CN115967078A - 一种含分布式光伏的农村配电网电压分布式优化控制方法 - Google Patents

一种含分布式光伏的农村配电网电压分布式优化控制方法 Download PDF

Info

Publication number
CN115967078A
CN115967078A CN202211162066.1A CN202211162066A CN115967078A CN 115967078 A CN115967078 A CN 115967078A CN 202211162066 A CN202211162066 A CN 202211162066A CN 115967078 A CN115967078 A CN 115967078A
Authority
CN
China
Prior art keywords
voltage
distribution network
power distribution
formula
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211162066.1A
Other languages
English (en)
Inventor
张继国
贾克音
郝成钢
郑世洋
杨乐
李华军
李新辉
马文远
何平
咸英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siping Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co
Original Assignee
Siping Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siping Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co filed Critical Siping Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co
Priority to CN202211162066.1A priority Critical patent/CN115967078A/zh
Publication of CN115967078A publication Critical patent/CN115967078A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明是一种含分布式光伏的农村配电网电压分布式优化控制方法,其特点是,所述方法的内容有:构建含分布式PV的主动配电网电压优化控制模型;利用SOC松弛技术对非凸模型进行凸化处理;根据分解协调原则将配电网分区;基于ADMM一致性优化方法,建立电压分布式优化控制模型;基于残差平衡原理和松弛技术的加速ADMM;具有科学合理,通用性和实用性强,计算速度快,效果佳的优点。

Description

一种含分布式光伏的农村配电网电压分布式优化控制方法
技术领域
本发明涉及配电网电压控制领域,尤其涉及一种含分布式光伏的农村配电网电压分布式优化控制方法。
背景技术
近年来,随着配电网中分布式电源接入比例不断提高,特别是分布式光伏(photovoltaic,PV)的大量并网,配电网潮流逆向流动更加频繁,导致配电网电压分布发生剧烈变化;同时,PV出力的不确定性,导致配电网电压波动和越限等问题愈发突出[1],给配电网的安全运行带来巨大挑战。
传统的农村配电网运行,常利用电容器组和有载调压器等设备解决PV大规模并网带来的电压越限问题,但其调节速度慢且会增加投资成本,若频繁调节还将导致设备使用寿命下降。分布式PV在并网发电过程中,除了可输出有功功率外还具有一定的无功功率调节能力,通过在一定范围内调节PV的无功功率输出,可改善配网电压质量、降低网络损耗[2]。同时,当PV出力大、负荷小时,可适当削减有功输出,增强无功调节能力,改善配网运行状况[3]。因此,合理地优化控制分布式PV的有、无功输出,对保障配电网安全、经济运行意义重大。
目前,含分布式PV的主动配电网电压优化控制方法主要分为三种:本地优化控制、集中式优化控制和分布式优化控制。基于PV无功调节的主动配电网本地电压控制策略,利用Q-V控制曲线,构建本地控制曲线参数优化模型以改善系统电压水平,其具有响应速度快、不需要通信网络等优点,但缺乏对分布式PV全系统范围的协调,无法实现电压的全局最优控制[4]。PV逆变器集中/本地两阶段电压/无功控制方法,弥补了本地控制难以实现整体协调的不足,但存在单点故障、通信计算负担大及信息私密性差的弊端,而基于电压灵敏度的电压协调控制方案,利用叠加定理求得电压越限节点对不同位置PV的灵敏度因子可避免上述问题,然而该控制方案通信负担重、计算量大[5]。现有调节方式未采用对配电网进行分区的分布式优化控制,优化效果有限。配电网的电压分区分布式优化控制方法,通过配电网分区和多区域间协调,不仅能实现电压的全局最优控制,还可降低计算复杂度,提高优化计算效率,具有良好的优化效果。以节点为单元构建了基于ADMM的分布式PV无功分布式优化控制方法在问题求解过程中计算速度慢[6-8]。因此,研究ADMM的加速方法以提高主动配电网电压分布式优化控制算法的计算效率具有重要意义。
发明内容
本发明的目的是,克服现有技术的不足,提供一种基于加速ADMM的含分布式PV主动配电网的电压分区分布式优化控制,不仅能够通过构建基于配电网合理分区的多目标电压分布式优化控制框架,而且还能够弥补利用ADMM求解迭代次数过多、计算速度慢的缺陷,具有科学合理,通用性和实用性强,计算速度快,效果佳的含分布式PV的主动配电网电压分布式优化控制方法。
本发明的目的是由以下技术方案来实现的:一种含分布式PV的主动配电网电压分布式优化控制方法,其特征是,所述方法包括:
(A)构建含分布式PV的主动配电网电压优化控制模型;
1)目标函数
拟通过调节分布式PV的有、无功输出实现系统节点电压偏差、PV削减量和网损最小的控制目标,因此所建立的电压优化控制目标函数为:
Figure BDA0003860060290000021
式中,Un为节点n电压幅值,U1=1.0p.u.,Nbus为配电网中节点集合;
Figure BDA0003860060290000022
和Ppv分别为PV最大有功输出功率和有功输出功率,Npv为配网中接有PV的节点集合;rnk和lnk分别为支路n-k的电阻和电流幅值平方,k:nk表示以节点n为首端节点的支路末端节点集合;ξ1、ξ2、ξ3为大于0的校正系数,以保证三项数值为同一数量级;ω1、ω2、ω3分别为三项的最小化权重系数,均大于等于0且ω123=1;
2)约束条件
电压优化控制包括三类约束条件:配电网潮流约束、安全约束和PV逆变器控制约束:
a.潮流约束
配电网潮流模型采用现有技术已广泛应用的配电网支路潮流模型,Um和Un分别为节点m和n的电压幅值,Imn为支路m-n的电流;zmn为支路m-n的阻抗,Pmn+iQmn为由节点m流过支路m-n的视在功率,Pn和Qn分别为注入到节点n的净有功负荷和无功负荷,与该支路有关的有、无功功率及电流约束表示为:
Figure BDA0003860060290000023
Figure BDA0003860060290000024
Figure BDA0003860060290000025
Figure BDA0003860060290000026
式中,um和lmn分别为节点m电压幅值的平方和支路m-n电流幅值的平方;
b.安全约束
为了确保配电网安全运行,运行过程中支路电流不应越限,且节点电压应保持在安全范围内,因此对应的配电网安全运行约束条件为:
Figure BDA0003860060290000031
c.PV逆变器控制约束
采用PV逆变器最优控制模型,该最优控制模式可对逆变器的有功无功输出进行调节,PV逆变器的运行约束为:
Figure BDA0003860060290000032
式中,Qpv为PV逆变器的无功输出功率,Spv为PV逆变器的额定容量,kf=cosθ为PV逆变器的最小功率因数,其为给定常数;显然,式(7)为凸约束,该约束充分考虑了PV逆变器额定容量和最小功率因数的限制;
(B)利用SOC松弛技术对上述非凸模型进行凸化处理;
式(1)的非线性目标和式(2)非凸非线性等式约束将导致所构建的模型非凸,进而难以获得模型最优解,为此,对上述模型进行凸化处理,为了将式(1)中非线性目标线性化,引入节点电压幅值与其平方的等式关系式(8),进一步,利用SOC松弛技术对式(2)和式(8)进行凸化处理,如式(9)和式(10)所示,
Figure BDA0003860060290000033
Figure BDA0003860060290000034
Figure BDA0003860060290000035
其标准的SOC形式分别为:
Figure BDA0003860060290000036
||[2Un un-1]||2≤un+1         (12)
利用SOC松弛技术,可将原问题的非凸可行域Coriginal松弛成一个凸锥可行域CSOC,进而将原问题转化成了一个凸问题,由于引入了二阶锥松弛,在CSOC中求解到的最优解S是原问题的下界解,若最优解S为原始可行域Coriginal中的点,则SOC松弛被认为是精确的,即最优解S也为原问题最优解,原问题在得到最优解时,能够保证松弛后的等号足够精确,满足原问题的所有约束,由于松弛后为凸模型,成熟算法包中的分支定界法和切平面法也能够保证解的最优性和计算效率,经凸化处理后,原电压优化控制模型可重新表述为式(13),
Figure BDA0003860060290000041
(C)根据分解协调原则将配电网分区;
根据分解协调原则,对配电网进行分区,将子区A1边界变量定义为
Figure BDA0003860060290000042
子区A2边界变量定义为
Figure BDA0003860060290000043
为使配电网分区后相邻子区问题解耦,保证分区前后问题的等效性,定义全局变量y=[u2,u4,P24,Q24],保证子区A1和子区A2边界变量对应相等,即令
Figure BDA0003860060290000044
(D)基于ADMM一致性优化方法,建立电压分布式优化控制模型;
ADMM的思想是将凸问题中的原始变量分解为不同变量x和y,目标函数也分解为两部分,以保证优化过程的可分解性,算法标准形式如下:
Figure BDA0003860060290000045
式中,f(x)和g(x)均为凸函数,A、B、c为系数矩阵,变量x和y的约束条件Ax+By=c构成了ADMM目标函数中变量的可行域;
将一致性方法引入到配电网电压的优化控制中,以解决将配电网分区的电压分布式优化控制问题,以式(14)中f(x)表示各子区独立优化目标,构建基于ADMM一致性优化方法的电压分布式优化控制模型:
Figure BDA0003860060290000046
式中,N为配电网子区数量;fj(xj)为凸函数,代表式(13)中与子区j对应的电压优化控制目标函数;子区变量xj由子区内部变量和边界变量
Figure BDA0003860060290000047
组成;
Figure BDA0003860060290000048
为子区变量xj的可行域,即式(13)中与子区j对应的约束条件;
Figure BDA0003860060290000049
为边界变量
Figure BDA00038600602900000410
与其全局变量yj构成的一致性约束,保证相邻的子区独立求解时边界节点电压和边界支路传输功率相等,式(15)的增广拉格朗日函数形式为:
Figure BDA00038600602900000411
式中,子区j惩罚参数ρj>0,λj为对偶变量,为了便于对全局变量更新,将对偶变量λ伸缩为μ=(1/ρ)λ,式(17)与式(16)等效,
Figure BDA00038600602900000412
ADMM的迭代计算规则如式(18)所示:
Figure BDA0003860060290000051
Figure BDA0003860060290000052
Figure BDA0003860060290000053
式中,k为迭代次数,kg为与yj(g)相连的边界变量个数,
Figure BDA0003860060290000054
表示边界变量
Figure BDA0003860060290000055
中第i个元素与全局变量yj中第g个元素的映射关系,配电网子区独立优化和子区间的边界变量交互过程,子区A1内的子区变量
Figure BDA0003860060290000056
其中
Figure BDA0003860060290000057
为边界变量,其余变量为内部变量;全局变量y1=[u2,u4,P24,Q24],子区A1和A2利用式(18.1)独立、并行优化,解得子区变量x1和x2;子区A1和A2交换彼此的边界变量
Figure BDA0003860060290000058
Figure BDA0003860060290000059
利用式(18.2)对全局变量y1、y2更新,利用式(18.3)更新对偶变量μ1和μ2;子区内的优化计算和子区间的边界变量交互过程,直至满足收敛条件式(20),停止迭代,
Figure BDA00038600602900000510
Figure BDA00038600602900000511
式(19)中,初始残差
Figure BDA00038600602900000512
和对偶残差
Figure BDA00038600602900000513
表示本次迭代解到最优解的距离;当一致性约束条件精确满足时,
Figure BDA00038600602900000514
趋向于0;当目标函数值趋向最小值时,
Figure BDA00038600602900000515
趋向于0。计算收敛判据如式(20),
Figure BDA00038600602900000516
表示配电网子区边界变量
Figure BDA00038600602900000517
元素的数量,绝对容差和相对容差参考值分别为∈abs=10-6,∈rel=5×10-5
(E)基于残差平衡原理和松弛技术的加速ADMM;
由于采用传统ADMM求解所提电压分布式优化控制模型计算过程时,传统ADMM的计算效率受惩罚参数影响严重且迭代次数过多,为此,本发明基于残差平衡原理和松弛技术,提出一种加速ADMM来改善算法收敛性能,具体方法如下:
1)自适应惩罚参数
由于惩罚参数选取不当将导致初始和对偶残差的收敛速度差别较大,迭代次数过多,故基于残差平衡原理,提出一种自适应惩罚参数方法,如下:
Figure BDA00038600602900000518
式中,η>1、τincr>1、τdecr>1,一般情况下,令η=10、τincr=τdecr=2。增大惩罚参数ρj的数值将增强式(16)和式(17)中范数项的最小化程度,促进子区边界变量
Figure BDA0003860060290000061
和其全局变量yj相等,加快
Figure BDA0003860060290000062
收敛;减小ρj值时,可抑制目标函数振荡,加快yj的收敛;
2)超松弛技术
在ADMM迭代计算过程中,基于松弛技术引入松弛参数α∈(0,2),当α>1时则为超松弛;在y和μ的更新公式中,计及上一次迭代计算结果,用αAxk+1-(1-α)(Byk-c)代替Axk+1,有助于数值平稳更新,经整理,迭代计算过程如式(22)所示:
Figure BDA0003860060290000063
Figure BDA0003860060290000064
Figure BDA0003860060290000065
松弛参数α∈[1.5,1.8]时,算法收敛性能更好。
本发明提供的技术方案的有益效果是:
1、本发明基于分解协调原则将主动配电网合理分区,通过分布式优化控制方法对PV逆变器的有、无功功率输出进行调节以实现配电网电压的最优控制,可有效消除电压越限现象,减小网络损耗,有利于主动配电网的安全、经济运行;
2、本发明通过调整优化目标中电压偏差和PV削减量的权重系数,能有效实现不同的电压分布式优化控制目的,提高了主动配电网运行的主动性和灵活性;
3、本发明所提配电网电压分布式优化控制方法,与集中式相比,不仅可实现电压的全局最优控制,还提高了计算效率;所提基于残差平衡原理和超松弛技术的加速ADMM有效减少了迭代次数,降低了算法收敛性能对惩罚参数的敏感性。
4、本发明科学合理,通用性和实用性强,效果佳。
附图说明
图1为加速ADMM求解电压分布式优化模型流程图;
图2为配电网支路潮流模型;
图3为PV逆变器工作区域图;
图4为二阶锥松弛示意图;
图5为6节点辐射型配电网示意图;
图6为6节点辐射型配电网分区过程示意图;
图7为子区独立优化和子区间的边界变量交互示意图;
图8为改进IEEE-33节点测试系统图;
图9为场景1控制前后系统节点电压分布图;
图10为场景2控制前后系统节点电压分布图;
图11为不同权重系数下节点电压计算结果图;
图12为不同权重系数下PV功率输出图。
其中,(a)为PV电源有功输出;(b)为PV电源无功输出。
图13为目标函数值收敛过程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
本发明具体实施方式提出一种含分布式PV的主动配电网电压分布式优化控制方法,首先,以节点电压偏差、PV削减量和网损最小为目标构建含分布式PV的主动配电网电压优化控制模型;进一步,利用二阶锥(second-order cone,SOC)松弛技术对该模型进行凸化处理,有利于获得模型最优解;然后,基于分解协调原则将配电网合理分区,构建基于ADMM的多区域分布式电压协同优化控制框架;进一步,基于残差平衡原理和松弛技术,提出一种加速ADMM来改善算法收敛性能;最后,通过含高比例分布式PV测试系统对所提方法进行分析、验证。
参照图1-图7,本发明的一种含分布式PV的主动配电网电压分布式优化控制方法
(A)构建含分布式PV的主动配电网电压优化控制模型;
1)目标函数
本发明拟通过调节分布式PV的有、无功输出实现系统节点电压偏差、PV削减量和网损最小的控制目标,因此所建立的电压优化控制目标函数为:
Figure BDA0003860060290000071
式中,Un为节点n电压幅值,U1=1.0p.u.,Nbus为配电网中节点集合;
Figure BDA0003860060290000072
和Ppv分别为PV最大有功输出功率和有功输出功率,Npv为配网中接有PV的节点集合;rnk和lnk分别为支路n-k的电阻和电流幅值平方,k:nk表示以节点n为首端节点的支路末端节点集合;ξ1、ξ2、ξ3为大于0的校正系数,以保证三项数值为同一数量级;ω1、ω2、ω3分别为三项的最小化权重系数,均大于等于0且ω123=1。
2)约束条件
本发明的电压优化控制包括三类约束条件:配电网潮流约束、安全约束和PV逆变器控制约束。
a.潮流约束
配电网潮流模型采用图2所示的已广泛应用的配电网支路潮流模型。Um和Un分别为节点m和n的电压幅值,Imn为支路m-n的电流;zmn为支路m-n的阻抗,Pmn+iQmn为由节点m流过支路m-n的视在功率,Pn和Qn分别为注入到节点n的净有功负荷和无功负荷。与该支路有关的有、无功功率及电流约束可表示为:
Figure BDA0003860060290000081
Figure BDA0003860060290000082
Figure BDA0003860060290000083
Figure BDA0003860060290000084
式中,um和lmn分别为节点m电压幅值的平方和支路m-n电流幅值的平方。
b.安全约束
为了确保配电网安全运行,运行过程中支路电流不应越限,且节点电压应保持在安全范围内,因此对应的配电网安全运行约束条件为:
Figure BDA0003860060290000085
c.PV逆变器控制约束
本发明采用PV逆变器最优控制模型,该最优控制模式可对逆变器的有功无功输出进行调节,其工作区域如图3所示,PV逆变器的运行约束为:
Figure BDA0003860060290000086
式中,Qpv为PV逆变器的无功输出功率,Spv为PV逆变器的额定容量,kf=cosθ为PV逆变器的最小功率因数,其为给定常数;显然,式(7)为凸约束。该约束充分考虑了PV逆变器额定容量和最小功率因数的限制。
图3给出了PV逆变器的安全运行范围,以区域A1为例,PV逆变器运行在边界0-1上时表示PV仅有功输出可调,无功输出为0;运行在边界1-2上时表示PV仅无功输出可调,有功按最大功率输出;运行在边界2-3上时表示PV有、无功输出均可调,但受逆变器额定容量限制;运行在边界3-0上时表示PV有、无功输出均可调,但受最小功率因数限制。整个区域A1均满足PV逆变器的运行约束条件,且逆变器输出的无功功率为感性,故在该区域优化PV逆变器的功率输出,有利于低电压的提升。区域A2的运行边界与区域A1边界约束相同,但区域A2内PV逆变器输出容性无功,即消耗感性无功,故在该区域优化PV的功率输出,有利于过电压恢复。
(B)利用SOC松弛技术对上述非凸模型进行凸化处理;
式(1)的非线性目标和式(2)非凸非线性等式约束将导致所构建的模型非凸,进而难以获得模型最优解。为此,本节对上述模型进行凸化处理。为了将式(1)中非线性目标线性化,引入节点电压幅值与其平方的等式关系式(8)。进一步,利用SOC松弛技术对式(2)和式(8)进行凸化处理,如式(9)和式(10)所示。
Figure BDA0003860060290000091
Figure BDA0003860060290000092
Figure BDA0003860060290000093
其标准的SOC形式分别为:
||[2Pmn 2Qmn lmn-um]T||2≤lmn+um                        (11)
||[2Un un-1]||2≤un+1                            (12)
上述SOC松弛的过程如图4所示,利用SOC松弛技术,可将原问题的非凸可行域Coriginal松弛成一个凸锥可行域CSOC,进而将原问题转化成了一个凸问题。由于引入了二阶锥松弛,在CSOC中求解到的最优解S是原问题的下界解,若最优解S为原始可行域Coriginal中的点,则SOC松弛被认为是精确的,即最优解S也为原问题最优解。原问题在得到最优解时,可以保证松弛后的等号足够精确,满足原问题的所有约束。由于松弛后为凸模型,成熟算法包中的分支定界法和切平面法也可以保证解的最优性和计算效率。经凸化处理后,式(1)-式(7)所示的原电压优化控制模型可重新表述为式(13)。
Figure BDA0003860060290000094
(C)根据分解协调原则将配电网分区;
以图5中的6节点辐射型配电网为例,根据分解协调原则,对配电网进行分区。在图5中,由节点2、节点4和支路24构成子区1和子区2的边界,边界变量为节点2和节点4电压及由节点2流过支路2-4的传输功率。配电网分区时,根据分解协调原则,需将子区间边界复制到相邻子区内,实现相邻子区的解耦。配电网具体分区过程如图6所示。图6中红色虚线表示复制相邻子区的边界支路,红色空心点表示复制相邻子区的边界节点;上角标“+”表示子区保留边界变量,上角标“-”表示复制相邻子区的边界变量。子区A1复制节点4和支路24,保留节点2;子区2复制节点2,保留节点4和支路24;将子区A1边界变量定义为
Figure BDA0003860060290000101
子区A2边界变量定义为
Figure BDA0003860060290000102
为使配电网分区后相邻子区问题解耦,保证分区前后问题的等效性,定义全局变量y=[u2,u4,P24,Q24]保证子区A1和子区A2边界变量对应相等,即令
Figure BDA0003860060290000103
(D)基于ADMM一般一致性优化方法,建立电压分布式优化控制模型;
ADMM的思想是将凸问题中的原始变量分解为不同变量x和y,目标函数也分解为两部分,以保证优化过程的可分解性,算法标准形式如下:
Figure BDA0003860060290000104
式中,f(x)和g(x)均为凸函数,A、B、c为系数矩阵,变量x和y的约束条件Ax+By=c构成了ADMM目标函数中变量的可行域。
本发明将一般一致性方法引入到配电网电压的优化控制中,以解决将配电网分区的电压分布式优化控制问题。以式(14)中f(x)表示各子区独立优化目标,构建基于ADMM一般一致性优化方法的电压分布式优化控制模型:
Figure BDA0003860060290000105
式中,N为配电网子区数量;fj(xj)为凸函数,代表式(13)中与子区j对应的电压优化控制目标函数;子区变量xj由子区内部变量和边界变量
Figure BDA0003860060290000106
组成;
Figure BDA0003860060290000107
为子区变量xj的可行域,即式(13)中与子区j对应的约束条件;
Figure BDA0003860060290000108
为边界变量
Figure BDA0003860060290000109
与其全局变量yj构成的一致性约束,保证相邻的子区独立求解时边界节点电压和边界支路传输功率相等。式(15)的增广拉格朗日函数形式为:
Figure BDA00038600602900001010
式中,子区j惩罚参数ρj>0,λj为对偶变量。为了便于对全局变量更新,将对偶变量λ伸缩为μ=(1/ρ)λ,式(17)与式(16)等效。
Figure BDA00038600602900001011
ADMM的迭代计算规则如式(18)所示:
Figure BDA00038600602900001012
Figure BDA00038600602900001013
Figure BDA00038600602900001014
式中,k为迭代次数,kg为与yj(g)相连的边界变量个数,
Figure BDA00038600602900001015
表示边界变量
Figure BDA00038600602900001016
中第i个元素与全局变量yj中第g个元素的映射关系。图7为配电网子区独立优化和子区间的边界变量交互过程,以子区A1为例,子区A1内的子区变量
Figure BDA0003860060290000111
其中
Figure BDA0003860060290000112
为边界变量,其余变量为内部变量;全局变量y1=[u2,u4,P24,Q24]。子区A1和A2利用式(18.1)独立、并行优化,解得子区变量x1和x2;子区A1和A2交换彼此的边界变量
Figure BDA0003860060290000113
Figure BDA0003860060290000114
利用式(18.2)对全局变量y1、y2更新,如图7中所示;利用式(18.3)更新对偶变量μ1和μ2;循环图7子区内的优化计算和子区间的边界变量交互过程,直至满足收敛条件式(20),停止迭代。
Figure BDA0003860060290000115
Figure BDA0003860060290000116
式(19)中,初始残差
Figure BDA0003860060290000117
和对偶残差
Figure BDA0003860060290000118
表示本次迭代解到最优解的距离;当一致性约束条件精确满足时,
Figure BDA0003860060290000119
趋向于0;当目标函数值趋向最小值时,
Figure BDA00038600602900001110
趋向于0。计算收敛判据如式(20),
Figure BDA00038600602900001111
表示配电网子区边界变量
Figure BDA00038600602900001112
元素的数量,绝对容差和相对容差参考值分别为∈abs=10-6,∈rel=5×10-5
(E)基于残差平衡原理和松弛技术的加速ADMM;
由于采用传统ADMM求解所提电压分布式优化控制模型计算过程时,传统ADMM的计算效率受惩罚参数影响严重且迭代次数过多,为此,本发明基于残差平衡原理和松弛技术,提出一种加速ADMM来改善算法收敛性能,具体方法如下:
1)自适应惩罚参数
由于惩罚参数选取不当将导致初始和对偶残差的收敛速度差别较大,迭代次数过多,故基于残差平衡原理,提出一种自适应惩罚参数方法,如下:
Figure BDA00038600602900001113
式中,η>1、τincr>1、τdecr>1,一般情况下,令η=10、τincr=τdecr=2。增大惩罚参数ρj的数值将增强式(16)和式(17)中范数项的最小化程度,促进子区边界变量
Figure BDA00038600602900001114
和其全局变量yj相等,加快
Figure BDA00038600602900001115
收敛;减小ρj值时,可抑制目标函数振荡,加快yj的收敛。
2)超松弛技术
在ADMM迭代计算过程中,基于松弛技术引入松弛参数α∈(0,2),当α>1时则为超松弛;在y和μ的更新公式中,计及上一次迭代计算结果,用αAxk+1-(1-α)(Byk-c)代替Axk+1,有助于数值平稳更新。经整理,迭代计算过程如式(22)所示:
Figure BDA0003860060290000121
Figure BDA0003860060290000122
Figure BDA0003860060290000123
实验研究表明,松弛参数α∈[1.5,1.8]时,算法收敛性能更好。
综上所述,本发明实例通过上述步骤(A)-步骤(E)实现了含分布式PV的主动配电网电压分布式优化控制。一方面通过调节PV逆变器的有、无功功率输出有效消除电压越限问题,同时调整优化目标的权重系数可提高电压控制灵活性。另一方面采用配电网电压分布式优化控制方法不仅可实现电压全局最优控制,还提高计算效率;采用所提加速ADMM减少了迭代次数,降低了算法收敛性能对惩罚参数的敏感性。
下面结合具体的实例、图8-图13以及表1-表7对本发明的方案进行可行性验证,详见下文描述:
本实施例是通过改进的IEEE-33节点测试系统对所提含分布式PV的主动配电网电压分布式优化控制方法进行可行性和有效性验证,改进IEEE-33节点测试系统如图8所示。分布式PV编号为PV1-PV9,依次安装在节点5、8、11、15、18、21、25、29和33,最小功率因数kf为0.95;以节点5、节点6和支路56为边界分解子区A1和A2,以节点8、节点9和支路89为边界分解子区A2和A3,子区A1、A2和A3安装的分布式PV电源分别为(PV1,PV6,PV7)、(PV2,PV8,PV9)和(PV3,PV4,PV5)。在本实施例中,电压基准值为12.66kV,基准负荷为(3715+i2300)kVA,功率基准值为10MW,节点电压安全运行范围在[0.95,1.05]p.u.之间。
1)电压优化控制前后对系统运行的影响
为研究所提电压优化控制策略对配电网电压、PV消纳和网损的影响,分别设置以下2种场景:
场景1:PV出力大且负荷水平低导致系统节点电压出现越上限的情景;
场景2:PV出力小且负荷水平高导致系统节点电压出现越下限的情景。在本节算例中,设置各项权重系数为ω1=0.4、ω2=0.3、ω3=0.3。
各场景下的相关计算结果,说明如下:
a.场景1
晴朗天气下,在10:00-14:00间的某一时刻,由于光照充足且负荷水平低,造成PV出力过剩,从而导致部分节点电压出现越限,此时PV输出功率如表1所示,负荷为0.5倍的基准负荷。采用本发明所提优化控制方法对分布式PV进行有、无功调节,优化控制前后系统节点电压分布如图9所示。
表1
Figure BDA0003860060290000131
图10中,优化控制前由于PV出力过剩,导致节点10至18电压出现了越上限现象,其中节点18电压越限至1.08p.u.。为使配电网节点电压均在安全运行范围内,采用所提电压优化控制策略后PV输出功率及其变化量如表2所示,其中正值表示PV增发有功/感性无功,负值表示削减有功/发出容性无功。根据本发明所提方法可得PV2-PV5、PV8-PV9均发出容性无功,用于抑制节点电压的升高;由于节点18电压越限最为严重,PV5需削减64kW有功输出来弥补无功调节的不足,进而满足电压控制要求。通过对PV有功无功输出调节,系统各节点电压均运行在1.0-1.0479p.u.之间,满足电压安全约束。同时,由于PV1、PV6和PV7的无功调节对电压越限节点的影响小,故其发出感性无功主要用于优化系统潮流分布,补偿无功负荷,以减小网损。然而,为消除电压越限,PV增发的容性无功将导致系统净无功负荷增加了641kvar,进而导致网损增大了54.8kW。
表2
Figure BDA0003860060290000132
Figure BDA0003860060290000141
b.场景2
选择傍晚17:00-19:00间的某一时刻,此时,光照强度下降、负荷增大,导致部分末端节点电压越下限,PV输出功率如表3所示,负荷为1.2倍的基准负荷。采用本发明所提方法对分布式PV控制前后的配电网节点电压分布如图10所示。
表3
Figure BDA0003860060290000142
图10中,由于PV出力变小且负荷增加,电压优化控制前,系统节点电压水平较低且末端节点29至33电压低于下限值,如节点32电压低至0.942p.u.。采用所提优化控制策略后PV输出功率及其变化量如表4所示。此时,PV1-PV9有功输出变化量均为0,即系统PV有功输出未发生削减,各PV无功输出受最小功率因数限制,充分利用PV逆变器无功输出能力增发感性无功789kvar以减小系统净无功负荷,进而提高系统节点电压水平,系统节点电压运行在0.9521-1.0p.u.之间,同时网络损耗减小45.7kW。
表4
Figure BDA0003860060290000143
Figure BDA0003860060290000151
场景1、2的分析结果表明:采用本发明所提含分布式PV的主动配电网电压分布式优化控制策略可有效解决配电网电压越限问题。场景1下,PV通过增发容性无功和适当削减有功,可消除电压越上限的现象;场景2下,PV增发感性无功补偿无功负荷,消除电压越下限的现象,同时可减小网络损耗。因此,通过调节分布式PV的有、无功输出,有助于改善系统电压安全性,使系统运行更加安全、经济。
2)权重系数对系统运行的影响
由式(1)可知,不同权重系数ω1、ω2和ω3取值,将直接影响所提电压分布式优化控制结果,为此进一步研究了不同权重系数ω1、ω2和ω3取值对系统电压、PV消纳和网损的影响。由于减小单位网损可能导致更多的PV削减,故在本实施例中仅研究权重系数对电压偏差和PV削减量的影响,令ω12=1、ω3=0。式(10)权重系数的拟定方法,设置5种不同的权重系数(ω12)组合G1=(1,0)、G2=(0.75,0.25)、G3=(0.5,0.5)、G4=(0.25,0.75)和G5=(0,1),这5种组合代表了目标函数从完全最小化电压偏差到完全最小化PV削减的变化。
图11为不同权重系数下节点电压分布情况,不难看出,随着电压偏差最小化权重系数的减小,组合G1-G5的系统节点最大电压偏差逐渐增大,由0.0005p.u.增大到0.05p.u.。图12为不同权重系数下的分布式PV功率输出情况。图12(a)为PV电源有功输出情况,由于PV削减最小化权重系数的增大,组合G1-G5的系统总PV有功输出由1966.3kW逐渐增大到4479.9kW;在组合G2中,电压偏差最小项影响仍较大,PV5位于系统末端且距根节点1最远,其有功出力增加不利于电压分布,为了增大系统PV电源有功出力,同时保持较好的电压分布,此时削减了PV5的有功输出。图12(b)为PV电源无功输出情况,由于组合G1完全最小化电压偏差,此时PV电源发出的感性无功用于补偿系统无功负荷,以减小电压偏差;然而,组合G2-组合G4,在最优潮流下,PV电源发出容性无功来抑制电压的升高,同时随着电压偏差最小化影响程度的下降,发出的无功逐渐减小;在组合G5中,由于完全最小化PV削减量,部分PV电源发出感性无功用于减小网损。表5为不同权重系数下系统的PV削减量、网损和功率损失,其中功率损失为PV削减量和网损之和,随着PV削减量最小化程度增加,PV削减量和系统功率损失逐渐减小,由于电压偏差和PV削减量存在最小化的平衡过程,网损呈现先增加后减小的趋势。
表5
Figure BDA0003860060290000152
Figure BDA0003860060290000161
3)基于加速ADMM的分布式优化算法分析
进一步对比了场景1和组合G3的分布式优化结果与集中式结果;并对本发明采用的加速ADMM收敛性能进行验证分析。
表6
Figure BDA0003860060290000162
表6为场景1和组合G3下分布式与集中式优化结果的数值对比,分布式优化后的系统节点电压偏差、PV削减量和网损与集中式结果十分接近,偏差均在合理范围内;同时,分布式优化计算效率高于集中式。由此可得,采用所提分布式优化方法可通过交换少量边界信息实现系统全局最优,且计算效率高,适应分布式PV渗透率较高的主动配电网运行需求。
图13为利用传统ADMM和加速ADMM求解时目标函数值的收敛过程,不难发现:利用加速ADMM求解,目标函数可快速收敛到与集中式结果十分接近的数值。传统ADMM收敛所需的迭代次数为107次,计算耗时为3.77s;而本发明所提的加速ADMM所需迭代次数仅为42次,计算耗时为1.73s,是传统ADMM计算耗时的0.46倍。由此可得,本发明所提加速ADMM具有良好的收敛性能,可有效减少迭代次数,提高算法计算效率。
表7
Figure BDA0003860060290000163
表7为不同惩罚参数下的算法收敛性能,不同惩罚参数下,加速ADMM的收敛迭代次数和计算时间均小于传统ADMM;同时,所提加速ADMM可有效降低算法收敛性能对惩罚参数的敏感性。惩罚参数ρ取值在[4,32]之间时,加速ADMM的收敛迭代次数和计算时间变化不大;当ρ=64时,加速ADMM迭代77次可自动收敛,而传统ADMM达到最大迭代次数停止收敛,所提加速ADMM可有效解决由惩罚参数选取不当导致算法收敛困难的问题。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种含分布式PV的主动配电网电压分布式优化控制方法,其特征是,所述方法包括:
(A)构建含分布式PV的主动配电网电压优化控制模型;
1)目标函数
拟通过调节分布式PV的有、无功输出实现系统节点电压偏差、PV削减量和网损最小的控制目标,因此所建立的电压优化控制目标函数为:
Figure FDA0003860060280000011
式中,Un为节点n电压幅值,U1=1.0p.u.,Nbus为配电网中节点集合;
Figure FDA0003860060280000012
和Ppv分别为PV最大有功输出功率和有功输出功率,Npv为配网中接有PV的节点集合;rnk和lnk分别为支路n-k的电阻和电流幅值平方,k:nk表示以节点n为首端节点的支路末端节点集合;ξ1、ξ2、ξ3为大于0的校正系数,以保证三项数值为同一数量级;ω1、ω2、ω3分别为三项的最小化权重系数,均大于等于0且ω123=1;
2)约束条件
电压优化控制包括三类约束条件:配电网潮流约束、安全约束和PV逆变器控制约束:
a.潮流约束
配电网潮流模型采用现有技术已广泛应用的配电网支路潮流模型,Um和Un分别为节点m和n的电压幅值,Imn为支路m-n的电流;zmn为支路m-n的阻抗,Pmn+iQmn为由节点m流过支路m-n的视在功率,Pn和Qn分别为注入到节点n的净有功负荷和无功负荷,与该支路有关的有、无功功率及电流约束表示为:
Figure FDA0003860060280000013
Figure FDA0003860060280000014
Figure FDA0003860060280000015
Figure FDA0003860060280000016
式中,um和lmn分别为节点m电压幅值的平方和支路m-n电流幅值的平方;
b.安全约束
为了确保配电网安全运行,运行过程中支路电流不应越限,且节点电压应保持在安全范围内,因此对应的配电网安全运行约束条件为:
Figure FDA0003860060280000017
c.PV逆变器控制约束
采用PV逆变器最优控制模型,该最优控制模式可对逆变器的有功无功输出进行调节,PV逆变器的运行约束为:
Figure FDA0003860060280000021
式中,Qpv为PV逆变器的无功输出功率,Spv为PV逆变器的额定容量,kf=cosθ为PV逆变器的最小功率因数,其为给定常数;显然,式(7)为凸约束,该约束充分考虑了PV逆变器额定容量和最小功率因数的限制;
(B)利用SOC松弛技术对上述非凸模型进行凸化处理;
式(1)的非线性目标和式(2)非凸非线性等式约束将导致所构建的模型非凸,进而难以获得模型最优解,为此,对上述模型进行凸化处理,为了将式(1)中非线性目标线性化,引入节点电压幅值与其平方的等式关系式(8),进一步,利用SOC松弛技术对式(2)和式(8)进行凸化处理,如式(9)和式(10)所示,
Figure FDA0003860060280000022
Figure FDA0003860060280000023
Figure FDA0003860060280000024
其标准的SOC形式分别为:
Figure FDA0003860060280000025
||[2Un un-1]||2≤un+1          (12)
利用SOC松弛技术,可将原问题的非凸可行域Coriginal松弛成一个凸锥可行域CSOC,进而将原问题转化成了一个凸问题,由于引入了二阶锥松弛,在CSOC中求解到的最优解S是原问题的下界解,若最优解S为原始可行域Coriginal中的点,则SOC松弛被认为是精确的,即最优解S也为原问题最优解,原问题在得到最优解时,能够保证松弛后的等号足够精确,满足原问题的所有约束,由于松弛后为凸模型,成熟算法包中的分支定界法和切平面法也能够保证解的最优性和计算效率,经凸化处理后,原电压优化控制模型可重新表述为式(13),
Figure FDA0003860060280000026
(C)根据分解协调原则将配电网分区;
根据分解协调原则,对配电网进行分区,将子区A1边界变量定义为
Figure FDA0003860060280000031
子区A2边界变量定义为
Figure FDA0003860060280000032
为使配电网分区后相邻子区问题解耦,保证分区前后问题的等效性,定义全局变量y=[u2,u4,P24,Q24],保证子区A1和子区A2边界变量对应相等,即令
Figure FDA0003860060280000033
(D)基于ADMM一致性优化方法,建立电压分布式优化控制模型;
ADMM的思想是将凸问题中的原始变量分解为不同变量x和y,目标函数也分解为两部分,以保证优化过程的可分解性,算法标准形式如下:
Figure FDA0003860060280000034
式中,f(x)和g(x)均为凸函数,A、B、c为系数矩阵,变量x和y的约束条件Ax+By=c构成了ADMM目标函数中变量的可行域;
将一致性方法引入到配电网电压的优化控制中,以解决将配电网分区的电压分布式优化控制问题,以式(14)中f(x)表示各子区独立优化目标,构建基于ADMM一致性优化方法的电压分布式优化控制模型:
Figure FDA0003860060280000035
式中,N为配电网子区数量;fj(xj)为凸函数,代表式(13)中与子区j对应的电压优化控制目标函数;子区变量xj由子区内部变量和边界变量
Figure FDA0003860060280000036
组成;
Figure FDA0003860060280000037
为子区变量xj的可行域,即式(13)中与子区j对应的约束条件;
Figure FDA0003860060280000038
为边界变量
Figure FDA0003860060280000039
与其全局变量yj构成的一致性约束,保证相邻的子区独立求解时边界节点电压和边界支路传输功率相等,式(15)的增广拉格朗日函数形式为:
Figure FDA00038600602800000310
式中,子区j惩罚参数ρj>0,λj为对偶变量,为了便于对全局变量更新,将对偶变量λ伸缩为μ=(1/ρ)λ,式(17)与式(16)等效,
Figure FDA00038600602800000311
ADMM的迭代计算规则如式(18)所示:
Figure FDA00038600602800000312
Figure FDA00038600602800000313
Figure FDA00038600602800000314
式中,k为迭代次数,kg为与yj(g)相连的边界变量个数,
Figure FDA00038600602800000315
表示边界变量
Figure FDA00038600602800000316
中第i个元素与全局变量yj中第g个元素的映射关系,配电网子区独立优化和子区间的边界变量交互过程,子区A1内的子区变量
Figure FDA0003860060280000041
其中
Figure FDA0003860060280000042
为边界变量,其余变量为内部变量;全局变量y1=[u2,u4,P24,Q24],子区A1和A2利用式(18.1)独立、并行优化,解得子区变量x1和x2;子区A1和A2交换彼此的边界变量
Figure FDA0003860060280000043
Figure FDA0003860060280000044
利用式(18.2)对全局变量y1、y2更新,利用式(18.3)更新对偶变量μ1和μ2;子区内的优化计算和子区间的边界变量交互过程,直至满足收敛条件式(20),停止迭代,
Figure FDA0003860060280000045
Figure FDA0003860060280000046
式(19)中,初始残差
Figure FDA0003860060280000047
和对偶残差
Figure FDA0003860060280000048
表示本次迭代解到最优解的距离;当一致性约束条件精确满足时,
Figure FDA0003860060280000049
趋向于0;当目标函数值趋向最小值时,
Figure FDA00038600602800000410
趋向于0。计算收敛判据如式(20),
Figure FDA00038600602800000411
表示配电网子区边界变量
Figure FDA00038600602800000412
元素的数量,绝对容差和相对容差参考值分别为∈abs=10-6,∈rel=5×10-5
(E)基于残差平衡原理和松弛技术的加速ADMM;
由于采用传统ADMM求解所提电压分布式优化控制模型计算过程时,传统ADMM的计算效率受惩罚参数影响严重且迭代次数过多,为此,本发明基于残差平衡原理和松弛技术,提出一种加速ADMM来改善算法收敛性能,具体方法如下:
1)自适应惩罚参数
由于惩罚参数选取不当将导致初始和对偶残差的收敛速度差别较大,迭代次数过多,故基于残差平衡原理,提出一种自适应惩罚参数方法,如下:
Figure FDA00038600602800000413
式中,η>1、τincr>1、τdecr>1,一般情况下,令η=10、τincr=τdecr=2。增大惩罚参数ρj的数值将增强式(16)和式(17)中范数项的最小化程度,促进子区边界变量
Figure FDA00038600602800000414
和其全局变量yj相等,加快
Figure FDA00038600602800000415
收敛;减小ρj值时,可抑制目标函数振荡,加快yj的收敛;
2)超松弛技术
在ADMM迭代计算过程中,基于松弛技术引入松弛参数α∈(0,2),当α>1时则为超松弛;在y和μ的更新公式中,计及上一次迭代计算结果,用αAxk+1-(1-α)(Byk-c)代替Axk+1,有助于数值平稳更新,经整理,迭代计算过程如式(22)所示:
Figure FDA0003860060280000051
Figure FDA0003860060280000052
Figure FDA0003860060280000053
松弛参数α∈[1.5,1.8]时,算法收敛性能更好。
CN202211162066.1A 2022-09-23 2022-09-23 一种含分布式光伏的农村配电网电压分布式优化控制方法 Pending CN115967078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211162066.1A CN115967078A (zh) 2022-09-23 2022-09-23 一种含分布式光伏的农村配电网电压分布式优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211162066.1A CN115967078A (zh) 2022-09-23 2022-09-23 一种含分布式光伏的农村配电网电压分布式优化控制方法

Publications (1)

Publication Number Publication Date
CN115967078A true CN115967078A (zh) 2023-04-14

Family

ID=87353293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211162066.1A Pending CN115967078A (zh) 2022-09-23 2022-09-23 一种含分布式光伏的农村配电网电压分布式优化控制方法

Country Status (1)

Country Link
CN (1) CN115967078A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117394380A (zh) * 2023-12-08 2024-01-12 国网湖北省电力有限公司经济技术研究院 采用松弛迭代的配电网分布式无功电压控制方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117394380A (zh) * 2023-12-08 2024-01-12 国网湖北省电力有限公司经济技术研究院 采用松弛迭代的配电网分布式无功电压控制方法及系统
CN117394380B (zh) * 2023-12-08 2024-03-01 国网湖北省电力有限公司经济技术研究院 采用松弛迭代的配电网分布式无功电压控制方法及系统

Similar Documents

Publication Publication Date Title
CN114362267B (zh) 考虑多目标优化的交直流混合配电网分散式协调优化方法
CN109409705B (zh) 一种区域综合能源系统的多目标优化调度方法
CN110690732A (zh) 一种光伏无功分区计价的配电网无功优化方法
CN104269861A (zh) 基于柔性环网控制器电磁环网无功功率环流优化控制方法
CN107565576B (zh) 一种多主动管理手段相协调的主动配电网无功电压优化方法
CN113224769B (zh) 考虑光伏多状态调节的多时间尺度配电网电压优化方法
CN108711868A (zh) 一种计及孤岛运行电压安全的配电网无功优化规划方法
CN111245032B (zh) 一种计及风电场集电线路降损优化的电压预测控制方法
CN111614110B (zh) 一种基于改进多目标粒子群算法的受端电网储能优化配置方法
CN110380404B (zh) 考虑高耗能点负荷的输电网励磁系统调差系数优化整定方法
CN115967078A (zh) 一种含分布式光伏的农村配电网电压分布式优化控制方法
CN115222195A (zh) 考虑源-网-荷-储灵活性资源的配电网优化调度方法
CN113241768B (zh) 一种考虑混合无功响应的双层无功电压协调控制方法
Shuai et al. A dynamic hybrid var compensator and a two-level collaborative optimization compensation method
CN112152268B (zh) 一种交、直流子微网控制方法及子微网群间控制方法
CN113517721A (zh) 含高比例分布式电源的多元配电网协同调控方法及系统
CN116264399A (zh) 一种分布式光伏接入配电网的电压分布式优化控制方法
CN115603330A (zh) 一种基于自适应离散粒子群算法的配电网优化方法
CN114844051A (zh) 一种主动配电网的无功电源优化配置方法及终端
Benachaiba et al. Robust and intelligent control methods to improve the performance of a Unified Power Flow Controller
CN111030190A (zh) 数据驱动的新能源电力系统源-网-荷协调控制方法
CN113410838B (zh) 一种配电网多目标鲁棒优化模型帕累托最优解分析方法
CN115800404B (zh) 基于有限时间一致性的多微网分布式优化协调控制方法
Eiada et al. Smart Enhancement of UPFC Performance in Transmission Systems Using BPSO and ANNC
CN117833258A (zh) 一种电力电子化交直流混合配电网无功电压分布式优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination