CN115968501A - 用于铁电存储器的无碳层压氧化铪/氧化锆膜 - Google Patents

用于铁电存储器的无碳层压氧化铪/氧化锆膜 Download PDF

Info

Publication number
CN115968501A
CN115968501A CN202180049884.8A CN202180049884A CN115968501A CN 115968501 A CN115968501 A CN 115968501A CN 202180049884 A CN202180049884 A CN 202180049884A CN 115968501 A CN115968501 A CN 115968501A
Authority
CN
China
Prior art keywords
film
laminate film
atomic percent
iridium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180049884.8A
Other languages
English (en)
Inventor
郑君飞
T·H·鲍姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Publication of CN115968501A publication Critical patent/CN115968501A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提供无碳(即,小于约0.1原子百分比的碳)的Zr掺杂HfO2膜,其中在原子百分比方面,Zr可达到与Hf相同的水平(即,1%到60%)。所述Zr掺杂还可通过可用于铁电存储器(FeRAM)中的m个纳米层压ZrO2和HfO2膜实现。层压膜包含约5到10层的HfO2和ZrO2(即,交替)膜,其每一者可为例如约1到约2nm的厚度,其中层压膜的厚度总计为约5到10nm。

Description

用于铁电存储器的无碳层压氧化铪/氧化锆膜
技术领域
本发明属于微电子学领域。具体来说,其涉及包含二氧化铪、二氧化锆膜、二氧化铪和二氧化锆的混合组合物和电极的铁电存储器材料和结构的改进。
背景技术
某些电子装置具有在存储器结构或单元中存储和检索信息的能力。所述存储器单元经配置以按位存储信息。举例来说,存储器单元可具有代表逻辑1和逻辑0的至少两种状态。如此存储的信息可通过确定存储器单元的状态来读取。所述单元可与一或多个逻辑电路一起整合于晶片或芯片上。
一种类型的易失性存储器是允许高速和高容量数据存储的DRAM结构。非易失性存储器结构的实例包括ROM、快闪结构、铁电结构(例如,FeRAM和FeFET装置)和MRAM结构。
在铁电结构的情形中,铁电结构可采用电容器(例如FeRAM)或晶体管(FeFET)的形式,其中信息可存储为结构内铁电材料的某种极化状态。铁电材料和结构的一个实例利用过渡金属氧化物,例如二氧化铪与二氧化锆的混合物。
包含氧化铪和氧化锆的介电膜通常使用原子层沉积和/或化学气相沉积技术使用有机金属铪和锆二烷基酰胺前体制备。参见例如“使用金属酰胺前体进行氧化铪和氧化锆的原子层沉积(Atomic Layer Deposition of Hafnium and Zirconium Oxides usingMetal Amide Precursors)”,丹尼斯M.豪斯曼(Dennis M.Hausmann)等人,材料化学(Chem.Mater.)2002,14,4350-4358。不幸地,所述方法导致介电膜具有低水平的碳污染,此导致氧化铪/氧化锆介电膜中的泄漏和电荷阱缺陷。这些膜也可在装置制造的后续工艺步骤期间产生碳,由此改变膜的性质。因此,业内需要制作所述介电膜的方法,所述介电膜不具有这些水平的碳且因此不具有其伴随缺点。
发明内容
概括来说,本发明提供无碳(即,小于约0.1原子百分比的碳)的Zr掺杂HfO2膜,其中在原子百分比方面,Zr可达到与Hf相同的水平(即,经由前体的共同引入的约1%到约60%,或约45%到约55%或约50%)。Zr掺杂还可通过可用于铁电存储器(FeRAM)中的纳米层压ZrO2和HfO2膜(与Hf相比,1%到60%的Zr)有效实现。层压膜包含约5到10层的Hf02和ZrO2(即,交替)膜,其每一者可为例如约1到约2nm的厚度,其中层压膜的厚度总计为约5到20nm。本发明的层压膜预期展现用于基于MIM(金属-绝缘体-金属)和MIS(金属-绝缘体-硅(或其它通道))结构的铁电存储器应用的优良铁电和电性质。所述非易失性存储器通常提供高密度、低功率、快速切换、低成本和高耐久性。
本发明的层压膜可使用ALD型热沉积技术利用HfCl4(或HfBr4或HfI4)和ZrCl4(或ZrBr4或ZrI4)和氧化气体(例如臭氧、氧、水、N2O或等离子体O2)作为共反应物以分别沉积HfO2和ZrO2的高质量、无碳膜来制备。
本发明还提供用于使用HfCl4、HfBr4、HfI4、ZrCl4、ZrBr4和ZrI4以沉积具有小于约0.1原子百分比碳的氧化铪和氧化锆膜的方法。另外,所述膜还可含有小于约0.1原子百分比的相应卤素,例如氯、溴或碘。
在金属-绝缘体-金属(M-I-M)存储器装置实施例中,本发明的压层氧化铪/氧化锆膜具有作为电极的顶部和底部层,所述层包含氮化钛、钌、钼、铱、钴、钨、铂或铱和钌的导电氧化物中的至少一者。作为电极的顶部和底部层可为或不为相同材料。在金属-绝缘体-半导体(M-I-S)存储器装置实施例中,压层氧化铪/氧化锆膜可直接沉积在半导体和作为电极的顶部层上,所述顶部层包含氮化钛、钌、钼、铱、钴、钨、铂或铱和钌的导电氧化物中的至少一者。
在另一实施例中,本发明的压层氧化铪/氧化锆膜进一步包含至少一个包含铱或氧化铱的外表面。在另一实施例中,本发明的压层氧化铪/氧化锆膜进一步包含至少一个包含氮化钛的外表面。
附图说明
图1是适于形成用于存储器应用(FeRAM)的M-I-M结构的本发明压层结构的横断面绘示。
图2是适于形成用于FeFET应用的M-I-S结构的本发明压层结构的横断面绘示。
在本发明的压层膜中,如图1和图2中所绘示,第一或“起始”膜可为氧化铪或氧化锆;同样地,最终或“整理”膜可为氧化铪或氧化锆。在图1和2中,氧化铪绘示为起始膜且氧化锆绘示为整理膜。
在图1和2中,深黑色层指示金属层,白色层指示氧化铪层,灰色层(图1中)代表氧化锆层,并且浅灰色(图2)层指示硅层或包含其它通道材料的层。
具体实施方式
在一方面中,本发明提供氧化铪膜,基于所述膜的总原子百分比,所述膜具有掺杂于其中的约1到约60原子百分比的氧化锆,其中所述膜含有小于约0.1原子百分比的碳和小于约0.1原子百分比的卤素。在其它实施例中,膜具有掺杂于其中的约45到55或约50原子百分比的氧化锆。
在第二方面中,本发明提供包含氧化铪和氧化锆的交替膜的压层膜,其中所述压层膜具有厚度为约5到约10nm的厚度,并且其中所述压层膜具有小于约0.1原子百分比的碳。
在一个实施例中,顶部和底部膜是氧化铪。在另一实施例中,顶部和底部膜是氧化锆。在另一实施例中,压层膜进一步包含至少一种选自硅、铝、钇和镧的掺杂元素。
如上文在图1中所说明,压层膜(即,铁电堆叠)可进一步在每一侧上包含金属层。在某些实施例中,所述金属层包含氮化钛、钌、钼、铱、钴、钨、铂或铱或钌的导电氧化物。
如上文在图2中所说明,压层膜可进一步在一侧上包含金属层或表面且在另一侧上包含硅或含硅膜(例如Si1-xGex,其中x大于0但小于1且代表合金中每一元素的变化比例,为简便起见在本文中称为“SiGe”)。
在另一实施例中,本发明的压层氧化铪/氧化锆膜进一步包含至少一个包含铱或氧化铱的外表面。
在另一实施例中,本发明的压层氧化铪/氧化锆膜进一步包含至少一个外表面,所述外表面包含氮化钛、钌、钼、铱、钴、钨、铂或铱和钌的导电氧化物中的至少一者。在一个实施例中,至少一个外表面是氮化钛。
在一个实施例中,本发明的压层氧化铪/氧化锆膜具有包含铱和氧化铱中的至少一者的顶部层(即,膜)和/或氮化钛、铱或氧化铱中的至少一者的底部层(即,膜),在两种情形中均在存储器堆叠组合件中作为电极。
具有小于约0.1原子百分比的碳的氧化铪和氧化锆膜可作为膜通过利用气相沉积(即,热)工艺沉积于衬底(例如微电子装置衬底)上。
在某些实施例中,气相沉积条件包含称为化学气相沉积、脉冲化学气相沉积和原子层沉积的反应条件。在脉冲化学气相沉积的情形中,在有或没有中间(惰性气体)吹扫步骤的情形中,可利用前体化合物与共反应物的一系列交替脉冲以使膜厚度积累到所需终点。
在某些实施例中,上文所描述应用前体化合物的脉冲时间(即,前体暴露于衬底的持续时间)在介于约0.1与10秒之间的范围内。当利用吹扫步骤时,持续时间为约1到4秒或1到2秒。在其它实施例中,共反应物的脉冲时间在1到60秒的范围内。在其它实施例中,共反应物的脉冲时间在约1到约10秒的范围内。
在一个实施例中,气相沉积条件包含约250℃到约750℃的温度和约1到约1000托(Torr)的压力。在另一实施例中,气相沉积条件包含约250℃到约650℃的温度。
可采用四氯化铪(或碘化铪)和四氯化锆(或碘化锆)用于通过任何适宜气相沉积技术(例如CVD、数字(脉冲)CVD、ALD和脉冲等离子体工艺)形成含高纯度二氧化铪和二氧化锆的膜。可利用所述气相沉积工艺以通过利用约250℃到约550℃的沉积温度形成厚度为约20埃到约2000埃的膜在微电子装置上形成所述膜。
在本发明工艺中,上述化合物可以任何适宜方式(例如)在单晶片CVD、ALD和/或PECVD或PEALD室中或在含有多个晶片的炉中与所需微电子装置衬底反应。
另一选择,本发明的工艺可作为ALD或类似ALD工艺实施。如本文所用,术语“ALD或类似ALD”是指例如以下的工艺:(i)将包括铪或锆前体化合物(I)和氧化气体的每一反应物依序引入到反应器,例如单晶片ALD反应器、半间歇式ALD反应器或间歇式炉ALD反应器,或(ii)通过移动或旋转衬底到反应器的不同区段将包括前体化合物和氧化气体的每一反应物暴露于衬底或微电子装置表面且每一区段由惰性气体帘隔开,即空间ALD反应器或卷对卷ALD反应器。
如上所述,气相沉积工艺进一步包含涉及将衬底暴露于氧化气体(例如O2、O3、N2O、水蒸气、醇或氧等离子体)的步骤。在某些实施例中,氧化气体进一步包含惰性载剂气体,例如氩、氦、氮或其组合。
本文所揭示的沉积方法可涉及一或多种吹扫气体。用于吹扫掉未消耗反应物和/或反应副产物的吹扫气体是不与前体反应的惰性气体。示范性吹扫气体包括(但不限于)氩、氮、氦、氖、氢和其混合物。在某些实施例中,将吹扫气体(例如氮或氩)以约10到约2000sccm范围内的流速供应到反应器达约0.1到1000秒,由此吹扫可留在反应器中的未反应材料和任何副产物。
将能量施加到前体化合物和氧化气体中的至少一者以诱导反应并在微电子装置衬底上形成含二氧化铪或二氧化锆膜。所述能量可由(但不限于)热、脉冲热、等离子体、脉冲等离子体、螺旋波等离子体、高密度等离子体、感应耦合等离子体、X射线、电子束、光子、远程等离子体方法和其组合提供。在某些实施例中,可使用二次RF频率源以改性衬底表面处的等离子体特征。在其中沉积涉及等离子体的实施例中,等离子体生成工艺可包含直接等离子体生成工艺,其中等离子体直接在反应器中生成;或另一选择远程等离子体生成工艺,其中等离子体是‘远离’反应区和衬底生成,被供应到反应器中。
在一个实施例中,膜是使用原子层沉积技术利用例如ASM
Figure BPA0000334234770000051
XP ALD反应器沉积。举例来说,沉积工艺可在以下条件下实施:
HfCl4(或ZrCl4)安瓿温度=170℃
H2O安瓿温度=18-20℃
压力=2-3托
流速=400-600sccm(100-200,借助HfCl4(或ZrCl4))安瓿
衬底(即,室)温度(T衬底)=300℃
HfCl4(或ZrCl4)脉冲=0.5到1秒
H2O脉冲=0.1到0.2秒
在原子层沉积方法的另一实例中,HfCl4(或ZrCl4)可在以下条件下沉积于300mm裸硅晶片上:
参数 <![CDATA[HfCl<sub>4</sub>]]> <![CDATA[H<sub>2</sub>O]]>
温度 185℃ 18℃ 300℃
压力 ~300Torr
<![CDATA[流速(N<sub>2</sub>)]]> 20-100sccm 50-100sccm 1300sccm
脉冲时间 0.1-1秒 0.5秒
吹扫时间 3秒 3秒  
如上所述,在其它实施例中,利用此方法所形成的膜还具有小于约0.1原子百分比的卤素,例如碘、溴和氯。
因此,在另一方面中,本发明提供使用HfCl4、HfBr4或HfI4以在衬底上沉积氧化铪膜的方法,所述膜具有小于约0.1原子百分比的碳,其包含在反应区中在气相沉积条件下将衬底交替暴露于(i)HfCl4、HfBr4或HfI4和(ii)氧化气体。在一个实施例中,膜具有小于约0.1原子百分比的卤素。
在另一方面中,本发明提供使用ZrCl4、ZrBr4或ZrI4以在衬底上沉积氧化锆膜的方法,所述膜具有小于约0.1原子百分比的碳,其包含在反应区中在气相沉积条件下将衬底交替暴露于(i)ZrCl4、ZrBr4或ZrI4和(ii)氧化气体。在另一实施例中,膜具有小于约0.1原子百分比的卤素。
只要四氯化铪(和四碘化铪)和四氯化锆(和四碘化锆)在室温下为固体,便可有利地利用例如英特格公司(Entegris,Inc.)出售的
Figure BPA0000334234770000061
100递送系统的存储和递送装置。还参见美国专利第10,465,286号;第10,392,700号;第10,385,452号;第9,469,89号;和第9,004,462号,其以引用的方式并入本文中。因此,在气相沉积工艺中可利用包含例如这些的双重固体递送系统的配置以通过交替沉积二氧化铪和二氧化锆制备如上所述的压层膜。
已特定参考本发明的某些实施例详细描述本发明,但应理解,可在本发明的精神和范围内实现各种变化和修改。

Claims (18)

1.一种氧化铪膜,其基于所述膜的总原子百分比具有掺杂于其中的约1到约60原子百分比的氧化锆,其中所述膜含有小于约0.1原子百分比的碳和小于约0.1原子百分比的卤素。
2.根据权利要求1所述的膜,其中所述膜具有掺杂于其中的约45到约55原子百分比的氧化锆。
3.一种包含氧化铪和氧化锆的交替膜的压层膜,其中所述压层膜具有厚度为约5到约10nm的厚度,并且其中所述压层膜具有小于约0.1原子百分比的碳。
4.根据权利要求3所述的压层膜,其中顶部和底部膜是氧化铪。
5.根据权利要求3所述的压层膜,其中顶部和底部膜是氧化锆。
6.根据权利要求3所述的压层膜,其进一步包含至少一种选自硅、铝、钇和镧的掺杂元素。
7.根据权利要求3所述的压层膜,其中所述压层膜进一步在每一侧上包含金属层。
8.根据权利要求7所述的压层膜,其中所述金属层包含氮化钛、钌、钼、铱、钴、钨、铂或铱和钌的导电氧化物中的至少一者。
9.根据权利要求3所述的压层膜,其中所述压层膜进一步包含一侧上的金属表面和另一侧上的含硅膜。
10.根据权利要求3所述的压层膜,其进一步包含至少一个包含铱或氧化铱的外表面。
11.根据权利要求3所述的压层膜,其中所述压层膜进一步包含至少一个包含氮化钛的外表面。
12.根据权利要求3所述的压层膜,其中所述压层膜具有包含铱和氧化铱中的至少一者的顶部层和氮化钛的底部层。
13.根据权利要求3所述的压层膜,其中所述压层膜进一步包含一侧上的金属层或表面和另一侧上的硅或含硅膜。
14.根据权利要求13所述的压层膜,其中所述含硅膜是SiGe。
15.一种使用HfCl4、HfBr4或HfI4以在衬底上沉积氧化铪膜的方法,所述膜具有小于约0.1原子百分比的碳,所述方法包含在反应区中在气相沉积条件下将衬底交替暴露于(i)HfCl4、HfBr4或HfI4和(ii)氧化气体。
16.根据权利要求15所述的方法,其中所述膜具有小于约0.1原子百分比的卤素。
17.一种使用ZrCl4、ZrBr4或ZrI4以在衬底上沉积氧化锆膜的方法,所述膜具有小于约0.1原子百分比的碳,所述方法包含在反应区中在气相沉积条件下将衬底交替暴露于(i)ZrCl4、ZrBr4或ZrI4和(ii)氧化气体。
18.根据权利要求17所述的方法,其中所述膜具有小于约0.1原子百分比的卤素。
CN202180049884.8A 2020-07-16 2021-07-14 用于铁电存储器的无碳层压氧化铪/氧化锆膜 Pending CN115968501A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063052722P 2020-07-16 2020-07-16
US63/052,722 2020-07-16
PCT/US2021/041621 WO2022015850A1 (en) 2020-07-16 2021-07-14 Carbon-free laminated hafnium oxide/zirconium oxide films for ferroelectric memories

Publications (1)

Publication Number Publication Date
CN115968501A true CN115968501A (zh) 2023-04-14

Family

ID=79292849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180049884.8A Pending CN115968501A (zh) 2020-07-16 2021-07-14 用于铁电存储器的无碳层压氧化铪/氧化锆膜

Country Status (7)

Country Link
US (1) US20220020862A1 (zh)
EP (1) EP4182966A1 (zh)
JP (1) JP2023534936A (zh)
KR (1) KR20230038542A (zh)
CN (1) CN115968501A (zh)
TW (1) TWI803905B (zh)
WO (1) WO2022015850A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060755A (en) * 1999-07-19 2000-05-09 Sharp Laboratories Of America, Inc. Aluminum-doped zirconium dielectric film transistor structure and deposition method for same
US7476925B2 (en) * 2001-08-30 2009-01-13 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators
DE60321271D1 (de) * 2002-06-10 2008-07-10 Imec Inter Uni Micro Electr Transistoren und Speicherkondensatoren enthaltend eine HfO2-Zusammensetzung mit erhöhter Dielektrizitätskonstante
US7393736B2 (en) * 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US20080087890A1 (en) * 2006-10-16 2008-04-17 Micron Technology, Inc. Methods to form dielectric structures in semiconductor devices and resulting devices
US7772073B2 (en) * 2007-09-28 2010-08-10 Tokyo Electron Limited Semiconductor device containing a buried threshold voltage adjustment layer and method of forming
US8866121B2 (en) * 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
CN104528823B (zh) * 2015-01-06 2018-03-23 武汉拓柏仕科技有限公司 一种氧化锆粉体、其制品及制备方法
WO2020023837A1 (en) * 2018-07-26 2020-01-30 Tokyo Electron Limited Method of forming crystallographically stabilized ferroelectric hafnium zirconium based films for semiconductor devices

Also Published As

Publication number Publication date
TW202212550A (zh) 2022-04-01
KR20230038542A (ko) 2023-03-20
US20220020862A1 (en) 2022-01-20
EP4182966A1 (en) 2023-05-24
TWI803905B (zh) 2023-06-01
JP2023534936A (ja) 2023-08-15
WO2022015850A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US7396719B2 (en) Method of forming high dielectric film using atomic layer deposition and method of manufacturing capacitor having the high dielectric film
US8895442B2 (en) Cobalt titanium oxide dielectric films
US8685815B2 (en) Hafnium tantalum titanium oxide films
TWI423334B (zh) 作為閘極介電質之經Zr取代BaTiO3膜之原子層沈積(ALD)
JP4700181B2 (ja) 原子層蒸着法を用いた薄膜形成方法
JP4823260B2 (ja) 原子層蒸着法を用いた薄膜形成方法
US7491654B2 (en) Method of forming a ZrO2 thin film using plasma enhanced atomic layer deposition and method of fabricating a capacitor of a semiconductor memory device having the thin film
US10008381B2 (en) Constructions comprising rutile-type titanium oxide; and methods of forming and utilizing rutile-type titanium oxide
US7825043B2 (en) Method for fabricating capacitor in semiconductor device
US6875667B2 (en) Method for forming capacitor
US20070040207A1 (en) Electronic devices including dielectric layers with different densities of titanium
US20040087081A1 (en) Capacitor fabrication methods and capacitor structures including niobium oxide
US20040126983A1 (en) Method for forming capacitor in semiconductor device
US6777740B2 (en) Capacitor for semiconductor memory device and method of manufacturing the same
CN115968501A (zh) 用于铁电存储器的无碳层压氧化铪/氧化锆膜
KR20020017834A (ko) 반도체소자의 캐패시터 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination