CN115967318A - 异步电机无速度传感器矢量控制方法及系统 - Google Patents

异步电机无速度传感器矢量控制方法及系统 Download PDF

Info

Publication number
CN115967318A
CN115967318A CN202310085500.9A CN202310085500A CN115967318A CN 115967318 A CN115967318 A CN 115967318A CN 202310085500 A CN202310085500 A CN 202310085500A CN 115967318 A CN115967318 A CN 115967318A
Authority
CN
China
Prior art keywords
rotor
stator
axis
current
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310085500.9A
Other languages
English (en)
Inventor
吴新兵
谈方成
曹希
丁琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Hager Electric Control Co ltd
Original Assignee
Suzhou Hager Electric Control Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Hager Electric Control Co ltd filed Critical Suzhou Hager Electric Control Co ltd
Priority to CN202310085500.9A priority Critical patent/CN115967318A/zh
Publication of CN115967318A publication Critical patent/CN115967318A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明公开了一种异步电机无速度传感器矢量控制方法及系统,属于电机控制技术领域,所述方法为:根据同步旋转坐标系下,定子d轴和q轴的电机实际输出电流分量得到转子磁链电流模型;根据电流模型得到转差估算角速度
Figure DDA0004068752130000011
根据同步旋转坐标系下,定子d轴和q轴的目标电压分量和电机实际输出电流分量,得到转子磁链电压模型;在转子磁场估算角度
Figure DDA0004068752130000012
与转子磁场实际角度θe一致时,通过PI控制器使磁链估算分量Ψ′rq收敛于磁链估算分量
Figure DDA0004068752130000013
得到转子估算转速
Figure DDA0004068752130000014
根据转子估算转速
Figure DDA0004068752130000015
和转差估算角速度
Figure DDA0004068752130000016
得到旋转磁场估算转速
Figure DDA0004068752130000017
对旋转磁场估算转速
Figure DDA0004068752130000018
积分得到转子磁场估算角度
Figure DDA0004068752130000019
本申请的控制方法以及基于该方法的控制系统,提高了电机转速估算的精度。

Description

异步电机无速度传感器矢量控制方法及系统
技术领域
本发明涉及电机控制技术领域,尤其是涉及异步电机无速度传感器矢量控制方法及系统。
背景技术
在运动控制系统中,无速度传感器控制技术是通过检测定子电压、电流等容易检测到的物理量对电机转速进行估计,从而降低调速系统成本,提高电机工作的可靠性。其中,模型参考自适应系统(model reference adaptive system,MRAS)具有自适应反应快、鲁棒性强、可行性高等特点,因此被广泛应用在电机的转速估计方案中。
但是,传统的基于MRAS的异步电机无速度传感器控制方案中,大部分是采用在转子磁链定向的两相静止坐标系下,以转子磁链电压模型作为参考模型,以转子磁链电流模型作为可调模型,实现对异步电机转速的估算。但是,由于静止坐标系下的转子磁链电流模型和转子磁链电压模型的状态变量为交流量,离散化后转子转速波动较大,收敛精度较低,导致对异步电机转速的估算精度较低。
为了解决静止坐标系下异步电机转速估算精度较低的问题,一些研究人员提出了一种半同步半静止坐标系的控制方案,即以同步旋转坐标系下的转子电流模型和静止坐标系下的定子电压模型作为可调模型,以感应电机本身为参考模型,通过定子磁链定向方法估算出异步电机转速,然而这种方案的控制策略仍停留于静止坐标系下的算法,定子电压模型的状态变量仍为交流量,依然存在转子转速波动较大的问题。
因此,现有的异步电机无速度传感器控制方法,均存在对异步电机转速估算精度较低的问题,无法满足对估算精度要求较高的场合。
发明内容
为了提高异步电机转速估算的精度,本申请提供一种异步电机无速度传感器矢量控制方法及系统。
第一方面,本申请提供一种异步电机无速度传感器矢量控制方法,采用如下的技术方案:异步电机无速度传感器矢量控制方法,包括:
根据同步旋转坐标系下,定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电流模型、所述电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000011
根据所述电流模型得到转差估算角速度
Figure BDA0004068752090000012
根据同步旋转坐标系下,定子d轴的目标电压分量usd、定子q轴的目标电压分量usq、定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电压模型、所述电压模型下转子q轴的磁链估算分量Ψ′rq
根据同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程,使转子磁场估算角度
Figure BDA0004068752090000021
与转子磁场实际角度θe一致时,通过PI控制器使电压模型下转子q轴的磁链估算分量Ψ′rq收敛于电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000022
得到转子估算转速
Figure BDA0004068752090000023
根据所述转子估算转速
Figure BDA0004068752090000024
和所述转差估算角速度
Figure BDA0004068752090000025
得到旋转磁场估算转速
Figure BDA0004068752090000026
对所述旋转磁场估算转速
Figure BDA0004068752090000027
积分得到转子磁场估算角度
Figure BDA0004068752090000028
通过采用上述技术方案,在同步坐标系下以转子磁链电流模型作为参考模型,以转子磁链电压模型作为可调模型,运用同步坐标系下的转子磁链定向的原理及公式推导出转差角速度、转子转速、转子磁场角度的估算值,提高了电机转速的估算精度。
在一个具体的可实施方案中,所述电流模型为:
Figure BDA0004068752090000029
其中:
Figure BDA00040687520900000210
为电流模型下转子d轴的磁链估算分量,
Figure BDA00040687520900000211
为电流模型下转子q轴的磁链估算分量,Lm为定转子互感,p为微分符号,isd为定子d轴的电机实际输出电流分量,Tr为转子时间常速,
Figure BDA00040687520900000212
Lr为转子自感,Rr为转子电阻。
通过采用上述技术方案,电流模型简化了变量,使定子d轴的电流分量isd是唯一确定转子磁链的稳态值,解决了强耦合的异步电机调速问题,提高了参考模型的准确度。
在一个具体的可实施方案中,根据所述电流模型得到转差估算角速度
Figure BDA00040687520900000217
所述
Figure BDA00040687520900000213
的计算公式为:
Figure BDA00040687520900000214
其中:isq为定子q轴的电机实际输出电流分量。
通过采用上述技术方案,根据电流模型得到转子d轴的磁链估算分量
Figure BDA00040687520900000215
结合定子q轴的电机实际输出电流分量isq,提高了运行效率。
在一个具体的可实施方案中,所述电压模型为:
Figure BDA00040687520900000216
其中:Ψ rd为电压模型下转子d轴的磁链估算分量,Ψ rq为电压模型下转子q轴的磁链估算分量;
Lr为转子自感,Lm为定转子互感;
usd为定子d轴的目标电压分量,usq为定子q轴的目标电压分量;
Rs为定子电阻,σ为漏感系数,
Figure BDA0004068752090000031
Ls为定子自感,p为微分符号;
isq为定子q轴的电机实际输出电流分量,isd为定子d轴的电机实际输出电流分量;
Figure BDA0004068752090000032
为旋转磁场估算转速;
Kd、Kq为转子磁链值的纯积分反馈补偿修正参数,
Figure BDA0004068752090000033
Figure BDA0004068752090000034
Kc为补偿系数。
通过采用上述技术方案,电压模型中包含了转速反馈,即旋转磁场估算转速
Figure BDA0004068752090000035
的反馈,并且电压模型的纯积分环节以及低速定子电阻压降,避免了系统在受外界干扰下易产生振荡导致转子转速波动大,系统稳定性和鲁棒性差的问题;同时,该电压模型中增加了转子磁链值的纯积分反馈补偿修正参数Kd和Kq,通过调节补偿系数Kc,可以使极点移动至虚轴左侧稳定区域,且该电压模型符合李雅普诺夫稳定性分析法的稳定性验证,其传递函数的特征值位于负实部,提高了系统的稳定性。
在一个具体的可实施方案中,所述同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程为:
Figure BDA0004068752090000036
其中:Ψr为转子的磁链总量,
Figure BDA0004068752090000037
为转子磁场估算角度,θe为转子磁场实际角度,Ψrd为转子d轴的磁链分量,Ψrq为转子q轴的磁链分量。
在一个具体的可实施方案中,所述转子估算转速
Figure BDA0004068752090000038
的计算公式为:
Figure BDA0004068752090000039
其中:kp、ki为PI控制器系数,
Figure BDA00040687520900000310
为积分符号,Ψ rq为电压模型下转子q轴的磁链估算分量。
通过采用上述技术方案,由电压模型下转子q轴的磁链估算分量Ψ rq得到了转子估算转速
Figure BDA00040687520900000311
在一个具体的可实施方案中,根据所述转子估算转速
Figure BDA00040687520900000312
和所述转差估算角速度
Figure BDA00040687520900000313
得到旋转磁场估算转速
Figure BDA00040687520900000314
对所述旋转磁场估算转速
Figure BDA00040687520900000315
积分得到转子磁场估算角度
Figure BDA00040687520900000316
的计算公式为:
Figure BDA00040687520900000317
Figure BDA0004068752090000041
通过采用上述技术方案,由转子估算转速
Figure BDA0004068752090000042
和转差估算角速度
Figure BDA0004068752090000043
得到旋转磁场估算转速
Figure BDA0004068752090000044
和转子磁场估算角度
Figure BDA0004068752090000045
第二方面,本申请提供的异步电机无速度传感器矢量控制系统,采用如下的技术方案:
所述控制系统采用上述所述的控制方法,所述控制系统包括电流模型单元、电压模型单元、PI控制单元、积分单元;
所述电流模型单元,用于根据同步旋转坐标系下,定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电流模型、所述电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000046
并根据所述电流模型得到转差估算角速度
Figure BDA0004068752090000047
将所述电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000048
输出至PI控制单元,将所述转差估算角速度
Figure BDA0004068752090000049
输出至积分单元;
所述电压模型单元,用于根据同步旋转坐标系下,定子d轴的目标电压分量usd、定子q轴的目标电压分量usq、定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电压模型、所述电压模型下转子q轴的磁链估算分量Ψ′rq,并将所述电压模型下转子q轴的磁链估算分量Ψ′rq输出至PI控制单元;
所述PI控制单元,用于根据同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程,使转子磁场估算角度
Figure BDA00040687520900000410
与转子磁场实际角度θe一致时,通过PI控制器使电压模型下转子q轴的磁链估算分量Ψ′rq收敛于电流模型下转子q轴的磁链估算分量
Figure BDA00040687520900000411
得到转子估算转速
Figure BDA00040687520900000412
并将所述转子估算转速
Figure BDA00040687520900000413
输出至积分单元;
所述积分单元,用于获取所述转子估算转速
Figure BDA00040687520900000414
和所述转差估算角速度
Figure BDA00040687520900000415
得到旋转磁场估算转速
Figure BDA00040687520900000416
并对所述旋转磁场估算转速
Figure BDA00040687520900000417
积分得到转子磁场估算角度
Figure BDA00040687520900000418
通过采用上述技术方案,该控制系统通过电流模型单元、电压模型单元、PI控制单元和积分单元,并采用上述控制方法,得到了转差角速度、转子转速、转子磁场角度的估算值,估算精度较高。
在一个具体的可实施方案中,所述控制系统还包括转速环、速度环、第一转换单元、SVPWM单元、逆变器、第二转换单元,异步电机分别与逆变器和第二转换单元连接;
所述转速环与PI控制单元连接,用于接收PI控制单元输出的转子估算转速
Figure BDA00040687520900000419
并根据所述转子估算转速
Figure BDA00040687520900000420
和给定的转子目标转速,得到估算转速
Figure BDA00040687520900000421
和转子目标转速之间的误差e,并通过PI控制器将所述误差e转换为同步旋转坐标系下定子的目标电流,将所述同步旋转坐标系下定子的目标电流输出至速度环;
所述速度环与PI控制单元连接,用于接收PI控制单元输出的转子估算转速
Figure BDA0004068752090000051
速度环还用于接收所述转速环输出的目标电流,并采用电流传感器测得定子的实际电流,将所述目标电流和实际电流比较,得到电流误差并输入速度环的PI控制器中,速度环结合所述转子估算转速
Figure BDA0004068752090000052
对PI控制器输出的定子目标电压进行解耦,并输出同步旋转坐标系下定子的目标电压至第一转换单元;
所述第一转换单元与积分单元连接,用于接收积分单元输出的转子磁场估算角度
Figure BDA0004068752090000053
并根据所述转子磁场估算角度
Figure BDA0004068752090000054
将所述同步旋转坐标系下定子的目标电压,转换为静止坐标系下定子的目标电压,并将所述静止坐标系下定子的目标电压输出至SVPWM单元;
所述SVPWM单元,用于通过空间矢量脉宽调制,根据所述静止坐标系下定子的目标电压输出对应脉冲信号至逆变器;
所述逆变器,用于接收给定的直流电压Udc,并根据所述脉冲信号将直流电压Udc转换为三相交流电输出至异步电机;
异步电机根据所述三相交流电,输出对应的ABC三轴电流分量至第二转换单元,所述ABC三轴电流分量包括iA、iB、iC
所述第二转换单元与积分单元连接,用于接收积分单元输出的转子磁场估算角度
Figure BDA0004068752090000055
并根据所述转子磁场估算角度
Figure BDA0004068752090000056
将所述ABC三轴电流分量转换为同步旋转坐标系下定子d轴的电机实际输出电流isd和定子q轴的电机实际输出电流isq
所述第二转换单元还与电流模型单元、电压模型单元连接,用于将所述定子d轴的电机实际输出电流isd和定子q轴的电机实际输出电流isq输出至电流模型单元和电压模型单元。
通过采用上述技术方案,将该控制系统应用到异步电机的控制中,使异步电机按照给定的目标转速运动,提高了异步电机的运行精度。
在一个具体的可实施方案中,所述同步旋转坐标系下定子的目标电流包括定子d轴的目标电流分量Isd和定子q轴的目标电流分量Isq;所述同步旋转坐标系下定子的目标电压包括定子d轴的目标电压分量usd和定子q轴的目标电压分量usq;所述静止坐标系下定子的目标电压包括定子α轴的目标电压分量u和定子β轴的目标电压分量u
综上所述,本申请的技术方案至少包括以下有益技术效果:
1、在同步坐标系下以转子磁链电流模型作为参考模型,以转子磁链电压模型作为可调模型,运用同步坐标系下的转子磁链定向的原理及公式推导出转差角速度、转子转速、转子磁场角度的估算值,提高了电机转速的估算精度。
2、电流模型简化了变量,解决了强耦合的异步电机调速问题,提高了参考模型的准确度;电压模型包含了转速反馈、并且增加了转子磁链值的纯积分反馈补偿修正参数Kd和Kq,提高了系统的稳定性。
附图说明
图1是本申请实施例中,同步旋转坐标系下异步电机无速度传感器的控制方法流程图。
图2是本申请实施例中,同步旋转坐标系下异步电机无速度传感器的控制系统结构示意图。
图3是本申请实施例中,同步旋转坐标系下异步电机无速度传感器的控制系统,转子估算转速与电机实际输出值的对比仿真图。
图4是本申请实施例中,同步旋转坐标系下异步电机无速度传感器的控制系统,定子估算角度与电机实际输出值的对比仿真图。
图5是本申请实施例中,同步旋转坐标系下异步电机无速度传感器的控制系统,转子估算磁链与电机实际输出值的对比仿真图。
图6是本申请实施例中,三种模型分别在低速、低速带载、高速带载情况下,定子d轴和q轴的电流波形的仿真图。
图7是本申请实施例中,三种模型分别在低速、低速带载、高速带载情况下,电机转速估算的稳态误差仿真图。
图8是本申请实施例中,三种模型在突加20Nm的负载扭矩情况下,电机转速估算的动态响应仿真图。
附图标记说明:
1、电流模型单元;2、电压模型单元;3、PI控制单元;4、积分单元;5、转速环;6、速度环;7、第一转换单元;8、SVPWM单元;9、逆变器;10、第二转换单元。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细说明。
新能源电动汽车的发展离不开对电机控制技术的研究,目前主流的搭载于电动汽车的电机分为永磁同步电机和感应异步电机,异步电机具有成本低、转速范围广、耐用及维护简单等优点,因此,新能源电动汽车的转向助力油泵以及空压打气泵普遍采用小型的异步电机驱动,但是在小体积的异步电机中安装转速传感器,又存在安装难度大、故障率高、成本高等问题,因此,在小体积的异步电机中使用无速度传感器控制技术,具有较好的发展前景。
异步电机无速度传感器的控制方法分为矢量控制与标量控制,标量控制较为传统,控制效率没有矢量控制高。本申请提供的一种异步电机无速度传感器矢量控制方法及系统,其中,矢量控制是将异步电机的转子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,通过本申请的控制方法,可以提高无速度传感器对异步电机转速估算的精度。
传统的模型参考自适应的异步电机无速度传感器控制方法,采用在转子磁链定向的两相静止坐标系下,以转子磁链电压模型作为参考模型,以转子磁链电流模型作为可调模型,得到转子估算转速和磁场估算角度,具体过程如下:
S110:静止坐标系下异步电机定子、转子磁链方程为:
Figure BDA0004068752090000071
其中,Ψ为定子α轴的磁链分量,Ψ为定子β轴的磁链分量,Ψ为转子α轴的磁链分量,Ψ为转子β轴的磁链分量,Ls为定子自感,Lm为定转子互感,Lr为转子自感,i为定子α轴的电流分量,i为定子β轴的电流分量,i为转子α轴的电流分量,i为转子β轴的电流分量。
静止坐标系下异步电机定子电压方程为:
Figure BDA0004068752090000072
其中,U为定子α轴的电压分量,U为定子β轴的电压分量,Rs为定子电阻,Rr为转子电阻,p为微分符号,ωr为转子转速。
S120:根据式(2)可以得到定子磁链与定子电压的关系式:
Figure BDA0004068752090000073
根据式(1)可以得到转子磁链与定子磁链的关系式:
Figure BDA0004068752090000081
其中σ为漏感系数,
Figure BDA0004068752090000082
S130:根据式(3)和式(4),可以得到静止坐标系下转子磁链电压模型:
Figure BDA0004068752090000083
根据式(3)和式(4),还可以得到静止坐标系下转子磁链电流模型:
Figure BDA0004068752090000084
其中,Tr为转子时间常数,
Figure BDA0004068752090000085
S140:将静止坐标系下转子磁链电压模型(即式(5))作为参考模型,将静止坐标系下转子磁链电流模型(即式(6))作为可调模型,根据该参考模型和可调模型,计算出转子估算转速和磁场估算角度(即磁场的估算位置)。
但是,上述方法中,一方面,由于静止坐标系下的转子磁链电流模型和转子磁链电压模型的状态变量均为交流量,离散化后转子转速波动大,导致转子转速估算和磁场角度估算(即磁场位置的估算)精度低;另一方面,静止坐标系下电压模型使用的纯积分环节存在初始值误差和直流偏置,且在电机低速转动时,定子电阻压降会使系统的部分极点临近于复平面虚轴,导致在受外界干扰的情况下,系统易产生振荡,转子转速波动大,系统稳定性和鲁棒性差。因此,静止坐标系下的转子磁链电压模型存在一定的误差和局限性,且不适用于低速控制。
本申请的异步电机无速度传感器矢量控制方法,则是在同步旋转坐标系下,以转子磁链电流模型作为参考模型,以转子磁链电压模型作为可调模型,通过运用同步旋转坐标系下转子磁链定向原理及公式推导出转差角速度、转子转速、转子磁场角度的估算值,其中转子转速的估算值就是电机转速的估算值,具体过程如下:
S210:同步旋转坐标系下的异步电机定子磁链方程和转子磁链方程为:
Figure BDA0004068752090000091
其中,Ψsd为定子d轴的磁链分量,Ψsq为定子q轴的磁链分量,Ψrd为转子d轴的磁链分量,Ψrq为转子q轴的磁链分量,Ls为定子自感,Lr为转子自感,Lm为定转子互感,isd为定子d轴的电机实际输出电流分量,isq为定子q轴的电机实际输出电流分量,ird为转子d轴的电流分量,irq为转子q轴的电流分量。
同步旋转坐标系下的异步电机定子电压方程为:
Figure BDA0004068752090000092
其中,usd为定子d轴的目标电压分量,usq为定子q轴的目标电压分量,Rs为定子电阻,Rr为转子电阻,p为微分符号,ωs为旋转磁场转速,ωr为转子转速。
S220:根据式(7)和式(8),推导出同步旋转坐标系下转子磁链电流模型:
Figure BDA0004068752090000093
其中:
Figure BDA0004068752090000094
为电流模型下转子d轴的磁链估算分量,
Figure BDA0004068752090000095
为电流模型下转子q轴的磁链估算分量,Lm为定转子互感,p为微分符号,isd为定子d轴的电机实际输出电流分量,Tr为转子时间常速,
Figure BDA0004068752090000096
Lr为转子自感,Rr为转子电阻。
将同步旋转坐标系下的转子磁链电流模型作为参考模型,当同步旋转坐标系的d轴与转子磁链方向一致时,转子d轴的磁链分量等于转子磁链总量,转子q轴的磁链分量为零,此时定子d轴的电流分量是唯一确定转子磁链的稳态值,由此可以看出,式(9)的电流模型简化了变量,解决了强耦合的异步电机调速问题,提高了参考模型的准确度。
根据式(9)可知:同步旋转坐标系下转子磁链电流模型包括定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,根据该电流模型可以得到电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000097
由于该电流模型为同步旋转坐标系的d轴与转子磁链方向一致的情况,isq此时为0,因此式(9)中
Figure BDA0004068752090000101
S230:根据式(9)的电流模型,得到转子d轴的磁链估算分量
Figure BDA0004068752090000102
和转子q轴的磁链估算分量
Figure BDA0004068752090000103
进而可以得到转差估算角速度
Figure BDA0004068752090000104
的计算公式如下:
Figure BDA0004068752090000105
其中:isq为定子q轴的电机实际输出电流分量。
S240:根据式(7)和式(8),得到定子电压与转子磁链的关系式:
Figure BDA0004068752090000106
其中,usd为定子d轴的目标电压分量,usq为定子q轴的目标电压分量,isd为定子d轴的电机实际输出电流分量,isq为定子q轴的电机实际输出电流分量,σ为漏感系数,
Figure BDA0004068752090000107
根据式(11),推导出同步旋转坐标系下转子磁链电压模型为:
Figure BDA0004068752090000108
其中,Ψ rd为电压模型下转子d轴的磁链估算分量,Ψ rq为电压模型下转子q轴的磁链估算分量,
Figure BDA0004068752090000109
为旋转磁场估算转速,Kd、Kq为转子磁链值的纯积分反馈补偿修正参数,
Figure BDA00040687520900001010
Kc为补偿系数,
Figure BDA00040687520900001011
为电流模型下转子d轴的磁链估算分量,
Figure BDA00040687520900001012
为电流模型下转子q轴的磁链估算分量。
根据式(12)可知:同步旋转坐标系下转子磁链电压模型中包括同步旋转坐标系下定子d轴的目标电压分量usd、定子q轴的目标电压分量usq、定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,根据该电压模型可以得到电压模型下转子q轴的磁链估算分量Ψ′rq
由于同步旋转坐标系下转子磁链电压模型包含了转速反馈,即式(12)中包括了转子磁场转速
Figure BDA00040687520900001013
这一物理量,因此,将同步旋转坐标系下的转子磁链电压模型作为可调模型,同时,为了避免出现与静止坐标系下相同的问题,即电压模型的纯积分环节以及低速定子电阻压降使得低速时系统的部分极点临近于复平面虚轴,避免系统在受外界干扰下易产生振荡,导致转子转速波动大,系统稳定性和鲁棒性差的问题。在同步旋转坐标系下转子磁链电压模型中增加了转子磁链值的纯积分反馈补偿修正参数Kd和Kq,通过调节补偿系数Kc,可以使极点移动至虚轴左侧稳定区域,且本申请的转子磁链电压模型符合李雅普诺夫稳定性分析法的稳定性验证,其传递函数的特征值位于负实部。
S250:同步旋转坐标系下转子d轴和q轴的磁链分量和转子位置的关系式为:
Figure BDA0004068752090000111
其中,Ψrd为转子d轴的磁链分量,Ψrq为转子q轴的磁链分量,Ψr为转子的磁链总量,
Figure BDA0004068752090000112
为转子磁场估算角度,θe为转子磁场实际角度。
根据式(13)可知,当转子磁场估算角度与转子磁场实际角度一致时,角度误差
Figure BDA0004068752090000113
为零,转子磁链经同步旋转坐标系变换后,转子q轴的磁链分量理论上应该为
Figure BDA0004068752090000114
但实际上,电压模型下转子q轴的磁链估算分量Ψ′rq并不为0。此时,通过PI控制器中的PLL锁相环技术,使电压模型下转子磁链估算分量Ψ′rq收敛于电流模型下转子磁链估算分量
Figure BDA0004068752090000115
均趋向于零,从而保证转子d轴的励磁电流和转子q轴的转矩电流相位差始终为90°,使电机在相同电流下以最大转矩输出,同时也使得转子估算转速
Figure BDA0004068752090000116
等于给定的转子目标转速,即可得到转子估算转速
Figure BDA0004068752090000117
具体的,转子估算转速
Figure BDA0004068752090000118
的计算公式为:
Figure BDA0004068752090000119
其中,kp、ki为PI控制器系数,
Figure BDA00040687520900001110
为积分符号,Ψ′rq为电压模型下转子q轴的磁链估算分量。
S260:根据式(10)得到的转差估算角速度
Figure BDA00040687520900001111
和式(14)得到的转子估算转速
Figure BDA00040687520900001112
得到旋转磁场估算转速
Figure BDA00040687520900001113
的计算公式如下:
Figure BDA00040687520900001114
对旋转磁场估算转速
Figure BDA00040687520900001115
积分,得到转子磁场估算角度
Figure BDA00040687520900001116
的计算公式如下:
Figure BDA00040687520900001117
其中,
Figure BDA00040687520900001118
为积分符号。
至此,通过本申请的控制方法,已经得到了转子估算转速
Figure BDA00040687520900001122
旋转磁场估算转速
Figure BDA00040687520900001119
和转子磁场估算角度
Figure BDA00040687520900001120
转子估算转速
Figure BDA00040687520900001121
也就是电机估算转速。
本申请中的异步电机无速度传感器矢量控制系统,该控制系统采用了前述异步电机无速度传感器矢量控制方法,该控制系统包括电流模型单元1、电压模型单元2、PI控制单元3、积分单元4、转速环5、速度环6、第一转换单元7、SVPWM单元8、逆变器9、第二转换单元10,其中,异步电机分别与逆变器9和第二转换单元10连接,本申请中控制系统各单元的功能如下:
电流模型单元1,根据同步旋转坐标系下,定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电流模型和电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000121
并电流模型得到转差估算角速度
Figure BDA0004068752090000122
将电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000123
输出至PI控制单元3,将转差估算角速度
Figure BDA0004068752090000124
输出至积分单元4;
电压模型单元2,根据同步旋转坐标系下,定子d轴的目标电压分量usd、定子q轴的目标电压分量usq、定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电压模型和电压模型下转子q轴的磁链估算分量Ψ′rq,并将电压模型下转子q轴的磁链估算分量Ψ′rq输出至PI控制单元3;
PI控制单元3,根据同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程,使转子磁场估算角度
Figure BDA0004068752090000125
与转子磁场实际角度θe一致时,通过PI控制器使电压模型下转子q轴的磁链估算分量Ψ′rq收敛于电流模型下转子q轴的磁链估算分量
Figure BDA0004068752090000126
得到转子估算转速
Figure BDA0004068752090000127
并将转子估算转速
Figure BDA0004068752090000128
输出至积分单元4;
积分单元4,获取转子估算转速
Figure BDA0004068752090000129
和转差估算角速度
Figure BDA00040687520900001210
得到旋转磁场估算转速
Figure BDA00040687520900001211
并对旋转磁场估算转速
Figure BDA00040687520900001212
积分得到转子磁场估算角度
Figure BDA00040687520900001213
转速环5与PI控制单元3连接,用于接收PI控制单元3输出的转子估算转速
Figure BDA00040687520900001214
并根据转子估算转速
Figure BDA00040687520900001215
和给定的转子目标转速,得到估算转速
Figure BDA00040687520900001216
和转子目标转速之间的误差e,并通过PI控制器将误差e转换为同步旋转坐标系下定子的目标电流,将同步旋转坐标系下定子的目标电流输出至速度环6;
具体的,上述同步旋转坐标系下定子的目标电流包括定子d轴的目标电流分量Isd和定子q轴的目标电流分量Isq
速度环6与PI控制单元3连接,接收PI控制单元3输出的转子估算转速
Figure BDA00040687520900001217
速度环6还用于接收转速环5输出的目标电流,并采用电流传感器测得定子的实际电流,将目标电流和实际电流比较,得到电流误差并输入速度环6的PI控制器中,PI控制器对电流误差处理并输出定子目标电压,速度环6结合转子估算转速
Figure BDA00040687520900001218
对PI控制器输出的定子目标电压进行解耦,输出同步旋转坐标系下定子的目标电压至第一转换单元7;
第一转换单元7与积分单元4连接,接收积分单元4输出的转子磁场估算角度
Figure BDA00040687520900001219
并根据转子磁场估算角度
Figure BDA00040687520900001220
将同步旋转坐标系下定子的目标电压,通过park变换转换为静止坐标系下定子的目标电压,并将静止坐标系下定子的目标电压输出至SVPWM单元8;
进一步的,上述第一转换单元7为2r/2s变换,即从两相旋转坐标系到两相静止坐标系的转换。
具体的,上述静止坐标系下定子的目标电压包括定子α轴的目标电压分量u和定子β轴的目标电压分量u
SVPWM单元8,SVPWM为空间矢量脉宽调制,SVPWM单元8根据静止坐标系下定子的目标电压输出对应脉冲信号至逆变器9;
逆变器9,接收给定的直流电压Udc,并根据脉冲信号将直流电压Udc转换为三相交流电输出至异步电机;
异步电机根据三相交流电,输出对应的ABC三轴电流分量至第二转换单元10,其中,ABC三轴电流分量包括iA、iB、iC
第二转换单元10与积分单元4连接,接收积分单元4输出的转子磁场估算角度
Figure BDA0004068752090000131
并根据转子磁场估算角度
Figure BDA0004068752090000132
将ABC三轴电流分量通过clark变换以及park变换转换为同步旋转坐标系下定子d轴的电机实际输出电流isd和定子q轴的电机实际输出电流isq
第二转换单元10还与电流模型单元1、电压模型单元2连接,将定子d轴的电机实际输出电流isd和定子q轴的电机实际输出电流isq输出至电流模型单元1和电压模型单元2。
进一步的,上述第二转换单元10为3r/2r变换,即从三相旋转坐标系到两相旋转坐标系的转换。
参照图3~图8,为在MATLAB/Simulink环境下搭建仿真模型,采用本申请的控制方法进行异步电机转速、位置和磁链的估算值的控制仿真验证,异步电机的参数如表1所示:
表1
电机参数 参数值
<![CDATA[额定功率P<sub>N</sub>]]> 4kW
<![CDATA[额定电压U<sub>N</sub>]]> 380V
<![CDATA[额定频率f<sub>N</sub>]]> 50Hz
<![CDATA[额定转矩T<sub>N</sub>]]> 19.9Nm
极对数p 2
<![CDATA[定转子电阻R<sub>s</sub>/R<sub>r</sub>]]> 1.557Ω/0.580Ω
<![CDATA[定转子漏感Ll<sub>s</sub>/Ll<sub>r</sub>]]> 2.6mH
<![CDATA[定转子互感L<sub>m</sub>]]> 152mH
额定转速N 1460RPM
仿真模型进行了同步旋转坐标系下的离散化,系统采样频率8kHz,转速环中PI控制参数Kp=0.1910,Ki=0.9550,Kc=80,对异步电机转速、位置和磁链的估算值等进行仿真,同时将静止坐标系下传统的控制模型、半同步半静止坐标系下控制模型与本申请的控制模型的仿真结果进行对比。
图3~图5的仿真图为采用本申请的控制模型对异步电机转速、位置和磁链的估算值等进行仿真,是在以下情况下得到的:在给定转速从初始静止状态迅速上升至167.5rad/min,之后迅速上升至额定转速,在期间突加20Nm的负载扭矩。
参照图3,为采用本申请的控制模型,转子估算转速(即电机估算转速)与电机实际输出值的对比图,由图可以看出:电机估算转速跟踪轨迹与实际转速基本吻合,转速上升下降平滑,响应速度快,实际转速在低速时与给定转速的误差为1.5rad/min,高速情况下误差为0.5rad/min实现了高估算精度,能及时跟踪动态系统的参数变化。
参照图4,为采用本申请的控制模型,定子估算角度与电机实际输出值的对比图,由图可以看出:在不同转速、负载下定子估算角度的幅值和相位轨迹与实际角度保持一致,在突加负载时系统可以在0.17秒内收敛至稳态,估算值因在离散化数字控制系统中,与实际值相差一个采样周期造成频率节拍的误差忽略不计。
参照图5,为采用本申请的控制模型,转子估算磁链与电机实际输出磁链的对比图,由图可以看出:除电机突加负载时转子磁链估算值与实际值有1.7%误差以外,正常运行时磁链估算和实际基本吻合,适用于各种转速情况。
图6~图8的仿真结果为电机参数、转速环PI控制参数及电流解耦模型等条件完全相同的情况下,对静止坐标系下传统控制模型(模型一)、半同步半静止坐标系下控制模型(模型二)、以及本申请同步旋转坐标系下MRAS控制模型(模型三)的仿真结果进行对比.参照图6,为三种模型分别在低速、低速带载、高速带载情况下,定子d轴和q轴的电流波形的仿真结果。由图可以看出:本申请同步旋转坐标系下MRAS控制模型(模型三)在启动、突加负载时的突变电流小,均方根误差为0.1608,稳定运行时电流波动幅度最小。
参照图7,为三种模型分别在低速、低速带载、高速带载情况下,电机转速估算的稳态误差仿真结果,虚线表示电机实际转速,实线表示电机估算转速由图可以看出:本申请同步旋转坐标系下MRAS控制模型(模型三)的转速估算波动最小。
参照图8,为三种模型在突加20Nm的负载扭矩情况下,电机转速估算的动态响应仿真结果,虚线表示电机实际转速,实线表示电机估算转速,由图可以看出:本申请同步旋转坐标系下MRAS控制模型(模型三)进入稳态时间为0.1707秒,动态响应速度最快。
三种模型电机转速估算数据对比如表2,本申请同步旋转坐标系下MRAS控制模型(模型三)与其他两种控制模型相比,在低速、低速带载和高速带载的情况下振动幅度最小,本申请同步旋转坐标系下MRAS控制模型(模型三)在这三种情况下的相对稳态误差分别为1.637%、3.222%及1.163%,均方根差分别为1.993、2.933及2.416,相对稳态误差和均方根差均为最小。
表2
Figure BDA0004068752090000151
以上仿真实验结果表明,本申请同步旋转坐标系的控制方法具有更准确的估算精度和更快的收敛速度,估算的转速误差低,动态跟踪速度快,提高了异步电机转子磁链、转速以及位置的估算精度,适用于新能源汽车的实际应用要求。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (10)

1.异步电机无速度传感器矢量控制方法,其特征在于,包括:
根据同步旋转坐标系下,定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电流模型、所述电流模型下转子q轴的磁链估算分量
Figure FDA0004068752070000011
根据所述电流模型得到转差估算角速度
Figure FDA0004068752070000012
根据同步旋转坐标系下,定子d轴的目标电压分量usd、定子q轴的目标电压分量usq、定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电压模型、所述电压模型下转子q轴的磁链估算分量Ψ′rq
根据同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程,使转子磁场估算角度
Figure FDA0004068752070000013
与转子磁场实际角度θe一致时,通过PI控制器使电压模型下转子q轴的磁链估算分量Ψ′rq收敛于电流模型下转子q轴的磁链估算分量
Figure FDA0004068752070000014
得到转子估算转速
Figure FDA0004068752070000015
根据所述转子估算转速
Figure FDA0004068752070000016
和所述转差估算角速度
Figure FDA0004068752070000017
得到旋转磁场估算转速
Figure FDA0004068752070000018
对所述旋转磁场估算转速
Figure FDA0004068752070000019
积分得到转子磁场估算角度
Figure FDA00040687520700000110
2.根据权利要求1所述的异步电机无速度传感器矢量控制方法,其特征在于:所述电流模型为:
Figure FDA00040687520700000111
其中:
Figure FDA00040687520700000112
为电流模型下转子d轴的磁链估算分量,
Figure FDA00040687520700000113
为电流模型下转子q轴的磁链估算分量,Lm为定转子互感,p为微分符号,isd为定子d轴的电机实际输出电流分量,Tr为转子时间常速,
Figure FDA00040687520700000114
Lr为转子自感,Rr为转子电阻。
3.根据权利要求2所述的异步电机无速度传感器矢量控制方法,其特征在于:根据所述电流模型得到转差估算角速度
Figure FDA00040687520700000115
所述
Figure FDA00040687520700000116
的计算公式为:
Figure FDA00040687520700000117
其中:isq为定子q轴的电机实际输出电流分量。
4.根据权利要求1所述的异步电机无速度传感器矢量控制方法,其特征在于:所述电压模型为:
Figure FDA00040687520700000118
其中:Ψ rd为电压模型下转子d轴的磁链估算分量,Ψ rq为电压模型下转子q轴的磁链估算分量;
Lr为转子自感,Lm为定转子互感;
usd为定子d轴的目标电压分量,usq为定子q轴的目标电压分量;
Rs为定子电阻,σ为漏感系数,
Figure FDA0004068752070000021
Ls为定子自感,p为微分符号;
isq为定子q轴的电机实际输出电流分量,isd为定子d轴的电机实际输出电流分量;
Figure FDA0004068752070000022
为旋转磁场估算转速;
Kd、Kq为转子磁链值的纯积分反馈补偿修正参数,
Figure FDA0004068752070000023
Figure FDA0004068752070000024
Kc为补偿系数。
5.根据权利要求1所述的异步电机无速度传感器矢量控制方法,其特征在于:所述同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程为:
Figure FDA0004068752070000025
其中:Ψr为转子的磁链总量,
Figure FDA0004068752070000026
为转子磁场估算角度,θe为转子磁场实际角度,Ψrd为转子d轴的磁链分量,Ψrq为转子q轴的磁链分量。
6.根据权利要求5所述的异步电机无速度传感器矢量控制方法,其特征在于:所述转子估算转速
Figure FDA0004068752070000027
的计算公式为:
Figure FDA0004068752070000028
其中:kp、ki为PI控制器系数,
Figure FDA0004068752070000029
为积分符号,Ψ rq为电压模型下转子q轴的磁链估算分量。
7.根据权利要求6所述的异步电机无速度传感器矢量控制方法,其特征在于:根据所述转子估算转速
Figure FDA00040687520700000210
和所述转差估算角速度
Figure FDA00040687520700000211
得到旋转磁场估算转速
Figure FDA00040687520700000212
对所述旋转磁场估算转速
Figure FDA00040687520700000213
积分得到转子磁场估算角度
Figure FDA00040687520700000214
的计算公式为:
Figure FDA00040687520700000215
Figure FDA00040687520700000216
8.异步电机无速度传感器矢量控制系统,其特征在于:所述控制系统包括电流模型单元(1)、电压模型单元(2)、PI控制单元(3)、积分单元(4);
所述电流模型单元(1),用于根据同步旋转坐标系下,定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电流模型、所述电流模型下转子q轴的磁链估算分量
Figure FDA00040687520700000217
并根据所述电流模型得到转差估算角速度
Figure FDA00040687520700000218
将所述电流模型下转子q轴的磁链估算分量
Figure FDA00040687520700000219
输出至PI控制单元(3),将所述转差估算角速度
Figure FDA00040687520700000220
输出至积分单元(4);所述电压模型单元(2),用于根据同步旋转坐标系下,定子d轴的目标电压分量usd、定子q轴的目标电压分量usq、定子d轴的电机实际输出电流分量isd、定子q轴的电机实际输出电流分量isq,得到转子磁链电压模型、所述电压模型下转子q轴的磁链估算分量Ψ′rq,并将所述电压模型下转子q轴的磁链估算分量Ψ′rq输出至PI控制单元(3);
所述PI控制单元(3),用于根据同步旋转坐标系下转子d轴和q轴的磁链分量与转子位置的关系方程,使转子磁场估算角度
Figure FDA0004068752070000031
与转子磁场实际角度θe一致时,通过PI控制器使电压模型下转子q轴的磁链估算分量Ψ′rq收敛于电流模型下转子q轴的磁链估算分量
Figure FDA0004068752070000032
得到转子估算转速
Figure FDA0004068752070000033
并将所述转子估算转速
Figure FDA0004068752070000034
输出至积分单元(4);
所述积分单元(4),用于获取所述转子估算转速
Figure FDA0004068752070000035
和所述转差估算角速度
Figure FDA0004068752070000036
得到旋转磁场估算转速
Figure FDA0004068752070000037
并对所述旋转磁场估算转速
Figure FDA0004068752070000038
积分得到转子磁场估算角度
Figure FDA0004068752070000039
9.根据权利要求8所述的异步电机无速度传感器矢量控制系统,其特征在于:所述控制系统还包括转速环(5)、速度环(6)、第一转换单元(7)、SVPWM单元(8)、逆变器(9)、第二转换单元(10),异步电机分别与逆变器(9)和第二转换单元(10)连接;
所述转速环(5)与PI控制单元(3)连接,用于接收PI控制单元(3)输出的转子估算转速
Figure FDA00040687520700000310
并根据所述转子估算转速
Figure FDA00040687520700000311
和给定的转子目标转速,得到估算转速
Figure FDA00040687520700000312
和转子目标转速之间的误差e,并通过PI控制器将所述误差e转换为同步旋转坐标系下定子的目标电流,将所述同步旋转坐标系下定子的目标电流输出至速度环(6);
所述速度环(6)与PI控制单元(3)连接,用于接收PI控制单元(3)输出的转子估算转速
Figure FDA00040687520700000313
速度环(6)还用于接收所述转速环(5)输出的目标电流,并采用电流传感器测得定子的实际电流,将所述目标电流和实际电流比较,得到电流误差并输入速度环(6)的PI控制器中,速度环(6)结合所述转子估算转速
Figure FDA00040687520700000314
对PI控制器输出的定子目标电压进行解耦,并输出同步旋转坐标系下定子的目标电压至第一转换单元(7);
所述第一转换单元(7)与积分单元(4)连接,用于接收积分单元(4)输出的转子磁场估算角度
Figure FDA00040687520700000315
并根据所述转子磁场估算角度
Figure FDA00040687520700000316
将所述同步旋转坐标系下定子的目标电压,转换为静止坐标系下定子的目标电压,并将所述静止坐标系下定子的目标电压输出至SVPWM单元(8);
所述SVPWM单元(8),用于通过空间矢量脉宽调制,根据所述静止坐标系下定子的目标电压输出对应脉冲信号至逆变器(9);
所述逆变器(9),用于接收给定的直流电压Udc,并根据所述脉冲信号将直流电压Udc转换为三相交流电输出至异步电机;
异步电机根据所述三相交流电,输出对应的ABC三轴电流分量至第二转换单元(10),所述ABC三轴电流分量包括iA、iB、iC
所述第二转换单元(10)与积分单元(4)连接,用于接收积分单元(4)输出的转子磁场估算角度
Figure FDA0004068752070000041
并根据所述转子磁场估算角度
Figure FDA0004068752070000042
将所述ABC三轴电流分量转换为同步旋转坐标系下定子d轴的电机实际输出电流isd和定子q轴的电机实际输出电流isq
所述第二转换单元(10)还与电流模型单元(1)、电压模型单元(2)连接,用于将所述定子d轴的电机实际输出电流isd和定子q轴的电机实际输出电流isq输出至电流模型单元(1)和电压模型单元(2)。
10.根据权利要求9所述的异步电机无速度传感器矢量控制系统,其特征在于:所述同步旋转坐标系下定子的目标电流包括定子d轴的目标电流分量Isd和定子q轴的目标电流分量Isq;所述同步旋转坐标系下定子的目标电压包括定子d轴的目标电压分量usd和定子q轴的目标电压分量usq;所述静止坐标系下定子的目标电压包括定子α轴的目标电压分量u和定子β轴的目标电压分量u
CN202310085500.9A 2023-02-06 2023-02-06 异步电机无速度传感器矢量控制方法及系统 Pending CN115967318A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310085500.9A CN115967318A (zh) 2023-02-06 2023-02-06 异步电机无速度传感器矢量控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310085500.9A CN115967318A (zh) 2023-02-06 2023-02-06 异步电机无速度传感器矢量控制方法及系统

Publications (1)

Publication Number Publication Date
CN115967318A true CN115967318A (zh) 2023-04-14

Family

ID=87352897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310085500.9A Pending CN115967318A (zh) 2023-02-06 2023-02-06 异步电机无速度传感器矢量控制方法及系统

Country Status (1)

Country Link
CN (1) CN115967318A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116896303A (zh) * 2023-05-15 2023-10-17 苏州海格电控股份有限公司 基于mras的永磁同步电机无速度传感器控制方法及系统
CN117498745A (zh) * 2023-11-10 2024-02-02 浙江大学 一种基于极点区域匹配的永磁同步电机无位置传感器控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116896303A (zh) * 2023-05-15 2023-10-17 苏州海格电控股份有限公司 基于mras的永磁同步电机无速度传感器控制方法及系统
CN116896303B (zh) * 2023-05-15 2024-04-02 苏州海格电控股份有限公司 基于mras的永磁同步电机无速度传感器控制方法及系统
CN117498745A (zh) * 2023-11-10 2024-02-02 浙江大学 一种基于极点区域匹配的永磁同步电机无位置传感器控制方法

Similar Documents

Publication Publication Date Title
CN110350835B (zh) 一种永磁同步电机无位置传感器控制方法
CN108599651B (zh) 基于虚拟电压注入的感应电机无速度传感器驱动控制方法
CN115967318A (zh) 异步电机无速度传感器矢量控制方法及系统
CN110429886B (zh) 一种永磁同步电机低速域转子位置辨识方法
CN110323988B (zh) 永磁同步电机低载波比无差拍控制系统及方法
CN107994826B (zh) 一种基于误差加权的全阶观测器无速度传感器控制系统
CN108092567B (zh) 一种永磁同步电动机转速控制系统及方法
CN110022106B (zh) 一种基于高频信号注入的永磁同步电机无位置传感器控制方法
CN107911057B (zh) 一种用于飞轮储能系统的转子位置鲁棒观测方法
EP3703245B1 (en) Method and system for controlling a permanent magnet machine without a mechanical position sensor
JP2014515244A (ja) 温度補償と共に電気モータを制御する方法およびシステム
CN111786606B (zh) 同步磁阻电机自适应调节无传感器控制方法
CN111769779A (zh) 基于改进型Luenberger观测器的PMSM直接转矩控制方法
CN110649851B (zh) 异步电机多参数解耦在线辨识方法
CN112671302A (zh) 一种永磁同步电机的无速度传感器控制方法及系统
CN115864928A (zh) 一种基于校正电流预测的pmsm模型参考自适应转速估算方法
Bist et al. Sensorless control based on sliding mode observer for pmsm drive
Xiong et al. Sensor-less complex system control of pmsm based on improved smo
CN114744925A (zh) 永磁同步电机无位置传感器全速域转子位置测量方法
CN109194224A (zh) 基于扩张状态观测器的永磁同步电机无传感器控制方法
TW202023175A (zh) 旋轉電機控制裝置及其控制方法
CN111327243B (zh) 旋转电机控制装置及其控制方法
CN116365937A (zh) 一种高速永磁同步电机无位置传感器控制方法
CN109687788B (zh) 一种双馈风力发电系统无速度传感器的控制方法
CN109713950B (zh) 永磁同步电机转矩脉动的抑制系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination