CN115932537A - A system and method for testing AC parameters of a low-voltage differential driver - Google Patents

A system and method for testing AC parameters of a low-voltage differential driver Download PDF

Info

Publication number
CN115932537A
CN115932537A CN202211448952.0A CN202211448952A CN115932537A CN 115932537 A CN115932537 A CN 115932537A CN 202211448952 A CN202211448952 A CN 202211448952A CN 115932537 A CN115932537 A CN 115932537A
Authority
CN
China
Prior art keywords
output
pulse
module
parameter
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211448952.0A
Other languages
Chinese (zh)
Inventor
王贺
梁培哲
万旺
张大宇
张松
王征
宁总成
李庆
李伟英
王锦
贾子健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN202211448952.0A priority Critical patent/CN115932537A/en
Publication of CN115932537A publication Critical patent/CN115932537A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

The application discloses alternating current parameter test system and method of low voltage differential driver, this system includes: the pulse generating module is coupled with the pulse output module and used for generating a pulse signal; the pulse output module is coupled with the pulse parameter measuring module and the low-voltage differential driver and used for sending the pulse signal to the pulse parameter measuring module and the low-voltage differential driver; the pulse parameter measuring module is used for measuring a first alternating current parameter of the pulse signal; the low-voltage differential driver and the differential output parameter measuring module are used for measuring a second alternating current parameter corresponding to the low-voltage differential driver; and the compensation module is coupled with the pulse parameter measurement module and the differential output parameter measurement module and used for calculating and obtaining compensated alternating current parameters corresponding to the low-voltage differential driver according to the first alternating current parameters and the second alternating current parameters. The technical problem that an alternating current parameter testing scheme in the prior art cannot meet actual requirements is solved.

Description

一种低电压差分驱动器的交流参数测试系统及方法A system and method for testing AC parameters of a low-voltage differential driver

技术领域technical field

本申请涉及集成电路测试技术领域,尤其涉及一种低电压差分驱动器的交流参数测试系统及方法。The present application relates to the technical field of integrated circuit testing, in particular to a system and method for testing AC parameters of a low-voltage differential driver.

背景技术Background technique

低电压差分驱动器作为高速接口驱动电路,用于将单端CMOS信号转换为低电压的差分信号,以满足高速高可靠性传输的需求。典型低电压差分信号的共模电压约为1.25V,差模电压约为350mV。由于差分信号摆幅小、抗共模干扰能力强,因此主要用于板内与板间短距离的高速数据传输。交流参数是集成电路的一类重要参数指标,是集成电路筛选测试中的必测项目。对于高速集成电路,交流参数指标尤为重要。低电压差分驱动器的交流参数主要包括:输出信号上升时间Tr,输出信号下降时间Tf以及输出信号传输延迟,例如,输出信号由高到低的传输延迟Tphl、输出信号由低到高的传输延迟Tplh、输出信号由高阻到低的传输延迟Tpzl、输出信号由高阻到高的传输延迟Tpzh、输出信号由低到高阻的传输延迟Tplz、输出信号由高到高阻的传输延迟Tphz、传输延迟偏移Tskd以及通道间/器件间偏移Tsk等。集成电路测试标准(或器件手册)中对交流参数测试的一般要求是:对于传输延迟类参数,要求以输入信号变化到50%Vin电压为起始点,测量到输出信号变化为(Vol+Voh)/2为止;对于上升(下降)时间,要求测量输出电压从20%上升到80%的(80%下降到20%)的时间。As a high-speed interface drive circuit, the low-voltage differential driver is used to convert single-ended CMOS signals into low-voltage differential signals to meet the needs of high-speed and high-reliability transmission. Typical low-voltage differential signals have a common-mode voltage of about 1.25V and a differential-mode voltage of about 350mV. Due to the small differential signal swing and strong anti-common-mode interference ability, it is mainly used for high-speed data transmission within a short distance between boards and boards. AC parameter is a kind of important parameter index of integrated circuit, and it is a must-test item in integrated circuit screening test. For high-speed integrated circuits, AC parameters are particularly important. The AC parameters of the low-voltage differential driver mainly include: output signal rise time Tr, output signal fall time Tf and output signal transmission delay, for example, the transmission delay Tphl of the output signal from high to low, the transmission delay Tplh of the output signal from low to high , Transmission delay Tpzl of output signal from high impedance to low, transmission delay Tpzh of output signal from high impedance to high, transmission delay Tplz of output signal from low impedance to high impedance, transmission delay Tphz of output signal from high impedance to high impedance, transmission Delay skew Tskd and inter-channel/inter-device skew Tsk, etc. The general requirements for AC parameter testing in integrated circuit test standards (or device manuals) are: for transmission delay parameters, it is required that the input signal change to 50% Vin voltage as the starting point, and the measured output signal change is (Vol+Voh) /2; for the rising (falling) time, it is required to measure the time when the output voltage rises from 20% to 80% (80% falls to 20%).

目前,在集成电路的筛选测试中,交流参数一般使用自动测试设备(ATE,Automatic Test Equipment))进行。在使用ATE测试时,可使用专用的TMU或TIA仪表测试交流参数,其原理是以输入信号的跳变点作为基准时间点,再设定一个输出电压的参考判据,采集输出电压由高到低(或由低到高)变化时通过这个参考电压的相对时间,以此作为测试结果。但是,通过ATE的TIA或TMU进行测试交流参数时,其主要误差来源于以下两方面:At present, in the screening test of integrated circuits, AC parameters are generally carried out using automatic test equipment (ATE, Automatic Test Equipment). When using ATE testing, you can use a dedicated TMU or TIA instrument to test AC parameters. The principle is to use the jump point of the input signal as the reference time point, and then set a reference criterion for the output voltage, and collect the output voltage from high to low. The relative time to pass through this reference voltage when it is low (or from low to high) is used as the test result. However, when testing AC parameters through ATE's TIA or TMU, the main errors come from the following two aspects:

1)测试标准(或器件手册)中一般要求以输入信号达到其高电压的50%作为起始计时点,而ATE是以输入信号变化的起始点作为起始计时点,两者间相差了50%的输入信号跳变时间。1) The test standard (or device manual) generally requires that the input signal reaches 50% of its high voltage as the starting timing point, while ATE takes the starting point of the input signal change as the starting timing point, and the difference between the two is 50% % of the input signal transition time.

影响输入信号跳变时间的因素主要包括两点:第一是ATE信号源的驱动能力;第二是测试负载板线路与测试夹具的寄生参数影响。其中,ATE信号源驱动能力可以通过查阅ATE技术资料获取,而测试负载板寄生参数的影响则与具体硬件设计相关。在实际测试中,ATE提供给被测电路的输入信号跳变时间实测约为1ns-2ns,其50%就是0.5ns-1ns。对于低速电路,该误差不会对最终测试结果造成明显影响,但对于低电压差分驱动器这样的高速电路,其影响不可忽视。The factors that affect the transition time of the input signal mainly include two points: the first is the driving capability of the ATE signal source; the second is the influence of the parasitic parameters of the test load board circuit and the test fixture. Among them, the driving capability of the ATE signal source can be obtained by consulting the ATE technical data, while the influence of the parasitic parameters of the test load board is related to the specific hardware design. In the actual test, the transition time of the input signal provided by ATE to the circuit under test is about 1 ns-2 ns, and 50% of it is 0.5 ns-1 ns. For low-speed circuits, this error will not have a significant impact on the final test results, but for high-speed circuits such as low-voltage differential drivers, its impact cannot be ignored.

2)使用ATE测量交流参数时,需要为输出信号设定一个电压值,作为时间测量终点的判据。对于一般的单端电路,例如3.3V CMOS电平标准的集成电路,在不施加电流负载条件下,其输出的信号高电压正常就是3.3V左右,偏差极小,因此可以直接使用3.3V/2,作为测量交流参数的判据。2) When using ATE to measure AC parameters, it is necessary to set a voltage value for the output signal as a criterion for the end point of time measurement. For general single-ended circuits, such as integrated circuits with 3.3V CMOS level standards, under the condition of no current load, the high voltage of the output signal is normally about 3.3V, and the deviation is very small, so you can directly use 3.3V/2 , as a criterion for measuring AC parameters.

对于低电压差分驱动器,按照手册中要求,需要以输出差分电压VOD(为低电压差分驱动器一组输出端口的差分电压,也叫差模电压)的50%作为交流参数的测量判据。受芯片制造工艺所限,不同电路、或者同一电路的不同差分通道,其VOD一般存在一定差异。例如,输出VOD在247mV~454mV间均认为合格(典型值约350mV)。由于手册中给出的VOD不是一个相对准确的数值,实际测试时无法使用其作为交流参数测量判据。取其下限会使测量结果出现明显误差,取其上限则会因部分通道输出无法达到指定的VOD而无法得到测试结果。For low-voltage differential drivers, according to the requirements in the manual, it is necessary to use 50% of the output differential voltage VOD (the differential voltage of a group of output ports of the low-voltage differential driver, also called differential mode voltage) as the measurement criterion for AC parameters. Due to the limitation of the chip manufacturing process, different circuits or different differential channels of the same circuit generally have certain differences in VOD. For example, the output VOD is considered qualified between 247mV and 454mV (typical value is about 350mV). Since the VOD given in the manual is not a relatively accurate value, it cannot be used as a criterion for measuring AC parameters in actual testing. Taking the lower limit will cause obvious errors in the measurement results, and taking the upper limit will result in failure to obtain test results because the output of some channels cannot reach the specified VOD.

发明内容Contents of the invention

本申请解决的技术问题是:针对现有技术中交流参数测试方案无法满足实际需求,本申请提供了一种低电压差分驱动器的交流参数测试系统及方法,本申请实施例所提供的方案,在对低电压差分驱动器对应的交流参数进行测量时,引入补偿模块。通过补偿模块来对低电压差分驱动器对应的交流参数测试结果进行补偿,有效解决了输入信号50%跳变时间所带来的测试误差。另外,相比直接使用ATE仪表中的TMU、TIA测试低电压差分驱动器的交流参数,本申请实施例的测试结果更符合产品手册测试要求,测试结果更准确。The technical problem solved by this application is: Aiming at the fact that the AC parameter test scheme in the prior art cannot meet the actual needs, this application provides an AC parameter test system and method for a low-voltage differential drive. The solution provided by the embodiment of the application is used in When measuring the AC parameters corresponding to the low-voltage differential driver, a compensation module is introduced. The compensation module is used to compensate the AC parameter test results corresponding to the low-voltage differential driver, which effectively solves the test error caused by the 50% jump time of the input signal. In addition, compared with directly using the TMU and TIA in the ATE instrument to test the AC parameters of the low-voltage differential driver, the test results of the embodiment of the present application are more in line with the test requirements of the product manual, and the test results are more accurate.

第一方面,本申请实施例提供一种低电压差分驱动器的交流参数测试系统,该系统,包括:脉冲产生模块、脉冲输出模块、脉冲参数测量模块、低电压差分驱动器、差分输出参数测量模块以及补偿模块;其中,In the first aspect, an embodiment of the present application provides an AC parameter testing system for a low-voltage differential driver. The system includes: a pulse generation module, a pulse output module, a pulse parameter measurement module, a low-voltage differential driver, a differential output parameter measurement module, and compensation module; where,

所述脉冲产生模块,与所述脉冲输出模块耦合,用于产生脉冲信号;The pulse generation module is coupled with the pulse output module and is used to generate a pulse signal;

所述脉冲输出模块,与所述脉冲参数测量模块以及所述低电压差分驱动器耦合,用于将所述脉冲信号发送给所述脉冲参数测量模块以及所述低电压差分驱动器;The pulse output module is coupled with the pulse parameter measurement module and the low voltage differential driver, and is used to send the pulse signal to the pulse parameter measurement module and the low voltage differential driver;

所述脉冲参数测量模块,用于测量所述脉冲信号的第一交流参数;The pulse parameter measurement module is used to measure the first AC parameter of the pulse signal;

所述低电压差分驱动器,与所述差分输出参数测量模块,用于根据所述脉冲信号输出差分信号;The low-voltage differential driver and the differential output parameter measurement module are used to output a differential signal according to the pulse signal;

所述差分输出参数测量模块,用于测量所述差分信号的第二交流参数;The differential output parameter measurement module is used to measure the second AC parameter of the differential signal;

所述补偿模块,与所述脉冲参数测量模块以及所述差分输出参数测量模块耦合,用于根据所述第一交流参数以及所述第二交流参数计算得到所述低电压差分驱动器所对应的补偿后的交流参数。The compensation module, coupled with the pulse parameter measurement module and the differential output parameter measurement module, is used to calculate and obtain the compensation corresponding to the low voltage differential driver according to the first AC parameter and the second AC parameter After the exchange parameters.

可选地,其中,所述脉冲产生模块所产生的脉冲信号包括输入低电平电压到输入高电平电压的正向脉冲信号以及输入高电平电压到输入低电平电压的负向脉冲信号。Optionally, the pulse signal generated by the pulse generation module includes a positive pulse signal from an input low-level voltage to an input high-level voltage and a negative pulse signal from an input high-level voltage to an input low-level voltage .

可选地,其中,所述脉冲输出模块包括一组输入端口、第一组输出端口以及第二组输出端口;其中,所述输入端口与所述第一组输出端口构成第一通道,所述输入端口与所述第二组输出端口构成第二通道;所述第一通道用于将所述脉冲信号发送给所述脉冲参数测量模块,所述第二通道用于将所述脉冲信号发送给所述低电压差分驱动器。Optionally, wherein the pulse output module includes a set of input ports, a first set of output ports, and a second set of output ports; wherein the input ports and the first set of output ports form a first channel, the The input port and the second group of output ports constitute a second channel; the first channel is used to send the pulse signal to the pulse parameter measurement module, and the second channel is used to send the pulse signal to the the low voltage differential driver.

可选地,其中,所述脉冲输出模块在指定时刻通过所述第一通道将所述脉冲信号发送给所述脉冲参数测量模块;或通过所述第二通道将所述脉冲信号发送给所述低电压差分驱动器。Optionally, wherein, the pulse output module sends the pulse signal to the pulse parameter measurement module through the first channel at a specified moment; or sends the pulse signal to the pulse parameter measurement module through the second channel Low Voltage Differential Driver.

可选地,其中,所述低电压差分驱动器包括至少一路差分输出端口;所述差分输出参数测量模块包括直流参数测量子模块以及交流参数测量子模块;其中,所述直流参数测量子模块,与所述低电压差分驱动器与所述交流参数测量子模块耦合,用于测量每路差分输出端口的直流输出电压;所述交流参数测量子模块,用于根据所述每路差分输出端口的直流输出电压计算对应的交流输出电压。Optionally, wherein, the low-voltage differential driver includes at least one differential output port; the differential output parameter measurement module includes a DC parameter measurement submodule and an AC parameter measurement submodule; wherein, the DC parameter measurement submodule, and The low-voltage differential driver is coupled to the AC parameter measurement sub-module for measuring the DC output voltage of each differential output port; the AC parameter measurement sub-module is used for measuring the DC output voltage of each differential output port according to the The voltage calculation corresponds to the AC output voltage.

可选地,其中,所述每路差分输出端口包括正向输出端口和反向输出端口;所述直流输出电压包括每路差分输出端口中正向输出端口的输出高电压Voh_y、输出低电压Vol_y、输出三态拉偏电压Voz_y;以及每路差分输出端口中反向输出端口的输出高电压Voh_z、输出低电压Vol_z、输出三态拉偏电压Voz_z。Optionally, wherein each differential output port includes a forward output port and a reverse output port; the DC output voltage includes output high voltage Voh_y, output low voltage Vol_y, output low voltage Vol_y, Outputting a tri-state pull-bias voltage Voz_y; and an output high voltage Voh_z, an output low voltage Vol_z, and an output tri-state pull-bias voltage Voz_z of the reverse output port of each differential output port.

可选地,所述交流参数测量子模块根据所述每路差分输出端口中正向输出端口的输出高电压Voh_y、输出低电压Vol_y以及输出三态拉偏电压Voz_y计算正向输出端口的输出信号的上升时间、下降时间以及传输时延;以及根据所述每路差分输出端口中反向输出端口的输出高电压Voh_z、输出低电压Vol_z以及输出三态拉偏电压Voz_z计算反向输出端口所对应的输出信号的上升时间、下降时间以及传输时延。Optionally, the AC parameter measurement submodule calculates the output signal of the forward output port according to the output high voltage Voh_y, the output low voltage Vol_y, and the output tri-state pull-bias voltage Voz_y of the forward output port in each differential output port. Rise time, fall time, and transmission delay; and calculate the corresponding reverse output port according to the output high voltage Voh_z, output low voltage Vol_z, and output tri-state pull-bias voltage Voz_z of the reverse output port in each differential output port The rise time, fall time, and propagation delay of the output signal.

可选地,其中,所述脉冲产生模块、脉冲参数测量模块以及所述交流参数测量子模块时钟同步。Optionally, the clocks of the pulse generation module, the pulse parameter measurement module and the AC parameter measurement sub-module are synchronized.

第二方面,本申请实施例提供了一种低电压差分驱动器的交流参数测试方法,该方法包括:In the second aspect, the embodiment of the present application provides a method for testing AC parameters of a low-voltage differential driver, the method comprising:

脉冲产生模块产生脉冲信号,并将所述脉冲信号发送给脉冲输出模块以及脉冲参数测量模块;The pulse generation module generates a pulse signal, and sends the pulse signal to the pulse output module and the pulse parameter measurement module;

所述脉冲输出模块接收所述脉冲信号,并将所述脉冲信号发送给脉冲参数测量模块以及低电压差分驱动器;The pulse output module receives the pulse signal, and sends the pulse signal to the pulse parameter measurement module and the low voltage differential driver;

所述脉冲参数测量模块接收所述脉冲信号,并测量所述脉冲信号的第一交流参数,以及将所述第一交流参数发送给补偿模块;The pulse parameter measurement module receives the pulse signal, measures a first AC parameter of the pulse signal, and sends the first AC parameter to a compensation module;

所述低电压差分驱动器接收所述脉冲信,以及根据所述脉冲信号输出差分信号,并将所述差分信号发送给差分输出参数测量模块;The low-voltage differential driver receives the pulse signal, outputs a differential signal according to the pulse signal, and sends the differential signal to a differential output parameter measurement module;

所述差分输出参数测量模块接收所述差分信号以及测量所述差分信号的第二交流参数,并将所述第二交流参数发送给所述补偿模块;The differential output parameter measurement module receives the differential signal and measures a second AC parameter of the differential signal, and sends the second AC parameter to the compensation module;

所述补偿模块根据所述第一交流参数以及所述第二交流参数计算得到所述低电压差分驱动器所对应的补偿后的交流参数。The compensation module calculates the compensated AC parameter corresponding to the low voltage differential driver according to the first AC parameter and the second AC parameter.

可选地,所述差分输出参数测量模块包括直流参数测量子模块以及交流参数测量子模块;其中,所述差分输出参数测量模块接收差分信号以及测量差分信号的第二交流参数,并将第二交流参数发送给补偿模块,包括:所述直流参数测量子模块测量每路差分输出端口的直流输出电压;所述交流参数测量子模块根据所述每路差分输出端口的直流输出电压计算对应的交流输出电压。Optionally, the differential output parameter measurement module includes a DC parameter measurement submodule and an AC parameter measurement submodule; wherein the differential output parameter measurement module receives a differential signal and measures a second AC parameter of the differential signal, and converts the second The AC parameters are sent to the compensation module, including: the DC parameter measurement sub-module measures the DC output voltage of each differential output port; the AC parameter measurement sub-module calculates the corresponding AC voltage according to the DC output voltage of each differential output port. The output voltage.

与现有技术相比,本申请实施例所提供的方案至少具有如下有益效果:Compared with the prior art, the solution provided by the embodiment of the present application has at least the following beneficial effects:

1、本申请实施例所提供的方案,在对低电压差分驱动器对应的交流参数进行测量时,引入补偿模块。通过补偿模块来对低电压差分驱动器对应的交流参数测试结果进行补偿,有效解决了输入信号50%跳变时间所带来的测试误差。另外,相比直接使用ATE仪表中的TMU、TIA测试低电压差分驱动器的交流参数,本申请实施例的测试结果更符合产品手册测试要求,测试结果更准确。1. In the solution provided by the embodiment of the present application, when measuring the AC parameters corresponding to the low-voltage differential driver, a compensation module is introduced. The compensation module is used to compensate the AC parameter test results corresponding to the low-voltage differential driver, which effectively solves the test error caused by the 50% jump time of the input signal. In addition, compared with directly using the TMU and TIA in the ATE instrument to test the AC parameters of the low-voltage differential driver, the test results of the embodiment of the present application are more in line with the test requirements of the product manual, and the test results are more accurate.

2、本申请实施例所提供的方案,在对低电压差分驱动器的输出交流参数测量时,采用在低电压差分驱动器的差分输出端口连接直流参数测量子模块以及交流参数测量子模块,通过直流参数测量子模块输出信号的直流参数来计算交流参数测量子模块输出信号的交流参数的参考电压。即采用直流参数的测试结果对交流参数测试条件进行针对性设置,有效解决了低电压差分驱动器不同通道(差分输出端口)间的测试一致性与稳定性问题。2. In the solution provided by the embodiment of the present application, when measuring the output AC parameters of the low-voltage differential driver, the DC parameter measurement sub-module and the AC parameter measurement sub-module are connected to the differential output port of the low-voltage differential driver. Measuring the DC parameter of the output signal of the sub-module to calculate the reference voltage of the AC parameter for measuring the AC parameter of the output signal of the sub-module. That is, the test results of the DC parameters are used to set the test conditions of the AC parameters in a targeted manner, which effectively solves the problem of test consistency and stability between different channels (differential output ports) of the low-voltage differential drive.

附图说明Description of drawings

图1为本申请实施例所提供的一种低电压差分驱动器的交流参数测试系统的示意图;FIG. 1 is a schematic diagram of an AC parameter testing system for a low-voltage differential driver provided in an embodiment of the present application;

图2展示了本申请实施例所提供的一种采用TMU或TIA仪表测量交流参数的电路示意图;Fig. 2 has shown a kind of circuit schematic diagram that adopts TMU or TIA instrument to measure AC parameter provided by the embodiment of the present application;

图3为本申请实施例所提供的一种低电压差分驱动器的交流参数测试方法的流程示意图;FIG. 3 is a schematic flowchart of a method for testing AC parameters of a low-voltage differential driver provided in an embodiment of the present application;

图4为本申请实施例所提供的一种低电压差分驱动器的交流参数测试方法的简要流程图。FIG. 4 is a brief flow chart of a method for testing AC parameters of a low-voltage differential driver provided by an embodiment of the present application.

具体实施方式Detailed ways

本申请实施例提供的方案中,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In the solutions provided by the embodiments of the present application, the described embodiments are only some of the embodiments of the present application, not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.

为了更好的理解上述技术方案,下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。In order to better understand the above technical solutions, the technical solutions of the present application will be described in detail below through the accompanying drawings and specific examples. It should be understood that the embodiments of the present application and the specific features in the examples are detailed descriptions of the technical solutions of the present application, and It is not a limitation to the technical solutions of the present application, and the embodiments of the present application and the technical features in the embodiments can be combined without conflict.

图1展示了本申请实施例所提供的一种低电压差分驱动器的交流参数测试系统的示意图。FIG. 1 shows a schematic diagram of an AC parameter testing system for a low-voltage differential driver provided by an embodiment of the present application.

作为举例,在图1中,该交流参数测试系统包括:脉冲产生模块101、脉冲输出模块102、脉冲参数测量模块103、低电压差分驱动器104、差分输出参数测量模块105以及补偿模块106;其中,脉冲产生模块101,与脉冲输出模块102耦合,用于产生脉冲信号;脉冲输出模块102,与脉冲参数测量模块103以及低电压差分驱动器104耦合,用于将脉冲信号发送给脉冲参数测量模块103以及低电压差分驱动器104;脉冲参数测量模块103,用于测量脉冲信号的第一交流参数;低电压差分驱动器104,与差分输出参数测量模块105,用于根据脉冲信号输出差分信号;差分输出参数测量模块105,用于测量差分信号的第二交流参数;补偿模块106,与脉冲参数测量模块103以及差分输出参数测量模块105耦合,用于根据第一交流参数以及第二交流参数计算得到低电压差分驱动器所对应的补偿后的交流参数。As an example, in FIG. 1, the AC parameter testing system includes: a pulse generation module 101, a pulse output module 102, a pulse parameter measurement module 103, a low voltage differential driver 104, a differential output parameter measurement module 105, and a compensation module 106; wherein, The pulse generation module 101 is coupled with the pulse output module 102 for generating pulse signals; the pulse output module 102 is coupled with the pulse parameter measurement module 103 and the low voltage differential driver 104 for sending the pulse signal to the pulse parameter measurement module 103 and Low-voltage differential driver 104; pulse parameter measurement module 103, used to measure the first AC parameter of the pulse signal; low-voltage differential driver 104, and differential output parameter measurement module 105, used to output differential signals according to the pulse signal; differential output parameter measurement The module 105 is used to measure the second AC parameter of the differential signal; the compensation module 106 is coupled with the pulse parameter measurement module 103 and the differential output parameter measurement module 105, and is used to calculate the low voltage differential according to the first AC parameter and the second AC parameter. The compensated AC parameters corresponding to the driver.

又作为举例,脉冲产生模块101用于产生低电压差分驱动器104(或称为被测电路)交流参数测试用的输入脉冲信号。该脉冲信号的电压幅值与频率(或脉冲宽度)可通过例如软件编程控制;该脉冲产生模块所产生的脉冲信号包括输入低电平电压到输入高电平电压的正向脉冲信号以及输入高电平电压到输入低电平电压的负向脉冲信号。另外,该脉冲信号需要输入给后续的低电压差分驱动器104,用于测量低电压差分驱动器104的输出交流参数。因此,输入脉冲信号的脉冲通道的数量能覆盖低电压差分驱动器104的输入端口A与输出使能端口G/nG。As another example, the pulse generation module 101 is used to generate an input pulse signal for testing the AC parameters of the low voltage differential driver 104 (or referred to as the circuit under test). The voltage amplitude and frequency (or pulse width) of the pulse signal can be controlled by, for example, software programming; level voltage to the negative pulse signal of the input low level voltage. In addition, the pulse signal needs to be input to the subsequent low-voltage differential driver 104 for measuring the output AC parameters of the low-voltage differential driver 104 . Therefore, the number of pulse channels of the input pulse signal can cover the input port A and the output enable port G/nG of the low voltage differential driver 104 .

又作为举例,脉冲输出模块102用于为脉冲产生模块101所产生的脉冲信号选择传输路径,例如将脉冲信号发给脉冲参数测量模块103,或者将脉冲信号发送给低电压差分驱动器104。也即,脉冲输出模块102即可以将脉冲信号发送给不同的两个模块或电路(脉冲参数测量模块103或低电压差分驱动器104)。因此,脉冲输出模块102至少包括一路输入端口和两组输出端口。例如,脉冲输出模块102至少包括一组输入端口以及两组输出端口,如两种输出端口为输出端口A以及输出端口B;其中,输入端口与输出端口A构成通道C1,输入端口与输出端口B构成通道C2;通道C1用于将脉冲信号发送给脉冲参数测量模块103,通道C2用于将脉冲信号发送给低电压差分驱动器104。具体的,脉冲输出模块102的输入端口与脉冲产生模块101输出端口连接As another example, the pulse output module 102 is used to select a transmission path for the pulse signal generated by the pulse generation module 101 , such as sending the pulse signal to the pulse parameter measurement module 103 , or sending the pulse signal to the low voltage differential driver 104 . That is, the pulse output module 102 can send the pulse signal to two different modules or circuits (the pulse parameter measurement module 103 or the low voltage differential driver 104 ). Therefore, the pulse output module 102 includes at least one input port and two sets of output ports. For example, the pulse output module 102 includes at least one set of input ports and two sets of output ports, for example, two output ports are output port A and output port B; wherein, the input port and output port A constitute channel C1, and the input port and output port B A channel C2 is formed; the channel C1 is used to send the pulse signal to the pulse parameter measurement module 103 , and the channel C2 is used to send the pulse signal to the low-voltage differential driver 104 . Specifically, the input port of the pulse output module 102 is connected to the output port of the pulse generation module 101

又作为举例,脉冲输出模块102在指定时刻通过通道C1将脉冲信号发送给脉冲参数测量模块103;或通过通道C2将脉冲信号发送给低电压差分驱动器104。也即两组通道可以在软件控制下选通任意一组,且同一时间只有一组输出通道可别选中。As another example, the pulse output module 102 sends the pulse signal to the pulse parameter measurement module 103 through the channel C1 at a specified moment; or sends the pulse signal to the low voltage differential driver 104 through the channel C2. That is to say, two groups of channels can be selected under software control, and only one group of output channels can be selected at the same time.

另外,本申请实施例所提供的方案,为了对低电压差分驱动器104输出信号的交流参数进行补偿。在图1所示的测试系统中,还设置了脉冲参数测量模块103;其中,脉冲参数测量模块103的输入为脉冲产生模块101所产生的脉冲信号,输出为脉冲信号对应的交流参数。例如,脉冲参数测量模块103用于测量脉冲产生模块101所产生的脉冲的上升时间。具体的,脉冲参数测量模块103具有一组测试脉冲检测输入端口,可使用ATE设备的TMU仪表或TIA仪表测试输入脉冲信号的上升时间Tr与下降时间Tf;其中,输入脉冲信号的Tr/Tf的测试参考电压可以通过软件设置;测试时间分辨率可以通过软件进行设置。脉冲参数测量模块103的测试结果(脉冲信号的交流参数)给到后续补偿模块106In addition, the solution provided in the embodiment of the present application is to compensate the AC parameter of the output signal of the low-voltage differential driver 104 . In the test system shown in FIG. 1 , a pulse parameter measurement module 103 is also provided; wherein, the input of the pulse parameter measurement module 103 is the pulse signal generated by the pulse generation module 101 , and the output is the AC parameter corresponding to the pulse signal. For example, the pulse parameter measurement module 103 is used to measure the rise time of the pulse generated by the pulse generation module 101 . Specifically, the pulse parameter measurement module 103 has a group of test pulse detection input ports, and the TMU instrument or TIA instrument of ATE equipment can be used to test the rise time Tr and fall time Tf of the input pulse signal; wherein, the Tr/Tf of the input pulse signal The test reference voltage can be set by software; the test time resolution can be set by software. The test result (the AC parameter of the pulse signal) of the pulse parameter measurement module 103 is given to the follow-up compensation module 106

进一步,又作为举例,低电压差分驱动器104包括至少一路差分输出端口;例如,低电压差分驱动器104包括1路或多路单端输入端口A、输出使能端口G/nG、1路或多路差分输出端口Y(正向)与Z(反向),即每路差分输出端口包括正向输出端口和反向输出端口。由于低电压差分驱动器104的输入脉冲信号来自脉冲产生模块101所产生的,故传输脉冲信号的通道数量能覆盖低电压差分驱动器104的输入端口A与输出使能端口G/nG。Further, as an example, the low-voltage differential driver 104 includes at least one differential output port; for example, the low-voltage differential driver 104 includes one or more single-ended input ports A, output enable ports G/nG, one or more The differential output ports Y (forward) and Z (reverse), that is, each differential output port includes a forward output port and a reverse output port. Since the input pulse signal of the low voltage differential driver 104 is generated by the pulse generating module 101 , the number of channels for transmitting the pulse signal can cover the input port A and the output enable port G/nG of the low voltage differential driver 104 .

另外,为了保证低电压差分驱动器104不同通道间(差分输出端口)的测试一致性与稳定性。作为举例,差分输出参数测量模块105包括直流参数测量子模块107以及交流参数测量子模块108;其中,直流参数测量子模块107,与低电压差分驱动器104与交流参数测量子模块108耦合,用于测量每路差分输出端口的直流输出电压。作为举例,直流输出电压包括每路差分输出端口中正向输出端口的输出高电压Voh_y、输出低电压Vol_y、输出三态拉偏电压Voz_y;以及每路差分输出端口中反向输出端口的输出高电压Voh_z、输出低电压Vol_z、输出三态拉偏电压Voz_z。In addition, in order to ensure the test consistency and stability between different channels (differential output ports) of the low voltage differential driver 104 . As an example, the differential output parameter measurement module 105 includes a DC parameter measurement submodule 107 and an AC parameter measurement submodule 108; wherein, the DC parameter measurement submodule 107 is coupled with the low voltage differential driver 104 and the AC parameter measurement submodule 108 for Measure the DC output voltage at each differential output port. As an example, the DC output voltage includes the output high voltage Voh_y, the output low voltage Vol_y, and the output tri-state pull bias voltage Voz_y of the forward output port in each differential output port; and the output high voltage of the reverse output port in each differential output port Voh_z, the output low voltage Vol_z, and the output tri-state pull-bias voltage Voz_z.

交流参数测量子模块108,用于根据每路差分输出端口的直流输出电压计算对应的交流输出电压。作为举例,交流参数测量子模块108根据每路差分输出端口中正向输出端口的输出高电压Voh_y、输出低电压Vol_y以及输出三态拉偏电压Voz_y计算正向输出端口的输出信号的上升时间、下降时间以及传输时延;以及根据每路差分输出端口中反向输出端口的输出高电压Voh_z、输出低电压Vol_z以及输出三态拉偏电压Voz_z计算反向输出端口所对应的输出信号的上升时间、下降时间以及传输时延。例如,使用TMU或TIA仪表测试脉冲信号的交流参数,包括上升时间Tr、下降时间Tf、传输延时Tphl/Tplh/Tpzl/Tpzh/Tplz/Tphz;交流参数测试参考电压由直流参数测量子模块107的测量结果计算得出,可以通过软件进行设置;测试时间分辨率可以通过软件进行设置;交流参数测量子模块108的测试结果给到交流参数测量结果补偿模块106。The AC parameter measurement sub-module 108 is configured to calculate the corresponding AC output voltage according to the DC output voltage of each differential output port. As an example, the AC parameter measurement sub-module 108 calculates the rise time, fall time, Time and transmission delay; and calculate the rise time of the output signal corresponding to the reverse output port according to the output high voltage Voh_z, output low voltage Vol_z and output tri-state pull bias voltage Voz_z of the reverse output port in each differential output port, Fall time and transmission delay. For example, use a TMU or TIA meter to test the AC parameters of the pulse signal, including rise time Tr, fall time Tf, transmission delay Tphl/Tplh/Tpzl/Tpzh/Tplz/Tphz; the AC parameter test reference voltage is determined by the DC parameter measurement sub-module 107 The measurement results of the AC parameters are calculated and can be set by software; the test time resolution can be set by software; the test results of the AC parameter measurement submodule 108 are sent to the AC parameter measurement result compensation module 106.

具体的,根据直流参数测量子模块107测量到的每路差分输出端口Y/Z直流参数,分别计算出路通道交流参数测试的参考电压,例如,低电压差分驱动器104包括三路每路差分输出端口,分别为Y1/Z1、Y2/Z2、Y3/Z3、Y4/Z4以及Y5/Z5,则Y1所对应的通道Tr的参考电压为Vol_y+(Voh_y-Vol_y)×0.2和Vol_y+(Voh_y-Vol_y)×0.8;Z1所对应的通道Tr的参考电压为Vol_z+(Voh_z-Vol_z)×0.2和Vol_z+(Voh_z-Vol_z)×0.8;Y2所对应的通道Tf的参考电压为Voh_y-(Voh_y-Vol_y)×0.8和Voh_y-(Voh_y-Vol_y)×0.2;Z2所对应通道Tr的参考电压为Voh_z-(Voh_z-Vol_z)×0.8和Voh_z-(Voh_z-Vol_z)×0.2;Y3所对应的通道Tphld与Tplhd的参考电压为(Voh_y-Vol_y)×0.5;Z3所对应的通道Tphld与Tplhd的参考电压为(Voh_z-Vol_z)×0.5;Y4所对应的通道Tpzh与Tphz的参考电压为(Voh_y-Voz_y)×0.5;Z4所对应的通道Tpzh与Tphz的参考电压为(Voh_z-Voz_z)×0.5;Y5所对应的通道Tpzl与Tplz的参考电压为(Voz_y-Vol_y)×0.5;Z5所对应的通道Tpzl与Tplz的参考电压为(Voz_z-Vol_z)×0.5。Specifically, according to the Y/Z DC parameters of each differential output port measured by the DC parameter measurement sub-module 107, the reference voltages for the AC parameter test of the channels are respectively calculated. For example, the low-voltage differential driver 104 includes three differential output ports each , are Y1/Z1, Y2/Z2, Y3/Z3, Y4/Z4, and Y5/Z5 respectively, then the reference voltage of the channel Tr corresponding to Y1 is Vol_y+(Voh_y-Vol_y)×0.2 and Vol_y+(Voh_y-Vol_y)× 0.8; the reference voltage of channel Tr corresponding to Z1 is Vol_z+(Voh_z-Vol_z)×0.2 and Vol_z+(Voh_z-Vol_z)×0.8; the reference voltage of channel Tf corresponding to Y2 is Voh_y-(Voh_y-Vol_y)×0.8 and Voh_y-(Voh_y-Vol_y)×0.2; the reference voltage of channel Tr corresponding to Z2 is Voh_z-(Voh_z-Vol_z)×0.8 and Voh_z-(Voh_z-Vol_z)×0.2; the reference voltage of channel Tphld and Tplhd corresponding to Y3 It is (Voh_y-Vol_y)×0.5; the reference voltage of channel Tphld and Tplhd corresponding to Z3 is (Voh_z-Vol_z)×0.5; the reference voltage of channel Tpzh and Tphz corresponding to Y4 is (Voh_y-Voz_y)×0.5; Z4 The reference voltage of the corresponding channel Tpzh and Tphz is (Voh_z-Voz_z)×0.5; the reference voltage of the channel Tpzl and Tplz corresponding to Y5 is (Voz_y-Vol_y)×0.5; the reference voltage of the channel Tpzl and Tplz corresponding to Z5 It is (Voz_z-Vol_z)×0.5.

在上述图1所示的系统中,脉冲参数测量模块103以及交流参数测量子模块在测量交流参数时,可以使用ATE仪表中的TMU或TIA仪表来进行测量。下面对本申请实施例中使用ATE仪表中的TMU或TIA仪表测量交流参数的过程进行简要介绍。In the above-mentioned system shown in FIG. 1 , the pulse parameter measurement module 103 and the AC parameter measurement sub-module can use the TMU or TIA instrument in the ATE instrument to measure the AC parameter. The following briefly introduces the process of using the TMU or TIA instrument in the ATE instrument to measure the AC parameters in the embodiment of the present application.

图2展示了本申请实施例所提供的一种采用TMU或TIA仪表测量交流参数的电路示意图。FIG. 2 shows a schematic circuit diagram of a TMU or TIA instrument for measuring AC parameters provided by an embodiment of the present application.

作为举例,在图2中,该电路主要包括ATE测试机与Loadboard测试板。ATE测试机主要包括主控计算机、支持仪表、直流源仪表与数字通道仪表。其中主控计算机是进行仪表控制,测试信号图形产生与数据汇总分析的核心单元;支持仪表主要实现继电器矩阵的供电与开关控制;直流源仪表为被测器件(DUT)供电;数字通道主要分为三组,图中按A、B、C标识。A组为测试输入信号(相对被测器件DUT),用于为被测器件(如上述图1所示的低电压差分驱动器104)提供测试输入脉冲,包括A、G与nG端口;B组为测试输出信号,用于采集被测器件交流参数,包括Y、Z两组端口;C组同样为测试输出信号,用于采集数字通道A输出信号的交流参数,包括A、G与nG端口。As an example, in Figure 2, the circuit mainly includes an ATE tester and a Loadboard test board. The ATE testing machine mainly includes a main control computer, supporting instruments, DC source instruments and digital channel instruments. Among them, the main control computer is the core unit for instrument control, test signal graphic generation and data summary analysis; the supporting instrument mainly realizes the power supply and switch control of the relay matrix; the DC source instrument supplies power for the device under test (DUT); the digital channel is mainly divided into Three groups, identified by A, B, and C in the figure. Group A is a test input signal (relative to the device under test DUT), which is used to provide a test input pulse for the device under test (such as the low-voltage differential driver 104 shown in Figure 1 above), including A, G and nG ports; Group B is The test output signal is used to collect the AC parameters of the device under test, including the Y and Z groups of ports; the C group is also the test output signal, used to collect the AC parameters of the digital channel A output signal, including the A, G and nG ports.

Loadboard测试板上主要包括被测器件(DUT)与矩阵阵列(Relay)。此外,被测器件的差分输出端Y/Z还需要连接必要的电阻、电容负载与Vos拉偏电源(图2中未标出)。The Loadboard test board mainly includes the device under test (DUT) and the matrix array (Relay). In addition, the differential output terminals Y/Z of the device under test also need to be connected with necessary resistors, capacitive loads and a Vos pull-bias power supply (not shown in Figure 2).

图2所示的电路具体工作流程如下:The specific workflow of the circuit shown in Figure 2 is as follows:

(1)、主控计算机向支持仪表发送指令,控制支持仪表为继电器矩阵Relay上电,同时将Relay的信号输出切到数字通道C。(1) The main control computer sends instructions to the supporting instruments to control the supporting instruments to power on the relay matrix Relay, and at the same time switch the signal output of the Relay to the digital channel C.

(2)、主控计算机控制数字通道A发送脉冲信号,脉冲幅值为被测电路DUT交流参数测试所要求的幅值Vih,同时控制数字通道C采集该脉冲信号达到50% Vih时的交流参数,包括正向脉冲上升时间Tr_A_50p/Tr_G_50p,以及负向脉冲下降时间Tf_A_50p/Tf_G_50p;当有多路输入A时,每路时间参数都要单独测量。(2), the main control computer controls the digital channel A to send the pulse signal, and the pulse amplitude is the amplitude Vih required by the DUT AC parameter test of the circuit under test, and at the same time controls the digital channel C to collect the AC parameter when the pulse signal reaches 50% Vih , including positive pulse rise time Tr_A_50p/Tr_G_50p, and negative pulse fall time Tf_A_50p/Tf_G_50p; when there are multiple inputs A, each time parameter must be measured separately.

(3)、主控计算机向支持仪表发送指令,控制支持仪表将Relay的信号输出切到被测器件DUT。(3) The main control computer sends instructions to the supporting instrument to control the supporting instrument to switch the signal output of the Relay to the DUT.

(4)、主控计算机控制数字通道A,向DUT的G端口施加高电平,nG端口施加低电平,A端口施加高电平,同时控制数字通道B采集被测器件DUT输出端口Y、Z的电压,记为Voh_y与Vol_z;当有多路输入Y/Z时,每路输出电压都要单独测量。(4), the main control computer controls the digital channel A, applies a high level to the G port of the DUT, applies a low level to the nG port, and applies a high level to the A port, and simultaneously controls the digital channel B to collect the DUT output port Y, The voltage of Z is recorded as Voh_y and Vol_z; when there are multiple inputs Y/Z, each output voltage must be measured separately.

(5)、主控计算机控制数字通道A,向DUT的G端口施加高电平,nG端口施加低电平,A端口施加低电平,同时控制数字通道B采集被测器件DUT输出端口Y、Z的电压,记为Vol_y与Voh_z;当有多路输入Y/Z时,每路输出电压都要单独测量。(5), the main control computer controls the digital channel A, applies a high level to the G port of the DUT, applies a low level to the nG port, and applies a low level to the A port, and simultaneously controls the digital channel B to collect the DUT output port Y, The voltage of Z is recorded as Vol_y and Voh_z; when there are multiple inputs Y/Z, each output voltage must be measured separately.

(6)、主控计算机控制数字通道A,向DUT的G端口施加高电平,nG端口施加低电平,A端口施加正向脉冲,脉冲幅值满足DUT交流参数测试要求,同时控制数字通道B采集。(6) The main control computer controls the digital channel A, applies high level to the G port of the DUT, applies a low level to the nG port, and applies a positive pulse to the A port. The pulse amplitude meets the DUT AC parameter test requirements, and at the same time controls the digital channel. B collection.

a)被测器件DUT输出端口Y分别达到Vol_y+(Voh_y-Vol_y)×0.2、Vol_y+(Voh_y-Vol_y)×0.5、Vol_y+(Voh_y-Vol_y)×0.8的时间,记为Tr_y_20p、Tr_y_50p、Tr_y_80p;当有多路输入Y/Z时,每路时间参数都要单独测量。a) The time when the DUT output port Y of the DUT reaches Vol_y+(Voh_y-Vol_y)×0.2, Vol_y+(Voh_y-Vol_y)×0.5, Vol_y+(Voh_y-Vol_y)×0.8 respectively, recorded as Tr_y_20p, Tr_y_50p, Tr_y_80p; When multi-channel input Y/Z, each time parameter should be measured separately.

b)被测器件DUT输出端口Z分别达到Vol_z+(Voh_z-Vol_z)×0.8、Vol_z+(Voh_z-Vol_z)×0.5、Vol_z+(Voh_z-Vol_z)×0.2的时间,记为Tf_z_80p、Tf_z_50p、Tf_z_20p;当有多路输入Y/Z时,每路时间参数都要单独测量。b) The time when the DUT output port Z of the device under test reaches Vol_z+(Voh_z-Vol_z)×0.8, Vol_z+(Voh_z-Vol_z)×0.5, Vol_z+(Voh_z-Vol_z)×0.2 respectively, recorded as Tf_z_80p, Tf_z_50p, Tf_z_20p; When multi-channel input Y/Z, each time parameter should be measured separately.

(7)、主控计算机控制数字通道A,向DUT的G端口施加高电平,nG端口施加低电平,A端口施加负向脉冲,脉冲幅值满足DUT交流参数测试要求,同时控制数字通道B采集。(7) The main control computer controls the digital channel A, applies a high level to the G port of the DUT, applies a low level to the nG port, and applies a negative pulse to the A port. The pulse amplitude meets the DUT AC parameter test requirements, and at the same time controls the digital channel. B collection.

1)被测器件DUT输出端口Y分别达到Vol_y+(Voh_y-Vol_y)×0.8、Vol_y+(Voh_y-Vol_y)×0.5、Vol_y+(Voh_y-Vol_y)×0.2的时间,记为Tf_y_80p、Tf_y_50p、Tf_y_20p;当有多路输入Y/Z时,每路时间参数都要单独测量。1) The time when the DUT output port Y of the device under test reaches Vol_y+(Voh_y-Vol_y)×0.8, Vol_y+(Voh_y-Vol_y)×0.5, Vol_y+(Voh_y-Vol_y)×0.2 respectively, recorded as Tf_y_80p, Tf_y_50p, Tf_y_20p; When multi-channel input Y/Z, each time parameter should be measured separately.

2)被测器件DUT输出端口Z分别达到Vol_z+(Voh_z-Vol_z)×0.2、Vol_z+(Voh_z-Vol_z)×0.5、Vol_z+(Voh_z-Vol_z)×0.8的时间,记为Tr_z_20p、Tr_z_50p、Tr_z_80p;当有多路输入Y/Z时,每路时间参数都要单独测量。2) The time when the DUT output port Z of the device under test reaches Vol_z+(Voh_z-Vol_z)×0.2, Vol_z+(Voh_z-Vol_z)×0.5, Vol_z+(Voh_z-Vol_z)×0.8 respectively, recorded as Tr_z_20p, Tr_z_50p, Tr_z_80p; When multi-channel input Y/Z, each time parameter should be measured separately.

(8)、主控计算机按如下方法计算Tr、Tf、Tphld、Tplhd,当有多个差分驱动通道时,每路时间参数都要按照各自的测量结果单独计算:(8), the main control computer calculates Tr, Tf, Tphld, Tplhd according to the following method, when there are multiple differential drive channels, the time parameters of each channel must be calculated separately according to their respective measurement results:

a)Tr=(Tr_y_80p+Tf_z_20p)/2–(Tr_y_20p+Tf_z_80p)/2a) Tr=(Tr_y_80p+Tf_z_20p)/2–(Tr_y_20p+Tf_z_80p)/2

b)Tf=(Tf_y_80p+Tr_z_20p)/2–(Tf_y_20p+Tr_z_80p)/2b) Tf=(Tf_y_80p+Tr_z_20p)/2–(Tf_y_20p+Tr_z_80p)/2

c)Tphld=(Tf_y_50p+Tr_z_50p)/2–Tf_A_50pc) Tphld=(Tf_y_50p+Tr_z_50p)/2–Tf_A_50p

d)Tplhd=(Tr_y_50p+Tf_z_50p)/2–Tr_A_50pd) Tplhd=(Tr_y_50p+Tf_z_50p)/2–Tr_A_50p

(9)、主控计算机控制数字通道A,向DUT的G端口施加低电平,nG端口施加高电平,同时控制数字通道B采集被测器件DUT输出端口Y、Z的电压,记为Voz_y与Voz_z;当有多路输入Y/Z时,每路输出电压都要单独测量。(9) The main control computer controls the digital channel A, applies a low level to the G port of the DUT, and applies a high level to the nG port, and at the same time controls the digital channel B to collect the voltages of the DUT output ports Y and Z of the device under test, which is recorded as Voz_y And Voz_z; when there are multiple inputs Y/Z, each output voltage should be measured separately.

(10)、主控计算机控制数字通道A,向DUT的A/nG端口施加高电平,G端口施加正向脉冲,脉冲幅值满足DUT交流参数测试要求,同时控制数字通道B采集:(10), the main control computer controls the digital channel A, applies a high level to the A/nG port of the DUT, and applies a forward pulse to the G port. The pulse amplitude meets the DUT AC parameter test requirements, and at the same time controls the digital channel B to collect:

a)被测器件DUT输出端口Y达到(Voh_y-Voz_y)×0.5的时间,记为Tpzh_y;当有多路输入Y/Z时,每路时间参数都要单独测量;a) The time when the DUT output port Y of the device under test reaches (Voh_y-Voz_y)×0.5, which is recorded as Tpzh_y; when there are multiple inputs Y/Z, each time parameter must be measured separately;

b)被测器件DUT输出端口Z达到(Voz_z-Vol_z)×0.5的时间,记为Tpzl_z;当有多路输入Y/Z时,每路时间参数都要单独测量;b) The time when the DUT output port Z of the device under test reaches (Voz_z-Vol_z)×0.5, which is recorded as Tpzl_z; when there are multiple inputs Y/Z, each time parameter must be measured separately;

(11)、主控计算机控制数字通道A,向DUT的A/nG端口施加高电平,G端口施加负向脉冲,脉冲幅值满足DUT交流参数测试要求,同时控制数字通道B采集:(11), the main control computer controls the digital channel A, applies a high level to the A/nG port of the DUT, and applies a negative pulse to the G port. The pulse amplitude meets the DUT AC parameter test requirements, and at the same time controls the digital channel B to collect:

a)被测器件DUT输出端口Y达到(Voh_y-Voz_y)×0.5的时间,记为Tphz_y;当有多路输入Y/Z时,每路时间参数都要单独测量;a) The time when the DUT output port Y of the device under test reaches (Voh_y-Voz_y)×0.5, which is recorded as Tphz_y; when there are multiple inputs Y/Z, each time parameter must be measured separately;

b)被测器件DUT输出端口Z达到(Voz_z-Vol_z)×0.5的时间,记为Tplz_z;当有多路输入Y/Z时,每路时间参数都要单独测量;b) The time when the DUT output port Z of the device under test reaches (Voz_z-Vol_z)×0.5, which is recorded as Tplz_z; when there are multiple inputs Y/Z, each time parameter must be measured separately;

(12)、主控计算机控制数字通道A,向DUT的A端口施加低电平,nG端口施加高电平,G端口施加正向脉冲,脉冲幅值满足DUT交流参数测试要求,同时控制数字通道B采集:(12) The main control computer controls the digital channel A, applies low level to the A port of the DUT, applies high level to the nG port, and applies a positive pulse to the G port. The pulse amplitude meets the DUT AC parameter test requirements, and at the same time controls the digital channel. B collection:

a)被测器件DUT输出端口Y达到(Voz_y-Vol_y)×0.5的时间,记为Tpzl_y;当有多路输入Y/Z时,每路时间参数都要单独测量;a) The time when the DUT output port Y of the device under test reaches (Voz_y-Vol_y)×0.5, which is recorded as Tpzl_y; when there are multiple inputs Y/Z, each time parameter must be measured separately;

b)被测器件DUT输出端口Z达到(Voh_z-Voz_z)×0.5的时间,记为Tpzh_z;当有多路输入Y/Z时,每路时间参数都要单独测量;b) The time when the DUT output port Z of the device under test reaches (Voh_z-Voz_z)×0.5, which is recorded as Tpzh_z; when there are multiple inputs Y/Z, each time parameter must be measured separately;

(13)、主控计算机控制数字通道A,向DUT的A端口施加低电平,nG端口施加高电平,G端口施加负向脉冲,脉冲幅值满足DUT交流参数测试要求,同时控制数字通道B采集:(13) The main control computer controls the digital channel A, applies a low level to the A port of the DUT, applies a high level to the nG port, and applies a negative pulse to the G port. The pulse amplitude meets the DUT AC parameter test requirements, and at the same time controls the digital channel. B collection:

c)被测器件DUT输出端口Y达到(Voz_y-Vol_y)×0.5的时间,记为Tplz_y;当有多路输入Y/Z时,每路时间参数都要单独测量;c) The time when the DUT output port Y of the device under test reaches (Voz_y-Vol_y)×0.5, which is recorded as Tplz_y; when there are multiple inputs Y/Z, each time parameter must be measured separately;

d)被测器件DUT输出端口Z达到(Voh_z-Voz_z)×0.5的时间,记为Tphz_z;当有多路输入Y/Z时,每路时间参数都要单独测量;d) The time when the DUT output port Z of the device under test reaches (Voh_z-Voz_z)×0.5, which is recorded as Tphz_z; when there are multiple inputs Y/Z, each time parameter must be measured separately;

(14)、主控计算机按如下方法计算Tpzh、Tphz、Tpzl、Tplz,当有多个差分驱动通道时,每路时间参数都要按照各自的测量结果单独计算:(14), the main control computer calculates Tpzh, Tphz, Tpzl, Tplz according to the following method, when there are multiple differential drive channels, each time parameter should be calculated separately according to the respective measurement results:

a)Tpzh=(Tpzh_y+Tpzl_z)/2a)Tpzh=(Tpzh_y+Tpzl_z)/2

b)Tpzl=(Tpzl_y+Tpzh_z)/2b) Tpzl=(Tpzl_y+Tpzh_z)/2

c)Tphz=(Tphz_y+Tplz_z)/2c) Tphz=(Tphz_y+Tplz_z)/2

d)Tplz=(Tplz_y+Tphz_z)/2d)Tplz=(Tplz_y+Tphz_z)/2

本申请实施例所提供的方案,在对低电压差分驱动器的输出交流参数测量时,采用在低电压差分驱动器的差分输出端口连接直流参数测量子模块以及交流参数测量子模块,通过直流参数测量子模块输出信号的直流参数来计算交流参数测量子模块输出信号的交流参数的参考电压。即采用直流参数的测试结果对交流参数测试条件进行针对性设置,有效解决了低电压差分驱动器不同通道(差分输出端口)间的测试一致性与稳定性问题。In the solution provided by the embodiment of the present application, when measuring the output AC parameters of the low-voltage differential driver, the DC parameter measurement sub-module and the AC parameter measurement sub-module are connected to the differential output port of the low-voltage differential driver, and the DC parameter measurement sub-module The DC parameter of the output signal of the module is used to calculate the AC parameter and measure the reference voltage of the AC parameter of the output signal of the sub-module. That is, the test results of the DC parameters are used to set the test conditions of the AC parameters in a targeted manner, which effectively solves the problem of test consistency and stability between different channels (differential output ports) of the low-voltage differential drive.

又作为举例,脉冲产生模块101、脉冲参数测量模块103以及交流参数测量子模块108时钟同步。As another example, the clocks of the pulse generation module 101 , the pulse parameter measurement module 103 and the AC parameter measurement sub-module 108 are synchronized.

进一步,在本申请实施例所提供的方案,补偿模块106的输入为脉冲参数测量模块103所测量的脉冲产生模块101所产生的脉冲信号的交流参数,以及差分输出参数测量模块105输出的低电压差分驱动器104差分输出端口输出信号的交流参数。补偿模块106可根据脉冲参数测量模块103的测量结果(上述第一交流参数)与交流参数测量子模块108的测量结果(第二交流参数),计算出补偿后的低电压差分驱动器104输出的交流参数测试结果。例如,补偿模块106用交流参数测量子模块108的测量结果减去脉冲参数测量模块103的测量结果得到补偿后的低电压差分驱动器104输出的交流参数测试结果。Further, in the solution provided by the embodiment of the present application, the input of the compensation module 106 is the AC parameter of the pulse signal generated by the pulse generation module 101 measured by the pulse parameter measurement module 103, and the low voltage output by the differential output parameter measurement module 105 The AC parameter of the output signal of the differential output port of the differential driver 104 . The compensation module 106 can calculate the compensated AC output from the low-voltage differential driver 104 according to the measurement result of the pulse parameter measurement module 103 (the above-mentioned first AC parameter) and the measurement result of the AC parameter measurement sub-module 108 (the second AC parameter). Parameter test results. For example, the compensation module 106 subtracts the measurement result of the pulse parameter measurement module 103 from the measurement result of the AC parameter measurement sub-module 108 to obtain the compensated AC parameter test result output by the low voltage differential driver 104 .

本申请实施例所提供的方案,在对低电压差分驱动器104对应的交流参数进行测量时,引入补偿模块106。通过补偿模块106来对低电压差分驱动器104对应的交流参数测试结果进行补偿,有效解决了输入信号50%跳变时间所带来的测试误差。另外,相比直接使用ATE仪表中的TMU或TIA仪表测试低电压差分驱动器的交流参数,本申请实施例的测试结果更符合产品手册测试要求,测试结果更准确。The solution provided by the embodiment of the present application introduces the compensation module 106 when measuring the AC parameters corresponding to the low-voltage differential driver 104 . The AC parameter test results corresponding to the low voltage differential driver 104 are compensated by the compensation module 106, which effectively solves the test error caused by the 50% transition time of the input signal. In addition, compared with directly using the TMU or TIA instrument in the ATE instrument to test the AC parameters of the low-voltage differential driver, the test results of the embodiment of the present application are more in line with the test requirements of the product manual, and the test results are more accurate.

以下结合说明书附图对本申请实施例所提供的一种低电压差分驱动器的交流参数测试方法做进一步详细的说明,该方法具体实现方式可以包括以下步骤(方法流程如图3所示):A method for testing AC parameters of a low-voltage differential driver provided in the embodiment of the present application will be further described in detail below in conjunction with the accompanying drawings. The specific implementation of the method may include the following steps (the method flow is shown in Figure 3):

步骤301、脉冲产生模块产生脉冲信号,并将脉冲信号发送给脉冲输出模块以及脉冲参数测量模块。Step 301, the pulse generation module generates a pulse signal, and sends the pulse signal to the pulse output module and the pulse parameter measurement module.

步骤302、脉冲输出模块接收脉冲信号,并将脉冲信号发送给脉冲参数测量模块以及低电压差分驱动器。Step 302, the pulse output module receives the pulse signal, and sends the pulse signal to the pulse parameter measurement module and the low voltage differential driver.

步骤303、脉冲参数测量模块接收脉冲信号,并测量脉冲信号的第一交流参数,以及将第一交流参数发送给补偿模块。Step 303, the pulse parameter measurement module receives the pulse signal, measures the first AC parameter of the pulse signal, and sends the first AC parameter to the compensation module.

步骤304、低电压差分驱动器接收脉冲信,以及根据脉冲信号输出差分信号,并将差分信号发送给差分输出参数测量模块。Step 304, the low-voltage differential driver receives the pulse signal, outputs a differential signal according to the pulse signal, and sends the differential signal to the differential output parameter measurement module.

步骤305、差分输出参数测量模块接收差分信号以及测量差分信号的第二交流参数,并将第二交流参数发送给补偿模块。Step 305, the differential output parameter measurement module receives the differential signal, measures a second AC parameter of the differential signal, and sends the second AC parameter to the compensation module.

步骤306、补偿模块根据第一交流参数以及第二交流参数计算得到低电压差分驱动器所对应的补偿后的交流参数。Step 306 , the compensation module calculates the compensated AC parameters corresponding to the low voltage differential driver according to the first AC parameters and the second AC parameters.

进一步,在本申请实施例所提供的方案中,图3所示的流程中,差分输出参数测量模块接收差分信号以及测量差分信号的第二交流参数,并将第二交流参数发送给补偿模块,包括:直流参数测量子模块测量每路差分输出端口的直流输出电压;交流参数测量子模块根据每路差分输出端口的直流输出电压计算对应的交流输出电压。Further, in the solution provided by the embodiment of the present application, in the process shown in Figure 3, the differential output parameter measurement module receives the differential signal and measures the second AC parameter of the differential signal, and sends the second AC parameter to the compensation module, Including: the DC parameter measurement sub-module measures the DC output voltage of each differential output port; the AC parameter measurement sub-module calculates the corresponding AC output voltage according to the DC output voltage of each differential output port.

具体的,本申请实施例所提供的方案中,交流参数测试方法简要流程如图4所示,包括如下几个过程:输入脉冲50%跳变延迟测试、低电压差分驱动器差分输出信号直流参数测试、设置差分信号交流参数测试判据参考电压、交流参数测试结果补偿计算。Specifically, in the solution provided by the embodiment of the present application, the brief flow of the AC parameter test method is shown in Figure 4, including the following several processes: input pulse 50% transition delay test, low voltage differential driver differential output signal DC parameter test , Set differential signal AC parameter test criterion reference voltage, AC parameter test result compensation calculation.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the application without departing from the spirit and scope of the application. In this way, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalent technologies, the present application is also intended to include these modifications and variations.

Claims (10)

1.一种低电压差分驱动器的交流参数测试系统,其特征在于,包括:脉冲产生模块、脉冲输出模块、脉冲参数测量模块、低电压差分驱动器、差分输出参数测量模块以及补偿模块;其中,1. An AC parameter testing system of a low-voltage differential driver, comprising: a pulse generation module, a pulse output module, a pulse parameter measurement module, a low-voltage differential driver, a differential output parameter measurement module and a compensation module; wherein, 所述脉冲产生模块,与所述脉冲输出模块耦合,用于产生脉冲信号;The pulse generation module is coupled with the pulse output module and is used to generate a pulse signal; 所述脉冲输出模块,与所述脉冲参数测量模块以及所述低电压差分驱动器耦合,用于将所述脉冲信号发送给所述脉冲参数测量模块以及所述低电压差分驱动器;The pulse output module is coupled with the pulse parameter measurement module and the low voltage differential driver, and is used to send the pulse signal to the pulse parameter measurement module and the low voltage differential driver; 所述脉冲参数测量模块,用于测量所述脉冲信号的第一交流参数;The pulse parameter measurement module is used to measure the first AC parameter of the pulse signal; 所述低电压差分驱动器,与所述差分输出参数测量模块,用于根据所述脉冲信号输出差分信号;The low-voltage differential driver and the differential output parameter measurement module are used to output a differential signal according to the pulse signal; 所述差分输出参数测量模块,用于测量所述差分信号的第二交流参数;The differential output parameter measurement module is used to measure the second AC parameter of the differential signal; 所述补偿模块,与所述脉冲参数测量模块以及所述差分输出参数测量模块耦合,用于根据所述第一交流参数以及所述第二交流参数计算得到所述低电压差分驱动器所对应的补偿后的交流参数。The compensation module, coupled with the pulse parameter measurement module and the differential output parameter measurement module, is used to calculate and obtain the compensation corresponding to the low voltage differential driver according to the first AC parameter and the second AC parameter After the exchange parameters. 2.如权利要求1所述的系统,其特征在于,其中,所述脉冲产生模块所产生的脉冲信号包括输入低电平电压到输入高电平电压的正向脉冲信号以及输入高电平电压到输入低电平电压的负向脉冲信号。2. The system according to claim 1, wherein the pulse signal generated by the pulse generation module includes a forward pulse signal from an input low-level voltage to an input high-level voltage and an input high-level voltage Negative-going pulse signal to input low-level voltage. 3.如权利要求2所述的系统,其特征在于,其中,所述脉冲输出模块包括一组输入端口、第一组输出端口以及第二组输出端口;其中,所述输入端口与所述第一组输出端口构成第一通道,所述输入端口与所述第二组输出端口构成第二通道;所述第一通道用于将所述脉冲信号发送给所述脉冲参数测量模块,所述第二通道用于将所述脉冲信号发送给所述低电压差分驱动器。3. The system according to claim 2, wherein the pulse output module includes a set of input ports, a first set of output ports, and a second set of output ports; wherein the input port and the second set of output ports A group of output ports constitutes a first channel, and the input port and the second group of output ports constitute a second channel; the first channel is used to send the pulse signal to the pulse parameter measurement module, and the second The two channels are used to send the pulse signal to the low voltage differential driver. 4.如权利要求3所述的系统,其特征在于,其中,所述脉冲输出模块在指定时刻通过所述第一通道将所述脉冲信号发送给所述脉冲参数测量模块;或通过所述第二通道将所述脉冲信号发送给所述低电压差分驱动器。4. The system according to claim 3, wherein, the pulse output module sends the pulse signal to the pulse parameter measurement module through the first channel at a specified moment; or through the second channel The second channel sends the pulse signal to the low voltage differential driver. 5.如权利要求1~4任一项所述的系统,其特征在于,其中,所述低电压差分驱动器包括至少一路差分输出端口;5. The system according to any one of claims 1-4, wherein the low-voltage differential driver includes at least one differential output port; 所述差分输出参数测量模块包括直流参数测量子模块以及交流参数测量子模块;其中,The differential output parameter measurement module includes a DC parameter measurement submodule and an AC parameter measurement submodule; wherein, 所述直流参数测量子模块,与所述低电压差分驱动器与所述交流参数测量子模块耦合,用于测量每路差分输出端口的直流输出电压;The DC parameter measurement submodule is coupled with the low voltage differential driver and the AC parameter measurement submodule, and is used to measure the DC output voltage of each differential output port; 所述交流参数测量子模块,用于根据所述每路差分输出端口的直流输出电压计算对应的交流输出电压。The AC parameter measurement sub-module is used to calculate the corresponding AC output voltage according to the DC output voltage of each differential output port. 6.如权利要求5所述的系统,其特征在于,其中,所述每路差分输出端口包括正向输出端口和反向输出端口;6. The system according to claim 5, wherein each differential output port includes a forward output port and a reverse output port; 所述直流输出电压包括每路差分输出端口中正向输出端口的输出高电压Voh_y、输出低电压Vol_y、输出三态拉偏电压Voz_y;以及每路差分输出端口中反向输出端口的输出高电压Voh_z、输出低电压Vol_z、输出三态拉偏电压Voz_z。The DC output voltage includes the output high voltage Voh_y, the output low voltage Vol_y, and the output tri-state pull bias voltage Voz_y of the positive output port in each differential output port; and the output high voltage Voh_z of the reverse output port in each differential output port , output low voltage Vol_z, and output tri-state pull bias voltage Voz_z. 7.如权利要求6所述的系统,其特征在于,其中,所述交流参数测量子模块根据所述每路差分输出端口中正向输出端口的输出高电压Voh_y、输出低电压Vol_y以及输出三态拉偏电压Voz_y计算正向输出端口的输出信号的上升时间、下降时间以及传输时延;以及7. The system according to claim 6, wherein the AC parameter measurement sub-module is based on the output high voltage Voh_y, the output low voltage Vol_y and the output tri-state of the positive output port in each differential output port The pull bias voltage Voz_y calculates the rise time, fall time and transmission delay of the output signal of the positive output port; and 根据所述每路差分输出端口中反向输出端口的输出高电压Voh_z、输出低电压Vol_z以及输出三态拉偏电压Voz_z计算反向输出端口所对应的输出信号的上升时间、下降时间以及传输时延。Calculate the rise time, fall time and transmission time of the output signal corresponding to the reverse output port according to the output high voltage Voh_z, output low voltage Vol_z and output tri-state pull bias voltage Voz_z of the reverse output port in each differential output port delay. 8.如权利要求7所述的系统,其特征在于,其中,所述脉冲产生模块、脉冲参数测量模块以及所述交流参数测量子模块时钟同步。8. The system according to claim 7, wherein the clocks of the pulse generation module, the pulse parameter measurement module and the AC parameter measurement sub-module are synchronized. 9.一种低电压差分驱动器的交流参数测试方法,其特征在于,包括:9. A method for testing AC parameters of a low-voltage differential driver, comprising: 脉冲产生模块产生脉冲信号,并将所述脉冲信号发送给脉冲输出模块以及脉冲参数测量模块;The pulse generation module generates a pulse signal, and sends the pulse signal to the pulse output module and the pulse parameter measurement module; 所述脉冲输出模块接收所述脉冲信号,并将所述脉冲信号发送给脉冲参数测量模块以及低电压差分驱动器;The pulse output module receives the pulse signal, and sends the pulse signal to the pulse parameter measurement module and the low voltage differential driver; 所述脉冲参数测量模块接收所述脉冲信号,并测量所述脉冲信号的第一交流参数,以及将所述第一交流参数发送给补偿模块;The pulse parameter measurement module receives the pulse signal, measures a first AC parameter of the pulse signal, and sends the first AC parameter to a compensation module; 所述低电压差分驱动器接收所述脉冲信,以及根据所述脉冲信号输出差分信号,并将所述差分信号发送给差分输出参数测量模块;The low-voltage differential driver receives the pulse signal, outputs a differential signal according to the pulse signal, and sends the differential signal to a differential output parameter measurement module; 所述差分输出参数测量模块接收所述差分信号以及测量所述差分信号的第二交流参数,并将所述第二交流参数发送给所述补偿模块;The differential output parameter measurement module receives the differential signal and measures a second AC parameter of the differential signal, and sends the second AC parameter to the compensation module; 所述补偿模块根据所述第一交流参数以及所述第二交流参数计算得到所述低电压差分驱动器所对应的补偿后的交流参数。The compensation module calculates the compensated AC parameter corresponding to the low voltage differential driver according to the first AC parameter and the second AC parameter. 10.如权利要求9所述的方法,其特征在于,其中,所述差分输出参数测量模块包括直流参数测量子模块以及交流参数测量子模块;其中,10. The method according to claim 9, wherein the differential output parameter measurement module includes a DC parameter measurement submodule and an AC parameter measurement submodule; wherein, 所述差分输出参数测量模块接收差分信号以及测量差分信号的第二交流参数,并将第二交流参数发送给补偿模块,包括:所述直流参数测量子模块测量每路差分输出端口的直流输出电压;所述交流参数测量子模块根据所述每路差分输出端口的直流输出电压计算对应的交流输出电压。The differential output parameter measurement module receives the differential signal and measures the second AC parameter of the differential signal, and sends the second AC parameter to the compensation module, including: the DC parameter measurement sub-module measures the DC output voltage of each differential output port ; The AC parameter measurement sub-module calculates the corresponding AC output voltage according to the DC output voltage of each differential output port.
CN202211448952.0A 2022-11-18 2022-11-18 A system and method for testing AC parameters of a low-voltage differential driver Pending CN115932537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211448952.0A CN115932537A (en) 2022-11-18 2022-11-18 A system and method for testing AC parameters of a low-voltage differential driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211448952.0A CN115932537A (en) 2022-11-18 2022-11-18 A system and method for testing AC parameters of a low-voltage differential driver

Publications (1)

Publication Number Publication Date
CN115932537A true CN115932537A (en) 2023-04-07

Family

ID=86648175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211448952.0A Pending CN115932537A (en) 2022-11-18 2022-11-18 A system and method for testing AC parameters of a low-voltage differential driver

Country Status (1)

Country Link
CN (1) CN115932537A (en)

Similar Documents

Publication Publication Date Title
JP5279724B2 (en) Test apparatus and calibration method
US20040133374A1 (en) System for providing a calibrated path for multi-signal cables in testing of integrated circuits
JPWO2005081004A1 (en) Skew adjustment method, skew adjustment apparatus, and test apparatus
US6879175B2 (en) Hybrid AC/DC-coupled channel for automatic test equipment
KR101329594B1 (en) Calibration device
KR20030026212A (en) Testing apparatus and method of testing semiconductor device
TWI729553B (en) Image testing system and its testing assembly
US11921158B2 (en) Fan-out buffer with skew control function, operating method thereof, and probe card including the same
CN114660523B (en) Digital channel output synchronization precision measurement and calibration method
CN113985245B (en) Semiconductor chip test system
CN115932537A (en) A system and method for testing AC parameters of a low-voltage differential driver
CN112788327B (en) Image test system and its test components
US10079701B1 (en) Three-valued signal generation device and three-valued signal generation method
JP2009156580A (en) Input capacitance measuring circuit
TW454090B (en) Apparatus and method for testing crossover point of voltage signal
CN113422596B (en) Multichannel signal conflux circuit, calibration circuit and test machine
JP3868843B2 (en) Edge conversion circuit and semiconductor test apparatus equipped with edge conversion circuit
US6748205B1 (en) Integrated circuit
CN114167256B (en) Analog measurement device and method based on digital TDR technology
CN112666453B (en) Method for testing digital function and output-input level and speed of integrated circuit
Wang Yield, overall test environment timing accuracy, and defect level trade-offs for high-speed interconnect device testing
KR20240096102A (en) Jitte measuring circuit, jitter analyzing apparatus including the same, and jitter analyzing method
CN115453332A (en) Output signal turnover time measuring method, device and test board
Wang et al. Simulation Study on Signal Integrity of Nuclear Safety DCS Main Control Module
JP2006189352A (en) Impedance conversion circuit, input and output circuit, and semi-conductor testing device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination