CN116020421A - 一种基于天然膨胀石墨的三维多孔油水分离材料制备方法 - Google Patents

一种基于天然膨胀石墨的三维多孔油水分离材料制备方法 Download PDF

Info

Publication number
CN116020421A
CN116020421A CN202211447440.2A CN202211447440A CN116020421A CN 116020421 A CN116020421 A CN 116020421A CN 202211447440 A CN202211447440 A CN 202211447440A CN 116020421 A CN116020421 A CN 116020421A
Authority
CN
China
Prior art keywords
oil
sponge
pdms
water separation
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211447440.2A
Other languages
English (en)
Inventor
韦奇
王静豪
王亚丽
李群艳
崔素萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202211447440.2A priority Critical patent/CN116020421A/zh
Publication of CN116020421A publication Critical patent/CN116020421A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种基于膨胀石墨的三维多孔油水分离材料制备方法属于油水分离技术领域,材料是以聚二甲基硅氧烷(PDMS)为粘结剂,将膨胀石墨(EG)成型为块状三维多孔海绵体的油水分离材料。其制备方法包括原料的均匀混合,低温固化,造孔剂的去除三步,制备方法简单,成本低。本发明公开的三维多孔材料对油/有机溶剂的吸附量高,最高吸附量达到13g/g,可通过吸附作用实现油水分离,并以简单挤压的方式实现重复利用,循环使用10次后油水分离性能基本没有变化。所获三维多孔材料还可通过重力作用进行重油/水的分离,重油的渗透速率高达17914L/m2·h,在表面喷涂一层纳米二氧化硅疏水层可以进一步提高油水分离效率。

Description

一种基于天然膨胀石墨的三维多孔油水分离材料制备方法
技术领域
本发明属于油水分离技术领域,涉及一种环境友好、简单易行的石墨基三维多孔油水分离材料的制备方法。
背景技术
海洋石油泄漏事故频繁发生,加上由于食品、钢铁、石油、制造业等行业的发展而产生的油/水混合物产量的急剧增加,大量漏油事件和含油废水的直接排放不仅破坏了生态系统平衡,威胁人类健康,而且造成宝贵资源的浪费。油/水混合物的有效分离已成为全世界研究人员的一项紧迫挑战。
吸附法是一种常见的处理含油废水和海洋石油泄漏的方法。常见的吸附剂为多孔材料,根据不同油水分离材料的形态,可以分为粉体或者纤维体的一维油水分离材料、网状或者膜状的二维油水分离材料和块状的三维油水分离材料。膨胀石墨的孔隙率高,比表面积大,表面自由能相对较低,化学稳定性好,对油类物质具有良好的吸附性,然而其粉体或纤维状形态使得它们强度低,回收困难,重复利用性差,从而限制它们在油水分离特别是连续分离或高压环境下分离中的应用。为了提高膨胀石墨的分离效率,拓宽其应用领域,有必要将膨胀石墨加工成型为三维多孔材料。然而,目前制备三维多孔材料也面临诸如原材料昂贵,制备方法复杂,且使用的化学试剂对环境产生一定的污染等问题。因此,采用环境友好、简单易行的方法来制备出膨胀石墨基三维多孔结构油水分离材料具有重要的科学意义和实际应用价值。
发明内容
本发明公开了一种环境友好、简单易行的膨胀石墨(EG)基三维多孔油水分离材料的制备方法。聚二甲基硅氧烷(PDMS)不仅价格低廉、环境友好,而且容易固化,具有很好的成型和粘接作用。EG具有多层次、丰富的孔结构和巨大的孔隙体积,PDMS聚合物可以充当“粘合剂”,实现有三维多孔结构EG颗粒的永久连接,从而得到形状可控的多孔海绵体。并针对多孔海绵体孔隙率偏低的问题,可以通过添加盐颗粒造孔剂解决,从而获得到更高油类物质吸附量的油水分离材料,这些材料可对轻油或重油进行吸附分离,对重油/水混合物进行重力分离。通过挤压方式可实现油类的回收和油水分离材料的重复利用。
本发明按照如下步骤进行:
一种疏水亲油的三维多孔材料,其特征在于由膨胀石墨和PDMS组成;
EG充当骨架材料,PDMS聚合物充当“粘合剂”将EG成型为块状多孔海绵,PDMS的化学稳定性好,而且能够降低多孔材料的表面能,进一步提高三维多孔海绵体的疏水性;
以NaCl颗粒作为造孔剂,去除多孔海绵中的造孔剂能够增加其孔隙率,从而提高多孔海绵体对油类的吸附能力;
(1)将1.1重量份的PDMS溶于1.8重量份的正己烷中,将PDMS稀释质量浓度为38%的均匀的稀释液,配置两份这样的稀释液。
(2)将步骤(1)中的稀释液,一份加入0.183重量份的EG混合均匀,使EG颗粒和溶液接触。另一份加入8重量份NaCl混合后再加入0.183重量份EG颗粒混合均匀,然后将两种混合物转移到模具中;
(3)将步骤(2)的两种混合物在100℃固化,未加入盐颗粒的固化时间为2h,加入盐颗粒的固化时间为4h。脱模后得到不含NaCl的海绵体A和含盐颗粒的海绵体B;
(4)将步骤(3)的海绵体B在水中浸泡以去除盐颗粒,期间更换3次水,去除盐颗粒后在100℃下干燥,得到除盐后的海绵体B。
(5)将1.1重量份PDMS溶于6.6重量份正己烷中得到质量浓度为14.3%的PDMS稀释液,再将0.2重量份的粒径为7-40nm疏水纳米二氧化硅颗粒加入PDMS稀释液中,搅拌均匀得到喷涂液。
(6)使用气压式喷枪向步骤(4)得到的海绵体表面均匀喷涂步骤(5)的喷涂液,然后固化后即得到顶部构筑SiO2@PDMS疏水层的海绵体C。
步骤4中,其特征在于所述的去除盐颗粒的条件为:在60℃水中浸泡,期间更换3次水,浸泡时间为48h,去除盐颗粒后在100℃条件下干燥。
步骤6中,所述的三维多孔海绵疏水化处理的方法,其特征在于通过气压喷枪完成,喷涂时间为20s,喷嘴到样品的距离20cm,使用气压式喷枪向步骤(4)得到的海绵体B表面均匀喷涂步骤(5)的喷涂液,然后在100℃条件下固化2h后即得到顶部构筑SiO2@PDMS疏水层的海绵体C。
与现有技术相比,本发明具备的技术优点体现在:
本发明制备出一种低成本,孔隙率高且能重复利用的三维多孔油水分离材料。本发明所使用的设备仅有干燥箱,不需要进行复杂的化学反应,也不需要复杂的设备,制作流程简单。
本发明制备的多孔海绵具有较高的吸油能力,对不同的油类物质和有机溶剂的吸附量达到3-13g/g。
三维多孔海绵体具有良好的重复利用能力,可用挤压的方式,将吸附质挤出而实现油类或者有机溶剂的回收,并实现海绵体的重复利用。经过10次吸附-解附循环过程,海绵体的质量损失率仅为7%。
海绵体B可以通过重力作用分离/回收油水混合物中的重油,重油(以三氯甲烷为重油,并用油红染料染为红色)的渗透通量高达17914L/m2·h,分离速率高,但10秒后水渗透下来。
构筑SiO2@PDMS疏水层的海绵体C可通过重力作用分离/回收油水混合物中的重油,重油(以三氯甲烷为重油,并用油红染料染为红色)的渗透通量为8957L/m2·h,且能长时间(1分钟)阻止水的渗透。
附图说明
图1.膨胀石墨(a),不含盐颗粒的多孔海绵体(b),和去除盐颗粒后的多孔海绵体(c),构筑疏水层的海绵体的(d)(e)SEM图片
图2.多孔海绵体A和多孔海绵体B对不同油类和有机溶剂的吸附能力。
图3.多孔海绵体A和多孔海绵体B的循环吸附能力。
图4.EG,PDMS,多孔海绵体A和多孔海绵体B的FTIR光谱
图5a多孔海绵体B和图5b多孔海绵体C用于重力分离油水混合物中的重油。图5a中黑色圈记表示油水分离成功10秒后渗透下来的水珠。
具体实施方式
下面对本发明实施例中的方案进行清楚、完整的描述,以及对部分表征结果进行展示。
实施例1
将1.1gPDMS溶解于1.8g的正己烷中,搅拌均匀得到PDMS稀释液,称取0.183gEG,加入到PDMS稀释液中,搅拌均匀,然后装入模具,在100℃下固化两个小时,脱模后即可得到三维多孔海绵体。
实施例2
将1.1gPDMS溶解于1.8g的正己烷中,搅拌均匀得到PDMS稀释液,再加入8gNaCl,充分混合后再加入0.183gEG,搅拌均匀,然后装入模具,在100℃下固化四个小时,脱模后浸泡在60℃的水中48h去除盐颗粒,期间更换3次水,然后在干燥箱中干燥即可得到三维多孔海绵体。
实施例3
将1.1gPDMS溶解于1.8g的正己烷中,搅拌均匀,再加入8gNaCl,充分混合后再加入0.183gEG,搅拌均匀,然后装入模具中,在100℃下固化4h,脱模后浸泡在60℃的水中48h去除盐颗粒,期间更换3次水,然后在干燥箱中干燥得到海绵体B。1.1gPDMS溶于6.6g正己烷中得到PDMS稀释液,再将0.2g粒径为7-40nm的疏水气相纳米二氧化硅加入PDMS稀释液中,搅拌均匀得到喷涂液。固定喷枪到样品的距离为20cm,喷涂时间为20s,使用气压式喷枪向海绵体表面均匀喷涂喷涂液,然后在100℃条件下固化2h后即得到具有疏水层的海绵体C。将所获三维多孔海绵体B和海绵体C固定到上下通透的玻璃管上进行重油的油水分离实验,如图5所示。三氯甲烷在重力作用下快速流过三维多孔海绵体,海绵体B渗透通量为17914L/m2·h,海绵体C渗透通量为8597L/m2·h,而水被截留在三维多孔海绵体上方,实现油水分离。
图1扫描电镜是观察到的表面形貌,(a)为EG颗粒的微观形貌,(b)为海绵体A,(c)为海绵体B,(d)和(e)为海绵体C。可以观察到,海绵体C表面有一层致密的二氧化硅层。图2为多孔海绵体A和多孔海绵体B对不同油类和有机溶剂的吸附能力。其中海绵体B的吸附能力优于海绵体A。图3为以正己烷为油类物质,海绵体A和海绵体B的挤压吸附解附循环利用图,在10次的循环使用后,海绵体依然具有良好的吸附能力。图4为EG、PDMS、海绵体A和海绵体B的傅里叶变换红外衰减全反射光谱图,从EG颗粒的FTIR图谱中可以看出,没有出现明显的吸收峰。两种海绵体的FTIR图谱与PDMS的谱图一致。以790cm-1为中心的宽峰为Si-C键的伸缩振动,在1005cm-1处的特征峰为Si-O-Si键的伸缩振动,在2965cm-1处的吸收峰是因为-CH3键。图5a中的重油为三氯甲烷,用油红染为红色。通过重力分离方式用海绵体B分离重油/水,重油的渗透通量为17914L/m2·h,但10秒后水渗透下来,图中黑色圈记为渗透下来的水滴。图5b为采用海绵体C进行重油/水的重力分离,重油的渗透速率为8957L/m2·h,且能阻止水的渗透长达1分钟。

Claims (3)

1.一种基于膨胀石墨的三维多孔油水分离材料制备方法,其特征在于包含如下步骤:
步骤1:将1.1重量份的聚二甲基硅氧烷PDMS溶于1.8重量份的正己烷中,将PDMS稀释为质量浓度38%的均匀稀释液,配置两份这样的稀释液;
步骤2:将步骤(1)中的稀释液,其中一份加入0.183重量份的膨胀石墨EG混合均匀,使EG颗粒和稀释液接触;另一份加入8重量份NaCl混合后再加入0.183重量份EG颗粒混合均匀,然后将两种混合物转移到模具中;
步骤3:将步骤2的两种混合物在100℃固化,未加入盐颗粒的固化时间为2h,加入盐颗粒的固化时间为4h;脱模后得到不含NaCl的海绵体A和含盐颗粒的海绵体B;
步骤4:将步骤3的海绵体B在60℃的水中浸泡以去除盐颗粒,期间更换3次水,去除盐颗粒后在100℃干燥,得到除盐后的海绵体B;
步骤5:将1.1重量份PDMS溶于6.6重量份正己烷中得到质量浓度为14.3%的PDMS稀释液,再将0.2重量份的粒径为7-40nm疏水纳米二氧化硅颗粒加入PDMS稀释液中,搅拌均匀得到喷涂液;
步骤6:使用喷枪向步骤4得到的海绵体表面均匀喷涂步骤5的喷涂液,固化后即得到顶部构筑SiO2@PDMS疏水层的海绵体C。
2.根据权利要求1所述的制备方法,其特征在于:在步骤4中,所述的去除盐颗粒的条件为:在60℃水中浸泡,期间更换3次水,浸泡时间为48h,去除盐颗粒后在100℃条件下干燥。
3.根据权利要求1所述的制备方法,其特征在于:通过气压喷枪完成,喷涂时间为20s,喷嘴到样品的距离20cm,使用气压式喷枪向步骤(4)得到的海绵体B表面均匀喷涂步骤(5)的喷涂液,然后在100℃条件下固化2h后即得到顶部构筑SiO2@PDMS疏水层的海绵体C。
CN202211447440.2A 2022-11-18 2022-11-18 一种基于天然膨胀石墨的三维多孔油水分离材料制备方法 Pending CN116020421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211447440.2A CN116020421A (zh) 2022-11-18 2022-11-18 一种基于天然膨胀石墨的三维多孔油水分离材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211447440.2A CN116020421A (zh) 2022-11-18 2022-11-18 一种基于天然膨胀石墨的三维多孔油水分离材料制备方法

Publications (1)

Publication Number Publication Date
CN116020421A true CN116020421A (zh) 2023-04-28

Family

ID=86076680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211447440.2A Pending CN116020421A (zh) 2022-11-18 2022-11-18 一种基于天然膨胀石墨的三维多孔油水分离材料制备方法

Country Status (1)

Country Link
CN (1) CN116020421A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008902A1 (en) * 1992-10-14 1994-04-28 Boeckmann, Herbert, F., Ii Process for separating a hydrophobic liquid from a liquid contaminated therewith
KR20190090164A (ko) * 2018-01-24 2019-08-01 성균관대학교산학협력단 유류 제거용 필터 및 이의 제조 방법
US20190389744A1 (en) * 2018-06-22 2019-12-26 Board Of Trustees Of The University Of Arkansas Magnetic, superhydrophobic and superoleophilic medium, synthesizing methods and applications of same
CN111116978A (zh) * 2019-12-27 2020-05-08 浙江工业大学 一种超耐用疏水性三维多孔油水分离海绵材料及其制备方法和应用
CN114561039A (zh) * 2022-03-11 2022-05-31 沧州师范学院 一种用于油水分离的聚硅氧烷改性超疏水海绵的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008902A1 (en) * 1992-10-14 1994-04-28 Boeckmann, Herbert, F., Ii Process for separating a hydrophobic liquid from a liquid contaminated therewith
KR20190090164A (ko) * 2018-01-24 2019-08-01 성균관대학교산학협력단 유류 제거용 필터 및 이의 제조 방법
US20190389744A1 (en) * 2018-06-22 2019-12-26 Board Of Trustees Of The University Of Arkansas Magnetic, superhydrophobic and superoleophilic medium, synthesizing methods and applications of same
CN111116978A (zh) * 2019-12-27 2020-05-08 浙江工业大学 一种超耐用疏水性三维多孔油水分离海绵材料及其制备方法和应用
CN114561039A (zh) * 2022-03-11 2022-05-31 沧州师范学院 一种用于油水分离的聚硅氧烷改性超疏水海绵的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VINCENZA BRANCATO等: "Synthesis and Characterization of Graphite Composite Foams for Oil Spill Recovery Application", JOURNAL OF COMPOSITES SCIENCE, vol. 4, 19 October 2020 (2020-10-19), pages 154 *
曹梓楷等: "多孔聚二甲基硅氧烷吸油材料制备及吸油性质机理研究", 功能材料, no. 09, 30 September 2017 (2017-09-30), pages 198 - 202 *

Similar Documents

Publication Publication Date Title
Duman et al. Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments
Li et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion
Wang et al. Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method
Yuan et al. A novel hierarchical hollow SiO2@ MnO2 cubes reinforced elastic polyurethane foam for the highly efficient removal of oil from water
Wang et al. Facile synthesis of flexible mesoporous aerogel with superhydrophobicity for efficient removal of layered and emulsified oil from water
Wen et al. An alternative fabrication of underoil superhydrophobic or underwater superoleophobic stainless steel meshes for oil-water separation: Originating from one-step vapor deposition of polydimethylsiloxane
Wang et al. Robustly superhydrophobic/superoleophilic kapok fiber with ZnO nanoneedles coating: Highly efficient separation of oil layer in water and capture of oil droplets in oil-in-water emulsions
CN102225273B (zh) 一种超疏水超亲油纸基分离材料的制备方法及应用
Baig et al. Hydrophobic and oleophilic carbon nanofiber impregnated styrofoam for oil and water separation: A green technology
Xu et al. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution
Liu et al. Surface modification of porous substrates for oil/water separation using crosslinkable polybenzoxazine as an agent
Zhang et al. Cost-effective one-pot surface modified method to engineer a green superhydrophobic sponge for efficient oil/water mixtures as well as emulsions separation
CN107335341B (zh) 一种生物炭膜的制备方法
CN107570127A (zh) 一种石墨烯基油水分离泡沫材料及其制备方法和应用
Meng et al. Super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane sponge applied for oil/water separation
CN106512480B (zh) 一种耐磨疏水亲油材料、其制备方法与应用
Yu et al. Recycling papermill waste lignin into recyclable and flowerlike composites for effective oil/water separation
Xue et al. Hierarchical superhydrophobic polydimethylsiloxane/copper terephthalate/polyurethane sponge for highly efficient oil/water separation
Diao et al. Super-stable non-woven fabric-based membrane as a high-efficiency oil/water separator in full pH range
CN105771322A (zh) 一种超亲水性油水分离滤纸及其制备方法
Meng et al. Preparation and modification of cellulose sponge and application of oil/water separation
Abdulhussein et al. Facile fabrication of a free-standing superhydrophobic and superoleophilic carbon nanofiber-polymer block that effectively absorbs oils and chemical pollutants from water
CN103172299A (zh) 一种油水分离材料及其制备方法
Zhang et al. Polyester fabrics coated with cupric hydroxide and cellulose for the treatment of kitchen oily wastewater
Huang et al. Superhydrophobic and magnetic PS/Fe 3 O 4 sponge for remote oil removal under magnetic driven, continuous oil collection, and oil/water emulsion separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination