CN115896754A - 成膜方法和成膜装置 - Google Patents

成膜方法和成膜装置 Download PDF

Info

Publication number
CN115896754A
CN115896754A CN202211159390.8A CN202211159390A CN115896754A CN 115896754 A CN115896754 A CN 115896754A CN 202211159390 A CN202211159390 A CN 202211159390A CN 115896754 A CN115896754 A CN 115896754A
Authority
CN
China
Prior art keywords
gas
process gas
supply unit
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211159390.8A
Other languages
English (en)
Inventor
千叶贵司
佐藤润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN115896754A publication Critical patent/CN115896754A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供成膜方法和成膜装置。提供一种能够在形成了氮氧化硅膜后控制氮氧化硅膜的膜中氮浓度的技术。本发明的一形态的成膜方法具有以下工序:(a)在基板上形成含有硅(Si)、氧(O)以及氮(N)的膜;以及(b)将形成有所述膜的所述基板暴露于由含有Ar气体的等离子体生成气体生成的等离子体中,在该工序中,通过对所述等离子体生成气体中是否含有氮化气体进行切换,从而调整所述膜中含有的氮浓度。

Description

成膜方法和成膜装置
技术领域
本公开涉及成膜方法和成膜装置。
背景技术
已知有如下技术:在形成硅氧化膜之后,使用利用稀有气体的等离子体化而得到的等离子体来进行硅氧化膜的改性(例如,参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2014-090181号公报
发明内容
发明要解决的问题
本发明提供一种能够在形成氮氧化硅膜之后控制氮氧化硅膜的膜中氮浓度的技术。
用于解决问题的方案
本发明的一技术方案的成膜方法具有以下工序:(a)在基板上形成含有硅(Si)、氧(O)以及氮(N)的膜;以及(b)将形成有所述膜的所述基板暴露于由含有Ar气体的等离子体生成气体生成的等离子体中,在该工序中,通过对所述等离子体生成气体中是否含有氮化气体进行切换,从而调整所述膜中含有的氮浓度。
发明的效果
根据本发明,能够在形成氮氧化硅膜之后控制氮氧化硅膜的膜中氮浓度。
附图说明
图1是表示实施方式的成膜装置的结构例的剖视图。
图2是图1的成膜装置的俯视图。
图3是图1的成膜装置的沿着旋转台的同心圆的剖视图。
图4是设于图1的成膜装置的等离子体源的剖视图。
图5是设于图1的成膜装置的等离子体源的分解立体图。
图6是设于图5的等离子体源的壳体的一个例子的立体图。
图7是设于图1的成膜装置的等离子体源的另一剖视图。
图8是将设于等离子体处理区域的第3处理气体喷嘴放大表示的立体图。
图9是图5的等离子体源的一个例子的俯视图。
图10是表示设于等离子体源的法拉第屏蔽件的一部分的立体图。
图11是表示实施方式的成膜方法的一个例子的流程图。
图12是表示SiON膜的折射率的测量结果的图。
图13是表示SiON膜的膜厚的测量结果的图。
图14是表示改变了等离子体处理的条件时的SiON膜的折射率的测量结果的图。
图15是表示基于图14计算出的SiON膜中的氮和氧的浓度的图。
图16是表示改变了等离子体处理的条件时的SiON膜的膜厚的测量结果的图。
具体实施方式
以下,参照附图对本公开的非限定性的例示的实施方式进行说明。在附图中,对相同或对应的构件或部件标注相同或对应的附图标记,并省略重复的说明。
〔成膜装置〕
参照图1~图10,对实施方式的成膜装置的结构例进行说明。图1是表示实施方式的成膜装置的结构例的剖视图。图2是图1的成膜装置的俯视图。此外,在图2中,为了便于说明,省略了顶板的图示。
如图1所示,成膜装置具备:真空容器1,其俯视形状为大致圆形;以及旋转台2,其设于真空容器1内,在真空容器1的中心具有旋转中心并且用于使晶圆W公转。
真空容器1是用于收纳晶圆W并在晶圆W的表面上实施成膜处理而使薄膜沉积的处理室。真空容器1具备容器主体12和设于与旋转台2的后述的凹部24相对的位置的顶板11。在容器主体12的上表面的周缘设有呈圆环状设置的密封构件13。顶板11构成为能够相对于容器主体12装卸。俯视时的真空容器1的直径尺寸(内径尺寸)没有限定,例如可以是1100mm左右。
在真空容器1内的上表面侧的中央部连接有分离气体供给管51,该分离气体供给管51供给分离气体,以抑制互不相同的处理气体在真空容器1内的中心区域C彼此混合。
旋转台2在中心部固定于大致圆筒形状的芯部21,构成为利用驱动部23相对于与芯部21的下表面连接并且沿铅垂方向延伸的旋转轴22绕铅垂轴线、在图2所示的例子中以顺时针旋转自如。旋转台2的直径尺寸没有限定,例如可以是1000mm左右。
在驱动部23设有用于检测旋转轴22的旋转角度的编码器25。在实施方式中,由编码器25检测出的旋转轴22的旋转角度被发送到控制部120,并被用于利用控制部120特定在旋转台2上的各凹部24载置的晶圆W的位置。
旋转轴22和驱动部23收纳于罩体20。罩体20的上表面侧的凸缘部气密地安装于真空容器1的底面部14的下表面。在罩体20连接有吹扫气体供给管72,该吹扫气体供给管72用于向旋转台2的下方区域供给Ar气体等作为吹扫气体(分离气体)。
真空容器1的底面部14处的芯部21的外周侧以自下方侧接近旋转台2的方式形成为圆环状而构成突出部12a。
在旋转台2的表面形成有能够载置直径尺寸例如为300mm的晶圆W的圆形状的凹部24。凹部24沿着旋转台2的旋转方向(图2的箭头A所示的方向)设于多个部位,例如设于六个部位。凹部24具有比晶圆W的直径稍大、具体而言大1mm至4mm左右的内径。凹部24的深度构成为与晶圆W的厚度大致相等或者大于晶圆W的厚度。因而,当晶圆W被收纳于凹部24时,晶圆W的表面与旋转台2的不载置晶圆W的平坦区域的表面成为相同的高度,或者晶圆W的表面低于旋转台2的表面。另外,在凹部24的底面形成有贯通孔(未图示),该贯通孔供用于自下方侧将晶圆W顶起而使其升降的例如后述的三个升降销贯穿。
如图2所示,第1处理区域P1、第2处理区域P2以及第3处理区域P3沿着旋转台2的旋转方向互相分开地设置。在与旋转台2的凹部24的通过区域相对的位置,在真空容器1的周向上互相隔开间隔地呈放射状配置有例如由石英构成的多个气体喷嘴。在本实施方式中,多个气体喷嘴是第1处理气体喷嘴31、第2处理气体喷嘴32、第3处理气体喷嘴33~35以及分离气体喷嘴41、42。
第1处理气体喷嘴31、第2处理气体喷嘴32、第3处理气体喷嘴33~35以及分离气体喷嘴41、42配置于旋转台2与顶板11之间。第1处理气体喷嘴31、第2处理气体喷嘴32、第3处理气体喷嘴33、34以及分离气体喷嘴41、42分别以自真空容器1的外周壁朝向中心区域C与旋转台2相对地水平延伸的方式被安装。第3处理气体喷嘴35在自真空容器1的外周壁朝向中心区域C延伸之后弯曲,并呈直线沿着中心区域C以逆时针(向旋转台2的旋转方向的相反方向)延伸。在图2所示的例子中,自后述的输送口15以顺时针(向旋转台2的旋转方向)依次排列有第3处理气体喷嘴33~35、分离气体喷嘴41、第1处理气体喷嘴31、分离气体喷嘴42、第2处理气体喷嘴32。
第1处理气体喷嘴31构成第1处理气体供给部。第1处理气体喷嘴31的下方区域是供给第1处理气体的第1处理区域P1。第1处理气体喷嘴31经由流量调整阀连接于第1处理气体的供给源(未图示)。在第1处理气体喷嘴31的下表面侧(与旋转台2相对的一侧),沿着旋转台2的半径方向形成有多个气孔36,第1处理气体喷嘴31自多个气孔36喷出第1处理气体。在本实施方式中,第1处理气体是含有含硅气体的气体。
第2处理气体喷嘴32构成第2处理气体供给部。第2处理气体喷嘴32的下方区域是供给第2处理气体的第2处理区域P2。第2处理气体喷嘴32经由流量调整阀连接于第2处理气体的供给源(未图示)。在第2处理气体喷嘴32的下表面侧(与旋转台2相对的一侧),沿着旋转台2的半径方向形成有多个气孔36,第2处理气体喷嘴32自多个气孔36喷出第2处理气体。在本实施方式中,第2处理气体是含有氧化气体的气体。
第3处理气体喷嘴33~35分别构成第3处理气体供给部。第3处理气体喷嘴33~35的下方区域是供给第3处理气体和等离子体生成气体的第3处理区域P3。第3处理气体喷嘴33~35经由流量调整阀连接于第3处理气体的供给源(未图示)。在第3处理气体喷嘴33的下表面侧(与旋转台2相对的一侧),沿着旋转台2的半径方向形成有多个气孔36,第3处理气体喷嘴33~35自多个气孔36喷出第3处理气体。在本实施方式中,第3处理气体是含有氮化气体的气体,等离子体生成气体是含有Ar气体的气体。此外,第3处理气体喷嘴33~35也可以用一个气体喷嘴来代替。在该情况下,例如,也可以与第2处理气体喷嘴32同样地设置自真空容器1的外周壁朝向中心区域C延伸的气体喷嘴。
分离气体喷嘴41、42分别构成分离气体供给部。分离气体喷嘴41、42被设为用于形成将第1处理区域P1与第2处理区域P2以及第3处理区域P3与第1处理区域P1分离的分离区域D。在本实施方式中,分离气体为非活性气体或稀有气体。
图3是图1的成膜装置的沿着旋转台2的同心圆的剖视图,且是自分离区域D经由第1处理区域P1到分离区域D的剖视图。
在真空容器1的顶板11的处于分离区域D的部位设有大致扇形的凸状部4。凸状部4安装于顶板11的背面。在真空容器1内形成有作为凸状部4的下表面的较低的平坦的顶面(以下称为“第1顶面44”)和位于第1顶面44的周向上的两侧的高于第1顶面44的顶面(以下称为“第2顶面45”)。
如图2所示,形成第1顶面44的凸状部4具有顶部被切断成圆弧状的扇形的俯视形状。在凸状部4的周向上的中央,以沿半径方向延伸的方式形成有槽部43。在槽部43内收纳有分离气体喷嘴41、42。此外,凸状部4的周缘(真空容器1的外缘侧的部位)以与旋转台2的外端面相对且与容器主体12稍微分开的方式呈L字型弯曲,从而阻止各处理气体彼此的混合。
在第1处理气体喷嘴31的上方侧设有喷嘴盖230,以使第1处理气体沿着晶圆W流通,并且使分离气体避开晶圆W的附近而在真空容器1的顶板11侧流通。如图3所示,喷嘴盖230具备盖体231和整流板232。盖体231具有下表面侧开口的大致箱形,从而收纳第1处理气体喷嘴31。整流板232是分别与盖体231的下表面侧开口端的处于旋转台2的旋转方向上游侧和下游侧的部位连接的板状体。盖体231的处于旋转台2的旋转中心侧的侧壁面以与第1处理气体喷嘴31的前端部相对的方式朝向旋转台2伸出。另外,盖体231的处于旋转台2的外缘侧的侧壁面被切掉,以使其与第1处理气体喷嘴31不干涉。此外,喷嘴盖230不是必须的,可以根据需要而设置。
如图2所示,在第3处理气体喷嘴33~35的上方侧设有等离子体源80,以使向真空容器1内喷出的等离子体处理气体等离子体化。等离子体源80使用天线83产生电感耦合型等离子体。
图4是设于图1的成膜装置的等离子体源80的剖视图。图5是设于图1的成膜装置的等离子体源80的分解立体图。图6是设于图5的等离子体源80的壳体90的一个例子的立体图。
等离子体源80是将由金属线等形成的天线83呈线圈状地例如绕铅垂轴线卷绕三层而构成的。另外,等离子体源80配置为俯视时包围在旋转台2的径向上延伸的带状体区域,并且遍及旋转台2上的晶圆W的直径部分。
天线83经由匹配器84连接于频率例如为13.56MHz的RF电源85。天线83以相对于真空容器1的内部区域气密地划分的方式设置。此外,在图4和图5中,设有用于将天线83与匹配器84以及RF电源85电连接的连接电极86。
此外,天线83可以根据需要而具备能够上下弯折的结构、能够使天线83自动地上下弯折的上下移动机构、能够使旋转台2的中心侧的部位上下移动的机构。在图4中省略了这些结构。
如图4和图5所示,在第3处理气体喷嘴33~35的上方侧的顶板11形成有俯视时呈大致扇形开口的开口11a。
如图4所示,在开口11a具有沿着开口11a的开口缘部气密地设于开口11a的环状构件82。后述的壳体90气密地设于环状构件82的内周面侧。即,环状构件82以其外周侧与顶板11的开口11a的内周面11b接触,并且其内周侧与后述的壳体90的凸缘部90a接触的方式气密地设置。而且,为了使天线83位于比顶板11靠下方侧的位置,隔着环状构件82在开口11a设有例如由石英等的衍生物构成的壳体90。壳体90的底面构成第3处理区域P3的顶面46。
如图6所示,壳体90形成为上方侧的周缘遍及周向地呈凸缘状水平地伸出而构成凸缘部90a,并且俯视时中央部朝向下方侧的真空容器1的内部区域凹陷。
壳体90以在晶圆W位于该壳体90的下方的情况下遍及晶圆W的在旋转台2的径向上的直径部分的方式配置。此外,在环状构件82与壳体90之间设有O形环等密封构件11c(参照图4)。
借助环状构件82和壳体90将真空容器1的内部环境设定为气密。具体而言,将环状构件82和壳体90嵌入于开口11a内,接着,利用以沿着环状构件82和壳体90的上表面即环状构件82和壳体90的接触部的方式形成为框状的按压构件91,遍及周向地将壳体90朝向下方侧按压。进而,利用螺栓(未图示)等将按压构件91固定于顶板11。由此,真空容器1的内部环境被设定为气密。此外,在图5中,为了简化图示,省略环状构件82地表示。
如图6所示,在壳体90的下表面,以沿着周向包围该壳体90的下方侧的第3处理区域P3的方式形成有朝向旋转台2垂直地伸出的突起部92。而且,在由突起部92的内周面、壳体90的下表面以及旋转台2的上表面包围的区域收纳有上述的第3处理气体喷嘴33~35。此外,第3处理气体喷嘴33~35的基端部(真空容器1的内壁侧)的突起部92以沿着第3处理气体喷嘴33~35的外形的方式被切成大致圆弧状。
如图4所示,在壳体90的下方(第3处理区域P3)侧遍及周向地形成有突起部92。利用突起部92,密封构件11c不直接暴露于等离子体,即与第3处理区域P3隔离开。因此,即使等离子体要自第3处理区域P3向例如密封构件11c侧扩散,也会经由突起部92的下方而去,因此等离子体在到达密封构件11c之前失活。
图7是设于图1的成膜装置的等离子体源80的另一剖视图,且是表示沿着旋转台2的旋转方向将真空容器1剖切而得到的纵剖视图的图。如图7所示,在等离子体处理时,旋转台2以顺时针旋转,因此Ar气体随着该旋转台2的旋转而要自旋转台2与突起部92之间的间隙向壳体90的下方侧侵入。因此,为了阻止Ar气体经由间隙向壳体90的下方侧侵入,而自壳体90的下方侧向间隙喷出气体。具体而言,如图4和图7所示,第3处理气体喷嘴33的气孔36以朝向间隙的方式、即以朝向旋转台2的旋转方向上游侧且是朝向下方的方式配置。第3处理气体喷嘴33的气孔36相对于铅垂轴线所朝向的角度θ既可以如图7所示那样例如为45°左右,也可以以与突起部92的内侧面相对的方式为90°左右。也就是说,气孔36所朝向的角度θ在能够适当地防止Ar气体的侵入的45°~90°左右的范围内能够根据用途来设定。
图8是将设于第3处理区域P3的第3处理气体喷嘴33~35放大表示的立体图。如图8所示,第3处理气体喷嘴33是能够覆盖整个供晶圆W配置的凹部24且能够向晶圆W的整个表面供给等离子体处理气体的喷嘴。另一方面,第3处理气体喷嘴34是具有第3处理气体喷嘴33的一半左右的长度的喷嘴,并且以与第3处理气体喷嘴33大致重叠的方式设于比第3处理气体喷嘴33稍靠上方的位置。另外,第3处理气体喷嘴35具有如下形状:自真空容器1的外周壁以沿着扇形的第3处理区域P3的处于旋转台2的旋转方向下游侧的半径的方式延伸,并在到达中心区域C附近后以沿着中心区域C的方式呈直线弯曲。以下,为了容易区分,也将覆盖整体的第3处理气体喷嘴33称为基部喷嘴33,将仅覆盖外侧的第3处理气体喷嘴34称为外侧喷嘴34,将延伸至内侧的第3处理气体喷嘴35称为轴侧喷嘴35。
基部喷嘴33是用于向晶圆W的整个表面供给等离子体处理气体的气体喷嘴,如利用图7所说明的那样,朝向构成用于划分出第3处理区域P3的侧面的突起部92那一侧喷出等离子体处理气体。
另一方面,外侧喷嘴34是用于向晶圆W的外侧区域重点地供给等离子体处理气体的喷嘴。
轴侧喷嘴35是用于向晶圆W的靠近旋转台2的轴侧的中心区域重点地供给等离子体处理气体的喷嘴。
此外,在将第3处理气体喷嘴设为一个的情况下,仅设置基部喷嘴33即可。
接着,对等离子体源80的法拉第屏蔽件95进行更详细的说明。如图4和图5所示,在壳体90的上方侧收纳有接地的法拉第屏蔽件95,该法拉第屏蔽件95由以大致沿着该壳体90的内部形状的方式形成的导电性的板状体即金属板构成,该金属例如为铜等。法拉第屏蔽件95具备以沿着壳体90的底面的方式水平地卡定的水平面95a和遍及周向地自水平面95a的外末端向上方侧延伸的垂直面95b,该法拉第屏蔽件95也可以构成为俯视时成为例如大致六边形。
图9是图5的等离子体源80的一个例子的俯视图,表示省略了天线83的构造的详细情况和上下移动机构的等离子体源80的一个例子。图10是表示设于等离子体源80的法拉第屏蔽件95的一部分的立体图。
自旋转台2的旋转中心观察法拉第屏蔽件95时,法拉第屏蔽件95的位于右侧和左侧的上端边缘分别向右侧和左侧水平地伸出而形成支承部96。在法拉第屏蔽件95与壳体90之间设有框状体99,该框状体99自下方侧支承支承部96,并且分别支承于壳体90的中心区域C侧和旋转台2的外缘部侧的凸缘部90a(参照图5)。
在电场到达晶圆W的情况下,有时形成于晶圆W的内部的电配线等会受到电损伤。因此,如图10所示,在水平面95a形成有多个狭缝97,以阻止在天线83产生的电场和磁场(电磁场)中的电场成分向下方的晶圆W去,并且使磁场到达晶圆W。
如图9和图10所示,狭缝97以沿与天线83的卷绕方向正交的方向延伸的方式遍及周向地形成于天线83的下方位置。狭缝97形成为与向天线83供给的RF电力的频率对应的波长的1/10000以下程度的宽度尺寸。另外,在各个狭缝97的长度方向上的一端侧和另一端侧,以堵塞狭缝97的开口端的方式遍及周向地配置有由接地的导电体等形成的导电路97a。在法拉第屏蔽件95,在与这些狭缝97的形成区域错开的区域、即卷绕天线83的所卷绕的区域的中央侧形成有用于经由该区域确认等离子体的发光状态的开口98。
如图5所示,在法拉第屏蔽件95的水平面95a上层叠有厚度尺寸例如为2mm左右的由石英等形成的绝缘板94,以确保与载置于法拉第屏蔽件95的上方的等离子体源80之间的绝缘性。即,等离子体源80以隔着壳体90、法拉第屏蔽件95以及绝缘板94覆盖真空容器1的内部(旋转台2上的晶圆W)的方式配置。
再次对实施方式的成膜装置的其他构成要素进行说明。
如图1和图2所示,在旋转台2的外周侧,在比旋转台2靠下方的位置配置有作为盖体的侧环100。在侧环100的上表面以在周向上互相分开的方式形成有第1排气口61和第2排气口62。换言之,在真空容器1的底面形成有两个排气口,在侧环100的与这些排气口对应的位置处形成有第1排气口61和第2排气口62。
第1排气口61在第1处理气体喷嘴31与相对于第1处理气体喷嘴31位于旋转台2的旋转方向下游侧的分离区域D之间形成于靠近分离区域D侧的位置。第2排气口62在等离子体源80与比等离子体源80靠旋转台2的旋转方向下游侧的分离区域D之间形成于靠近分离区域D侧的位置。
第1排气口61是供第1处理气体、分离气体排出的排气口,第2排气口62是供等离子体处理气体、分离气体排出的排气口。如图1所示,第1排气口61和第2排气口62分别利用于途中设有蝶阀等压力调整部65的排气管63连接于作为真空排气机构的例如真空泵64。
如上所述,由于自中心区域C侧遍及外缘侧地配置有壳体90,因此对于自旋转台2的旋转方向的上游侧向第2处理区域P2流过来的气体,欲向第2排气口62去的流动有时会被壳体90限制。因此,在侧环100的上表面的比壳体90靠外周侧的部位形成有用于供气体流动的槽状的气体流路101。
如图1所示,在顶板11的下表面的中央部设有突出部5,该突出部5与凸状部4的靠中心区域C侧的部位连续地在整个周向上形成为大致圆环状,并且该突出部5的下表面形成为与凸状部4的下表面(第1顶面44)相同的高度。在芯部21的上方侧的比突出部5靠旋转台2的旋转中心侧的部位配置有迷宫构造部110,该迷宫构造部110用于抑制各种气体在中心区域C互相混合。
如上所述,壳体90形成至靠近中心区域C侧的位置,因此支承旋转台2的中央部的芯部21以旋转台2的上方侧的部位避开壳体90的方式形成于旋转中心侧。因此,在中心区域C侧,与外缘部侧相比,成为各种气体容易混合的状态。因此,通过在芯部21的上方侧形成迷宫构造部110,从而获得气体的流路,而能够防止气体彼此混合。
如图1所示,在旋转台2与真空容器1的底面部14之间的空间设有作为加热机构的加热器单元7。加热器单元7构成为能够经由旋转台2将旋转台2上的晶圆W加热到例如室温~700℃左右。此外,在图1中,在加热器单元7的侧方侧设有盖构件71,并且设有覆盖加热器单元7的上方侧的覆盖构件7a。另外,在真空容器1的底面部14,用于对加热器单元7的配置空间进行吹扫的吹扫气体供给管73在加热器单元7的下方侧遍及周向地设于多个部位。
如图2所示,在真空容器1的侧壁形成有用于在输送臂10与旋转台2之间进行晶圆W的交接的输送口15。输送口15构成为利用闸阀G气密地开闭自如。
旋转台2的凹部24在与输送口15相对的位置与输送臂10之间进行晶圆W的交接。因此,在旋转台2的下方侧的交接位置所对应的部位设有贯穿凹部24而用于自背面将晶圆W抬起的未图示的升降销和升降机构。
另外,在实施方式的成膜装置设有由用于控制装置整体的动作的计算机构成的控制部120。在控制部120的存储器内保存有用于进行后述的基板处理的程序。程序以执行装置的各种动作的方式编入有步骤组,从硬盘、光盘、光磁盘、存储卡、软盘等存储介质即存储部121安装于控制部120内。
〔成膜方法〕
参照图11,以使用上述成膜装置形成SiON膜的情况为例对实施方式的成膜方法进行说明。实施方式的成膜方法通过由控制部120控制成膜装置的整体的动作来进行。
如图11所示,实施方式的成膜方法通过依次进行SiON膜形成工序S1和等离子体退火工序S2来形成SiON膜。
首先,将晶圆W向真空容器1内送入。在送入晶圆W时,开放闸阀G,一边使旋转台2间歇地旋转,一边利用输送臂10经由输送口15将晶圆W载置于旋转台2上。在载置了晶圆W之后,使输送臂10退避到真空容器1的外部,并关闭闸阀G。
接着,进行SiON膜形成工序S1。在SiON膜形成工序S1中,在利用真空泵64和压力调整部65将真空容器1内控制为规定的压力的状态下,一边使旋转台2旋转,一边利用加热器单元7将晶圆W加热到规定的温度。此时,自分离气体喷嘴41、42供给分离气体(例如Ar气体)。另外,自第1处理气体喷嘴31供给第1处理气体(例如DIPAS气体)。另外,自第2处理气体喷嘴32供给第2处理气体(例如O3气体与O2气体的混合气体)。另外,自第3处理气体喷嘴33~35供给第3处理气体(例如NH3气体与Ar气体的混合气体)。另外,自RF电源85向天线83供给RF电力,使等离子体点火,而由第3处理气体生成等离子体。
在SiON膜形成工序S1中,利用旋转台2的旋转,在第1处理区域P1,DIPAS气体在晶圆W的表面吸附,接着,在第2处理区域P2,吸附于晶圆W上的DIPAS气体被O3气体氧化。由此,形成一层或多层作为薄膜成分的SiO2的分子层,并在晶圆W上沉积。当旋转台2进一步旋转时,晶圆W到达第3处理区域P3,向SiO2的分子层中导入氮。由此,在晶圆W上形成一层或多层SiON的分子层。
在这样的状态下,通过使旋转台2继续旋转,从而反复进行包括DIPAS气体的相对于晶圆W表面的吸附、吸附于晶圆W表面的DIPAS气体成分的氧化、以及氮的相对于SiO2的分子层中的导入的循环。即,基于ALD法的SiON膜的形成是利用旋转台2的旋转来进行的。然后,在SiON膜的膜厚达到目标膜厚之后,停止自RF电源85向天线83供给RF电力。另外,停止第1处理气体、第2处理气体以及第3处理气体的供给。
接着,进行等离子体退火工序S2。在等离子体退火工序S2中,在利用真空泵64和压力调整部65将真空容器1内控制为规定的压力的状态下,一边使旋转台2旋转,一边利用加热器单元7将晶圆W加热到规定的温度。此时,自分离气体喷嘴41、42供给分离气体(例如Ar气体)。另外,不自第1处理气体喷嘴31供给第1处理气体,而是自第2处理气体喷嘴32供给第2处理气体(例如O3气体与O2气体的混合气体)。另外,自第3处理气体喷嘴33~35供给等离子体生成气体(例如Ar气体、Ar气体与NH3气体的混合气体)。另外,自RF电源85向天线83供给RF电力,使等离子体点火,而由等离子体生成气体生成等离子体。
在等离子体退火工序S2中,通过对等离子体生成气体中是否含有NH3气体进行切换,来调整在SiON膜形成工序S1中形成的SiON膜的膜中氮浓度。在选择等离子体生成气体中不含NH3气体时,构成等离子体的Ar气体的活性种(Ar离子等)与SiON膜反应,SiON膜中的氮脱离,因此SiON膜的膜中氮浓度变低。另一方面,在选择等离子体生成气体中含有NH3气体时,构成等离子体的NH3气体的活性种(NH2自由基、NH自由基等)与SiON膜反应,向SiON膜中导入氮,因此SiON膜的膜中氮浓度变高。
在这样的状态下,通过使旋转台2继续旋转,形成于晶圆W的SiON膜暴露于由等离子体生成气体生成的等离子体中,由此进行膜中氮浓度的调整。然后,在经过了规定的时间之后,停止自RF电源85向天线83供给RF电力。另外,停止第2处理气体和等离子体生成气体的供给。之后,在停止旋转台2的旋转之后,将处理完成的晶圆W自真空容器1送出,并结束处理。
根据以上说明的实施方式的成膜方法,在SiON膜形成工序S1之后进行等离子体退火工序S2,通过在该等离子体退火工序S2中对等离子体生成气体中是否含有NH3气体进行切换,从而调整SiON膜中含有的氮浓度。由此,能够在形成了SiON膜后控制SiON膜的膜中氮浓度。
此外,在上述的实施方式的成膜方法中,说明了依次各进行一次SiON膜形成工序S1和等离子体退火工序S2的情况,但并不限定于此。例如,也可以交替地反复进行SiON膜形成工序S1和等离子体退火工序S2。
〔实施例〕
(实施例1)
在实施例1中,在上述的成膜装置中,在进行了SiON膜形成工序S1之后进行等离子体退火工序S2,由此在硅晶圆上形成SiON膜。此外,在实施例1中,在等离子体退火工序S2中,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体,并将其处理时间设定为0分钟(无等离子体退火工序S2)、1分钟、5分钟、10分钟。接着,针对各个SiON膜测量折射率和膜厚。SiON膜形成工序S1的条件和等离子体退火工序S2的条件如下。
<SiON膜形成工序S1>
晶圆温度:400℃
真空容器1内的压力:1.8Torr~2.0Torr(240Pa~267Pa)
RF电力:4000W
第1处理气体喷嘴31:DIPAS气体
第2处理气体喷嘴32:O3气体与O2气体的混合气体
第3处理气体喷嘴33~35:Ar气体与NH3气体的混合气体
旋转台2的旋转速度:10rpm
<等离子体退火工序S2>
晶圆温度:400℃
真空容器1内的压力:1.8Torr~2.0Torr(240Pa~267Pa)
RF电力:4000W
第1处理气体喷嘴31:未使用(未供给第1处理气体)
第2处理气体喷嘴32:O3气体与O2气体的混合气体
第3处理气体喷嘴33~35:Ar气体
旋转台2的旋转速度:10rpm
处理时间:0分钟、1分钟、5分钟、10分钟
图12是表示SiON膜的折射率的测量结果的图。在图12中,横轴表示等离子体退火工序S2的处理时间[分钟],纵轴表示SiON膜的折射率。
如图12所示,可知在等离子体退火工序S2中,通过自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体,从而SiON膜的折射率变低。另外,可知等离子体退火工序S2的处理时间越长,SiON膜的折射率越低。在此,已知对于SiON膜,膜中的氧(O)相对于氮(N)的组成比越高则折射率越低。考虑到这一点,可以说,在等离子体退火工序S2中,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体,并使其处理时间延长,从而能够提高SiON膜中的氧相对于氮的组成比。由此示出了:在等离子体退火工序S2中,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体,并使其处理时间变化,从而能够控制SiON膜中的氮浓度和氧浓度。
图13是表示SiON膜的膜厚的测量结果的图。图13中,横轴表示等离子体退火工序S2的处理时间[分钟],纵轴表示SiON膜的膜厚
Figure BDA0003858905190000151
如图13所示,可知即使等离子体退火工序S2的处理时间变化,SiON膜的膜厚也几乎相同。根据该结果,可以说进行等离子体退火工序S2对SiON膜的膜厚几乎没有影响。另外,虽然省略图示,但即使等离子体退火工序S2的处理时间发生变化,SiON膜的膜厚的面内均匀性也几乎相同。根据该结果,可以说进行等离子体退火工序S2对SiON膜的膜厚的面内均匀性也几乎没有影响。
(实施例2)
在实施例2中,对于上述的成膜装置,在不同的7个条件(条件1~7)下形成SiON膜,并针对各个SiON膜测量折射率和膜厚。另外,通过使用SiON膜的折射率与SiON膜中的氮浓度以及氧浓度之间的公知的关系式,计算出与所测量的SiON膜的折射率对应的SiON膜中的氮浓度和氧浓度。
条件1是在进行了SiON膜形成工序S1之后不进行等离子体退火工序S2的条件。
条件2~5是在进行SiON膜形成工序S1之后进行等离子体退火工序S2的条件。在条件2中,在等离子体退火工序S2中自第2处理气体喷嘴32供给O3气体和O2气体,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体。在条件3中,在等离子体退火工序S2中,自第2处理气体喷嘴32不供给O3气体而是供给O2气体,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体。在条件4中,在等离子体退火工序S2中,自第2处理气体喷嘴32不供给O3气体而是供给O2气体,自第3处理气体喷嘴33~35供给Ar气体和NH3气体。在条件5中,在等离子体退火工序S2中,自第2处理气体喷嘴32供给O3气体和O2气体,自第3处理气体喷嘴33~35供给Ar气体和NH3气体。
条件6~7是在上述的SiON膜形成工序S1之后代替等离子体退火工序S2而实施不使用等离子体的退火工序的条件。在条件6中,在退火工序中,自第2处理气体喷嘴32供给O3气体和O2气体,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体。在条件7中,在退火工序中,自第2处理气体喷嘴32不供给O3气体而是供给O2气体,自第3处理气体喷嘴33~35不供给NH3气体而是供给Ar气体。
SiON膜形成工序S1的条件、等离子体退火工序S2的条件以及退火工序的条件如下。
<SiON膜形成工序S1>
晶圆温度:400℃
真空容器1内的压力:1.8Torr~2.0Torr(240Pa~267Pa)
RF电力:4000W
第1处理气体喷嘴31:DIPAS气体
第2处理气体喷嘴32:O3气体与O2气体的混合气体
第3处理气体喷嘴33~35:Ar气体与NH3气体的混合气体
旋转台2的旋转速度:10rpm
<等离子体退火工序S2>
晶圆温度:400℃
真空容器1内的压力:1.8Torr~2.0Torr(240Pa~267Pa)
RF电力:4000W
第1处理气体喷嘴31:未使用(未供给第1处理气体)
第2处理气体喷嘴32:O3气体与O2气体的混合气体、O2气体
第3处理气体喷嘴33~35:Ar气体、Ar气体与NH3气体的混合气体
旋转台2的旋转速度:10rpm
<退火工序>
晶圆温度:400℃
真空容器1内的压力:1.8Torr~2.0Torr(240Pa~267Pa)
RF电力:0W
第1处理气体喷嘴31:未使用(未供给第1处理气体)
第2处理气体喷嘴32:O3气体与O2气体的混合气体、O2气体
第3处理气体喷嘴33~35:Ar气体
旋转台2的旋转速度:10rpm
图14是表示条件1~7下的SiON膜的折射率的测量结果的图。
如图14所示,可知在条件2、3下,相比于条件1,SiON膜的折射率较低。即,可知当在等离子体退火工序S2中自第3处理气体喷嘴33~35供给Ar气体时,相比于不进行等离子体退火工序S2的情况,SiON膜的折射率变低。特别是,可知在条件2下,相比于条件3,SiON膜的折射率变低。即,可知当在等离子体退火工序S2中自第2处理气体喷嘴32供给O3气体时,相比于自第2处理气体喷嘴32不供给O3气体的情况,SiON膜的折射率变低。
另外,如图14所示,可知在条件4下,相比于条件1,SiON膜的折射率较高。即,可知当在等离子体退火工序S2中自第2处理气体喷嘴32不供给O3气体且自第3处理气体喷嘴33~35供给Ar气体和NH3气体时,相比于不进行等离子体退火工序S2的情况,SiON膜的折射率变高。
根据这些结果,示出了通过在等离子体退火工序S2中切换自第3处理气体喷嘴33~35供给的气体中是否含有NH3气体,能够调整SiON膜的折射率。
另外,如图14所示,可知在条件5下,相对于条件1,SiON膜的折射率大致不变。即,可知若在等离子体退火工序S2中自第2处理气体喷嘴32供给O3气体,自第3处理气体喷嘴33~35供给Ar气体和NH3气体,则相对于不进行等离子体退火工序S2的情况,SiON膜的折射率大致不变。根据该结果可认为,为了在等离子体退火工序S2中调整SiON膜的折射率,要求自第2处理气体喷嘴32不供给O3气体。
另外,如图14所示,可知在条件6、7下,相对于条件1,SiON膜的折射率大致不变。即,可知若代替等离子体退火工序S2而进行退火工序,则相对于不进行退火工序的情况,SiON膜的折射率大致不变。根据该结果可认为,为了调整SiON膜的折射率,要求进行等离子体退火工序S2。
图15是表示基于图14计算出的SiON膜中的氮和氧的浓度的图。图15中,菱形标记表示氮(N)浓度,方形标记表示氧(O)浓度。
如图15所示,可知在条件2、条件3下,相比于条件1,SiON膜中的氮浓度较低。即,可知若在等离子体退火工序S2中自第3处理气体喷嘴33~35供给Ar气体,则相比于不进行等离子体退火工序S2的情况,SiON膜中的氮浓度变低。特别是,可知,在条件2下,相比于条件3,SiON膜中的氮浓度变低。即,可知若在等离子体退火工序S2中自第2处理气体喷嘴32供给O3气体,则相比于不自第2处理气体喷嘴32供给O3气体的情况,SiON膜中的氮浓度变低。
另外,如图15所示,可知,在条件4下,相比于条件1,SiON膜中的氮浓度较高。即,可知若在等离子体退火工序S2中不自第2处理气体喷嘴32供给O3气体而是自第3处理气体喷嘴33~35供给Ar气体和NH3气体,则相比于不进行等离子体退火工序S2的情况,SiON膜中的氮浓度变高。
根据这些结果,示出了通过在等离子体退火工序S2中对自第3处理气体喷嘴33~35供给的气体中是否含有NH3气体进行切换,从而能够调整SiON膜中的氮浓度。
另外,如图15所示,可知,在条件5下,相比于条件1,SiON膜的氮浓度大致不变。即,可知若在等离子体退火工序S2中自第2处理气体喷嘴32供给O3气体并且自第3处理气体喷嘴33~35供给Ar气体和NH3气体,则相对于不进行等离子体退火工序S2的情况,SiON膜中的氮浓度大致不变。根据该结果可认为,为了在等离子体退火工序S2中调整SiON膜中的氮浓度,要求自第2处理气体喷嘴32不供给O3气体。
另外,如图15所示,可知在条件6、条件7下,相比于条件1,SiON膜中的氮浓度大致不变。即,可知若代替等离子体退火工序S2而进行退火工序,则相比于不进行退火工序的情况,SiON膜中的氮浓度大致不变。根据该结果可认为,为了调整SiON膜中的氮浓度,要求进行等离子体退火工序S2。
图16是表示条件1~7下的SiON膜的膜厚的测量结果的图。
如图16所示,可知在条件1~7中的任一条件下,SiON膜的膜厚都几乎相同。根据该结果,可以说几乎不存在等离子体退火工序S2的有无、退火工序的有无、以及在等离子体退火工序S2中自第3处理气体喷嘴33~35供给的气体的差异对SiON膜的膜厚造成的影响。另外,虽然省略图示,但在条件1~7中的任一条件下,SiON膜的膜厚的面内均匀性也几乎相同。根据该结果,可以说也几乎不存在等离子体退火工序S2的有无、退火工序的有无、以及在等离子体退火工序S2中自第3处理气体喷嘴33~35供给的气体的差异对SiON膜的膜厚的面内均匀性造成的影响。
应该认为本次公开的实施方式在所有方面都是例示而不是限制性的内容。上述的实施方式在不脱离权利要求书及其主旨的情况下,可以以各种方式进行省略、置换、变更。
在上述的实施方式中,说明了成膜装置是利用旋转台使配置于处理容器内的旋转台上的多个基板公转,使其依次经过多个处理区域而对基板进行处理的半批式的装置的情况,但本公开并不限定于此。例如,成膜装置也可以是对多个基板一次地进行处理的批量式的装置。另外,例如,成膜装置也可以是对基板逐张地进行处理的单片式的装置。
在上述的实施方式中,对第1处理气体为DIPAS气体的情况进行了说明,但本公开并不限定于此。第1处理气体只要是含有含硅气体的气体即可,也可以在除了含硅气体以外含有Ar气体等非活性气体。作为含硅气体,例如能够利用氨基硅烷系气体、氢化硅气体、含卤素硅气体以及它们的组合。作为氨基硅烷系气体,例如可列举出DIPAS(二异丙基氨基硅烷)气体、3DMAS(三-二甲基氨基硅烷)气体、BTBAS(双叔丁基氨基硅烷)气体。作为氢化硅气体,例如可举出SiH4(MS)气体、Si2H6(DS)气体、Si3H8气体、Si4H10气体。作为含卤素硅气体,例如可举出SiF4气体、SiHF3气体、SiH2F2气体、SiH3F气体等含氟硅气体、SiCl4气体、SiHCl3气体、SiH2Cl2(DCS)气体、SiH3Cl气体、Si2Cl6气体等含氯硅气体、SiBr4气体、SiHBr3气体、SiH2Br2气体、SiH3Br气体等含溴硅气体。
在上述的实施方式中,对第2处理气体为O3气体与O2气体的混合气体的情况进行了说明,但本公开并不限定于此。第2处理气体只要是含有氧化气体的气体即可,也可以在除了氧化气体以外含有Ar气体等非活性气体。作为氧化气体,例如能够利用O2气体、O3气体、H2O气体、NO2气体及它们的组合。
在上述的实施方式中,对第3处理气体为NH3气体与Ar气体的混合气体的情况进行了说明,但本公开并不限定于此。第3处理气体只要是含有氮化气体的气体即可。作为氮化气体,例如能够利用氨(NH3)气体、二氮烯(N2H2)气体、肼(N2H4)气体、单甲基肼(CH3(NH)NH2)气体及它们的组合。
在上述的实施方式中,对等离子体生成气体为Ar气体或Ar气体与NH3气体的混合气体的情况进行了说明,但本公开并不限定于此。例如,能够利用上述的其他氮化气体来代替NH3气体。
在上述的实施方式中,对形成SiON膜的情况进行了说明,但本公开并不限定于此。例如,利用实施方式的成膜方法形成的膜只要是含有硅(Si)、氧(O)和氮(N)的膜即可,也可以含有其他元素。

Claims (9)

1.一种成膜方法,其中,
该成膜方法具有以下工序:
工序a,在基板上形成含有硅Si、氧O以及氮N的膜;
工序b,将形成有所述膜的所述基板暴露于由含有Ar气体的等离子体生成气体生成的等离子体中,在该工序中,通过对所述等离子体生成气体中是否含有氮化气体进行切换,从而调整所述膜中含有的氮浓度。
2.根据权利要求1所述的成膜方法,其中,
所述工序b包括以下内容:通过使所述等离子体生成气体中不含氮化气体,从而使所述膜中含有的氮浓度降低。
3.根据权利要求1所述的成膜方法,其中,
所述工序b包括以下内容:通过使所述等离子体生成气体中含有氮化气体,从而使所述膜中含有的氮浓度升高。
4.根据权利要求1~3中任一项所述的成膜方法,其中,
交替地反复进行所述工序a和所述工序b。
5.根据权利要求1~4中任一项所述的成膜方法,其中,
所述工序a包括反复进行包含以下步骤的循环这样的内容:
向所述基板供给含有含硅气体的第1处理气体的步骤;
向所述基板供给含有氧化气体的第2处理气体的步骤;以及
向所述基板供给含有氮化气体的第3处理气体的步骤。
6.根据权利要求5所述的成膜方法,其中,
所述等离子体生成气体中含有的氮化气体与所述第3处理气体中含有的氮化气体相同。
7.根据权利要求5或6所述的成膜方法,其中,
所述基板沿着周向配置于在真空容器内设置的旋转台的上表面,
在所述真空容器内的所述旋转台的上方,沿着所述旋转台的旋转方向设有能够供给所述第1处理气体的第1处理气体供给部、能够供给所述第2处理气体的第2处理气体供给部、能够供给所述第3处理气体或所述等离子体生成气体的第3处理气体供给部,
所述工序a通过以下方式进行:在自所述第1处理气体供给部供给所述第1处理气体,自所述第2处理气体供给部供给所述第2处理气体,自所述第3处理气体供给部供给所述第3处理气体,并且由所述第3处理气体生成了等离子体的状态下,使所述旋转台旋转,
所述工序b通过以下方式进行:在不自所述第1处理气体供给部供给所述第1处理气体,而自所述第3处理气体供给部供给所述等离子体生成气体,并且由所述等离子体生成气体生成了等离子体的状态下,使所述旋转台旋转。
8.根据权利要求7所述的成膜方法,其中,
所述工序b在自所述第2处理气体供给部供给所述第2处理气体的状态下进行。
9.一种成膜装置,其中,
该成膜装置具备:
旋转台,其设于真空容器内,沿着周向在该旋转台的上表面载置多个基板;
在所述真空容器内的所述旋转台的上方沿着所述旋转台的旋转方向具备第1处理气体供给部、第2处理气体供给部以及第3处理气体供给部,该第1处理气体供给部能够供给含有含硅气体的第1处理气体,该第2处理气体供给部能够供给含有氧化气体的第2处理气体,该第3处理气体供给部能够供给含有氮化气体的第3处理气体或者含有Ar气体的等离子体生成气体;以及
控制部,
所述控制部构成为控制所述旋转台、所述第1处理气体供给部、所述第2处理气体供给部以及所述第3处理气体供给部,以执行以下工序:
在自所述第1处理气体供给部供给所述第1处理气体,自所述第2处理气体供给部供给所述第2处理气体,自所述第3处理气体供给部供给所述第3处理气体,并且由所述第3处理气体生成了等离子体的状态下,使所述旋转台旋转,从而在所述基板上形成含有硅Si、氧O以及氮N的膜;以及
在不自所述第1处理气体供给部供给所述第1处理气体,而自所述第3处理气体供给部供给所述等离子体生成气体,并且由所述等离子体生成气体生成了等离子体的状态下,使所述旋转台旋转,从而将形成有所述膜的所述基板暴露于由所述等离子体生成气体生成的等离子体中,在该工序中,通过对所述等离子体生成气体中是否含有氮化气体进行切换,从而调整所述膜中含有的氮浓度。
CN202211159390.8A 2021-09-30 2022-09-22 成膜方法和成膜装置 Pending CN115896754A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161577A JP2023051104A (ja) 2021-09-30 2021-09-30 成膜方法及び成膜装置
JP2021-161577 2021-09-30

Publications (1)

Publication Number Publication Date
CN115896754A true CN115896754A (zh) 2023-04-04

Family

ID=85706204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211159390.8A Pending CN115896754A (zh) 2021-09-30 2022-09-22 成膜方法和成膜装置

Country Status (4)

Country Link
US (1) US20230094328A1 (zh)
JP (1) JP2023051104A (zh)
KR (1) KR20230046975A (zh)
CN (1) CN115896754A (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692337B2 (ja) 2013-11-25 2015-04-01 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体

Also Published As

Publication number Publication date
US20230094328A1 (en) 2023-03-30
KR20230046975A (ko) 2023-04-06
JP2023051104A (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6807792B2 (ja) プラズマ生成方法及びこれを用いたプラズマ処理方法、並びにプラズマ処理装置
KR101535682B1 (ko) 활성화 가스 인젝터, 성막 장치 및 성막 방법
US20140123895A1 (en) Plasma process apparatus and plasma generating device
US20110155057A1 (en) Plasma process apparatus
JP6750534B2 (ja) 成膜装置
US11131023B2 (en) Film deposition apparatus and film deposition method
KR102190279B1 (ko) 안테나 장치 및 이것을 사용한 플라즈마 발생 장치, 및 플라즈마 처리 장치
US11118264B2 (en) Plasma processing method and plasma processing apparatus
US10796902B2 (en) Film deposition method
US11274372B2 (en) Film deposition apparatus
US10920316B2 (en) Substrate processing apparatus
KR101990667B1 (ko) 성막 장치
US20220223408A1 (en) Method for depositing film and film deposition system
US10287675B2 (en) Film deposition method
JP2020191340A (ja) 成膜方法
CN115896754A (zh) 成膜方法和成膜装置
US20240124976A1 (en) Film forming method and film forming apparatus
KR101512880B1 (ko) 성막 방법 및 성막 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication