CN115974548B - A lead-free high-entropy ferroelectric film and its preparation method and application - Google Patents
A lead-free high-entropy ferroelectric film and its preparation method and application Download PDFInfo
- Publication number
- CN115974548B CN115974548B CN202211625444.5A CN202211625444A CN115974548B CN 115974548 B CN115974548 B CN 115974548B CN 202211625444 A CN202211625444 A CN 202211625444A CN 115974548 B CN115974548 B CN 115974548B
- Authority
- CN
- China
- Prior art keywords
- entropy
- lead
- free high
- salt
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000004146 energy storage Methods 0.000 claims abstract description 61
- 230000015556 catabolic process Effects 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims description 34
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 33
- 239000002243 precursor Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 17
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical group [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 17
- 230000005684 electric field Effects 0.000 claims description 16
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 claims description 16
- 229960000583 acetic acid Drugs 0.000 claims description 15
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 14
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 14
- 239000012362 glacial acetic acid Substances 0.000 claims description 12
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 claims description 8
- GJKFIJKSBFYMQK-UHFFFAOYSA-N lanthanum(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GJKFIJKSBFYMQK-UHFFFAOYSA-N 0.000 claims description 8
- 235000011056 potassium acetate Nutrition 0.000 claims description 8
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 8
- 235000017281 sodium acetate Nutrition 0.000 claims description 8
- 229940087562 sodium acetate trihydrate Drugs 0.000 claims description 8
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 8
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 claims description 8
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 claims description 8
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 claims description 8
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- 150000001621 bismuth Chemical class 0.000 claims description 6
- 150000002603 lanthanum Chemical class 0.000 claims description 6
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 6
- 159000000000 sodium salts Chemical class 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 159000000008 strontium salts Chemical class 0.000 claims description 6
- 150000003608 titanium Chemical class 0.000 claims description 6
- QYIGOGBGVKONDY-UHFFFAOYSA-N 1-(2-bromo-5-chlorophenyl)-3-methylpyrazole Chemical compound N1=C(C)C=CN1C1=CC(Cl)=CC=C1Br QYIGOGBGVKONDY-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 4
- 229910000380 bismuth sulfate Inorganic materials 0.000 claims description 4
- 239000002738 chelating agent Substances 0.000 claims description 4
- BEQZMQXCOWIHRY-UHFFFAOYSA-H dibismuth;trisulfate Chemical compound [Bi+3].[Bi+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BEQZMQXCOWIHRY-UHFFFAOYSA-H 0.000 claims description 4
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 4
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 claims description 4
- VQEHIYWBGOJJDM-UHFFFAOYSA-H lanthanum(3+);trisulfate Chemical compound [La+3].[La+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VQEHIYWBGOJJDM-UHFFFAOYSA-H 0.000 claims description 4
- 239000004323 potassium nitrate Substances 0.000 claims description 4
- 235000010333 potassium nitrate Nutrition 0.000 claims description 4
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims description 4
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 4
- 235000011151 potassium sulphates Nutrition 0.000 claims description 4
- 239000004317 sodium nitrate Substances 0.000 claims description 4
- 235000010344 sodium nitrate Nutrition 0.000 claims description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 4
- 235000011152 sodium sulphate Nutrition 0.000 claims description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 2
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 claims description 2
- 229940074439 potassium sodium tartrate Drugs 0.000 claims description 2
- 235000011006 sodium potassium tartrate Nutrition 0.000 claims description 2
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 18
- 238000003980 solgel method Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 83
- 239000000243 solution Substances 0.000 description 59
- 239000011734 sodium Substances 0.000 description 22
- 239000010409 thin film Substances 0.000 description 19
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000011056 performance test Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 238000005485 electric heating Methods 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002408 directed self-assembly Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Insulating Materials (AREA)
Abstract
Description
技术领域Technical field
本发明属于薄膜材料技术领域,特别涉及一种无铅高熵铁电薄膜及其制备方法和应用。The invention belongs to the technical field of thin film materials, and particularly relates to a lead-free high-entropy ferroelectric thin film and its preparation method and application.
背景技术Background technique
目前,有研究报道,普通铁电薄膜的击穿电场强度一般为1-2MV/cm(参考资料1:Xie,Yanjiang,et al."Ultra-high energy storage density and enhanced dielectricproperties in BNT-BT based thin film."Ceramics International 47.16(2021):23259-23266;参考资料2:Peng,Biaolin,et al."Low-temperature-poling awakenedhigh dielectric breakdown strength and outstanding improvement of dischargeenergy density of(Pb,La)(Zr,Sn,Ti)O3 relaxor thin film."Nano Energy 77(2020):105132),商用高分子聚合物薄膜的击穿电场强度为0.2-0.6MV/cm(参考资料3:Pei,Jia-Yao,et al."Enhancement of breakdown strength of multilayer polymer filmthrough electric field redistribution and defect modification."AppliedPhysics Letters 114.10(2019):103702;参考资料4:Samant,Saumil P.,et al."Directed self-assembly of block copolymers for high breakdown strengthpolymer film capacitors."ACS applied materials&interfaces 8.12(2016):7966-7976),陶瓷颗粒/高分子复合材料薄膜的击穿电场强度为2.3-4.1MV/cm(参考资料5:Beier,Christopher W.,Jason M.Sanders,and Richard L.Brutchey."Improvedbreakdown strength and energy density in thin-film polyimide nanocompositeswith small barium strontium titanate nanocrystal fillers."The Journal ofPhysical Chemistry C 117.14(2013):6958-6965;参考资料6:Wang,Yifei,et al."Compositional tailoring effect on electric field distribution forsignificantly enhanced breakdown strength and restrained conductive loss insandwich-structured ceramic/polymer nanocomposites."Journal of MaterialsChemistry A 5.9(2017):4710-4718)。这些薄膜材料的击穿电场强度均较低,已不能满足市场对更高击穿电场强度(5MV/cm以上)的需求。At present, there are research reports that the breakdown electric field strength of ordinary ferroelectric thin films is generally 1-2MV/cm (Reference 1: Xie, Yanjiang, et al. "Ultra-high energy storage density and enhanced dielectric properties in BNT-BT based thin film."Ceramics International 47.16(2021):23259-23266; Reference 2: Peng, Biaolin, et al."Low-temperature-poling awakenedhigh dielectric breakdown strength and outstanding improvement of dischargeenergy density of(Pb,La)(Zr, Sn,Ti)O3 relaxor thin film." Nano Energy 77(2020):105132), the breakdown electric field strength of commercial polymer films is 0.2-0.6MV/cm (Reference 3: Pei, Jia-Yao, et al. al. "Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification." AppliedPhysics Letters 114.10(2019):103702; Reference 4: Samant, Saumil P., et al. "Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors." ACS applied materials&interfaces 8.12(2016):7966-7976), the breakdown electric field strength of ceramic particle/polymer composite film is 2.3-4.1MV/cm (Reference 5: Beier, Christopher W. , Jason M. Sanders, and Richard L. Brutchey. "Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers." The Journal of Physical Chemistry C 117.14 (2013): 6958-6965; Reference 6: Wang, Yifei, et al. "Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss insandwich-structured ceramic/polymer nanocomposites." Journal of MaterialsChemistry A 5.9 (2017): 4710-4718). The breakdown electric field strength of these thin film materials is low and cannot meet the market demand for higher breakdown electric field strength (above 5MV/cm).
高熵铁电材料是指材料晶体结构中的某个位点由4种以上的金属元素按照等摩尔比或近似等摩尔比形成的一种固溶体化合物,其特点在于化学无序性的增强使得组态熵达到最大化,从而实现更加稳定的系统。和传统铁电材料相比,高熵铁电材料具有稳定的热力学相,显著的晶格畸变以及成分复杂性等固有特性。这些属性使高熵铁电材料具有良好的热稳定性、较强的力学性能、突出的压电性能和介电性能。High-entropy ferroelectric materials refer to a solid solution compound formed by more than four metal elements in an equimolar or approximately equimolar ratio at a certain site in the crystal structure of the material. Its characteristic is that the enhanced chemical disorder makes the composition The state entropy is maximized, resulting in a more stable system. Compared with traditional ferroelectric materials, high-entropy ferroelectric materials have inherent characteristics such as stable thermodynamic phases, significant lattice distortion, and composition complexity. These properties give high-entropy ferroelectric materials good thermal stability, strong mechanical properties, outstanding piezoelectric properties and dielectric properties.
传统高熵铁电材料的制备一般采用物理固相反应法,但此方法适合制备相应的块状材料,并不适用于制备高熵铁电薄膜。而铁电薄膜材料的制备方法一般有物理气相沉积(PVD)、化学气相沉积(CVD)。其中,PVD是在真空高温环境下将金属气化通过原子间碰撞沉积在基底上形成薄膜,但此方法对真空度要求较高。对多组元化合物来说,元素间的熔点和气相蒸气压要求严苛,同时成分比例控制度小,成膜不均匀且质量差。CVD是利用多种气相物质在高温下发生化学反应沉积在基底上形成薄膜。但此方法有很大的局限性,例如,制备过程中产生的有毒性的反应气体,有些反应生成物(杂质)可能会残余在镀膜中,基底的耐高温性要好(>1000℃)以及制备成本高等。Traditional high-entropy ferroelectric materials are generally prepared by physical solid-state reaction methods, but this method is suitable for preparing corresponding bulk materials and is not suitable for preparing high-entropy ferroelectric thin films. The preparation methods of ferroelectric thin film materials generally include physical vapor deposition (PVD) and chemical vapor deposition (CVD). Among them, PVD vaporizes metal and deposits it on the substrate through inter-atomic collision in a vacuum high-temperature environment to form a thin film, but this method requires a high degree of vacuum. For multi-component compounds, the melting point and gas phase vapor pressure between elements are stringent. At the same time, the control of the component ratio is small, the film formation is uneven and the quality is poor. CVD uses a variety of gas phase substances to react chemically at high temperatures and deposit them on a substrate to form a thin film. However, this method has great limitations. For example, toxic reaction gases are generated during the preparation process, some reaction products (impurities) may remain in the coating, the substrate must have good high temperature resistance (>1000°C) and the preparation High cost etc.
因此,如何克服高熵铁电薄膜制备方法存在设备要求高、成本高的问题,以及开发出具有更高击穿电场强度的高熵铁电薄膜成为目前电子行业的迫切需求。Therefore, how to overcome the problems of high equipment requirements and high cost in the preparation method of high-entropy ferroelectric thin films, and the development of high-entropy ferroelectric thin films with higher breakdown electric field strength has become an urgent need in the current electronics industry.
发明内容Contents of the invention
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提供一种无铅高熵铁电薄膜的制备方法,利用溶胶凝胶法制备厚度可控的无铅高熵铁电薄膜,设备要求低、成本低,制得的无铅高熵铁电薄膜具有超高击穿电场强度,无铅高熵铁电薄膜的击穿电场强度大于8MV/cm。The present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention provides a method for preparing lead-free high-entropy ferroelectric films. The sol-gel method is used to prepare lead-free high-entropy ferroelectric films with controllable thickness. The equipment requirements are low, the cost is low, and the lead-free high-entropy ferroelectric films produced are Entropy ferroelectric films have ultra-high breakdown electric field strength, and the breakdown electric field strength of lead-free high-entropy ferroelectric films is greater than 8MV/cm.
本发明的第一方面提供一种无铅高熵铁电薄膜的制备方法,包括以下步骤:A first aspect of the invention provides a method for preparing a lead-free high-entropy ferroelectric film, which includes the following steps:
1)制备BNKLST前驱体溶液,所述BNKLST的化学通式为(BixNaxKyLaySry)TiO3,其中x>0,y>0,2x+3y=1;1) Prepare a BNKLST precursor solution. The general chemical formula of BNKLST is ( Bix Na x K y Lay Sr y )TiO 3 , where x>0, y>0, 2x+3y=1;
2)将步骤1)得到的BNKLST前驱体溶液旋涂在导电基底上,得到湿膜;2) Spin-coat the BNKLST precursor solution obtained in step 1) on the conductive substrate to obtain a wet film;
3)将步骤2)得到的湿膜在200-250℃条件下干燥3-5min,然后在400-450℃条件下热解3-5min,得到无定形膜;3) Dry the wet film obtained in step 2) at 200-250°C for 3-5 minutes, and then pyrolyze it at 400-450°C for 3-5 minutes to obtain an amorphous film;
4)将步骤3)得到的无定形膜进行快速加热处理;所述快速加热处理为:以升温速率为50-100℃/s加热到650-700℃,并保温3-5min;4) The amorphous film obtained in step 3) is subjected to rapid heating treatment; the rapid heating treatment is: heating to 650-700°C at a heating rate of 50-100°C/s, and keeping the temperature for 3-5 minutes;
5)将步骤4)经过快速加热处理后的无定形膜进行退火处理,得到所述无铅高熵铁电薄膜。5) Perform annealing treatment on the amorphous film that has been rapidly heated in step 4) to obtain the lead-free high-entropy ferroelectric film.
优选地,步骤1)中所述制备BNKLST前驱体溶液,具体是按以下步骤进行的:Preferably, the BNKLST precursor solution is prepared as described in step 1), specifically by following the following steps:
按照所述化学通式的化学计量比,称取铋盐、钠盐、钾盐、锶盐、镧盐和钛盐;According to the stoichiometric ratio of the general chemical formula, weigh bismuth salt, sodium salt, potassium salt, strontium salt, lanthanum salt and titanium salt;
将所述铋盐溶解于溶剂中,再加入所述钠盐、所述钾盐、所述锶盐和所述镧盐,溶解得到A溶液;Dissolve the bismuth salt in a solvent, then add the sodium salt, the potassium salt, the strontium salt and the lanthanum salt, and dissolve to obtain solution A;
将所述钛盐与溶剂、螯合剂混合,得到B溶液;Mix the titanium salt with a solvent and a chelating agent to obtain solution B;
将所述B溶液加入所述A溶液中,再加入体积比为0.5-1%的甲酰胺,搅拌24-36h,然后静置72-84h,反应得到所述BNKLST前驱体溶液。Add the B solution to the A solution, then add formamide with a volume ratio of 0.5-1%, stir for 24-36 hours, and then let it stand for 72-84 hours, and react to obtain the BNKLST precursor solution.
优选地,所述铋盐包括醋酸铋、硝酸铋和硫酸铋中的至少一种;所述钠盐包括三水合醋酸钠、硝酸钠和硫酸钠中的至少一种;所述钾盐包括醋酸钾、硝酸钾和硫酸钾中的至少一种;所述锶盐包括醋酸锶、硝酸锶和硫酸锶中的至少一种;所述镧盐包括六水合硝酸镧、硝酸镧和硫酸镧中的至少一种;所述钛盐为钛酸四丁酯。Preferably, the bismuth salt includes at least one of bismuth acetate, bismuth nitrate and bismuth sulfate; the sodium salt includes at least one of sodium acetate trihydrate, sodium nitrate and sodium sulfate; the potassium salt includes potassium acetate , at least one of potassium nitrate and potassium sulfate; the strontium salt includes at least one of strontium acetate, strontium nitrate and strontium sulfate; the lanthanum salt includes at least one of lanthanum nitrate hexahydrate, lanthanum nitrate and lanthanum sulfate species; the titanium salt is tetrabutyl titanate.
优选地,所述溶剂包括冰醋酸、乙二醇甲醚、乙醇、异丙醇中的至少一种;所述螯合剂包括乙酰丙酮、EDTA、酒石酸钾钠、柠檬酸铵中的至少一种。Preferably, the solvent includes at least one of glacial acetic acid, ethylene glycol methyl ether, ethanol, and isopropyl alcohol; the chelating agent includes at least one of acetylacetone, EDTA, potassium sodium tartrate, and ammonium citrate.
优选地,所述x和y的比值为0.5-2:1。Preferably, the ratio of x and y is 0.5-2:1.
优选地,所述退火处理的条件包括:退火的温度为650-700℃,退火的时间为10-15min。Preferably, the conditions of the annealing treatment include: the annealing temperature is 650-700°C, and the annealing time is 10-15 minutes.
优选地,在进行所述步骤5)前,重复步骤2)、步骤3)和步骤4)多次,得到多层无定形膜。Preferably, before performing step 5), repeat steps 2), step 3) and step 4) multiple times to obtain a multi-layer amorphous film.
优选地,所述无铅高熵铁电薄膜的层数为4-10层,每层所述无铅高熵铁电薄膜的厚度为40-50nm。Preferably, the number of layers of the lead-free high-entropy ferroelectric film is 4-10, and the thickness of each layer of the lead-free high-entropy ferroelectric film is 40-50 nm.
本发明的第二方面提供一种无铅高熵铁电薄膜,采用本发明所述的制备方法制得,所述无铅高熵铁电薄膜的击穿电场强度大于8MV/cm。A second aspect of the present invention provides a lead-free high-entropy ferroelectric film, which is produced by the preparation method of the present invention. The breakdown electric field strength of the lead-free high-entropy ferroelectric film is greater than 8MV/cm.
优选地,所述无铅高熵铁电薄膜是单相晶体结构。Preferably, the lead-free high-entropy ferroelectric film has a single-phase crystal structure.
本发明的第三方面提供一种介电储能器件,在所述介电储能器件中,包括本发明所述的无铅高熵铁电薄膜。A third aspect of the present invention provides a dielectric energy storage device, in which the dielectric energy storage device includes the lead-free high-entropy ferroelectric film of the present invention.
相对于现有技术,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
(1)本发明的无铅高熵铁电薄膜的制备方法,利用溶胶凝胶法制备厚度可控的无铅高熵铁电薄膜,溶胶凝胶法具有工艺简单,设备要求低,生产成本低,成膜效率和均匀性好的优点,可适用大面积制膜;而且溶胶凝胶法制备的材料对化学组分的比例易控制,可通过分子结构工程对材料进行设计,特别适合制备无铅高熵铁电薄膜多组元材料。(1) The preparation method of the lead-free high-entropy ferroelectric film of the present invention uses the sol-gel method to prepare the lead-free high-entropy ferroelectric film with controllable thickness. The sol-gel method has the advantages of simple process, low equipment requirements and low production cost. , with the advantages of good film-forming efficiency and uniformity, it can be applied to large-area film-making; and the proportion of chemical components of materials prepared by the sol-gel method is easy to control, and the materials can be designed through molecular structure engineering, which is especially suitable for the preparation of lead-free High-entropy ferroelectric thin film multi-component materials.
(2)本发明制得的无铅高熵铁电薄膜,具有超高击穿场强和良好的温度稳定性,其所能承受的击穿电场强度大于8MV/cm,储能密度可达5.88J/cm3,储能效率可达93%,可在-55-200℃条件下正常工作,并具有较大介电常数和较小介电损耗。(2) The lead-free high-entropy ferroelectric film produced by the present invention has ultra-high breakdown field strength and good temperature stability. The breakdown electric field strength it can withstand is greater than 8MV/cm, and the energy storage density can reach 5.88 J/cm 3 , the energy storage efficiency can reach 93%, it can work normally at -55-200℃, and has a large dielectric constant and small dielectric loss.
(3)本发明制得的无铅高熵铁电薄膜不含铅等有毒性元素,相比含铅铁电薄膜更加环保;采用本发明的无铅高熵铁电薄膜制备的介电储能器件具有优异的储能密度和储能效率。(3) The lead-free high-entropy ferroelectric film prepared by the present invention does not contain toxic elements such as lead, and is more environmentally friendly than the lead-containing ferroelectric film; dielectric energy storage prepared by using the lead-free high-entropy ferroelectric film of the present invention The device has excellent energy storage density and energy storage efficiency.
附图说明Description of the drawings
图1是实施例1得到的无铅高熵铁电薄膜的XRD图;Figure 1 is an XRD pattern of the lead-free high-entropy ferroelectric film obtained in Example 1;
图2是实施例1得到的无铅高熵铁电薄膜的截面的SEM图;Figure 2 is an SEM image of a cross-section of the lead-free high-entropy ferroelectric film obtained in Example 1;
图3是实施例1组装成的介电储能器件的介电常数和介电损耗随频率变化的曲线图;Figure 3 is a graph showing changes in dielectric constant and dielectric loss with frequency of the dielectric energy storage device assembled in Embodiment 1;
图4是实施例1组装成的介电储能器件的电导率和温度关系图;Figure 4 is a graph showing the relationship between conductivity and temperature of the dielectric energy storage device assembled in Example 1;
图5是实施例1组装成的介电储能器件的击穿电场的韦伯分布曲线图;Figure 5 is a Weber distribution curve diagram of the breakdown electric field of the dielectric energy storage device assembled in Embodiment 1;
图6是实施例1组装成的介电储能器件的电滞回线图;Figure 6 is an electrical hysteresis loop diagram of the dielectric energy storage device assembled in Embodiment 1;
图7是对比例1得到的无铅高熵铁电薄膜的截面的SEM图;Figure 7 is an SEM image of a cross-section of the lead-free high-entropy ferroelectric film obtained in Comparative Example 1;
图8是对比例1组装成的介电储能器件的电滞回线图。Figure 8 is an electrical hysteresis loop diagram of the dielectric energy storage device assembled in Comparative Example 1.
具体实施方式Detailed ways
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。In order to allow those skilled in the art to understand the technical solution of the present invention more clearly, the following examples are listed for description. It should be noted that the following examples do not limit the scope of protection claimed by the present invention.
以下实施例中所用的原料、试剂、装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。Unless otherwise specified, the raw materials, reagents, and devices used in the following examples can be obtained from conventional commercial sources, or can be obtained by existing known methods.
本发明中的室温是指25±5℃;缓慢滴入是指滴加速率为5-10秒/滴;缓慢搅拌是指搅拌速率为10-20rpm;无定形膜是指非晶态还没有结晶的膜。The room temperature in the present invention refers to 25±5°C; the slow dripping refers to the dropping acceleration rate of 5-10 seconds/drop; the slow stirring refers to the stirring rate of 10-20rpm; the amorphous film refers to the amorphous state that has not yet crystallized. membrane.
实施例1Example 1
一种无铅高熵铁电薄膜的制备方法,包括以下步骤:A method for preparing a lead-free high-entropy ferroelectric film, including the following steps:
1)制备(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3前驱体溶液:1) Prepare (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 )TiO 3 precursor solution:
按照(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3的化学计量比称取醋酸铋、三水合醋酸钠、醋酸钾、醋酸锶、六水合硝酸镧和钛酸四丁酯为原料,将醋酸铋加入适量的冰醋酸中,在70℃条件下加热搅拌30min,再加入少量的去离子水搅拌30min,然后依次加入三水合醋酸钠、醋酸钾、醋酸锶和六水合硝酸镧,搅拌2.5h,溶解得到A溶液;Weigh bismuth acetate, sodium acetate trihydrate, potassium acetate, strontium acetate, lanthanum nitrate hexahydrate and tetrabutyl titanate as raw materials according to the stoichiometric ratio of (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 ) TiO 3 , and add acetic acid to Add bismuth to an appropriate amount of glacial acetic acid, heat and stir for 30 minutes at 70°C, then add a small amount of deionized water and stir for 30 minutes, then add sodium acetate trihydrate, potassium acetate, strontium acetate and lanthanum nitrate hexahydrate in sequence, and stir for 2.5 hours. Dissolve to obtain solution A;
按照体积比为1:3:2将钛酸四丁酯、乙二醇甲醚、乙酰丙酮三种溶液在室温下进行混合,搅拌1h,得到B溶液;Mix the three solutions of tetrabutyl titanate, ethylene glycol methyl ether, and acetylacetone at room temperature according to a volume ratio of 1:3:2, and stir for 1 hour to obtain solution B;
将A溶液加热到80℃条件下,将B溶液缓慢滴入A溶液中,待完全加入B溶液后,为避免钛酸四丁酯发生水解反应,加入适量的0.2M的冰醋酸,搅拌3h,再加入体积比为0.5%的甲酰胺,在室温下缓慢搅拌24h,然后静置72h,反应得到(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3前驱体溶液;Heat solution A to 80°C and slowly drop solution B into solution A. After solution B is completely added, in order to avoid the hydrolysis reaction of tetrabutyl titanate, add an appropriate amount of 0.2M glacial acetic acid and stir for 3 hours. Then add formamide with a volume ratio of 0.5%, stir slowly at room temperature for 24h, and then let it stand for 72h. The reaction yields (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 ) TiO 3 precursor solution;
2)在1cm×1cm的Pt(111)/Ti/SiO2/Si(100)导电基底上滴加5滴(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3前驱体溶液,使用匀胶机先以转速为600r/min旋涂9s,再以转速为3000r/min旋涂30s,得到湿膜;2) Add 5 drops of (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 ) TiO 3 precursor solution on the 1cm×1cm Pt(111)/Ti/SiO 2 /Si(100) conductive substrate, and use a homogenizer First, spin coating at a rotation speed of 600r/min for 9 seconds, and then at a rotation speed of 3000r/min for 30 seconds to obtain a wet film;
3)将湿膜放置在电加热平板上,在200℃条件下烘干5min,然后在400℃条件下热解5min,得到无定形膜;3) Place the wet film on an electric heating plate, dry it at 200°C for 5 minutes, and then pyrolyze it at 400°C for 5 minutes to obtain an amorphous film;
4)将无定形膜进行快速加热处理;快速加热处理为:采用快速退火炉以升温速率为80℃/s将无定形膜加热到650℃,并保温5min;4) Rapidly heat the amorphous film; the rapid heating treatment is: use a rapid annealing furnace to heat the amorphous film to 650°C at a heating rate of 80°C/s and keep it warm for 5 minutes;
5)重复步骤2)、步骤3)和步骤4)3次,然后在650℃条件下进行15min的退火处理,得到4层无铅高熵铁电薄膜。5) Repeat steps 2), 3) and 4) three times, and then perform annealing treatment at 650°C for 15 minutes to obtain 4 layers of lead-free high-entropy ferroelectric films.
产品表征:Product Characterization:
1、将实施例1得到的无铅高熵铁电薄膜进行X射线衍射,其XRD图谱如图1所示。从图1可以看出本发明的无铅高熵铁电薄膜呈现出了钙钛矿晶体结构,无杂相和杂质。1. The lead-free high-entropy ferroelectric thin film obtained in Example 1 was subjected to X-ray diffraction, and its XRD pattern is shown in Figure 1. It can be seen from Figure 1 that the lead-free high-entropy ferroelectric film of the present invention exhibits a perovskite crystal structure without impurities and impurities.
2、将实施例1得到的无铅高熵铁电薄膜的截面进行SEM电镜扫描,其SEM图如图2所示。图2中由上至下,“1”表示扫描电镜样品台背景,“2”表示(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3,“3”表示导电基底的Pt/Ti电极层,“4”表示导电基底的SiO2/Si层。从图2可以看出本发明的无铅高熵铁电薄膜的结晶度较高,结构较致密。2. Scan the cross section of the lead-free high-entropy ferroelectric thin film obtained in Example 1 with an SEM electron microscope. The SEM image is shown in Figure 2. From top to bottom in Figure 2, “1” represents the background of the SEM sample stage, “2” represents (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 )TiO 3 , “3” represents the Pt/Ti electrode layer of the conductive base, "4" represents the SiO 2 /Si layer of the conductive substrate. It can be seen from Figure 2 that the lead-free high-entropy ferroelectric film of the present invention has a higher crystallinity and a denser structure.
产品性能测试:Product performance test:
将实施例1得到的无铅高熵铁电薄膜作为电介质材料,组装成介电储能器件。其中,无铅高熵铁电薄膜的导电基底作为介电储能器件的一个电极,介电储能器件的另一电极通过磁控溅射在无铅高熵铁电薄膜的另一表面沉积金制得,金电极的直径为0.4mm、厚度为0.25μm。将组装成的介电储能器件进行相关电学性能测试;The lead-free high-entropy ferroelectric film obtained in Example 1 was used as a dielectric material to assemble a dielectric energy storage device. Among them, the conductive substrate of the lead-free high-entropy ferroelectric film serves as one electrode of the dielectric energy storage device, and the other electrode of the dielectric energy storage device deposits gold on the other surface of the lead-free high-entropy ferroelectric film through magnetron sputtering. The diameter of the gold electrode is 0.4mm and the thickness is 0.25μm. Conduct relevant electrical performance tests on the assembled dielectric energy storage devices;
如图3所示,测试频率范围为1-105kHz。在测试频率10kHz下,介电储能器件的介电常数高于100,同时介电损耗低于0.05。As shown in Figure 3, the test frequency range is 1-10 5 kHz. At the test frequency of 10kHz, the dielectric constant of the dielectric energy storage device is higher than 100, while the dielectric loss is lower than 0.05.
如图4所示,测试电压为150V,介电储能器件在室温下的电导率为5.13×10-4S/m,漏电流约为10-7A。同时在60-140℃范围内,电导率可以稳定维持在3.3×10-3S/m。As shown in Figure 4, the test voltage is 150V, the conductivity of the dielectric energy storage device at room temperature is 5.13×10 -4 S/m, and the leakage current is about 10 -7 A. At the same time, the conductivity can be stably maintained at 3.3×10 -3 S/m in the range of 60-140°C.
如图5所示,介电储能器件的击穿电场强度Eb依据韦伯分布测量,为Eb=10.99MV/cm。介电储能器件以超高的击穿电场强度获得较高的储能效果。As shown in Figure 5, the breakdown electric field strength Eb of the dielectric energy storage device is measured according to the Weber distribution and is Eb=10.99MV/cm. Dielectric energy storage devices achieve high energy storage effects with ultra-high breakdown electric field strength.
如图6所示,在频率为1000Hz和最大电压为95V的周期三角波信号条件下,对介电储能器件进行电滞回线测试,可获得5.88J/cm3的储能密度和93%的优异储能效率。As shown in Figure 6, under the conditions of a periodic triangular wave signal with a frequency of 1000Hz and a maximum voltage of 95V, the electrical hysteresis loop test of the dielectric energy storage device can obtain an energy storage density of 5.88J/ cm3 and an energy storage density of 93%. Excellent energy storage efficiency.
对比例1(与实施例1的区别在于,无定形膜采用常规加热处理)Comparative Example 1 (the difference from Example 1 is that the amorphous film adopts conventional heat treatment)
一种无铅高熵铁电薄膜的制备方法,包括以下步骤:A method for preparing a lead-free high-entropy ferroelectric film, including the following steps:
1)制备(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3前驱体溶液:1) Prepare (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 )TiO 3 precursor solution:
按照(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3的化学计量比称取醋酸铋、三水合醋酸钠、醋酸钾、醋酸锶、六水合硝酸镧和钛酸四丁酯为原料,将醋酸铋加入适量的冰醋酸中,在70℃条件下加热搅拌30min,再加入少量的去离子水搅拌30min,然后依次加入三水合醋酸钠、醋酸钾、醋酸锶和六水合硝酸镧,搅拌2.5h,溶解得到A溶液;Weigh bismuth acetate, sodium acetate trihydrate, potassium acetate, strontium acetate, lanthanum nitrate hexahydrate and tetrabutyl titanate as raw materials according to the stoichiometric ratio of (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 ) TiO 3 , and add acetic acid to Add bismuth to an appropriate amount of glacial acetic acid, heat and stir for 30 minutes at 70°C, then add a small amount of deionized water and stir for 30 minutes, then add sodium acetate trihydrate, potassium acetate, strontium acetate and lanthanum nitrate hexahydrate in sequence, and stir for 2.5 hours. Dissolve to obtain solution A;
按照体积比为1:3:2将钛酸四丁酯、乙二醇甲醚、乙酰丙酮三种溶液在室温下进行混合,搅拌1h,得到B溶液;Mix the three solutions of tetrabutyl titanate, ethylene glycol methyl ether, and acetylacetone at room temperature according to a volume ratio of 1:3:2, and stir for 1 hour to obtain solution B;
将A溶液加热到80℃条件下,将B溶液缓慢滴入A溶液中,待完全加入B溶液后,为避免钛酸四丁酯发生水解反应,加入适量的0.2M的冰醋酸,搅拌3h,再加入体积比为0.5%的甲酰胺,在室温下缓慢搅拌24h,然后静置72h,反应得到(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3前驱体溶液;Heat solution A to 80°C and slowly drop solution B into solution A. After solution B is completely added, in order to avoid the hydrolysis reaction of tetrabutyl titanate, add an appropriate amount of 0.2M glacial acetic acid and stir for 3 hours. Then add formamide with a volume ratio of 0.5%, stir slowly at room temperature for 24h, and then let it stand for 72h. The reaction yields (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 ) TiO 3 precursor solution;
2)在1cm×1cm的Pt(111)/Ti/SiO2/Si(100)导电基底上滴加5滴(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3前驱体溶液,使用匀胶机先以转速为600r/min旋涂9s,再以转速为3000r/min旋涂30s,得到湿膜;2) Add 5 drops of (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 ) TiO 3 precursor solution on the 1cm×1cm Pt(111)/Ti/SiO 2 /Si(100) conductive substrate, and use a homogenizer First, spin coating at a rotation speed of 600r/min for 9 seconds, and then at a rotation speed of 3000r/min for 30 seconds to obtain a wet film;
3)将湿膜放置在电加热平板上,在200℃条件下烘干5min,然后在400℃条件下热解5min,得到无定形膜;3) Place the wet film on an electric heating plate, dry it at 200°C for 5 minutes, and then pyrolyze it at 400°C for 5 minutes to obtain an amorphous film;
4)将无定形膜进行常规加热处理;常规加热处理为:采用马弗炉以升温速率为30℃/min将无定形膜加热到650℃,并保温5min;4) The amorphous film is subjected to conventional heat treatment; the conventional heat treatment is: use a muffle furnace to heat the amorphous film to 650°C at a heating rate of 30°C/min, and keep it warm for 5 minutes;
5)重复步骤2)、步骤3)和步骤4)3次,然后在650℃条件下进行15min的退火处理,得到4层无铅高熵铁电薄膜。5) Repeat steps 2), 3) and 4) three times, and then perform annealing treatment at 650°C for 15 minutes to obtain 4 layers of lead-free high-entropy ferroelectric films.
将对比例1得到的无铅高熵铁电薄膜的截面进行电镜扫描,其SEM图如图7所示。图7中由上至下,“1”表示扫描电镜样品台背景,“2”表示(Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3,“3”表示导电基底的Pt/Ti电极层,“4”表示导电基底的SiO2/Si层。从图7可以看出对比例1的无铅高熵铁电薄膜的结晶度较差,结构较疏松。The cross-section of the lead-free high-entropy ferroelectric film obtained in Example 1 was scanned by an electron microscope, and the SEM image is shown in Figure 7. From top to bottom in Figure 7, “1” represents the background of the SEM sample stage, “2” represents (Bi 0.2 Na 0.2 K 0.2 La 0.2 Sr 0.2 )TiO 3 , “3” represents the Pt/Ti electrode layer of the conductive base, "4" represents the SiO 2 /Si layer of the conductive substrate. It can be seen from Figure 7 that the lead-free high-entropy ferroelectric film of Comparative Example 1 has poor crystallinity and a loose structure.
将对比例1得到的无铅高熵铁电薄膜作为电介质材料,组装成介电储能器件。其中,无铅高熵铁电薄膜的导电基底作为介电储能器件的一个电极,介电储能器件的另一电极通过磁控溅射在无铅高熵铁电薄膜的另一表面沉积金制得,金电极的直径为0.4mm、厚度为0.25μm。将组装成的介电储能器件进行相关电学性能测试(测试条件与实施例1中的测试条件相同)。如图8所示,在相同的测试条件下,测得介电储能器件的储能密度最高为0.61J/cm3,显著低于实施例1组装成的介电储能器件的储能密度。The lead-free high-entropy ferroelectric film obtained in Example 1 was used as a dielectric material to assemble a dielectric energy storage device. Among them, the conductive substrate of the lead-free high-entropy ferroelectric film serves as one electrode of the dielectric energy storage device, and the other electrode of the dielectric energy storage device deposits gold on the other surface of the lead-free high-entropy ferroelectric film through magnetron sputtering. The diameter of the gold electrode is 0.4mm and the thickness is 0.25μm. The assembled dielectric energy storage device is subjected to relevant electrical performance tests (the test conditions are the same as those in Example 1). As shown in Figure 8, under the same test conditions, the highest energy storage density of the dielectric energy storage device was measured to be 0.61J/cm 3 , which was significantly lower than the energy storage density of the dielectric energy storage device assembled in Example 1. .
实施例2Example 2
一种无铅高熵铁电薄膜的制备方法,包括以下步骤:A method for preparing a lead-free high-entropy ferroelectric film, including the following steps:
1)制备(Bi0.26Na0.26K0.16La0.16Sr0.16)TiO3前驱体溶液:1) Prepare (Bi 0.26 Na 0.26 K 0.16 La 0.16 Sr 0.16 ) TiO 3 precursor solution:
按照(Bi0.26Na0.26K0.16La0.16Sr0.16)TiO3的化学计量比称取醋酸铋、三水合醋酸钠、醋酸钾、醋酸锶、六水合硝酸镧和钛酸四丁酯为原料,将醋酸铋加入适量的冰醋酸中,在70℃条件下加热搅拌30min,再加入少量的去离子水搅拌30min,然后依次加入三水合醋酸钠、醋酸钾、醋酸锶和六水合硝酸镧,搅拌3h,溶解得到A溶液;Weigh bismuth acetate, sodium acetate trihydrate, potassium acetate, strontium acetate, lanthanum nitrate hexahydrate and tetrabutyl titanate as raw materials according to the stoichiometric ratio of (Bi 0.26 Na 0.26 K 0.16 La 0.16 Sr 0.16 ) TiO 3 , and add acetic acid Add bismuth to an appropriate amount of glacial acetic acid, heat and stir at 70°C for 30 minutes, then add a small amount of deionized water and stir for 30 minutes, then add sodium acetate trihydrate, potassium acetate, strontium acetate and lanthanum nitrate hexahydrate in sequence, stir for 3 hours, and dissolve Obtain solution A;
按照体积比为1:3:2将钛酸四丁酯、乙二醇甲醚、乙酰丙酮三种溶液在室温下进行混合,搅拌1h,得到B溶液;Mix the three solutions of tetrabutyl titanate, ethylene glycol methyl ether, and acetylacetone at room temperature according to a volume ratio of 1:3:2, and stir for 1 hour to obtain solution B;
将A溶液加热到80℃条件下,将B溶液缓慢滴入A溶液中,待完全加入B溶液后,为避免钛酸四丁酯发生水解反应,加入适量的0.2M的冰醋酸,搅拌3h,再加入体积比为0.5%的甲酰胺,在室温下缓慢搅拌24h,然后静置72h,反应得到(Bi0.26Na0.26K0.16La0.16Sr0.16)TiO3前驱体溶液;Heat solution A to 80°C and slowly drop solution B into solution A. After solution B is completely added, in order to avoid the hydrolysis reaction of tetrabutyl titanate, add an appropriate amount of 0.2M glacial acetic acid and stir for 3 hours. Then add formamide with a volume ratio of 0.5%, stir slowly at room temperature for 24h, and then let it stand for 72h. The reaction yields (Bi 0.26 Na 0.26 K 0.16 La 0.16 Sr 0.16 ) TiO 3 precursor solution;
2)在1cm×1cm的Pt(111)/Ti/SiO2/Si(100)导电基底上滴加5滴(Bi0.26Na0.26K0.16La0.16Sr0.16)TiO3前驱体溶液,使用匀胶机先以转速为600r/min旋涂9s,再以转速为3000r/min旋涂30s,得到湿膜;2) Add 5 drops of (Bi 0.26 Na 0.26 K 0.16 La 0.16 Sr 0.16 ) TiO 3 precursor solution on the 1cm×1cm Pt(111)/Ti/SiO 2 /Si(100) conductive substrate, and use a glue homogenizer First, spin coating at a rotation speed of 600r/min for 9 seconds, and then at a rotation speed of 3000r/min for 30 seconds to obtain a wet film;
3)将湿膜放置在电加热平板上,在200℃条件下烘干5min,然后在400℃条件下热解5min,得到无定形膜;3) Place the wet film on an electric heating plate, dry it at 200°C for 5 minutes, and then pyrolyze it at 400°C for 5 minutes to obtain an amorphous film;
4)将无定形膜进行快速加热处理;快速加热处理为:采用快速退火炉以升温速率为80℃/s将无定形膜加热到650℃,并保温5min;4) Rapidly heat the amorphous film; the rapid heating treatment is: use a rapid annealing furnace to heat the amorphous film to 650°C at a heating rate of 80°C/s and keep it warm for 5 minutes;
5)重复步骤2)、步骤3)和步骤4)3次,然后在650℃条件下进行15min的退火处理,得到4层无铅高熵铁电薄膜。5) Repeat steps 2), 3) and 4) three times, and then perform annealing treatment at 650°C for 15 minutes to obtain 4 layers of lead-free high-entropy ferroelectric films.
将对实施例2得到的无铅高熵铁电薄膜作为电介质材料,组装成介电储能器件。其中,无铅高熵铁电薄膜的导电基底作为介电储能器件的一个电极,介电储能器件的另一电极通过磁控溅射在无铅高熵铁电薄膜的另一表面沉积金制得,金电极的直径为0.4mm、厚度为0.25μm。将组装成的介电储能器件进行介电储能性能测试(测试条件与实施例1中的测试条件相同),测得介电储能器件的储能密度5.6J/cm3和储能效率90%。The lead-free high-entropy ferroelectric thin film obtained in Example 2 was used as a dielectric material to assemble a dielectric energy storage device. Among them, the conductive substrate of the lead-free high-entropy ferroelectric film serves as one electrode of the dielectric energy storage device, and the other electrode of the dielectric energy storage device deposits gold on the other surface of the lead-free high-entropy ferroelectric film through magnetron sputtering. The diameter of the gold electrode is 0.4mm and the thickness is 0.25μm. The assembled dielectric energy storage device was subjected to a dielectric energy storage performance test (the test conditions were the same as those in Example 1), and the energy storage density and energy storage efficiency of the dielectric energy storage device were measured to be 5.6 J/cm 3 90%.
实施例3Example 3
一种无铅高熵铁电薄膜的制备方法,包括以下步骤:A method for preparing a lead-free high-entropy ferroelectric film, including the following steps:
1)制备(Bi1/4Na1/4K1/6La1/6Sr1/6)TiO3前驱体溶液:1) Prepare (Bi 1/4 Na 1/4 K 1/6 La 1/6 Sr 1/6 )TiO 3 precursor solution:
按照(Bi1/4Na1/4K1/6La1/6Sr1/6)TiO3的化学计量比称取硝酸铋、硝酸钠、硝酸钾、硝酸锶、硝酸镧和钛酸四丁酯为原料,将硝酸铋加入适量的冰醋酸中,在60℃条件下加热搅拌30min,再加入少量的去离子水搅拌30min,然后依次加入硝酸钠、硝酸钾、硝酸锶和硝酸镧,搅拌2h,溶解得到A溶液;Weigh bismuth nitrate, sodium nitrate, potassium nitrate, strontium nitrate, lanthanum nitrate and tetrabutyl titanate according to the stoichiometric ratio of (Bi 1/4 Na 1/4 K 1/6 La 1/6 Sr 1/6 ) TiO 3 Using ester as raw material, add bismuth nitrate to an appropriate amount of glacial acetic acid, heat and stir at 60°C for 30 minutes, then add a small amount of deionized water and stir for 30 minutes, then add sodium nitrate, potassium nitrate, strontium nitrate and lanthanum nitrate in sequence, and stir for 2 hours , dissolve to obtain solution A;
按照体积比为1:3:2将钛酸四丁酯、乙二醇甲醚、乙酰丙酮三种溶液在室温下进行混合,搅拌1h,得到B溶液;Mix the three solutions of tetrabutyl titanate, ethylene glycol methyl ether, and acetylacetone at room temperature according to a volume ratio of 1:3:2, and stir for 1 hour to obtain solution B;
将A溶液加热到80℃条件下,将B溶液缓慢滴入A溶液中,待完全加入B溶液后,为避免钛酸四丁酯发生水解反应,加入适量的0.2M的冰醋酸,搅拌3h,再加入体积比为0.5%的甲酰胺,在室温下缓慢搅拌24h,然后静置72h,反应得到(Bi1/4Na1/4K1/6La1/6Sr1/6)TiO3前驱体溶液;Heat solution A to 80°C and slowly drop solution B into solution A. After solution B is completely added, in order to avoid the hydrolysis reaction of tetrabutyl titanate, add an appropriate amount of 0.2M glacial acetic acid and stir for 3 hours. Then add formamide with a volume ratio of 0.5%, stir slowly at room temperature for 24h, and then let it stand for 72h. The reaction yields (Bi 1/4 Na 1/4 K 1/6 La 1/6 Sr 1/6 ) TiO 3 precursor body solution;
2)在1cm×1cm的Pt(111)/Ti/SiO2/Si(100)导电基底上滴加5滴(Bi1/4Na1/4K1/ 6La1/6Sr1/6)TiO3前驱体溶液,使用匀胶机先以转速为600r/min旋涂9s,再以转速为3000r/min旋涂30s,得到湿膜;2) Add 5 drops (Bi 1/4 Na 1/4 K 1/ 6 La 1/6 Sr 1/6 ) on the 1cm×1cm Pt(111)/Ti/SiO 2 /Si(100) conductive substrate. For the TiO 3 precursor solution, use a glue leveler to spin-coat at a speed of 600r/min for 9s, and then spin-coat at a speed of 3000r/min for 30s to obtain a wet film;
3)将湿膜放置在电加热平板上,在200℃条件下烘干5min,然后在400℃条件下热解5min,得到无定形膜;3) Place the wet film on an electric heating plate, dry it at 200°C for 5 minutes, and then pyrolyze it at 400°C for 5 minutes to obtain an amorphous film;
4)将无定形膜进行快速加热处理;快速加热处理为:采用快速退火炉以升温速率为50℃/s将无定形膜加热到650℃,并保温3min;4) Perform rapid heating treatment on the amorphous film; the rapid heating treatment is: use a rapid annealing furnace to heat the amorphous film to 650°C at a heating rate of 50°C/s and keep it warm for 3 minutes;
5)重复步骤2)、步骤3)和步骤4)5次,然后在650℃条件下进行15min的退火处理,得到6层无铅高熵铁电薄膜。5) Repeat steps 2), 3) and 4) 5 times, and then perform annealing treatment at 650°C for 15 minutes to obtain 6 layers of lead-free high-entropy ferroelectric films.
将对实施例3得到的无铅高熵铁电薄膜作为电介质材料,组装成介电储能器件。其中,无铅高熵铁电薄膜的导电基底作为介电储能器件的一个电极,介电储能器件的另一电极通过磁控溅射在无铅高熵铁电薄膜的另一表面沉积金制得,金电极的直径为0.4mm、厚度为0.25μm。将组装成的介电储能器件进行介电储能性能测试(测试条件与实施例1中的测试条件相同),测得介电储能器件的储能密度5.63J/cm3和储能效率91%。The lead-free high-entropy ferroelectric thin film obtained in Example 3 was used as a dielectric material to assemble a dielectric energy storage device. Among them, the conductive substrate of the lead-free high-entropy ferroelectric film serves as one electrode of the dielectric energy storage device, and the other electrode of the dielectric energy storage device deposits gold on the other surface of the lead-free high-entropy ferroelectric film through magnetron sputtering. The diameter of the gold electrode is 0.4mm and the thickness is 0.25μm. The assembled dielectric energy storage device was subjected to a dielectric energy storage performance test (the test conditions were the same as those in Example 1), and the energy storage density and energy storage efficiency of the dielectric energy storage device were measured to be 5.63 J/cm 3 91%.
实施例4Example 4
一种无铅高熵铁电薄膜的制备方法,包括以下步骤:A method for preparing a lead-free high-entropy ferroelectric film, including the following steps:
1)制备(Bi2/7Na2/7K1/7La1/7Sr1/7)TiO3前驱体溶液:1) Prepare (Bi 2/7 Na 2/7 K 1/7 La 1/7 Sr 1/7 )TiO 3 precursor solution:
按照(Bi2/7Na2/7K1/7La1/7Sr1/7)TiO3的化学计量比称取硫酸铋、硫酸钠、硫酸钾、硫酸锶、硫酸镧和钛酸四丁酯为原料,将硫酸铋加入适量的冰醋酸中,在80℃条件下加热搅拌30min,再加入少量的去离子水搅拌30min,然后依次加入硫酸钠、硫酸钾、硫酸锶和硫酸镧,搅拌3h,溶解得到A溶液;Weigh bismuth sulfate, sodium sulfate, potassium sulfate, strontium sulfate, lanthanum sulfate and tetrabutyl titanate according to the stoichiometric ratio of (Bi 2/7 Na 2/7 K 1/7 La 1/7 Sr 1/7 ) TiO 3 Using ester as raw material, add bismuth sulfate to an appropriate amount of glacial acetic acid, heat and stir at 80°C for 30 minutes, then add a small amount of deionized water and stir for 30 minutes, then add sodium sulfate, potassium sulfate, strontium sulfate and lanthanum sulfate in sequence, and stir for 3 hours , dissolve to obtain solution A;
按照体积比为1:3:2将钛酸四丁酯、乙二醇甲醚、乙酰丙酮三种溶液在室温下进行混合,搅拌1h,得到B溶液;Mix the three solutions of tetrabutyl titanate, ethylene glycol methyl ether, and acetylacetone at room temperature according to a volume ratio of 1:3:2, and stir for 1 hour to obtain solution B;
将A溶液加热到80℃条件下,将B溶液缓慢滴入A溶液中,待完全加入B溶液后,为避免钛酸四丁酯发生水解反应,加入适量的0.2M的冰醋酸,搅拌3h,再加入体积比为1%的甲酰胺,在室温下缓慢搅拌24h,然后静置72h,反应得到(Bi2/7Na2/7K1/7La1/7Sr1/7)TiO3前驱体溶液;Heat solution A to 80°C and slowly drop solution B into solution A. After solution B is completely added, in order to avoid the hydrolysis reaction of tetrabutyl titanate, add an appropriate amount of 0.2M glacial acetic acid and stir for 3 hours. Then add formamide with a volume ratio of 1%, stir slowly at room temperature for 24h, and then let it stand for 72h. The reaction yields (Bi 2/7 Na 2/7 K 1/7 La 1/7 Sr 1/7 ) TiO 3 precursor body solution;
2)在1cm×1cm的Pt(111)/Ti/SiO2/Si(100)导电基底上滴加4滴(Bi2/7Na2/7K1/ 7La1/7Sr1/7)TiO3前驱体溶液,使用匀胶机先以转速为600r/min旋涂9s,再以转速为3000r/min旋涂30s,得到湿膜;2) Add 4 drops (Bi 2/7 Na 2/7 K 1/ 7 La 1/7 Sr 1/7 ) on the 1cm×1cm Pt(111)/Ti/SiO 2 /Si(100) conductive substrate. For the TiO 3 precursor solution, use a glue leveler to spin-coat at a speed of 600r/min for 9s, and then spin-coat at a speed of 3000r/min for 30s to obtain a wet film;
3)将湿膜放置在电加热平板上,在250℃条件下烘干3min,然后在450℃条件下热解3min,得到无定形膜;3) Place the wet film on an electric heating plate, dry it at 250°C for 3 minutes, and then pyrolyze it at 450°C for 3 minutes to obtain an amorphous film;
4)将无定形膜进行快速加热处理;快速加热处理为:采用快速退火炉以升温速率为100℃/s将无定形膜加热到700℃,并保温4min;4) Rapidly heat the amorphous film; the rapid heating treatment is: use a rapid annealing furnace to heat the amorphous film to 700°C at a heating rate of 100°C/s, and keep it warm for 4 minutes;
5)重复步骤2)、步骤3)和步骤4)9次,然后在700℃条件下进行10min的退火处理,得到10层无铅高熵铁电薄膜。5) Repeat step 2), step 3) and step 4) 9 times, and then perform annealing treatment at 700°C for 10 minutes to obtain 10 layers of lead-free high-entropy ferroelectric films.
将对实施例4得到的无铅高熵铁电薄膜作为电介质材料,组装成介电储能器件。其中,无铅高熵铁电薄膜的导电基底作为介电储能器件的一个电极,介电储能器件的另一电极通过磁控溅射在无铅高熵铁电薄膜的另一表面沉积金制得,金电极的直径为0.4mm、厚度为0.25μm。将组装成的介电储能器件进行介电储能性能测试(测试条件与实施例1中的测试条件相同),测得介电储能器件的储能密度5.87J/cm3和储能效率90%。The lead-free high-entropy ferroelectric thin film obtained in Example 4 was used as a dielectric material to assemble a dielectric energy storage device. Among them, the conductive substrate of the lead-free high-entropy ferroelectric film serves as one electrode of the dielectric energy storage device, and the other electrode of the dielectric energy storage device deposits gold on the other surface of the lead-free high-entropy ferroelectric film through magnetron sputtering. The diameter of the gold electrode is 0.4mm and the thickness is 0.25μm. The assembled dielectric energy storage device was subjected to a dielectric energy storage performance test (the test conditions were the same as those in Example 1), and the energy storage density and energy storage efficiency of the dielectric energy storage device were measured to be 5.87J/ cm3 . 90%.
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。The preferred embodiments of the present invention have been specifically described above, but the present invention is not limited to the embodiments. Those skilled in the art can also make various equivalent modifications or substitutions without violating the spirit of the present invention. These equivalent modifications or substitutions are included within the scope defined by the claims of this application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211625444.5A CN115974548B (en) | 2022-12-16 | 2022-12-16 | A lead-free high-entropy ferroelectric film and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211625444.5A CN115974548B (en) | 2022-12-16 | 2022-12-16 | A lead-free high-entropy ferroelectric film and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115974548A CN115974548A (en) | 2023-04-18 |
CN115974548B true CN115974548B (en) | 2023-11-21 |
Family
ID=85964122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211625444.5A Active CN115974548B (en) | 2022-12-16 | 2022-12-16 | A lead-free high-entropy ferroelectric film and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115974548B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1513809A (en) * | 2002-12-31 | 2004-07-21 | 中国科学技术大学 | Preparation method of high performance lead zirconate titanate film |
CN110255610A (en) * | 2019-06-19 | 2019-09-20 | 东北大学 | A kind of A high entropy perovskite oxide and its preparation method and application |
CN111825447A (en) * | 2020-07-06 | 2020-10-27 | 武汉理工大学 | A kind of barium titanate-based dielectric film with high energy storage density and preparation method thereof |
CN112062562A (en) * | 2020-09-17 | 2020-12-11 | 广西大学 | A kind of preparation method of KNN-based ultra-high breakdown electric field single crystal thin film material |
CN112062563A (en) * | 2020-09-17 | 2020-12-11 | 广西大学 | Preparation method of PSINT-based high-entropy ferroelectric thin film material |
CN114085079A (en) * | 2021-12-15 | 2022-02-25 | 陕西科技大学 | A kind of non-equimolar ratio high-entropy perovskite oxide ceramic material with high energy storage and preparation method thereof |
CN115215652A (en) * | 2022-07-08 | 2022-10-21 | 中国科学院深圳先进技术研究院 | Ceramic film precursor, preparation method thereof and dielectric energy storage capacitor |
CN115295311A (en) * | 2022-07-25 | 2022-11-04 | 武汉理工大学 | High-energy-storage-density laminated film and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010109957A (en) * | 2000-06-05 | 2001-12-12 | 윤종용 | LBT solution, method for fabricating LBT solution and method for fabricating LBT thin film and electric device using the same |
-
2022
- 2022-12-16 CN CN202211625444.5A patent/CN115974548B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1513809A (en) * | 2002-12-31 | 2004-07-21 | 中国科学技术大学 | Preparation method of high performance lead zirconate titanate film |
CN110255610A (en) * | 2019-06-19 | 2019-09-20 | 东北大学 | A kind of A high entropy perovskite oxide and its preparation method and application |
CN111825447A (en) * | 2020-07-06 | 2020-10-27 | 武汉理工大学 | A kind of barium titanate-based dielectric film with high energy storage density and preparation method thereof |
CN112062562A (en) * | 2020-09-17 | 2020-12-11 | 广西大学 | A kind of preparation method of KNN-based ultra-high breakdown electric field single crystal thin film material |
CN112062563A (en) * | 2020-09-17 | 2020-12-11 | 广西大学 | Preparation method of PSINT-based high-entropy ferroelectric thin film material |
CN114085079A (en) * | 2021-12-15 | 2022-02-25 | 陕西科技大学 | A kind of non-equimolar ratio high-entropy perovskite oxide ceramic material with high energy storage and preparation method thereof |
CN115215652A (en) * | 2022-07-08 | 2022-10-21 | 中国科学院深圳先进技术研究院 | Ceramic film precursor, preparation method thereof and dielectric energy storage capacitor |
CN115295311A (en) * | 2022-07-25 | 2022-11-04 | 武汉理工大学 | High-energy-storage-density laminated film and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
High energy storage density and efficiency in nanostructured (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 high-entropy ceramics;Wentao Yang et al.;《Journal of the American Ceramic Society》;第105卷(第2期);1083-1094 * |
Also Published As
Publication number | Publication date |
---|---|
CN115974548A (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reddy et al. | Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere | |
Shen et al. | Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering | |
CN101717272B (en) | Preparation method of lead zirconate titanate thick film with preferable grain orientation (100) | |
CN111676456B (en) | A self-assembled Ba(Hf,Ti)O3:HfO2 nanocomposite lead-free epitaxial monolayer film and preparation method thereof | |
CN108395245A (en) | Bismuth-sodium titanate based dielectric film of high energy storage density and its preparation method and application | |
CN1851039A (en) | Method for preparing lead zirconate titanate ferroelectric film material | |
CN104060241B (en) | Liquid-phase preparation method of high-oriented vanadium dioxide film | |
CN101817559B (en) | A kind of preparation method of potassium sodium niobate lead-free piezoelectric thick film | |
CN115974548B (en) | A lead-free high-entropy ferroelectric film and its preparation method and application | |
Hoshyarmanesh et al. | Electrical properties of UV-irradiated thick film piezo-sensors on superalloy IN718 using photochemical metal organic deposition | |
Chen et al. | Low temperature growth of (100)-oriented Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 thin films using a LaNiO3 seed layer | |
JPH08111411A (en) | Method of manufacturing ferroelectric thin film | |
CN100386289C (en) | Microwave dielectric tunable strontium barium titanate/bismuth zinc niobium composite thin film and preparation method thereof | |
CN113774485B (en) | Lead indium niobate-lead magnesium niobate-lead titanate ferroelectric film material, preparation and application thereof | |
CN102795891A (en) | Preparation method for barium strontium titanate film taking MgO as buffer layer | |
JP2022027517A (en) | Niobate-based lead-free ferroelectric piezoelectric thin film and manufacturing method of the same | |
KR101469170B1 (en) | Preparing method of polycrystal lead titanate thick film and the polycrystal lead titanate thick film thereby | |
CN1880275A (en) | Non-plumbum series ferroelectric film with ingredient gradient distribution and its preparation method | |
Diao et al. | Structure, dielectric properties and energy storage performance of barium strontium titanate thin films prepared by spin-coating technique | |
CN104761256B (en) | A kind of bismuth-sodium titanate base 03 is combined ferroelectric thick film and its preparation method and application | |
CN100546003C (en) | Preparation method of non-lead ferroelectric thin film compatible with semiconductor technology | |
CN117328046B (en) | BZN/BMN dielectric tuning composite film with heterostructure and preparation method thereof | |
CN100336773C (en) | Ferroelectric membrane with constituents graded distribution and its preparation method | |
Goel et al. | Processing and dielectric properties of sol-gel derived PMN-PT (68: 32) thin films | |
Yu et al. | Manganese optimized bismuth magnesium titanate as a high energy storage density of lead-free capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |