CN115995815A - 一种基于多模块嵌套迭代的负荷故障恢复方法 - Google Patents

一种基于多模块嵌套迭代的负荷故障恢复方法 Download PDF

Info

Publication number
CN115995815A
CN115995815A CN202310286997.0A CN202310286997A CN115995815A CN 115995815 A CN115995815 A CN 115995815A CN 202310286997 A CN202310286997 A CN 202310286997A CN 115995815 A CN115995815 A CN 115995815A
Authority
CN
China
Prior art keywords
module
load
variable
objective function
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310286997.0A
Other languages
English (en)
Other versions
CN115995815B (zh
Inventor
唐震
潘捷
慕国行
薛志伟
王伟
杨虹
刘宇
陈昱同
杨冬冬
郑志宏
李小婧
徐玉东
董理科
白雪婷
张凯
陈胤璋
张超
闫磊
陶文彪
边伟
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Electric Power Research Institute Of Sepc
Original Assignee
State Grid Electric Power Research Institute Of Sepc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Electric Power Research Institute Of Sepc filed Critical State Grid Electric Power Research Institute Of Sepc
Priority to CN202310286997.0A priority Critical patent/CN115995815B/zh
Publication of CN115995815A publication Critical patent/CN115995815A/zh
Application granted granted Critical
Publication of CN115995815B publication Critical patent/CN115995815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种基于多模块嵌套迭代的负荷故障恢复方法,属于电力系统优化技术领域;解决了目前负荷故障恢复过程中出现的可再生能源出力的波动性、负荷信息不确定性以及储能调度的复杂性等问题;包括如下步骤:确定模块一,在确定输电网主网架的情况下建立故障后负荷恢复优化模型;确定模块二,在确定重要负荷节点的情况下构建储能系统调度模型;确定模块三,储能系统的充放电状态信息确定后,建立考虑风电、光伏和负荷不确定性储能系统的充放电调度优化模型;确定模块四,构建基于模块一到模块三的负荷恢复双层嵌套迭代方法,以得到最终的负荷恢复的决策方案;本发明应用于大规模的输电网故障后负荷恢复。

Description

一种基于多模块嵌套迭代的负荷故障恢复方法
技术领域
本发明提供了一种基于多模块嵌套迭代的负荷故障恢复方法,属于电力系统优化技术领域。
背景技术
近年来,随着可再生能源、电动汽车、储能器等的集成化程度不断提高,输电网的运行模式发生了变化。在大电网停电后,为了减少停电损失,必须提前制定电网恢复预案,其主要目标是尽快恢复尽可能多的重要负荷供电。传统负荷恢复以水电机组或燃气轮机作为黑启动电源,但其数量和出力受限于地理和资源分布。可再生能源具有启动速度快、所需厂用电少以及运行方式灵活等优点,越来越多的研究利用其功率支撑作用,提高负荷恢复效率。但由于可再生能源的不确定性,其波动可能会造成系统的状态发生异常,进而引起再次跳闸。随着大规模储能系统建成并投运,储能系统可提供更充足的出力,并在一定程度上帮助保持发电负荷的功率平衡,以此提高系统的恢复效率。然而,计及分布式能源和储能的负荷恢复是一个复杂的非线性优化问题,亟需高效且兼容性强的方法解决。
发明内容
本发明为了解决目前负荷故障恢复过程中出现的可再生能源出力的波动性、负荷信息不确定性以及储能调度的复杂性等问题,提出了一种基于多模块嵌套迭代的负荷故障恢复方法。
为了解决上述技术问题,本发明采用的技术方案为:一种基于多模块嵌套迭代的负荷故障恢复方法,包括如下步骤:
步骤1):确定模块一,在确定输电网主网架的情况下建立故障后负荷恢复优化模型,用于确定待恢复重要负荷所在的节点;
步骤2):确定模块二,在确定重要负荷节点的情况下构建储能系统调度模型,用于确定储能的充放电的状态变量的优化决策;
步骤3):确定模块三,储能系统的充放电状态信息确定后,建立考虑风电、光伏和负荷不确定性储能系统的充放电调度优化模型,用于确定储能系统的充电或者放电的功率;
步骤4):确定模块四,构建基于模块一到模块三的负荷恢复双层嵌套迭代方法,以得到最终的负荷恢复的决策方案。
所述步骤1)中建立故障后负荷恢复优化模型的步骤如下:
首先确定故障后负荷恢复优化模型的目标函数,目标函数的表达式如下:
上式中: T为负荷恢复的步长; t为当前步长; N是电力系统的节点数量; i表示第 i个节点;代表第 i个节点上 t步长下负荷的恢复状态,为0/1变量,1表示已经恢复,0表示还没恢复;表示第 i个节点上 t步长下的待恢复负荷的重要程度;是第 i个节点上在 t步长下的负荷, L代表负荷;
然后,确定在上述目标函数下的约束条件,包括:
负荷恢复约束,表达式为:
上式中:表示在 t步长下 i节点上已恢复的负荷;
功率平衡约束,表达式为:
其中,表示传统机组所在节点的集合,表示储能系统所在节点的集合,表示光伏所在节点的集合,表示风电所在节点的集合,表示与节点 i相连接线路的集合;表示在 t步长下 i节点传统机组的输出功率,表示在 t步长下 i节点光伏的输出功率,表示在 t步长下 i节点风电的输出功率,表示在 t步长下 i节点储能系统的放电功率,表示在 t步长下 i节点储能系统的充电功率, P l,t 表示线路 l上的线路功率;
储能系统的约束,表达式如下:
其中,表示 i节点储能系统的充电状态,是0/1变量,为1则表示在充电;表示 i节点储能系统的放电状态,是0/1变量,为1则表示在放电,表示储能系统的充电功率,表示储能系统的放电功率, SOC i,t 表示储能系统的荷电状态,表示储能系统的充放电效率;
最后,确定光伏、风电、负荷的不确定参数,其中光伏、风电的输出功率和负荷的需求功率是不确定的,用一定范围内的不确定模型表达,光伏不确定模型的表达式为:
风电不确定模型的表达式为:
负荷不确定模型的表达式为:
其中,右上标min和max分别表示最小和最大功率;
将模块一中的 x i,t 变量定义为模块一第一阶梯变量,模块一中的变量定义为模块一第二阶梯变量。
所述步骤2)中构建的储能系统调度模型包含模块一的目标函数以及含有模块一第二阶梯变量的约束,并将模块一中的变量定义为模块二第一阶梯变量,将模块一中的变量定义为模块二第二阶梯变量。
所述步骤3)中建立的考虑风电、光伏和负荷不确定性储能系统的充放电调度优化模型包含模块一的目标函数及含有模块二第二阶梯变量的约束,并将模块二中的P l,t 变量定义为模块三第一阶梯变量,将模块二中的变量定义为模块三第二阶梯变量。
所述步骤4)中构建基于模块一到模块三的负荷恢复双层嵌套迭代方法的实现步骤如下:
步骤I):给定变量一个初值,用现有的优化求解器求解模块一的故障后负荷恢复优化模型,得到模块一第一阶梯变量和模块二第一阶梯变量;
步骤II):固定模块一第一阶梯变量和模块二第一阶梯变量,用对偶理论写出模块三的对偶问题,并用求解器求解,得到模块三第二阶梯变量的值以及模块三目标函数,将得到的模块三目标函数与模块三原来的目标函数相比,以更小的模块三目标函数值更新模块三目标函数的上限;
固定模块三第二阶梯变量,求解模块二的储能系统调度模型,得到模块二第一阶梯变量的值以及模块二目标函数,将得到的模块二目标函数与模块二原来的目标函数值对比,以更大的模块二目标函数值更新模块二目标函数的下限;
固定模块二第一阶梯变量,求解模块三的对偶问题,得到模块三第一阶梯变量以及模块三目标函数,以更小的模块三目标函数更新模块三目标函数的上限,如此往复迭代,直到模块二目标函数下限和模块三目标函数的上限的差值小于设定的极小值;
步骤III):固定模块三第二阶梯变量,求解模块一的故障后负荷恢复优化模型,得到模块一第一阶梯变量以及模块一目标函数,用更大的模块一目标函数值更新模块一目标函数的下限,转到步骤II)得到模块二目标函数以及模块三第二阶梯变量,用更小的模块二目标函数值更新模块二目标函数的上限;
固定模块三第二阶梯变量,求解模块一的故障后负荷恢复优化模型,如此反复迭代,直到模块一目标函数下限和模块二目标函数上限的差值小于设定的极小值;
步骤IV):终止模块四迭代过程。
本发明相对于现有技术具备的有益效果为:本发明利用多模块迭代技术,将故障后负荷恢复模型多模块分解建模并迭代求解,提高了非线性不确定性优化问题的求解的可操作性,增强了故障后负荷恢复模型的应用效率,解决了大规模的输电网故障后负荷恢复的问题,提高了输电网应对可再生能源出力的波动性以及负荷用电信息的不确定性的鲁棒性,能够与输电网稳定控制等算法相兼容。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明方法的流程图;
图2为本发明各个模块的迭代流程图。
具体实施方式
如图1-2所示,本发明提供了一种基于多模块嵌套迭代的负荷故障恢复方法,能够适用于电网含有可再生能源出力的波动性、负荷信息不确定性以及储能调度的复杂性的工况,包括如下步骤,
步骤1):确定模块一,在确定输电网主网架的情况下建立故障后负荷恢复优化模型,在这个模块,用于确定待恢复重要负荷所在的节点。
步骤2):确定模块二,在确定重要负荷节点的情况下构建储能系统调度模型,用于确定储能系统的充放电的状态变量的优化决策。
步骤3):确定模块三,待恢复和储能系统的充放电状态信息确定后,建立考虑风电、光伏系和负荷不确定性储能系统的充放电调度优化模型,用于确定储能系统的充电或者放电的功率。
步骤 4):确定模块四,构建基于模块一到模块三的负荷恢复双层嵌套迭代方法,以得到最终的负荷恢复的决策方案。
其中模块一中的故障后负荷恢复优化模型的建立的步骤包括:
首先确定故障后负荷恢复优化模型的目标函数,目标函数的表达式如下:
上式中: T为负荷恢复的步长; t为当前步长; N是电力系统的节点数量; i表示第 i个节点;代表第 i个节点上 t步长下负荷的恢复状态,为0/1变量,1表示已经恢复,0表示还没恢复;表示第 i个节点上 t步长下的待恢复负荷的重要程度;是第 i个节点上在 t步长下的负荷, L代表负荷;
然后,确定在上述目标函数下的约束条件,包括:
负荷恢复约束,表达式为:
上式中:表示在 t步长下 i节点上已恢复的负荷;
功率平衡约束,表达式为:
其中,表示传统机组所在节点的集合,表示储能系统所在节点的集合,表示光伏所在节点的集合,表示风电所在节点的集合,表示与节点 i相连接线路的集合;表示在 t步长下 i节点传统机组的输出功率,表示在 t步长下 i节点光伏的输出功率,表示在 t步长下 i节点风电的输出功率,表示在 t步长下 i节点储能系统的放电功率,表示在 t步长下 i节点储能系统的充电功率, P l,t 表示线路 l上的线路功率;
储能系统的约束,表达式如下:
其中,表示 i节点储能系统的充电状态,是0/1变量,为1则表示在充电;表示 i节点储能系统的放电状态,是0/1变量,为1则表示在放电,表示储能系统的充电功率,表示储能系统的放电功率, SOC i,t 表示储能系统的荷电状态,表示储能系统的充放电效率;
最后,确定光伏、风电、负荷的不确定参数,其中光伏、风电的输出功率和负荷的需求功率是不确定的,用一定范围内的不确定模型表达,光伏不确定模型的表达式为:
风电不确定模型的表达式为:
负荷不确定模型的表达式为:
其中,右上标min和max分别表示最小和最大功率;
将模块一中的 x i,t 变量定义为模块一第一阶梯变量,模块一中的变量定义为模块一第二阶梯变量。
为了方便实施,模块一的模型可以表达为如下的矩阵形式:
其中,表示模块一第一阶梯变量;表示模块二第一阶梯变量;表示模块三第一阶梯变量,表示模块三第二阶梯变量。为模型的参数的矩阵形式。 w表示所有不确定场景的集合, c表示目标函数中变量 x对应的系数矩阵, T表示矩阵转置,表示目标函数的矩阵写法。
模块二中在确定重要负荷节点情况下的储能系统调度模型包含模块一的目标函数以及含有模块一第二阶梯变量的约束。模块二的变量包括模块二第一阶梯变量和模块二第二阶梯变量,其中将模块一的变量定义为模块二第一阶梯变量,将模块一的变量定义为模块二第二阶梯变量。
模块二的储能系统调度模型的矩阵形式可表示为:
其中,表示固定后的模块一第一阶梯变量。
模块三中考虑风电、光伏和负荷不确定性储能系统的充放电调度优化模型包含模块一的目标函数以及含有模块二第二阶梯变量的约束。模块三的变量包括模块三第一阶梯变量和模块三第二阶梯变量,其中将模块二的P l,t 变量定义为模块三第一阶梯变量,将模块二的变量定义为模块三第二阶梯变量。
模块三的充放电调度优化模型的矩阵形式如下:
模块三的对偶形式如下:
其中,是对偶变量, θ表示模块三目标函数。
步骤4)中构建基于模块一到模块三的负荷恢复双层嵌套迭代方法的实现步骤如下:
步骤I):给定变量一个初值,用现有的优化求解器求解模块一的故障后负荷恢复优化模型,得到模块一第一阶梯变量和模块二第一阶梯变量;
步骤II):固定模块一第一阶梯变量和模块二第一阶梯变量,用对偶理论写出模块三的对偶问题,并用求解器求解,得到模块三第二阶梯变量的值以及模块三目标函数 θ,将得到的模块三目标函数与模块三原来的目标函数相比,以更小的模块三目标函数值更新模块三目标函数的上限;
固定模块三第二阶梯变量,求解模块二的储能系统调度模型,得到模块二第一阶梯变量的值以及模块二目标函数,将得到的模块二目标函数与模块二原来的目标函数值对比,以更大的模块二目标函数值更新模块二目标函数的下限;
固定模块二第一阶梯变量,求解模块三的对偶问题,得到模块三第一阶梯变量以及模块三目标函数,以更小的模块三目标函数更新模块三目标函数的上限,如此往复迭代,直到模块二目标函数下限和模块三目标函数的上限的差值小于设定的极小值,比如1e-4;
步骤III):固定模块三第二阶梯变量,求解模块一的故障后负荷恢复优化模型,得到模块一第一阶梯变量以及模块一目标函数,用更大的模块一目标函数值更新模块一目标函数的下限,转到步骤II)得到模块二目标函数以及模块三第二阶梯变量,用更小的模块二目标函数值更新模块二目标函数的上限;
固定模块三第二阶梯变量,求解模块一的故障后负荷恢复优化模型,如此反复迭代,直到模块一目标函数下限和模块二目标函数上限的差值小于设定的极小值,比如1e-4;
步骤IV):终止模块四迭代过程。
关于本发明具体结构需要说明的是,本发明采用的各部件模块相互之间的连接关系是确定的、可实现的,除实施例中特殊说明的以外,其特定的连接关系可以带来相应的技术效果,并基于不依赖相应软件程序执行的前提下,解决本发明提出的技术问题,本发明中出现的部件、模块、具体元器件的型号、相互间连接方式以及,由上述技术特征带来的常规使用方法、可预期技术效果,除具体说明的以外,均属于本领域技术人员在申请日前可以获取到的专利、期刊论文、技术手册、技术词典、教科书中已公开内容,或属于本领域常规技术、公知常识等现有技术,无需赘述,使得本案提供的技术方案是清楚、完整、可实现的,并能根据该技术手段重现或获得相应的实体产品。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

1.一种基于多模块嵌套迭代的负荷故障恢复方法,其特征在于:包括如下步骤:
步骤1):确定模块一,在确定输电网主网架的情况下建立故障后负荷恢复优化模型,用于确定待恢复重要负荷所在的节点;
步骤2):确定模块二,在确定重要负荷节点的情况下构建储能系统调度模型,用于确定储能系统充放电状态变量的优化决策;
步骤3):确定模块三,储能系统的充放电状态信息确定后,建立考虑风电、光伏和负荷不确定性储能系统的充放电调度优化模型,用于确定储能系统的充电或者放电的功率;
步骤4):确定模块四,构建基于模块一到模块三的负荷恢复双层嵌套迭代方法,以得到最终的负荷恢复的决策方案。
2.根据权利要求1所述的一种基于多模块嵌套迭代的负荷故障恢复方法,其特征在于:所述步骤1)中建立故障后负荷恢复优化模型的步骤如下:
首先确定故障后负荷恢复优化模型的目标函数,目标函数的表达式如下:
上式中:T为负荷恢复的步长;t为当前步长;N是电力系统的节点数量;i表示第i个节点;代表第i个节点上t步长下负荷的恢复状态,为0/1变量,1表示已经恢复,0表示还没恢复;表示第i个节点上t步长下的待恢复负荷的重要程度;是第i个节点上在t步长下的负荷,L代表负荷;
然后,确定在上述目标函数下的约束条件,包括:
负荷恢复约束,表达式为:
上式中:表示在t步长下i节点上已恢复的负荷;
功率平衡约束,表达式为:
其中,表示传统机组所在节点的集合,表示储能系统所在节点的集合,表示光伏所在节点的集合,表示风电所在节点的集合,表示与节点i相连接线路的集合;表示在t步长下i节点传统机组的输出功率,表示在t步长下i节点光伏的输出功率,表示在t步长下i节点风电的输出功率,表示在t步长下i节点储能系统的放电功率,表示在t步长下i节点储能系统的充电功率,P l,t 表示线路l上的线路功率;
储能系统的约束,表达式如下:
其中,表示i节点储能系统的充电状态,是0/1变量,为1则表示在充电;表示i节点储能系统的放电状态,是0/1变量,为1则表示在放电,表示储能系统的充电功率,表示储能系统的放电功率,SOC i,t 表示储能系统的荷电状态,表示储能系统的充放电效率;
最后,确定光伏、风电、负荷的不确定参数,其中光伏、风电的输出功率和负荷的需求功率是不确定的,用一定范围内的不确定模型表达,光伏不确定模型的表达式为:
风电不确定模型的表达式为:
负荷不确定模型的表达式为:
其中,右上标min和max分别表示最小和最大功率;
将模块一中的x i,t 变量定义为模块一第一阶梯变量,模块一中的变量定义为模块一第二阶梯变量。
3.根据权利要求2所述的一种基于多模块嵌套迭代的负荷故障恢复方法,其特征在于:所述步骤2)中构建的储能系统调度模型包含模块一的目标函数以及含有模块一第二阶梯变量的约束,并将模块一中的变量定义为模块二第一阶梯变量,将模块一中的变量定义为模块二第二阶梯变量。
4.根据权利要求3所述的一种基于多模块嵌套迭代的负荷故障恢复方法,其特征在于:所述步骤3)中建立的考虑风电、光伏和负荷不确定性储能系统的充放电调度优化模型包含模块一的目标函数及含有模块二第二阶梯变量的约束,并将模块二中的P l,t 变量定义为模块三第一阶梯变量,将模块二中的变量定义为模块三第二阶梯变量。
5.根据权利要求4所述的一种基于多模块嵌套迭代的负荷故障恢复方法,其特征在于:所述步骤4)中构建基于模块一到模块三的负荷恢复双层嵌套迭代方法的实现步骤如下:
步骤I):给定变量一个初值,用现有的优化求解器求解模块一的故障后负荷恢复优化模型,得到模块一第一阶梯变量和模块二第一阶梯变量;
步骤II):固定模块一第一阶梯变量和模块二第一阶梯变量,用对偶理论写出模块三的对偶问题,并用求解器求解,得到模块三第二阶梯变量的值以及模块三目标函数,将得到的模块三目标函数与模块三原来的目标函数相比,以更小的模块三目标函数值更新模块三目标函数的上限;
固定模块三第二阶梯变量,求解模块二的储能系统调度模型,得到模块二第一阶梯变量的值以及模块二目标函数,将得到的模块二目标函数与模块二原来的目标函数值对比,以更大的模块二目标函数值更新模块二目标函数的下限;
固定模块二第一阶梯变量,求解模块三的对偶问题,得到模块三第一阶梯变量以及模块三目标函数,以更小的模块三目标函数更新模块三目标函数的上限,如此往复迭代,直到模块二目标函数下限和模块三目标函数的上限的差值小于设定的极小值;
步骤III):固定模块三第二阶梯变量,求解模块一的故障后负荷恢复优化模型,得到模块一第一阶梯变量以及模块一目标函数,用更大的模块一目标函数值更新模块一目标函数的下限,转到步骤II)得到模块二目标函数以及模块三第二阶梯变量,用更小的模块二目标函数值更新模块二目标函数的上限;
固定模块三第二阶梯变量,求解模块一的故障后负荷恢复优化模型,如此反复迭代,直到模块一目标函数下限和模块二目标函数上限的差值小于设定的极小值;
步骤IV):终止模块四迭代过程。
CN202310286997.0A 2023-03-23 2023-03-23 一种基于多模块嵌套迭代的负荷故障恢复方法 Active CN115995815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310286997.0A CN115995815B (zh) 2023-03-23 2023-03-23 一种基于多模块嵌套迭代的负荷故障恢复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310286997.0A CN115995815B (zh) 2023-03-23 2023-03-23 一种基于多模块嵌套迭代的负荷故障恢复方法

Publications (2)

Publication Number Publication Date
CN115995815A true CN115995815A (zh) 2023-04-21
CN115995815B CN115995815B (zh) 2023-06-13

Family

ID=85995289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310286997.0A Active CN115995815B (zh) 2023-03-23 2023-03-23 一种基于多模块嵌套迭代的负荷故障恢复方法

Country Status (1)

Country Link
CN (1) CN115995815B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049737A1 (zh) * 2016-09-18 2018-03-22 国电南瑞科技股份有限公司 一种基于分区负荷控制的安全校正计算方法
CN110729770A (zh) * 2019-10-24 2020-01-24 北京交通大学 一种主动配电网负荷故障恢复策略优化算法
CN112260271A (zh) * 2020-10-10 2021-01-22 北京交通大学 一种配电网故障恢复策略的生成方法和装置
CN113364045A (zh) * 2021-05-26 2021-09-07 国网上海市电力公司 一种移动式储能参与的主动配电网故障恢复方法
CN113452051A (zh) * 2021-06-25 2021-09-28 燕山大学 考虑应急电源车调度的有源配电网故障均衡供电恢复方法
WO2022036778A1 (zh) * 2020-08-21 2022-02-24 山东大学 一种输配协同负荷恢复优化控制方法及系统
CN114336714A (zh) * 2022-01-10 2022-04-12 合肥工业大学 一种计及风储联合系统和冷负荷效应的负荷恢复方法
CN115377968A (zh) * 2022-08-22 2022-11-22 南京理工大学 一种考虑可再生能源出力波动的新型配电网顺序恢复优化方法
US20230009681A1 (en) * 2021-07-05 2023-01-12 North China Electric Power University Optimal dispatching method and system for wind power generation and energy storage combined system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049737A1 (zh) * 2016-09-18 2018-03-22 国电南瑞科技股份有限公司 一种基于分区负荷控制的安全校正计算方法
CN110729770A (zh) * 2019-10-24 2020-01-24 北京交通大学 一种主动配电网负荷故障恢复策略优化算法
WO2022036778A1 (zh) * 2020-08-21 2022-02-24 山东大学 一种输配协同负荷恢复优化控制方法及系统
CN112260271A (zh) * 2020-10-10 2021-01-22 北京交通大学 一种配电网故障恢复策略的生成方法和装置
CN113364045A (zh) * 2021-05-26 2021-09-07 国网上海市电力公司 一种移动式储能参与的主动配电网故障恢复方法
CN113452051A (zh) * 2021-06-25 2021-09-28 燕山大学 考虑应急电源车调度的有源配电网故障均衡供电恢复方法
US20230009681A1 (en) * 2021-07-05 2023-01-12 North China Electric Power University Optimal dispatching method and system for wind power generation and energy storage combined system
CN114336714A (zh) * 2022-01-10 2022-04-12 合肥工业大学 一种计及风储联合系统和冷负荷效应的负荷恢复方法
CN115377968A (zh) * 2022-08-22 2022-11-22 南京理工大学 一种考虑可再生能源出力波动的新型配电网顺序恢复优化方法

Also Published As

Publication number Publication date
CN115995815B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
Petrescu et al. Ecosphere protection through green energy
CN107732949B (zh) 一种综合风电全年多季节特性的储能布点定容方法
CN107732958B (zh) 一种计及源荷协同恢复的独立微电网黑启动优化方法
CN109886446B (zh) 基于改进混沌粒子群算法的电力系统动态经济调度方法
CN110601260B (zh) 一种限定联络线上功率波动的光-蓄系统容量优化方法
CN106451424A (zh) 含大规模光伏发电并网的输电网随机规划方法
CN110829484B (zh) 一种基于时空分解的全球能源互联电力平衡优化方法
CN115995815B (zh) 一种基于多模块嵌套迭代的负荷故障恢复方法
CN114094609B (zh) 电网储能系统的优化配置方法
Rouhani et al. A teaching learning based optimization for optimal design of a hybrid energy system
CN113178896B (zh) 一种固定出力光储联合电站装机容量配置方法及系统
CN114649822A (zh) 一种考虑风光三状态的微电网混合储能双层容量配置方法
CN114465226A (zh) 一种电力系统多级备用获取联合优化模型的建立方法
CN110829410A (zh) 一种基于区域分解迭代的新能源消纳时序仿真方法
Ali et al. Hierarchical control combined with higher order sliding mode control for integrating wind/tidal/battery/hydrogen powered DC offshore microgrid
CN112350378B (zh) 一种应对环境及负荷需求变化的微电网鲁棒优化方法
CN116316740B (zh) 一种考虑新能源影响的储能代替火电容量效率计算方法
CN111931322B (zh) 自主式元胞电网的电源及耦合点规划方法及系统
CN108364104B (zh) 一种多能互补发电方法
CN109066808B (zh) 一种适应电源出力不确定的主动配电网运行优化方法
Tang et al. Research on Capacity Configuration Optimization of Multi-Energy Complementary System Using Deep Reinforce Learning
Yuqin et al. Multi objective optimal operation of integrated electricity-gas system considering emission of pollutant gas
Yang et al. Multi-source scheduling method on supply side of microgrid based on reinforcement learning algorithm
CN116581795A (zh) 一种考虑电能传输的省级协同多类型电解制氢方法
CN105375529A (zh) 一种微网与配电系统相互影响的机理研究方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant