CN116003512A - 一种人唾液补体因子抗菌肽cfh3及其应用 - Google Patents

一种人唾液补体因子抗菌肽cfh3及其应用 Download PDF

Info

Publication number
CN116003512A
CN116003512A CN202210833960.0A CN202210833960A CN116003512A CN 116003512 A CN116003512 A CN 116003512A CN 202210833960 A CN202210833960 A CN 202210833960A CN 116003512 A CN116003512 A CN 116003512A
Authority
CN
China
Prior art keywords
cfh3
antibacterial peptide
antibacterial
complement factor
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210833960.0A
Other languages
English (en)
Other versions
CN116003512B (zh
Inventor
杨燊
范学楠
胡佳琦
裘德·尤文图斯·阿维娅
金日天
翁武银
张玉苍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN202210833960.0A priority Critical patent/CN116003512B/zh
Publication of CN116003512A publication Critical patent/CN116003512A/zh
Application granted granted Critical
Publication of CN116003512B publication Critical patent/CN116003512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种人唾液补体因子抗菌肽CFH3,其氨基酸序列为RPYFPVAVGK,抗菌肽CFH3的分子量为1133Da。实验证明,本发明抗菌肽CFH3对溶血葡萄球菌能够产生了较强的抑制作用,可以在制备治疗或预防由溶血葡萄球菌引起的疾病的药物,为代替抗生素的药物、奶牛饲料添加剂开发奠定了基础。

Description

一种人唾液补体因子抗菌肽CFH3及其应用
技术领域
本发明涉及生物技术领域,尤其涉及一种人唾液补体因子抗菌肽CFH3及其应用。
背景技术
近年随着广谱抗菌药物的广泛使用,溶血葡萄球菌耐药性日益严重。溶血葡萄球菌是一种革兰氏阳性菌,属于人类皮肤黏膜的正常菌群之一,在机体菌群紊乱的情况下,可引起血液、泌尿生殖道和创伤等部位化脓性感染,该菌也可导致部分老年患者感染肺炎,以及新生儿败血症。溶血葡萄球菌能产生黏质,继而形成生物膜能遮蔽细菌的抗原性,有利于细菌定植致病对菌体具有保护和对抗药物作用,因此,是气管插管、留置鼻饲管医院感染的危险因素。此外,溶血葡萄球菌作为引起奶牛乳腺炎的病因之一,影响奶牛业发展,给乳品生产带来巨大损失。
目前对该菌引起的疾病控制方法以化学药物为主,但滥用化学药物容易引起微生物抗药性,且化学药物对环境也存在危害或潜在危害。因此,寻找化学药物替代品也成为目前研究的一大热点。抗菌肽(AMPs)是一类广泛存在于自然界生物体中的小肽类物质,它是机体先天性免系统的重要组成部分。它具有水溶性好、对高等动物毒性低、无耐药性等特点,被认为是抗生素的潜在替代品,在医药行业和食品添加剂等领域有良好的应用前景。
因此,提供一种能有效抑制溶血葡萄球菌感染,同时能保持良好稳定性的抗菌肽是本领域亟待解决的技术问题。
发明内容
本发明的目的在于提供一种人唾液补体因子抗菌肽CFH3及其应用,通过唾液补体因子抗菌肽CFH3对溶血葡萄球菌抑菌活性的研究,降低溶血葡萄球菌对抗菌药物的耐药性,减少抗生素的使用。
本发明解决其技术问题所采用的技术方案之一是:提供一种人唾液补体因子抗菌肽CFH3。其氨基酸序列为RPYFPVAVGK,如SEQIDNO:1所示。
我们首先通过对人口腔唾液进行质谱鉴定,并得到和鉴定出779个肽序列,然后利用Swiss-model服务器对肽结构进行预测,发现了对溶血性葡萄球菌具有很强抗菌作用的抗菌肽序列RPYFPVAVGK,命名为CFH3。
抗菌肽CFH3的分子量为1133Da,所带电荷为+2,总疏水性比为40%。
抗菌肽CFH3可以从以下方面对细菌造成破坏:一方面,抗菌肽CFH3具有的正电荷可与细菌细胞膜发生作用,吸附在细菌细胞膜表面,破坏细胞膜导致细菌死亡;另一方面,破坏细胞膜的同时改变细菌细胞膜的通透性,并抑制细胞膜生成,导致细菌死亡;再一方面,与细菌基因组DNA相结合,抑制细菌DNA的合成,从而导致细菌死亡。
本发明解决其技术问题所采用的技术方案之二是:提供一种人唾液补体因子抗菌肽CFH3在制备抗菌药物中的应用,该抗菌药物用于抑制和/或杀灭溶血葡萄球菌。
本发明解决其技术问题所采用的技术方案之三是:提供一种抗菌药物,其有效成分包括人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
在本发明一较佳实施例中,所述抗菌药物的有效成分为人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
在本发明一较佳实施例中,所述抗菌药物用于抑制和/或杀灭溶血葡萄球菌。
本发明解决其技术问题所采用的技术方案之四是:提供一种饲料添加剂,其有效成分包括人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
在本发明一较佳实施例中,所述饲料添加剂的有效成分为人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
在本发明一较佳实施例中,所述饲料添加剂用于抑制和/或杀灭溶血葡萄球菌。
本发明解决其技术问题所采用的技术方案之五是:提供一种编码人唾液补体因子抗菌肽CFH3的编码基因。
本发明解决其技术问题所采用的技术方案之六是:提供含有人唾液补体因子抗菌肽CFH3编码基因的表达盒、重组菌、重组载体或转基因细胞系。
本发明的抗菌肽可以采用本领域技术人员已知的方法合成,例如固相合成,并采用本领域技术人员已知的方法进行纯化,例如高效液相色谱法。
实施本发明,具有如下有益效果:
本发明以人唾液为研究对象,通过质谱鉴定并筛选,发现一个全新氨基酸序列的多肽CFH3。研究CFH3对溶血葡萄球菌的抑菌活性;并用透射电镜观察CFH3对其破坏程度;最后对它的抑菌机制进行研究。实验结果表明,该肽对溶血葡萄球菌具有强烈的抑制作用。它的抑菌机理是首先吸附在细菌表面,穿透细胞膜的脂质双分子层,然后与细菌基因组DNA相结合,抑制细菌DNA的合成,从而导致细菌死亡。本发明为CFH3作为药物和饲料添加剂提供了实验依据。
附图说明
图1为抗菌肽CFH3的质谱分析图;
图2为抗菌肽CFH3的预测模型结构视图;
图3为抗菌肽CFH3对溶血葡萄球菌最低抑制浓度MIC测定对照图。其中:
A:抗菌肽浓度0μg/mL;
B:抗菌肽浓度125.0μg/mL;
C:抗菌肽浓度62.5μg/mL;
D:抗菌肽浓度31.3μg/mL;
E:抗菌肽浓度15.6μg/mL;
F:抗菌肽浓度7.8μg/mL;
图4为本发明抗菌肽CFH3对溶血葡萄球菌时间-杀伤曲线Time kill图。在0.01MpH7.2磷酸盐缓冲液中稀释至106-7CFU/mL。抗菌肽浓度为7.8μg/mL;
图5为本发明抗菌肽CFH3作用溶血葡萄球菌的透射电镜观察图,其中:
A:溶血葡萄球菌空白对照组;
B:CFH3处理2h后的溶血葡萄球菌;
图6为本发明抗菌肽CFH3与溶血葡萄球菌DNA结合电泳图,其中:
条带7:空白对照;
条带1-6:分别是CFH3与DNA质量比为100/1,50/1,25/1,25/2,25/4,25/8;
图7为本发明抗菌肽CFH3作用溶血葡萄球菌细胞内K泄漏图。菌液浓度为106- 7CFU/mL与质量浓度MIC的抗菌肽CFH3混合,测量上清液中K质量浓度的变化情况,每隔10min记录一次,共记录7次;
图8为本发明抗菌肽CFH3与EB竞争性结合DNA的荧光光谱图。用多功能酶标仪测定样品在激发波长535nm及发射波长550~750nm范围内的荧光光谱;
图9为抗菌肽作用于细菌细胞膜时二级结构变化的圆二色谱图。
具体实施方式
为了更好地理解本发明,下面结合实施例和附图对本发明做进一步的详细说明,但本领域技术人员了解,下述实施例不是对本发明保护范围的限制,任何在本发明基础上做出的改变和变化,都在本发明的保护范围之内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:抗菌肽CFH3的筛选
首先从人唾液进行取样,1.5mL离心15min后取上清液,过3000Da滤膜。于-20℃保存,然后使用色谱Nano Aquity UPLC system (Waters Corp)仪器,作进一步分析。
色谱条件:进样量:5.0μl
色谱柱:C18分析色谱柱,长度25cm,内径75μm.
流动相:
A:0.1%甲醇水溶液
B:乙腈
结合搜库软件: MAXQUANTv1.6.5.0、数据库: uniprot Homo sapiens (Human)蛋白库对所得肽段质谱图进行区分鉴定,得到779种肽段,如图1所示。然后利用APD3和CAMP两个在线服务器对其序列进行筛选,通过Swiss-model服务器对肽段结构进行预测,发现了对溶血葡萄球菌具有很强抗菌作用的抗菌肽,序列RPYFPVAVGK,命名CFH3,分子量为1133Da。
实施例2:抗菌肽CFH3的3D结构预测
利用在线结构预测服务器Swiss-model,对抗菌肽CFH3的结构进行预测,并利用Pymol软件进行编辑和修改,得到抗菌肽CFH3的二级结构,如图2所示。
实施例3:抗菌肽CFH3最低抑制浓度MIC测定
将溶血葡萄球菌在37℃培养12h至对数生长期,在0.01M pH7.2的磷酸盐缓冲液中稀释至106-7CFU/mL。将抗菌肽CFH3溶于磷酸盐缓冲中,37℃等体积与溶血葡萄球菌混合2h。最低抑菌浓度MIC是指在37℃孵育后,从微量滴定板上看不到细菌生长的抗菌肽最低浓度。如图3所示,抗菌肽CFH3对溶血葡萄球菌的最低抑菌浓度MIC为7.8μg/mL。
实施例4:抗菌肽CFH3时间-杀菌曲线Time kill测定
使用平板菌落计数法测定抗菌肽CFH3的时间-杀菌曲线。将溶血葡萄球菌在37℃培养12h至对数生长期,在0.01MpH7.2的磷酸盐缓冲液中稀释至106-7 CFU/mL。取MIC和2×MIC浓度肽于37℃等体积与溶血葡萄球菌混合后分别进行孵育,每隔30分钟取样涂平板,37℃培养过夜后记录菌落总数。如图4所示。抗菌肽CFH3对溶血葡萄球菌在0.5h开始有明显效果;随后继续呈下降趋势。在抗菌肽CFH3作用下,细菌数量减少的更快。表明抗菌肽CFH3对溶血葡萄球菌随着作用时间增加有明显的抑制效果。
实施例5:抗菌肽CFH3的透射电镜分析
以106-7CFU/mL的细菌在37℃下用2×MIC的抗菌肽CFH3处理2h,然后在2700 rpm下离心10min,用pH值为7.2的磷酸盐缓冲液洗涤两次。用1%的锇酸固定后,用95%乙醇脱水,然后丙酮处理20min。样品在70℃下烘烤24h,在铜网格上制备70-90 nm的薄片,然后用柠檬酸铅和乙酸铀酯染色。用H-7650透射电子显微镜观察和捕获超微结构。
如图5所示,对于未经处理的细菌,细菌细胞的胞内组织和结构完整性良好。然而,用抗菌肽CFH3处理后,可以看到细菌细胞膜结构开始随着细胞空泡化而模糊,细胞的形状变得不规则,细胞膜完全塌陷,细胞质内容物流出。透射电子显微镜结果表明,抗菌肽CFH3对溶血葡萄球菌的细胞膜和内部结构具有破坏作用。
实施例6:抗菌肽CFH3与细菌DNA的相互作用
采用DNA凝胶阻滞法研究了抗菌肽CFH3与溶血葡萄球菌基因组DNA的相互作用。将溶血葡萄球菌在37℃的50mL营养肉汤培养基(NB)中培养12h,用细菌基因组DNA提取试剂盒提取细菌基因组DNA。在260和280nm的光密度比(OD260/OD280≥1.90)评价提取的基因组DNA的纯度。接下来,将10μl DNA(218ng/μl)与连续量的抗菌肽CFH3在25℃下混合90 min,将混合物在0.8%琼脂糖凝胶上进行电泳。使用GelDocXR凝胶成像系统(Bio-Rad,美国)在紫外线照射下观察凝胶阻滞,如图6所示,不同质量浓度的抗菌肽CFH3作用于溶血葡萄球菌后,菌体DNA条带并未发生明显的迁移现象。这一结合作用在抗菌肽CFH3与DNA的比为25/8时,依然可以阻滞DNA的迁移。且部分DNA滞留于上样孔内,这可能是因为电荷电负性发生改变或DNA双螺旋结构改变,从而影响DNA迁移率。
实施例7:抗菌肽CFH3对细菌细胞内K泄漏的影响
将溶血葡萄球菌菌悬液(菌液浓度为106-7CFU/mL)分别与质量浓度MIC的抗菌肽CFH3混合,37℃孵育一定时间,10000r/min离心10min,对照组为菌悬液加去离子水,采用原子吸收光谱仪测定上述上清液中K质量浓度的变化情况,每隔10min记录一次,共记录7次。由图7可知,溶血葡萄球菌经抗菌肽CFH3处理后,其胞内
K释放量随时间的延长均呈快速增长趋势,而对照组变化不明显。说明抗菌肽CFH3能破坏溶血葡萄球菌细胞膜的完整性。
实施例8:抗菌肽CFH3与溴化乙锭(EB)竞争性结合DNA的荧光光谱实验
抗菌肽CFH3与溴化乙锭(EB)竞争性结合DNA的荧光光谱实验分析抗菌肽与溶血葡萄球菌基因组DNA的作用方式:用TE缓冲液将溶血葡萄球菌基因组DNA稀释为50μg/mL。反应在96孔板进行,首先每个孔加入50μl的DNA溶液和0.75μl浓度为100μg/mL的EB溶液,混匀后置于生化培养箱中37℃避光孵育10min。接着加入50μl不同浓度的抗菌肽溶液,空白对照组用50μl的蒸馏水代替,混匀之后置于生化培养箱中37℃避光孵育30min。孵育结束后,用多功能酶标仪测定样品在激发波长535nm及发射波长550~750nm范围内的荧光光谱。在水溶液中,EB的荧光很弱,但是当它通过以较高的亲合力、嵌入的方式与双链DNA结合时,其荧光强度大幅度增强。若EB-DNA复合物体系中存在能与DNA发生类似作用的物质将结合在DNA上的EB竞争下来时,体系的荧光强度就会降低,说明竞争物与EB一样的嵌插作用模式与DNA结合。
因此,通过测定DNA-EB复合物体系与竞争物作用的荧光光谱的变化,来判定竞争物是否也同EB一样通过嵌插方式与DNA结合。由图8可知,随着抗菌肽CFH3浓度的增加EB-DNA复合物的荧光强度也显著降低(p<0.05),说明抗菌肽CFH3与溶血葡萄球菌DNA发生了嵌插结合,把之前结合在DNA碱基对的EB竞争下来,代替EB以嵌插方式与DNA结合,使整个体系的荧光强度降低。
实施例9:抗菌肽CFH3作用于细菌细胞膜时二级结构的变化
分别采用0.025mol/L SDS溶液和0.01mol/L PBS将抗菌肽CFH3配制成质量浓度为0.2 mg/mL的溶液,在石英比色皿中加入一定体积的抗菌肽CFH3溶液,25℃下用圆二色光谱仪对样品进行180~280 nm的远紫外扫描并采集数据,扫描速率50 nm/min,带宽1.0 nm。对扫描后的所有图谱用CDNN软件进行减噪处理并对样品溶液的二级结构相对含量进行拟合计算。由图9可知,抗菌肽CFH3在缓冲液环境及模拟膜的疏水环境下二级结构的变化间接反映了当抗菌肽作用于金黄色葡萄球菌时的抑菌机制。
综上,本发明提供了一种全新的抗菌肽CFH3对溶血葡萄球菌的最低抑菌浓度MIC为7.8μg/mL,对溶血葡萄球菌具有强烈的抑制作用。本发明抗菌肽CFH3首先吸附在细菌表面,穿透细胞膜的脂质双分子层,然后与细菌基因组DNA相结合,抑制细菌DNA的合成,从而导致细菌死亡。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (10)

1.一种人唾液补体因子抗菌肽CFH3,其氨基酸序列如SEQ ID NO:1所示。
2.如权利要求1所述的人唾液补体因子抗菌肽CFH3在制备抗菌药物中的应用,其特征在于:所述抗菌药物用于抑制和/或杀灭溶血葡萄球菌。
3.一种抗菌药物,其特征在于:其有效成分包括人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
4.如权利要求3所述的抗菌药物,其特征在于:其有效成分为人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
5.如权利要求3或4任一项所述的一种抗菌药物,其特征在于:所述抗菌药物用于抑制和/或杀灭溶血葡萄球菌。
6.一种饲料添加剂,其特征在于:其有效成分包括人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
7.如权利要求6所述的饲料添加剂,其特征在于:其有效成分为人唾液补体因子抗菌肽CFH3,所述抗菌肽CFH3的氨基酸序列为SEQ ID NO:1。
8.如权利要求6或7任一项所述的一种饲料添加剂,其特征在于:所述饲料添加剂用于抑制和/或杀灭溶血葡萄球菌。
9.一种如权利要求1所述人唾液补体因子抗菌肽CFH3的编码基因。
10.含有如权利要求9所述编码基因的表达盒、重组菌、重组载体或转基因细胞系。
CN202210833960.0A 2022-07-14 2022-07-14 一种人唾液补体因子抗菌肽cfh3及其应用 Active CN116003512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210833960.0A CN116003512B (zh) 2022-07-14 2022-07-14 一种人唾液补体因子抗菌肽cfh3及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210833960.0A CN116003512B (zh) 2022-07-14 2022-07-14 一种人唾液补体因子抗菌肽cfh3及其应用

Publications (2)

Publication Number Publication Date
CN116003512A true CN116003512A (zh) 2023-04-25
CN116003512B CN116003512B (zh) 2024-10-01

Family

ID=86025455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210833960.0A Active CN116003512B (zh) 2022-07-14 2022-07-14 一种人唾液补体因子抗菌肽cfh3及其应用

Country Status (1)

Country Link
CN (1) CN116003512B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140287950A1 (en) * 2013-03-15 2014-09-25 Sera Prognostics, Inc. Biomarkers and methods for predicting preterm birth
US20150093331A1 (en) * 2013-10-01 2015-04-02 OncoLock Co., Ltd. Biomarkers for breast cancer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140287950A1 (en) * 2013-03-15 2014-09-25 Sera Prognostics, Inc. Biomarkers and methods for predicting preterm birth
US20150093331A1 (en) * 2013-10-01 2015-04-02 OncoLock Co., Ltd. Biomarkers for breast cancer
TW201608239A (zh) * 2013-10-01 2016-03-01 豐宥科技股份有限公司 乳癌生物標記

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATTHEW KRILIS ET AL.,: ""Nitration of tyrosines in complement factor H domains alters its immunological activity and mediates a pathogenic role in age related macular degeneration"", 《ONCOTARGET》, vol. 8, no. 30, 1 February 2017 (2017-02-01), pages 49016 - 49032, XP093036626, DOI: 10.18632/oncotarget.14940 *
RAJNEESH MALHOTRA ET AL.: ""Identification of human complement Factor H as a ligand for L-selectin"", 《BIOCHEMICAL SOCIETY》, no. 341, 31 August 1999 (1999-08-31), pages 61 - 69 *

Also Published As

Publication number Publication date
CN116003512B (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
Aiyar et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells
Ménard et al. Galleria mellonella larvae as an infection model to investigate sRNA-mediated pathogenesis in Staphylococcus aureus
Bertrand et al. N*-methyl coprogen B, a potential marker of the airway colonization by Scedosporium apiospermum in patients with cystic fibrosis
JP4838404B2 (ja) 新規な抗菌性ポリペプチド及び使用方法
CN113461777B (zh) 一种具有抗真菌作用的抗菌肽及其制备方法和应用
CN116731153B (zh) 一种猪β-干扰素抗菌肽IFN7及其应用
CN116003512B (zh) 一种人唾液补体因子抗菌肽cfh3及其应用
CN117164665A (zh) 一种人鼻液α-2-巨球蛋白抗菌肽A2M3及其应用
Xu et al. Specifically targeted antimicrobial peptides synergize with bacterial-entrapping peptide against systemic MRSA infections
CN113321708B (zh) 一种人工设计抗菌肽的制备及其在水产上的应用
Chan et al. Spatial metabolomics for symbiotic marine invertebrates
Li et al. The attenuated protective effect of outer membrane vesicles produced by a mcr-1 positive strain on colistin sensitive Escherichia coli
CN116640186A (zh) 一种人鼻液补体因子抗菌肽c4-aⅱ及其应用
KR101548981B1 (ko) 녹농균 감염증의 예방 또는 치료용 물질의 스크리닝 방법
Buragohain et al. Pharmacokinetics and efficacy of ceftriaxone in staphylococcal mastitis in crossbred cows following single intravenous administration
CN111202940B (zh) 玉米赤霉烯酮内酯水解酶RmZHD在降解大环内酯类抗生素中应用
CN117700486B (zh) 一种乙酰短杆菌发酵液抗菌肽yx-2及其应用
CN115746090B (zh) 一种枯草芽孢杆菌载体蛋白抗菌肽bcp4及其应用
KR101790296B1 (ko) 네트롭신을 유효성분으로 포함하는 그람음성 세균에 대한 폴리믹신의 항균 활성을 증가시키는 조성물
CN116121221B (zh) 一种蜡样芽孢杆菌DEAD-box RNA解旋酶蛋白抗菌肽DB16及其应用
Li et al. Gut commensal metabolite rhamnose promotes macrophages phagocytosis by activating SLC12A4 and protects against sepsis in mice
EP1727829B1 (de) Hyphenspezifische zellwandproteine von candida
CN115710305B (zh) 一种发酵大黄鱼琥珀酸脱氢蛋白抗菌肽sdh73及其应用
CN116003520B (zh) 一种副干酪乳杆菌精氨酸生物合成蛋白抗菌肽ngj1d及其应用
Hinterdobler et al. Chemical diversity and richness of fungal endophytes from Costa Rican Palicourea and Psychotria species (Rubiaceae)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant