在连续退火炉内的热处理进行软化来提高加工性。
作为一个实例,退火工艺是在加热炉内将钢板(冷轧材料)加热至约650-850℃后保持一定时间,从而可以通过再结晶和相变现象来降低硬度并改善加工性。
就未经退火工艺的钢板而言,其硬度特别是表面硬度高且加工性不足,但进行退火工艺的钢板具有再结晶组织,从而硬度、屈服点、抗拉强度降低,因此可以有助于提高加工性。
另外,作为降低DP钢的屈服强度的代表性的方法,在连续退火时使铁素体的尺寸粗大地形成并使奥氏体的尺寸细小且均匀地形成是有利的。
如图1所示,连续退火工艺是经过退火炉内的[加热带-均热带-缓冷带-急冷带-过时效带]来进行,此时,在加热带中通过充分的再结晶来形成微细铁素体相,之后,在均热带中由微细铁素体相形成细小且均匀的奥氏体相,然后在冷却过程中由奥氏体形成微细的贝氏体相和马氏体相的同时使铁素体相再结晶。
作为用于提高高强度钢的加工性的现有技术,专利文献1提出了一种根据组织微细化的方法,具体地,公开了一种使粒径为1-100nm的微细析出铜颗粒分散在以马氏体相为主体的复相钢板的组织内部的方法。然而,该技术需要添加2-5%的Cu以获得良好的微细析出相颗粒,因此可能会发生由如上所述的大量的Cu引起的红热脆性,并且存在制造成本过度增加的问题。
专利文献2公开了一种高强度钢板,所述钢板以铁素体为基体组织,并具有包含2-10面积%的珠光体(pearlite)的组织,并且通过添加碳·氮化物形成元素(例如,Ti等)来实现析出强化和晶粒微细化。在该技术的情况下,虽然具有相对于低制造成本可以容易实现高强度的优点,但由于微细析出导致再结晶温度急剧上升,因此为了确保充分的再结晶引起的高延展性,可知在连续退火时需要以相当高的温度进行加热。此外,通过在铁素体基体上析出碳·氮化物来强化钢的现有的析出强化钢,在获得600MPa以上的高强度的方面存在局限性。
另外,专利文献3公开了如下技术:将含有0.18%以上的碳的钢材进行连续退火并水冷至常温,然后以120-300℃的温度进行过时效处理1-15分钟,以确保体积率为80-97%的马氏体。这种技术虽然有利于提高屈服强度,但水冷时由于钢板的宽度方向和长度方向的温度偏差导致卷材的形状质量变差,因此存在辊轧成形等加工时根据部位的材质缺陷、操作性降低等问题。
鉴于上述现有技术,为了提高高强度钢的成型性,需要开发一种可以降低屈服强度但提高延展性的方法。
(专利文献1)日本公开专利公报第2005-264176号
(专利文献2)韩国公开专利公报第2015-0073844号
(专利文献3)日本公开专利公报第1992-289120号
发明内容
要解决的技术问题
本发明的一个方面提供一种作为适合用于汽车结构部件等的材料的具有低屈强比和高强度,并通过提高延展性,从而成型性优异的高强度钢板及其制造方法。
本发明的技术问题不限定于上述内容。本发明的技术问题可以从本说明书的整体内容理解,本发明所述技术领域的技术人员可以容易地理解本发明的附加技术问题。
技术方案
本发明的一个方面提供一种成型性优异的高强度钢板,以重量%计,所述钢板包含:碳(C):0.05-0.15%、硅(Si):0.5%以下(0%除外)、锰(Mn):2.0-3.0%、钛(Ti):0.2%以下(0%除外)、铌(Nb):0.1%以下(0%除外)、钒(V):0.2%以下(0%除外)、钼(Mo):0.5%以下(0%除外)、磷(P):0.1%以下、硫(S):0.01%以下、余量的Fe及不可避免的杂质,
微细组织由面积分数为20-45%的铁素体、余量的马氏体及贝氏体组成,所述铁素体中未再结晶铁素体是以25面积%以下的分数存在,并且平均纵横比(长径:短径)为1.1至2:1。
本发明的另一个方面提供一种制造成型性优异的高强度钢板的方法,其特征在于,包括以下步骤:将具有上述合金组成的钢坯进行加热;以Ar3以上至1000℃以下的出口侧温度将加热的所述钢坯进行热精轧,从而制造热轧钢板;在400-700℃的温度范围内,将所述热轧钢板进行收卷;所述收卷后冷却至常温;所述冷却后,以40-70%的压下率进行冷轧,从而制造冷轧钢板;将所述冷轧钢板进行连续退火;所述连续退火后,进行一次冷却,冷却至650-700℃的温度范围;以及所述一次冷却后,进行二次冷却,冷却至300-580℃的温度范围,
所述连续退火步骤在设有加热带、均热带和冷却带的设备中进行,并且所述加热带的终止温度比所述均热带的终止温度高10℃以上。
有益效果
根据本发明,可以提供一种具有高强度且通过确保低屈强比和高延展性来提高成型性的钢板。
如上所述,成型性得到提高的本发明的钢板在冲压成型时可以防止裂纹或褶皱等加工缺陷,因此具有适合应用于需要加工成复杂形状的结构用等的部件的效果。
附图说明
图1是常规的连续退火工艺(CAL)的热处理的示意图。
图2是根据本发明的一个方面的连续退火工艺(CAL)的热处理示意图,并且与图1的图表(灰色线)一同示出。
图3示出根据本发明的一个实施方案的比较例的微细组织照片。
图4示出根据本发明的一个实施方案的发明例的微细组织照片。
图5示出本发明的一个实施方案的铁素体晶粒的纵横比的示意图。
最佳实施方式
本发明的发明人为了开发具有可以适合用于汽车用材料中需要加工成复杂形状的部件等的水平的成型性的材料而进行了深入的研究。
特别地,本发明人确认到可以通过诱导对钢的延展性产生影响的软质相的充分的再结晶,并确保有利于确保强度的硬质相的微细化和分布度来实现目标,从而完成了本发明。
以下,对本发明进行详细的说明。
以重量%计,根据本发明的一个方面的成型性优异的高强度钢板可以包含:碳(C):0.05-0.15%、硅(Si):0.5%以下(0%除外)、锰(Mn):2.0-3.0%、钛(Ti):0.2%以下(0%除外)、铌(Nb):0.1%以下(0%除外)、钒(V):0.2%以下(0%除外)、钼(Mo):0.5%以下(0%除外)、磷(P):0.1%以下、硫(S):0.01%以下。
以下,对如上所述限制本发明中所提供的钢板的合金组成的理由进行详细的说明。
另外,除非另有特别说明,否则本发明中的各元素的含量是以重量为基准,并且组织的比例是以面积为基准。
碳(C):0.05-0.15%
碳(C)是为了固溶强化而添加的重要的元素,这种C与析出元素结合而形成微细析出物,因此有助于提高钢的强度。
当C的含量超过0.15%时,淬透性增加,并且由于制造钢时在冷却过程中形成马氏体,因此强度过度增加,另外存在引起伸长率的降低的问题。此外,由于焊接性差,具有加工成部件时产生焊接缺陷的可能性。另外,当所述C的含量小于0.05%时,难以确保目标水平的强度。
因此,所述C的含量可以为0.05-0.15%。所述C的含量更优选可以为0.06%以上,并且可以为0.13%以下。
硅(Si):0.5%以下(0%除外)
硅(Si)是铁素体稳定化元素,通过促进铁素体相变,有利于确保目标水平的铁素体分数。此外,由于固溶强化能力优异,因此对提高铁素体的强度方面有效,并且是不降低钢的延展性的同时有用地确保强度的元素。
当这种Si的含量超过0.5%时,固溶强化效果过度,反而会降低延展性,并且引发表面氧化皮缺陷,从而对镀覆表面质量产生不良影响。此外,存在阻碍化学处理性的问题。
因此,所述Si的含量可以为0.5%以下,并且0%可以除外。所述Si的含量更优选可以为0.1%以上。
锰(Mn):2.0-3.0%
锰(Mn)是使钢中的硫(S)析出为MnS,从而防止FeS的形成所导致的热脆性,并且有利于钢的固溶强化的元素。
当这种Mn的含量小于2.0%时,不仅无法获得上述的效果,而且难以确保目标水平的强度。另一方面,当Mn的含量超过3.0%时,发生焊接性和热轧性等问题的可能性高,并且由于淬透性的增加而更容易形成马氏体,因此可能会降低延展性。此外,组织内形成过多的Mn带(Band)(Mn氧化物带),因此存在发生如加工裂纹的缺陷的风险变高的问题。并且,退火时表面溶出Mn氧化物,因此存在大幅阻碍镀覆性的问题。
因此,所述Mn的含量可以为2.0-3.0%,更优选可以为2.2-2.8%。
钛(Ti):0.2%以下(0%除外)
钛(Ti)是形成微细碳化物的元素,有助于确保屈服强度和拉伸强度。此外,Ti是使钢中的N析出为TiN,从而具有抑制钢中不可避免地存在的Al引起的AlN的形成的效果,因此具有连续铸造时降低产生裂纹的可能性的效果。
当这种Ti的含量超过0.2%时,析出粗大的碳化物,并且由于钢中的碳含量的减少,具有强度和伸长率减少的可能性。此外,具有连续铸造时引发喷嘴堵塞的可能性。因此,所述Ti的含量可以为0.2%以下,并且0%除外。
铌(Nb):0.1%以下(0%除外)
铌(Nb)是在奥氏体晶界偏析而在退火热处理时抑制奥氏体晶粒的粗大化,并形成微细的碳化物,从而有助于提高强度的元素。
当这种Nb的含量超过0.1%时,析出粗大的碳化物,由于钢中的碳含量的减少,强度和伸长率可能会差,并且存在制造成本增加的问题。因此,所述Nb的含量可以为0.1%以下,并且0%除外。
钒(V):0.2%以下(0%除外)
钒(V)是与碳或氮反应而形成碳·氮化物的元素,并且是在低温下形成微细的析出物而提高钢的屈服强度的重要的元素。
当这种V的含量超过0.2%时,析出粗大的碳化物,由于钢中的碳含量减少,强度和伸长率可能会差,并且存在制造成本增加的问题。因此,所述V的含量可以为0.2%以下,并且0%除外。
钼(Mo):0.5%以下(0%除外)
钼(Mo)是在钢中形成碳化物的元素,并且是当与上述Ti、Nb、V等碳·氮化物形成元素复合添加时,保持微细的析出物的尺寸,从而有利于提高钢的屈服强度和拉伸强度的元素。此外,Mo延迟奥氏体转变为珠光体的同时具有微细化铁素体和提高强度的效果。这种Mo通过提高钢的淬透性而在晶界(grainboundary)微细地形成马氏体,因此具有可以控制屈强比的优点。但是,所述Mo为高价的元素,随着其含量增加,制造成本增加,存在不利于经济的问题,因此优选适当地控制其含量。
为了充分地获得上述效果,最多可以添加0.5%的Mo。当所述Mo的含量超过0.5%时,引起合金成本的急剧增加,从而降低经济性,并且由于过度的晶粒微细化效果和固溶强化效果,反而存在降低钢的延展性的问题。
因此,所述Mo的含量可以为0.5%以下,并且0%除外。
磷(P):0.1%以下
磷(P)是固溶强化效果最大的置换型元素,并且是改善面内各向异性且不会大幅降低成型性的同时有利于确保强度的元素。但是,当添加过多的这种P时,产生脆性破坏的可能性大幅增加,导致热轧过程中产生板坯的板断裂的可能性增加,并且存在阻碍镀覆表面特性的问题。
因此,本发明中可以将所述P的含量控制在0.1%以下,考虑到不可避免地被添加的水平,0%可以除外。
硫(S):0.01%以下
硫(S)是钢中的杂质元素,并且是不可避免地添加的元素,由于阻碍延展性,因此优选将硫的含量尽可能控制为低的含量。特别地,S存在提高产生红热脆性的可能性的问题,因此优选将硫的含量控制在0.01%以下。但考虑到制造过程中不可避免地被添加的水平,0%可以除外。
本发明的其余成分为铁(Fe)。但是,可能会在常规的制造过程中不可避免地从原料或周围环境混入并不期望的杂质,因此不能排除该杂志。这些杂质对于常规的制造过程的技术人员而言是众所周知的,因此本说明书中对其所有内容不作特别说明。
具有上述合金组成的本发明的钢板作为微细组织由铁素体和作为硬质相的马氏体相和贝氏体相组成,此时,所述铁素体的面积分数可以为20-45%,除此之外的余量的组织可以为硬质相。
当所述铁素体相的分数小于20%时,无法充分确保钢的延展性,从而成型性变差,另一方面,当所述铁素体相的分数超过45%时,硬质相的分数相对变低,从而无法确保目标水平的强度和成型性。
以上述分数范围包含铁素体相的本发明的钢板,优选地,在所述铁素体中未再结晶铁素体是以25面积%以下的分数存在,并且平均纵横比为1.1至2:1。
当所述未再结晶铁素体的分数超过25面积%时,延展性降低,难以确保目标水平的成型性。
另外,即使所述未再结晶铁素体分数以25面积%以下存在,当平均纵横比超过2(长径:短径=超过2:1)时,存在局部的变形和应力集中在如上所述延伸的未再结晶铁素体而导致延展性变差的问题。虽然不需要特别限制未再结晶铁素体的平均纵横比的下限,但考虑到加工引起的未再结晶铁素体的形状时,可以将所述平均纵横比的下限设定为1.1以上。
本发明中,未再结晶铁素体的分数是以上述铁素体分数为基准表示的,而不是以钢板的总微细组织分数为基准表示。
其中,纵横比是指相对于轧制方向的晶体粒度的纵向(长径)与横向(短径)之比(长径:短径),例如,如图5所示。图5的(a)是示出再结晶铁素体的晶体粒度的示意图,图5的(b)是示出未再结晶铁素体的晶体粒度的示意图。此外,在本发明中,纵横比值是指未再结晶铁素体晶粒的平均纵横比值。
另外,就组成所述硬质相的马氏体相和贝氏体相而言,虽然对各自的分数不作具体的限定,但为了确保拉伸强度为980MPa以上的超高强度,在总组织分数中,可以以10面积%以下(0%除外)的分数包含马氏体相。
具有上述微细组织的本发明的钢板的拉伸强度为980MPa以上,屈服强度为680MPa以下,伸长率(总伸长率)为13%以上,屈强比为0.8以下,因此可以具有高强度、高延展性和低屈强比的特性。
以下,对根据本发明的另一个方面的制造成型性优异的高强度钢板的方法进行详细的说明。
简而言之,本发明可以经过[钢坯加热-热轧-收卷-冷轧-连续退火]的工艺制造所期望的钢板,下面对各个工艺进行详细的说明。
[钢坯的加热]
首先,可以准备满足上述合金组成的钢坯,然后对其进行加热。
本工艺是为了顺利进行后续的热轧工艺,并且充分获得所期望的钢板的物理性能而进行。在本发明中,对这种加热工艺的条件不作特别限制,只要是通常的条件即可。作为一个实例,可以在1100-1300℃的温度范围内进行加热工艺。
[热轧]
可以将如上所述加热的钢坯进行热轧以制造热轧钢板,此时,可以以Ar3以上至1000℃以下的出口侧温度进行热精轧。
当所述热精轧时的出口侧温度低于Ar3时,热变形阻力急剧增加,并且热轧卷材的上(top)部、下(tail)部和边缘(edge)部成为单相区,因此面内各向异性增加,从而具有成型性变差的可能性。另外,当所述热精轧时的出口侧温度超过1000℃时,轧制负荷相对减少而有利于生产性,但具有产生厚的氧化皮的可能性。
更具体地,所述热精轧可以在760-940℃的温度范围内进行。
[收卷]
可以将如上所述制造的热轧钢板收卷成卷材形状。
所述收卷可以在400-700℃的温度范围内进行,当收卷温度低于400℃时,由于形成过多的马氏体或贝氏体,引起热轧钢板的强度的过度增加,因此在之后的冷轧时可能发生负荷引起的形状缺陷等问题。另一方面,当收卷温度超过700℃时,由于表面氧化皮的增加,存在酸洗性变差的问题。
[冷却]
优选地,将收卷的所述热轧钢板以0.1℃/秒(s)以下(0℃/秒除外)的平均冷却速度冷却至常温。此时,收卷的所述热轧钢板可以经过输送、放置等过程后进行冷却,冷却之前的工艺并不限定于此。
如上所述,通过以规定的速度对收卷的热轧钢板进行冷却,可以获得微细地分散有作为奥氏体的成核位点(site)的碳化物的热轧钢板。
[冷轧]
可以将如上所述收卷的热轧钢板进行冷轧以制造冷轧钢板。
此时,所述冷轧可以以40-70%的冷轧压下率进行。当所述冷轧压下率小于40%时,再结晶驱动力减弱,在获得良好的再结晶晶粒方面存在困难,另一方面,当所述冷轧压下率超过70%时,在钢板的边缘部产生裂纹的可能性高,并且具有轧制负荷急剧增加的可能性。
本发明可以在所述冷轧前对热轧钢板进行酸洗处理,并且所述酸洗处理工艺可以通过常规方法来进行。
[连续退火]
优选地,将如上所述制造的冷轧钢板进行连续退火处理。作为一个实例,所述连续退火处理可以在连续退火炉(CAL)中进行。
通常,连续退火炉(CAL)由[加热带-均热带-冷却带(缓冷带和急冷带)-过时效带]构成,并且经过如下工艺:将冷轧钢板装入连续退火炉中,然后在加热带中加热至特定温度,并且在达到目标温度后在均热带中保持规定时间。
在本发明中,为了获得作为最终微细组织的再结晶铁素体以及微细的马氏体相和贝氏体相,要建立一种连续退火时在由[加热带-均热带]组成的加热区间可以向钢板施加充分的热输入的方法。
具体而言,常规的连续退火工艺是将加热带的最终温度和均热带的温度控制为相同的温度,然而本发明具有独立地控制加热带的温度和均热带的温度的特征。
即,在常规的连续退火工艺中,将均热带的起始温度和终止温度控制为相同的温度,这意味着加热带的终止温度和均热带的起始温度是相同的。
与此不同,本发明通过将加热带的温度控制为高于均热带的温度,可以进一步促进在加热区间的铁素体的再结晶,由此诱导微细的铁素体的形成,因此在铁素体晶界形成的奥氏体也可以形成得微细且均匀。
优选地,本发明将所述加热带的终止温度控制为比所述均热带的终止温度高10℃以上,更优选可以满足以下关系式。
[关系式]
10≤加热带的终止温度-均热带的终止温度(℃)≤40
即,本发明通过将加热带的终止温度控制为高于均热带的终止温度,但当其温差低于10℃时,铁素体的再结晶延迟,因此难以获得微细且均匀的奥氏体相,另一方面,当其温差超过40℃时,由于过度的温差,无法充分地进行后续的冷却工艺,因此具有在最终组织中形成粗大的马氏体相或粗大的贝氏体相的可能性。
在本发明中,所述加热带的终止温度可以为790-830℃,当所述加热带的终止温度低于790℃时,无法施加用于再结晶的充分的热输入,另一方面,当所述加热带的终止温度超过830℃时,生产性降低,并且形成过多的奥氏体相,从而后续冷却后硬质相的分数大大增加,因此具有钢的延展性变差的可能性。
此外,所述均热带的终止温度可以为760-790℃,当所述均热带的终止温度低于760℃时,在加热带的终止温度下需要过多的冷却,因此不利于经济,并且用于再结晶的热量可能会不充分。另一方面,当所述均热带的终止温度超过790℃时,奥氏体的分数过大,在冷却过程中硬质相的分数超过,因此具有成型性降低的可能性。
另外,在本发明中,所述加热带的终止温度和均热带的终止温度之间的温差可以通过从完成加热带工艺的时间点至完成均热带工艺的时间点关闭加热手段的方式来实现,作为一个实例,可以在该区间进行炉冷处理。
[分段冷却]
通过将如上所述经过连续退火处理的冷轧钢板进行冷却来形成所期望的组织,此时,优选通过分段(stepwise)进行冷却。
在本发明中,所述分段冷却可以由一次冷却-二次冷却组成,具体地,所述连续退火后可以以1-10℃/秒的平均冷却速度进行一次冷却,冷却至650-700℃的温度范围,然后可以以5-50℃/秒的平均冷却速度进行二次冷却,冷却至300-580℃的温度范围。
此时,与二次冷却相比,一次冷却进行得更慢,从而可以抑制作为后续的相对急冷区间的二次冷却时的因急剧的温度下降引起的板形状缺陷。
当所述一次冷却时的终止温度低于650℃时,由于过低的温度,碳的扩散活动度低,铁素体内的碳浓度增加,另一方面,由于奥氏体内的碳浓度变低,硬质相的分数过大,从而屈强比增加,由此加工时产生裂纹的倾向增加。此外,由于均热带和缓冷带的冷却速度过快,发生板的形状变得不均匀的问题。
当所述终止温度超过700℃时,存在后续冷却(二次冷却)时需要过快的冷却速度的缺点。此外,当所述一次冷却时的平均冷却速度超过10℃/秒时,可能无法充分的进行碳的扩散。另外,考虑到生产性,可以以1℃/秒以上的平均冷却速度进行一次冷却工艺。
如上所述,在完成上述一次冷却后,可以以一定以上的冷却速度进行急冷。此时,当二次冷却终止温度低于300℃时,在钢板的宽度方向和长度方向上产生冷却偏差,具有板形状变差的可能性,另一方面,当所述二次冷却终止温度超过580℃时,无法充分地确保硬质相,从而强度可能会降低。此外,当所述二次冷却时的平均冷却速度小于5℃/秒时,具有硬质相的分数过高的可能性,另一方面,当所述二次冷却时的平均冷却速度超过50℃/秒时,具有硬质相反而不充分的可能性。
另外,根据需要,在完成所述分段冷却后,可以进行过时效处理。
所述过时效处理是在终止所述二次冷却后保持一定时间的工艺,沿着卷材的宽度方向和长度方向进行均匀的热处理,从而具有提高形状质量的效果。为此,所述过时效处理可以进行200-800秒。
所述过时效处理的温度低于所述二次冷却终止温度,作为非限制性的实例,可以在280-400℃的温度范围内进行所述过时效处理。
如上所述制造的本发明的高强度钢板作为微细组织由硬质相和软质相组成,特别是通过优化的退火工艺,使铁素体的再结晶极大化,从而可以具有在最终再结晶的铁素体基体上均匀地分布有作为硬质相的贝氏体相和马氏体相的组织。
因此,本发明的钢板即使具有拉伸强度为980MPa以上的高强度,通过确保低屈强比和高延展性,可以确保优异的成型性。
以下,通过实施例对本发明进行更详细的说明。然而,这些实施例的记载仅仅是用于例示本发明的实施,本发明并不受限于这些实施例的记载。这是因为本发明的权利范围由权利要求书中记载的内容和由此合理推导的内容所决定。
具体实施方式
(实施例)
制造具有下表1中示出的合金组成的钢坯,然后在1200℃下将各个钢坯加热1小时,然后在880-920℃的精轧温度下进行热精轧以制造热轧钢板。之后,以0.1℃/秒的冷却速度将各个热轧钢板进行冷却并在650℃下进行收卷。之后,以50%的压下率将收卷的热轧钢板进行冷轧以制造冷轧钢板。以下表2中示出的温度条件,对所述各个冷轧钢板进行连续退火,然后进行分段冷却(1次冷却-2次冷却),然后在360℃下进行过时效处理520秒,从而制造最终钢板。
此时,分段冷却时的一次冷却是以3℃/秒的平均冷却速度进行,二次冷却是以20℃/秒的平均冷却速度进行。
观察如上所述制造的各个钢板的微细组织,并评价机械特性和镀覆特性,然后将其结果示于下表3中。
此时,对各个试片的拉伸试验是通过在与轧制方向垂直的方向上采集JIS 5号尺寸的拉伸试片后以0.01/秒的应变速率(strain rate)进行拉伸试验。
并且,组织相(phase)中未再结晶铁素体是通过硝酸乙醇(nital)蚀刻后以5000倍率通过SEM来观察。此时,从观察到的铁素体相的晶粒形状中,将常规的未再结晶铁素体中观察到的亚晶粒(sub grain)或沿着轧制方向延伸的颗粒分析为未再结晶铁素体,并测量其分数。对除此之外的相等也是通过硝酸乙醇蚀刻后利用SEM和图像分析仪(Imageanalyzer)测量各自的分数。
[表1]
Figure BDA0004007119760000151
[表2]
Figure BDA0004007119760000152
Figure BDA0004007119760000161
[表3]
Figure BDA0004007119760000162
如所述表1至表3所示,可以确认钢合金组成和制造条件特别是连续退火工艺均满足本发明中提出的条件的发明例1至发明例7中,形成了所期望的微细组织,因此具有高强度的同时具有优异的伸长率,从而可以确保成型性。
另一方面,制造钢板的工艺中,应用了与现有的连续退火工艺相同的连续退火工艺,即加热带的终止温度和均热带的终止温度应用相同温度的比较例1至比较例4、比较例8至比较例10的退火时铁素体的再结晶不充分,因此不满足本发明中所期望的物理性能。其中,退火温度相对低的比较例1至比较例2、比较例8至比较例9的伸长率差,与比较例1至比较例2相比,退火温度高的比较例3至比较例4和比较例10的屈服强度超过了目标水平。
制造钢板的工艺中的连续退火时的加热带的终止温度过高且与均热带的终止温度的温差为60℃的比较例5,没有形成充分的铁素体相,但形成了过多的硬质相(特别是贝氏体相),因此伸长率降低。
连续退火时的加热带的终止温度和均热带的终止温度的温差为20℃但均热带的终止温度过低的比较例6的伸长率也差。
比较例7是与加热带相比均热带的温度反而上升的情况,因此无法确保高延展性。
图3示出比较例2的微细组织照片,图4示出发明例2的微细组织照片。
比较例2中,可以确认形成了过多的未再结晶铁素体相,另一方面,发明例2中,可以确认在相对充分的分数的再结晶铁素体基体上形成了马氏体相和贝氏体相。

Claims (11)

1.一种成型性优异的高强度钢板,以重量%计,所述钢板包含:碳(C):0.05-0.15%、硅(Si):0.5%以下且0%除外、锰(Mn):2.0-3.0%、钛(Ti):0.2%以下且0%除外、铌(Nb):0.1%以下且0%除外、钒(V):0.2%以下且0%除外、钼(Mo):0.5%以下且0%除外、磷(P):0.1%以下、硫(S):0.01%以下、余量的Fe及不可避免的杂质,
微细组织由面积分数为20-45%的铁素体、余量的马氏体及贝氏体组成,
所述铁素体中未再结晶铁素体是以25面积%以下的分数存在,并且平均纵横比即长径:短径为1.1至2:1。
2.根据权利要求1所述的成型性优异的高强度钢板,其中,所述马氏体的面积分数为10%以下且0%除外。
3.根据权利要求1所述的成型性优异的高强度钢板,其中,所述钢板的拉伸强度为980MPa以上,屈服强度为680MPa以下,伸长率为13%以上。
4.根据权利要求1所述的成型性优异的高强度钢板,其中,所述钢板的屈强比为0.8以下。
5.一种制造成型性优异的高强度钢板的方法,其特征在于,包括以下步骤:
将钢坯进行加热,以重量%计,所述钢坯包含:碳(C):0.05-0.15%、硅(Si):0.5%以下且0%除外、锰(Mn):2.0-3.0%、钛(Ti):0.2%以下且0%除外、铌(Nb):0.1%以下且0%除外、钒(V):0.2%以下且0%除外、钼(Mo):0.5%以下且0%除外、磷(P):0.1%以下、硫(S):0.01%以下、余量的Fe及不可避免的杂质;
以Ar3以上至1000℃以下的出口侧温度将加热的所述钢坯进行热精轧,从而制造热轧钢板;
在400-700℃的温度范围内,将所述热轧钢板进行收卷;
所述收卷后冷却至常温;
所述冷却后,以40-70%的压下率进行冷轧,从而制造冷轧钢板;
将所述冷轧钢板进行连续退火;
所述连续退火后,进行一次冷却,冷却至650-700℃的温度范围;以及
所述一次冷却后,进行二次冷却,冷却至300-580℃的温度范围,
其中,所述连续退火步骤在设有加热带、均热带和冷却带的设备中进行,并且所述加热带的终止温度比所述均热带的终止温度高10℃以上。
6.根据权利要求5所述的制造成型性优异的高强度钢板的方法,其中,所述加热带的终止温度和所述均热带的终止温度满足以下关系式:
[关系式]
10≤加热带的终止温度-均热带的终止温度≤40,其中,温度的单位为℃。
7.根据权利要求5所述的制造成型性优异的高强度钢板的方法,其中,所述加热带的终止温度为790-830℃,所述均热带的终止温度为760-790℃。
8.根据权利要求5所述的制造成型性优异的高强度钢板的方法,其中,所述将钢坯进行加热的步骤是在1100-1300℃的温度范围内进行。
9.根据权利要求5所述的制造成型性优异的高强度钢板的方法,其中,所述收卷后冷却的步骤是以0.1℃/秒以下且0℃/秒除外的平均冷却速度进行。
10.根据权利要求5所述的制造成型性优异的高强度钢板的方法,其中,所述一次冷却是以1-10℃/秒的平均冷却速度进行,
所述二次冷却是以5-50℃/秒的平均冷却速度进行。
11.根据权利要求5所述的制造成型性优异的高强度钢板的方法,其中,所述二次冷却后,还包括进行过时效处理的步骤,
所述过时效处理是进行200-800秒。
CN202180043856.5A 2020-06-17 2021-06-16 成型性优异的高强度钢板及其制造方法 Pending CN116034176A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2020-0073811 2020-06-17
KR1020200073811A KR102457019B1 (ko) 2020-06-17 2020-06-17 성형성이 우수한 고강도 강판 및 이의 제조방법
PCT/KR2021/007573 WO2021256862A1 (ko) 2020-06-17 2021-06-16 성형성이 우수한 고강도 강판 및 이의 제조방법

Publications (1)

Publication Number Publication Date
CN116034176A true CN116034176A (zh) 2023-04-28

Family

ID=79176345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180043856.5A Pending CN116034176A (zh) 2020-06-17 2021-06-16 成型性优异的高强度钢板及其制造方法

Country Status (6)

Country Link
US (1) US20230272500A1 (zh)
EP (1) EP4170055A1 (zh)
JP (1) JP2023530502A (zh)
KR (1) KR102457019B1 (zh)
CN (1) CN116034176A (zh)
WO (1) WO2021256862A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026921A (ja) * 1998-07-09 2000-01-25 Nkk Corp 連続焼鈍による缶用表面処理鋼板の原板の製造方法
US20030047257A1 (en) * 2000-05-31 2003-03-13 Chikara Kami Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US20110030854A1 (en) * 2008-01-31 2011-02-10 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
US20140205855A1 (en) * 2011-07-29 2014-07-24 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet excellent in impact resistance and manufacturing method thereof, and high-strength galvanized steel sheet and manufacturing method thereof
US20160355903A1 (en) * 2013-12-25 2016-12-08 Posco Apparatus for continuous annealing of strip and method for continuous annealing of same
CN108884536A (zh) * 2016-03-28 2018-11-23 Posco公司 屈服强度和延展性优异的高强度冷轧钢板、镀覆钢板及它们的制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528387B2 (ja) 1990-12-29 1996-08-28 日本鋼管株式会社 成形性及びストリップ形状の良好な超高強度冷延鋼板の製造法
JP4308689B2 (ja) 2004-03-16 2009-08-05 Jfeスチール株式会社 加工性の良好な高強度鋼およびその製造方法
KR101674751B1 (ko) 2013-12-20 2016-11-10 주식회사 포스코 구멍확장성이 우수한 석출강화형 강판 및 그 제조방법
JP6064896B2 (ja) 2013-12-27 2017-01-25 Jfeスチール株式会社 耐疲労き裂伝ぱ特性に優れた鋼材およびその製造方法並びに耐疲労き裂伝ぱ特性に優れた鋼材の判定方法
EP3434801B1 (en) * 2016-03-25 2021-09-08 Nippon Steel Corporation High strength steel sheet and high strength galvanized steel sheet
KR102020412B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 충돌특성 및 성형성이 고강도 강판 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026921A (ja) * 1998-07-09 2000-01-25 Nkk Corp 連続焼鈍による缶用表面処理鋼板の原板の製造方法
US20030047257A1 (en) * 2000-05-31 2003-03-13 Chikara Kami Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US20110030854A1 (en) * 2008-01-31 2011-02-10 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
US20140205855A1 (en) * 2011-07-29 2014-07-24 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet excellent in impact resistance and manufacturing method thereof, and high-strength galvanized steel sheet and manufacturing method thereof
US20160355903A1 (en) * 2013-12-25 2016-12-08 Posco Apparatus for continuous annealing of strip and method for continuous annealing of same
CN108884536A (zh) * 2016-03-28 2018-11-23 Posco公司 屈服强度和延展性优异的高强度冷轧钢板、镀覆钢板及它们的制造方法

Also Published As

Publication number Publication date
KR20210156098A (ko) 2021-12-24
KR102457019B1 (ko) 2022-10-21
US20230272500A1 (en) 2023-08-31
EP4170055A1 (en) 2023-04-26
WO2021256862A1 (ko) 2021-12-23
JP2023530502A (ja) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6893560B2 (ja) 降伏比が低く均一伸びに優れた焼戻しマルテンサイト鋼及びその製造方法
CN111511951B (zh) 碰撞特性和成型性优异的高强度钢板及其制造方法
KR101767780B1 (ko) 고항복비형 고강도 냉연강판 및 그 제조방법
CN116288009A (zh) 具有高强度和优异的耐久性的汽车用部件及其制造方法
KR101620744B1 (ko) 고항복비형 초고강도 냉연강판 및 그 제조방법
CN113802051A (zh) 一种塑性优异的超高强度钢及其制造方法
JP2023554277A (ja) 延性及び成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
KR102440772B1 (ko) 성형성이 우수한 고강도강판 및 그 제조방법
JP7357691B2 (ja) 超高強度冷延鋼板およびその製造方法
KR20230056822A (ko) 연성이 우수한 초고강도 강판 및 그 제조방법
CN111465710B (zh) 高屈强比型高强度钢板及其制造方法
CN116034176A (zh) 成型性优异的高强度钢板及其制造方法
KR102390816B1 (ko) 구멍확장성이 우수한 고강도 강판 및 그 제조방법
EP4375391A1 (en) High-strength steel sheet having excellent hole expandability and ductility and manufacturing method therefor
EP4261318A1 (en) High-strength steel sheet having excellent bendability and formability and method for manufacturing same
CN118103542A (zh) 扩孔性和延展性优异的高强度厚钢板及其制造方法
US20240141454A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
KR20240098246A (ko) 성형성이 우수한 초고강도 냉연강판 및 이의 제조방법
KR20240098907A (ko) 성형성 및 파괴저항성이 우수한 강판 및 그 제조방법
CN118202081A (zh) 耐碰撞性能和成型性优异的高强度钢板及其制造方法
CN118159679A (zh) 环保高强度高成型性钢板及其制造方法
CN118318059A (zh) 弯曲特性优异的超高强度钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination