CN115862310A - 交通信息不确定环境下网联自动车队稳定性分析方法 - Google Patents

交通信息不确定环境下网联自动车队稳定性分析方法 Download PDF

Info

Publication number
CN115862310A
CN115862310A CN202211524899.8A CN202211524899A CN115862310A CN 115862310 A CN115862310 A CN 115862310A CN 202211524899 A CN202211524899 A CN 202211524899A CN 115862310 A CN115862310 A CN 115862310A
Authority
CN
China
Prior art keywords
automatic
vehicle
fleet
information
motorcade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211524899.8A
Other languages
English (en)
Other versions
CN115862310B (zh
Inventor
周博见
陈婧煦
李世豪
董潇潇
陈洁
陈可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202211524899.8A priority Critical patent/CN115862310B/zh
Publication of CN115862310A publication Critical patent/CN115862310A/zh
Application granted granted Critical
Publication of CN115862310B publication Critical patent/CN115862310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明公开交通信息不确定环境下网联自动车队稳定性分析方法,包括:获取网联自动车队中车辆的基本信息,建立相应的动态跟驰模型;分析并确定网联自动车队的信息不确定平均水平;在动态跟驰模型基础上,利用信息不确定平均水平构建网联自动车队动态模型;引入扰动,计算扰动状态下的车队动态模型的传递函数;根据传递函数计算网联自动车队的稳定性条件,利用稳定性条件判断网联自动车队的稳定性。本发明针对交通信息不确定环境下的网联自动车队,构建相应的动态跟驰模型,能够更好地反映真实的网联自动车队跟驰特性;通过本发明提供的车队稳定性分析方法,可以获得交通信息不确定环境下网联自动车队的稳定条件。

Description

交通信息不确定环境下网联自动车队稳定性分析方法
技术领域
本发明涉及网联自动车队跟驰特性建模及稳定性分析技术,特别涉及交通信息不确定环境下网联自动车队稳定性分析方法。
背景技术
随着城市化进程的加快,人们的生活水平有了前所未有的提升,机动车作为人们重要的代步工具,已经得到了广泛的普及。机动车数量的增加不仅造成停车困难,也导致许多城市的交通经常出现瘫痪,交通拥堵已经成为常态,这样不仅造成了资源的浪费,同时汽车排放的尾气也给城市的环境治理带来了沉重的负担。为了解决关于交通的一系列问题,国内外众多学者已经从不同的角度对交通流的演化机理、交通拥堵的形成及消散机制展开了研究,根据不同交通现象交通流动的本质,指导实际的交通设计。在交通科学中,交通流动力学是最为基础的学科,通过运用多学科的知识,分析不同交通系统下人、车及路之间的相关性,找到其内在的相互关系。目前该学科正在逐步走向成熟,也代表着现代交通系统正在不断地走向完善,基于交通流动力学,建立能够反映不同交通系统一般交通特性的交通流模型,运用相关的分析方法和工具,揭示不同交通系统的交通流动演化特性,用来指导实际的交通设计与规划。
未来,交通流将由网联自动车构成,也即:网联自动车队,在构建网联自动车队模型的过程中,由于设备故障、网络波动和设备精度等原因,车辆获取的信息会与实际的信息之间存在一定的差异,这种差异导致了交通环境具有信息不确定的特征,这种信息的不确定特征会通过影响单辆车的运动状态,会间接地影响整个网联自动车队系统内车辆运行的状态,这直接关系着系统的交通流稳定性。现有模型在对网联自动车队进行建模时,较少考虑到相关交通信息的不确定性特征,因此构造的网联自动车队模型并不能完全反应实际交通状况,使得稳定性研究具有一定的偏差。
发明内容
发明目的:针对以上问题,本发明目的是提供一种交通信息不确定环境下网联自动车队稳定性分析方法,针对交通信息不确定环境下的网联自动车队,通过真车实验确定网联自动车队的信息不确定平均水平;在基础的跟驰模型基础上,利用交通信息不确定平均水平构建网联自动车队动态模型,分析在信息不确定性情况下分析网联自动车队的稳定性。
技术方案:本发明的一种基于交通信息不确定性特征的交通流稳定性分析方法,包括:获取网联自动车队中车辆的基本信息,建立相应的动态跟驰模型;通过真车实验确定网联自动车队的信息不确定平均水平;在动态跟驰模型基础上,利用信息不确定平均水平构建网联自动车队动态模型;引入扰动,计算扰动状态下的网联自动车队动态模型的传递函数;根据传递函数计算网联自动车队的稳定性条件,利用稳定性条件判断网联自动车队的稳定性。
进一步,动态跟驰模型表达式为:
Figure BDA0003972691010000021
式中,vn(t)表示当前车辆n在t时刻的速度;sn(t)表示第n-1辆车和第n辆车在t时刻的车头间距,sn(t)=xn-1(t)-xn(t),xn(t)和xn-1(t)分别表示第n辆车及第n-1辆车在t时刻的位置;Δvn(t)表示第n-1辆车和第n辆车在t时刻的速度差,Δvn(t)=vn-1(t)-vn(t);f(·)表示非线性函数。
进一步,在网联自动车队中,当前车辆获取的位置信息和速度信息与实际的信息之间存在一定的差异,其中,位置信息的不确定性会导致前后两辆车之间的车头间距信息变得不精确,通过进行真车实验,获取当前网联自动车队的信息不确定性平均水平,包括:车头间距信息不确定性平均水平ds和速度信息不确定性平均水平dv
进一步,将信息不确定性平均水平整合到车辆的动态跟驰模型中,得到交通信息不确定环境下的网联自动车队动态跟驰模型,表达式为:
Figure BDA0003972691010000022
当ds<0且dv<0时,表示车辆获取的车头间距和速度信息比实际车头间距和速度信息小;
当ds>0且dv>0时,表示车辆获取的车头间距和速度信息比实际车头间距和速度信息大;
当ds=0且dv=0时,表示车辆获取的车头间距和速度信息与实际车头间距和速度信息一致。
引入扰动,计算扰动状态下的网联自动车队动态模型的传递函数包括:
(1)、初始状态下网联自动车队处于稳定状态,车队中每辆车的速度和车头间距均会保持一致,且每辆车的加速度为零,稳定状态下车队跟驰模型表示为:
f(ve,se,0)=0
式中,ve代表网联自动车队处于稳态时所有车辆的速度,se代表网联自动车队处于稳态时所有车辆之间的车头间距;
(2)、在网联自动车队稳定状态下,引入扰动,第n辆车受到扰动的影响,在该扰动影响下,第n辆车速度和车头间距会与平衡态的速度和车头间距之间出现差异,该差异由以下公式表示:
Figure BDA0003972691010000031
式中,yn(t)和un(t)分别表示车头间距和速度的扰动;
(3)、通过一阶泰勒展开,将网联自动车队动态模型进行线性近似处理,省略高阶项,得到的网联自动车队系统动态方程为:
Figure BDA0003972691010000032
/>
式中,fs、fv和fΔv分别表示网联自动车队控制模型在平衡点对车头间距、速度和速度差的偏导数,表达式分别为:
Figure BDA0003972691010000033
Figure BDA0003972691010000034
Figure BDA0003972691010000035
(4)、将扰动带入至网联自动车队系统动态方程中,得到扰动下网联自动车队系统动态方程表达式为:
Figure BDA0003972691010000036
Figure BDA0003972691010000037
进一步,引入扰动,计算扰动状态下的网联自动车队动态模型的传递函数还包括:
(5)、将扰动下车队系统动态方程进行拉普拉斯变换,得到扰动下网联自动车队系统在复数域的动态方程为:
Figure BDA0003972691010000041
式中,Un(s)和Yn(s)分别为un(t)和yn(t)进行拉普拉斯变换之后的形式,s表示复变量;
(6)、根据传递函数定义,计算扰动下网联自动车队系统的传递函数为:
Figure BDA0003972691010000042
将传递函数域转变至频率域,得到的表达式为:
Figure BDA0003972691010000043
式中,j和ω分别表示频率域的虚数与频率。
进一步,根据传递函数计算网联自动车队的稳定性条件包括:
当网联自动车队处于稳定状态时,传递函数小于1,则有|G(s)|=|G(jω)|<1,由此计算得到网联自动车队的中性稳定性条件为:
Figure BDA0003972691010000044
当F>0时,网联自动车队处于稳定状态;反之,则网联自动车队处于不稳定状态。
有益效果:本发明与现有技术相比,其显著优点是:本发明针对交通信息不确定环境下的网联自动车队,通过真车实验确定车队系统的信息不确定性平均水平,将信息不确定平均水平整合到基础的网联自动车队跟驰模型中,构建相应的网联自动车队跟驰模型,能够更好地反映真实的交通流特性;同时,通过本发明提供的网联自动车队稳定性分析方法,可以获得交通信息不确定环境下的网联自动车队稳定条件,并能获取交通信息不确定性水平值的大小对网联自动车队稳定性产生的影响趋势;本发明方法扩展了基础的网联自动车队跟驰模型,能够为未来智能网联环境下出现的不确定性状况提供相应的网联自动车队建模和稳定性分析方法,同时为交通控制及驾驶策略的设计提供基本依据,从而提高网联自动车队的稳定性,有效地缓解交通流拥堵。
附图说明
图1是本发明的一个实施方式流程图;
图2是在不同速度信息不确定性水平下网联自动车队稳定曲线的变化图;
图3是在不同车头间距信息不确定性水平下网联自动车队稳定曲线的变化图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
如图1,本实施例所述的交通信息不确定环境下网联自动车队稳定性分析方法,包括:获取网联自动车队中车辆的基本信息,建立相应的动态跟驰模型;分析并确定网联自动车队的信息不确定平均水平;在动态跟驰模型基础上,利用信息不确定平均水平构建网联自动车队动态模型;引入扰动,计算扰动状态下的车队动态模型的传递函数;根据传递函数计算网联自动车队的稳定性条件,利用稳定性条件判断网联自动车队的稳定性。
鉴于智能驾驶员模型能够较好的反映真实的驾驶环境,因此本实施例以其作为车队的跟驰控制策略模型,表达式为:
Figure BDA0003972691010000051
Figure BDA0003972691010000052
式中,vn(t)表示当前车辆n在t时刻的速度;sn(t)表示第n-1辆车和第n辆车在t时刻的车头间距,sn(t)=xn-1(t)-xn(t),xn(t)和xn-1(t)分别表示第n辆车及第n-1辆车在t时刻的位置;Δvn(t)表示第n-1辆车和第n辆车在t时刻的速度差,Δvn(t)=vn-1(t)-vn(t);v0表示自由流速度,
Figure BDA0003972691010000053
表示为当前车辆的渴望车头间距,a和b分别代表车辆所能达到的最大加速度和最大减速度,s0代表车辆之间的最小车头间距,T表示当前车辆的期望车头时距。
在网联自动环境中,导致交通信息出现不确定性的原因主要包括以下两点:
(1)、网联自动车可以借助雷达、红外线等设备获取自身和外界的信息,如速度和位置等,但这个过程中会出现各种意外的情况,如出现设备故障、设备失准等,在这些情况下,车辆依据自身设备获取的信息就会与实际的信息之间存在差异,便会产生信息的不确定性;
(2)、网联自动车具有网络通信的功能,可以通过网络通信与其他车辆进行信息共享,但是会出现设备失灵、网络波动等状况,因此也会导致车辆获取的信息与实际的信息之间存在差异,由此也会产生信息的不确定性。
由于车辆的跟驰模型主要与车辆的速度,前后两辆车之间的速度差和车头间距来构造的,因此,本实施例中的交通信息不确定场景主要包含有车头间距信息和速度信息的不确定性,具体表示为以下情形:
(a)、车辆获取的速度信息vn(t)小于实际的速度
Figure BDA0003972691010000061
获取的速度信息vn(t)大于实际的速度/>
Figure BDA0003972691010000062
或者获取的速度信息vn(t)等于实际的速度/>
Figure BDA0003972691010000063
分别表示为
Figure BDA0003972691010000064
和/>
Figure BDA0003972691010000065
(b)、车辆获取的车头间距信息sn(t)小于实际的车头间距
Figure BDA00039726910100000613
获取的车头间距信息sn(t)大于实际的车头间距/>
Figure BDA0003972691010000066
或者获取的车头间距信息sn(t)等于实际的车头间距
Figure BDA0003972691010000067
分别表示为/>
Figure BDA0003972691010000068
和/>
Figure BDA0003972691010000069
通过真车实验,获得车辆获取信息与实际信息之间的差异,确定信息的不确定水平,即:车头间距信息不确定平均水平ds和速度信息不确定性平均水平dv,将两者整合到车辆动态跟驰模型中,得到网联自动车队的动态模型,表达式为:
Figure BDA00039726910100000610
Figure BDA00039726910100000611
根据本发明提出的车队稳定性分析方法,只需要计算网联自动车队的控制模型在平衡点对车头间距、速度和速度差的偏导数,分别为:
Figure BDA00039726910100000612
Figure BDA0003972691010000071
Figure BDA0003972691010000072
/>
Figure BDA0003972691010000073
将其代入到网联自动车队的稳定性条件,也得到中性稳定性函数的表达式为:
Figure BDA0003972691010000074
当F>0时,网联自动车队处于稳定状态;反之,则网联自动车队处于不稳定状态。
根据中性稳定性函数的表达式,绘制相应的网联自动车队稳定区域图,如图2和图3所示。从图2可以看出,当dv>0时,也即网联自动车队获取的速度信息大于实际的速度时,随着不确定性平均水平值的增加,车队的不稳定区域减小,车队的稳定性增大,表现出正的速度信息不确定平均水平值对网联自动车队的稳定性是有益的;当dv<0时,也即网联自动车队获取的速度信息小于实际的速度时,随着不确定性平均水平绝对值的增加,车队的稳定区域减小,车队的稳定性降低,表明:负的速度信息不确定平均水平值对网联自动车队的稳定性是有害的。同时,从图3也可以看出车头间距信息对网联自动车队稳定性的影响,当ds>0时,也即网联自动车队获取的车头间距信息大于实际的车头间距时,随着不确定性平均水平值的增加,车队的不稳定区域减小,车队的稳定性增大,表现出正的车头间距信息不确定平均水平值对网联自动车队的稳定性是有益的;当ds<0时,也即网联自动车队获取的车头间距信息小于实际的车头间距时,随着不确定性平均水平绝对值的增加,网联自动车队的稳定区域减小,网联自动车队的稳定性降低,表明:负的车头间距信息不确定平均水平值对网联自动车队的稳定性是有害的。
通过上述技术方案,本发明提供的交通信息不确定环境下网联自动车队稳定性分析方法,通过针对交通信息不确定环境下网联自动车队,分析并确定网联自动车队的信息不确定平均水平;在基础的跟驰模型基础上,利用交通信息不确定平均水平构建网联自动车队动态模型,分析在信息不确定性情况下分析网联自动车队的稳定性。

Claims (7)

1.交通信息不确定环境下网联自动车队稳定性分析方法,其特征在于,包括:获取网联自动车队中车辆的基本信息,建立相应的动态跟驰模型;通过真车实验确定网联自动车队的信息不确定平均水平;在动态跟驰模型基础上,利用信息不确定平均水平构建网联自动车队动态模型;引入扰动,计算扰动状态下的网联自动车队动态模型的传递函数;根据传递函数计算网联自动车队的稳定性条件,利用稳定性条件判断网联自动车队的稳定性。
2.根据权利要求1所述的网联自动车队稳定性分析方法,其特征在于,动态跟驰模型表达式为:
Figure FDA0003972691000000011
式中,vn(t)表示当前车辆n在t时刻的速度;sn(t)表示第n-1辆车和第n辆车在t时刻的车头间距,sn(t)=xn-1(t)-xn(t),xn(t)和xn-1(t)分别表示第n辆车及第n-1辆车在t时刻的位置;Δvn(t)表示第n-1辆车和第n辆车在t时刻的速度差,Δvn(t)=vn-1(t)-vn(t);f(·)表示非线性函数。
3.根据权利要求2所述的网联自动车队稳定性分析方法,其特征在于,在网联自动车队中,当前车辆获取的位置信息和速度信息与实际的信息之间存在差异,其中,位置信息的不确定性会导致前后两辆车之间的车头间距信息变得不精确,通过进行真车实验,获取当前网联自动车队的信息不确定性平均水平,包括:车头间距信息不确定性平均水平ds和速度信息不确定性平均水平dv
4.根据权利要求3所述的网联自动车队稳定性分析方法,其特征在于,将信息不确定性平均水平整合到动态跟驰模型中,得到交通信息不确定环境下的网联自动车队动态模型,表达式为:
Figure FDA0003972691000000012
当ds<0且dv<0时,表示车辆获取的车头间距和速度信息比实际车头间距和速度信息小;
当ds>0且dv>0时,表示车辆获取的车头间距和速度信息比实际车头间距和速度信息大;
当ds=0且dv=0时,表示车辆获取的车头间距和速度信息与实际车头间距和速度信息一致。
5.根据权利要求4所述的网联自动车队稳定性分析方法,其特征在于,引入扰动,计算扰动状态下的网联自动车队动态模型的传递函数包括:
(1)、初始状态下网联自动车队处于稳定状态,车队中每辆车的速度和车头间距均会保持一致,且每辆车的加速度为零,稳定状态下车队跟驰模型表示为:
f(ve,se,0)=0
式中,ve代表网联自动车队处于稳态时所有车辆的速度,se代表网联自动车队处于稳态时所有车辆之间的车头间距;
(2)、在网联自动车队稳定状态下,引入扰动,第n辆车受到扰动的影响,在该扰动影响下,第n辆车速度和车头间距会与平衡态的速度和车头间距之间出现差异,该差异由以下公式表示:
Figure FDA0003972691000000021
式中,yn(t)和un(t)分别表示车头间距和速度的扰动;
(3)、通过一阶泰勒展开,将网联自动车队动态模型进行线性近似处理,省略高阶项,得到的网联自动车队系统动态方程为:
Figure FDA0003972691000000022
式中,fs、fv和fΔv分别表示网联自动车队控制模型在平衡点对车头间距、速度和速度差的偏导数,表达式分别为:
Figure FDA0003972691000000023
Figure FDA0003972691000000024
Figure FDA0003972691000000025
(4)、将扰动带入至网联自动车队系统动态方程中,得到扰动下车队系统动态方程表达式为:
Figure FDA0003972691000000026
Figure FDA0003972691000000031
6.根据权利要求5所述的网联自动车队稳定性分析方法,其特征在于,引入扰动,计算扰动状态下的网联自动车队动态模型的传递函数还包括:
(5)、将扰动下车队系统动态方程进行拉普拉斯变换,得到扰动下网联自动车队系统在复数域的动态方程为:
Figure FDA0003972691000000032
式中,Un(s)和Yn(s)分别为un(t)和yn(t)进行拉普拉斯变换之后的形式,s表示复变量;
(6)、根据传递函数定义,计算扰动下网联自动车队系统的传递函数为:
Figure FDA0003972691000000033
将传递函数域转变至频率域,得到的表达式为:
Figure FDA0003972691000000034
式中,j和ω分别表示频率域的虚数与频率。
7.根据权利要求6所述的网联自动车队稳定性分析方法,其特征在于,根据传递函数计算网联自动车队的稳定性条件包括:
当网联自动车队处于稳定状态时,传递函数小于1,则有|G(s)|=|G(jω)|<1,由此计算得到网联自动车队的中性稳定性条件为:
Figure FDA0003972691000000035
当F>0时,网联自动车队处于稳定状态;反之,则网联自动车队处于不稳定状态。
CN202211524899.8A 2022-11-30 2022-11-30 交通信息不确定环境下网联自动车队稳定性分析方法 Active CN115862310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211524899.8A CN115862310B (zh) 2022-11-30 2022-11-30 交通信息不确定环境下网联自动车队稳定性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211524899.8A CN115862310B (zh) 2022-11-30 2022-11-30 交通信息不确定环境下网联自动车队稳定性分析方法

Publications (2)

Publication Number Publication Date
CN115862310A true CN115862310A (zh) 2023-03-28
CN115862310B CN115862310B (zh) 2023-10-20

Family

ID=85668585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211524899.8A Active CN115862310B (zh) 2022-11-30 2022-11-30 交通信息不确定环境下网联自动车队稳定性分析方法

Country Status (1)

Country Link
CN (1) CN115862310B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203376870U (zh) * 2013-05-15 2014-01-01 上海中微感联信息技术有限公司 一种用于信号灯控制的无线车辆检测器
US20160379486A1 (en) * 2015-03-24 2016-12-29 Donald Warren Taylor Apparatus and system to manage monitored vehicular flow rate
CN106803226A (zh) * 2017-01-23 2017-06-06 长安大学 考虑最优速度记忆及后视效应的车辆跟驰建模方法
CN107554524A (zh) * 2017-09-12 2018-01-09 北京航空航天大学 一种基于主观危险感知的跟驰模型稳定性控制方法
US20180231389A1 (en) * 2017-02-16 2018-08-16 IFP Energies Nouvelles Method of determining an area reachable by a vehicle using a dynamic model and a line graph
CN110299004A (zh) * 2019-07-31 2019-10-01 山东理工大学 交叉口转弯车辆的跟驰模型建立及其稳定性分析方法
CN111736142A (zh) * 2019-03-25 2020-10-02 通用汽车环球科技运作有限责任公司 用于雷达交叉交通跟踪和操纵风险评估的系统和方法
WO2020205703A1 (en) * 2019-04-01 2020-10-08 Bridgestone Americas Tire Operations, Llc System and method for vehicle tire performance modeling and feedback
CN113781788A (zh) * 2021-11-15 2021-12-10 长沙理工大学 基于稳定性与安全性的自动驾驶车辆管理方法
CN114038199A (zh) * 2021-11-26 2022-02-11 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种考虑车车通信不确定的混行队列稳定性控制方法
CN114818257A (zh) * 2022-03-11 2022-07-29 北京航空航天大学杭州创新研究院 一种具有隐私保护作用的智能微网分布式动态跟踪方法
CN115034281A (zh) * 2022-03-23 2022-09-09 华东师范大学 一种基于RoboSim的自动驾驶行为决策模型的构建方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203376870U (zh) * 2013-05-15 2014-01-01 上海中微感联信息技术有限公司 一种用于信号灯控制的无线车辆检测器
US20160379486A1 (en) * 2015-03-24 2016-12-29 Donald Warren Taylor Apparatus and system to manage monitored vehicular flow rate
CN106803226A (zh) * 2017-01-23 2017-06-06 长安大学 考虑最优速度记忆及后视效应的车辆跟驰建模方法
US20180231389A1 (en) * 2017-02-16 2018-08-16 IFP Energies Nouvelles Method of determining an area reachable by a vehicle using a dynamic model and a line graph
CN107554524A (zh) * 2017-09-12 2018-01-09 北京航空航天大学 一种基于主观危险感知的跟驰模型稳定性控制方法
CN111736142A (zh) * 2019-03-25 2020-10-02 通用汽车环球科技运作有限责任公司 用于雷达交叉交通跟踪和操纵风险评估的系统和方法
WO2020205703A1 (en) * 2019-04-01 2020-10-08 Bridgestone Americas Tire Operations, Llc System and method for vehicle tire performance modeling and feedback
CN113748030A (zh) * 2019-04-01 2021-12-03 普利司通美国轮胎运营有限责任公司 用于车辆轮胎性能建模和反馈的系统和方法
CN110299004A (zh) * 2019-07-31 2019-10-01 山东理工大学 交叉口转弯车辆的跟驰模型建立及其稳定性分析方法
CN113781788A (zh) * 2021-11-15 2021-12-10 长沙理工大学 基于稳定性与安全性的自动驾驶车辆管理方法
CN114038199A (zh) * 2021-11-26 2022-02-11 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种考虑车车通信不确定的混行队列稳定性控制方法
CN114818257A (zh) * 2022-03-11 2022-07-29 北京航空航天大学杭州创新研究院 一种具有隐私保护作用的智能微网分布式动态跟踪方法
CN115034281A (zh) * 2022-03-23 2022-09-09 华东师范大学 一种基于RoboSim的自动驾驶行为决策模型的构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
史昕;纪艺;赵祥模;惠飞;: "基于多前车最优速度与加速度的网联车跟驰模型", 现代电子技术, no. 09 *

Also Published As

Publication number Publication date
CN115862310B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
Zhu et al. Typical-driving-style-oriented personalized adaptive cruise control design based on human driving data
CN109345020B (zh) 一种完全信息下的无信号交叉口车辆驾驶行为预测方法
CN111428960B (zh) 一种融合多源车载传感器信息的智能车辆驾驶性自动化评价方法
CN110949398A (zh) 一种车辆编队行驶中头车驾驶员异常驾驶行为检测方法
Li et al. Development and evaluation of two learning-based personalized driver models for pure pursuit path-tracking behaviors
CN111746538B (zh) 一种严格避撞的车辆队列跟驰控制方法和控制系统
CN115056798B (zh) 一种基于贝叶斯博弈的自动驾驶车辆换道行为车路协同决策算法
Hyeon et al. Influence of speed forecasting on the performance of ecological adaptive cruise control
Huang et al. Developing robot driver etiquette based on naturalistic human driving behavior
Fényes et al. Side-slip angle estimation of autonomous road vehicles based on big data analysis
CN113460038A (zh) 一种坡道自动泊车安全车速控制方法
CN115862310A (zh) 交通信息不确定环境下网联自动车队稳定性分析方法
Luo et al. Evaluation on the Fuel Economy of Automated Vehicles with Data-Driven Simulation Method
CN114613131B (zh) 一种基于安全裕度的个性化前向碰撞预警方法
Su et al. Personalized adaptive cruise control considering drivers’ characteristics
CN115774942A (zh) 基于车联网实车数据和svm的驾驶风格辨识模型建模与统计方法
CN113823118B (zh) 一种联合紧急程度和博弈论的智能网联车辆换道方法
Chen et al. Platoon separation strategy optimization method based on deep cognition of a driver’s behavior at signalized intersections
Lu et al. Road adhesion coefficient identification method based on vehicle dynamics model and multi-algorithm fusion
CN113252057A (zh) 一种基于高德导航数据的驾驶倾向性辨识方法和系统
CN114701517A (zh) 基于强化学习的多目标复杂交通场景下自动驾驶解决方法
CN112528568A (zh) 一种基于K-Means和BP神经网络的路感模拟方法
CN114357624B (zh) 一种基于二阶线性微分跟踪器和参数双线性模型的车重估计算法
Peng Driving etiquette
CN114999134B (zh) 一种驾驶行为预警方法、装置及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant