CN115857493A - 基于改进人工势场法的机器人路径规划方法 - Google Patents

基于改进人工势场法的机器人路径规划方法 Download PDF

Info

Publication number
CN115857493A
CN115857493A CN202211491769.9A CN202211491769A CN115857493A CN 115857493 A CN115857493 A CN 115857493A CN 202211491769 A CN202211491769 A CN 202211491769A CN 115857493 A CN115857493 A CN 115857493A
Authority
CN
China
Prior art keywords
robot
potential field
virtual
target position
repulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211491769.9A
Other languages
English (en)
Inventor
李敏
刘恋奇
陈涛涛
孙凡茗
金思芃
陈曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202211491769.9A priority Critical patent/CN115857493A/zh
Publication of CN115857493A publication Critical patent/CN115857493A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种基于改进人工势场法的机器人路径规划方法,主要步骤包括:定义引力势场函数、虚拟势场函数和斥力势场函数;分别根据引力势场函数、虚拟势场函数和斥力势场函数计算机器人所受的引力、虚拟引力和斥力,进而计算机器人所受的合力;采用粒子群算法优化机器人的移动步长,根据最优移动步长确定机器人的下一位置;若获得的下一位置使得机器人到达目标位置,则结束路径规划;若机器人陷入局部极小点位置,则更新虚拟目标位置,重新求解机器人的下一位置,从而激励机器人逃离局部极小点位置。本发明能有效解决传统人工势场法易陷入局部极小点、目标位置不可达的问题,使机器人在多障碍物的复杂环境中能以最优路径到达目标位置。

Description

基于改进人工势场法的机器人路径规划方法
技术领域
本发明涉及机器人路径规划方法技术领域,特别是涉及一种基于改进人工势场法的机器人路径规划方法。
背景技术
机器人如工业机器人、服务机器人、特种机器人等,其研发、制造与应用是衡量一个国家科技创新和制造业水平的重要标志。机器人路径规划作为机器人的一项关键技术,其目的是按照某一性能指标,如距离、时间、能量等,为机器人搜索一条从起始位置到目标位置的最优路径。
人工势场法以其数学形式简单、计算量小、规划出的路径平滑等优点,被广泛应用于机器人的避障路径规划。在进行机器人的避障路径规划时,人工势场法将机器人的工作环境抽象为势力场,机器人的目标位置对机器人产生引力,障碍物对机器人产生斥力,机器人在引力和斥力的共同作用下向机器人的目标位置移动。然而,传统人工势场法存在两个难以克服的缺陷,一是机器人易陷入局部极小点位置;二是当机器人的目标位置附近存在障碍物时,机器人到达目标位置附近后无法继续靠近目标位置。上述缺陷制约了传统人工势场法在机器人的避障路径规划中的应用效果。
发明内容
基于此,有必要针对上述技术问题,提供一种基于改进人工势场法的机器人路径规划方法。
为实现上述目的,本发明提供的一种基于改进人工势场法的机器人路径规划方法具体包括以下步骤:
步骤一:初始化人工势场法的参数,确定机器人的起始位置X0、机器人的目标位置Xg、障碍物总数m和第j个障碍物的位置Xj,j=1,2,…,m;
步骤二:定义引力势场函数Ua、虚拟势场函数Uv和斥力势场函数Ur
步骤三:设置机器人的虚拟目标位置Xv为机器人的当前位置X;
步骤四:分别根据引力势场函数Ua、虚拟势场函数Uv和斥力势场函数Ur计算机器人所受的引力
Figure BDA0003963547310000021
虚拟引力/>
Figure BDA0003963547310000022
和斥力/>
Figure BDA0003963547310000023
进而计算机器人所受的合力/>
Figure BDA0003963547310000024
步骤五:采用粒子群算法优化机器人的移动步长x,根据最优移动步长x*确定机器人的下一位置Xn
步骤六:判断获得的下一位置Xn是否能使机器人到达目标位置Xg,若是,则机器人移动至下一位置Xn,结束路径规划;否则,执行步骤七;
步骤七:判断机器人是否陷入局部极小点位置,若是,则机器人不移动,舍弃获得的下一位置Xn,更新机器人的虚拟目标位置Xv,返回步骤四;否则,机器人移动至下一位置Xn,返回步骤三。
进一步地,所述步骤一需要初始化的人工势场法的参数包括:引力系数Ka1与Ka2、虚拟引力系数Kv、斥力系数Kr、引力作用阈值da、障碍物影响距离dr、虚拟目标位置的偏置距离dv、目标位置判定参数l、机器人的最小移动步长xmin及最大移动步长xmax
进一步地,所述步骤二定义引力势场函数Ua为:
Figure BDA0003963547310000025
其中,Ka1、Ka2为引力系数,X为机器人的当前位置,Xg为机器人的目标位置,da为引力作用阈值。
进一步地,所述步骤二定义虚拟势场函数Uv为:
Figure BDA0003963547310000026
其中,Kv为虚拟引力系数,X为机器人的当前位置,Xv为机器人的虚拟目标位置。
进一步地,所述步骤二定义斥力势场函数Ur为:
Figure BDA0003963547310000027
其中,Ur,j为第j个障碍物产生的斥力势场,Kr为斥力系数,X为机器人的当前位置,Xg为机器人的目标位置,Xj为第j个障碍物的位置,dr为障碍物影响距离。
进一步地,所述步骤四计算机器人所受的引力
Figure BDA0003963547310000031
虚拟引力/>
Figure BDA0003963547310000032
斥力/>
Figure BDA0003963547310000033
及合力/>
Figure BDA0003963547310000034
的具体方法为:
机器人的目标位置Xg对机器人的引力
Figure BDA0003963547310000035
等于引力势场函数Ua的负梯度,引力/>
Figure BDA0003963547310000036
的幅值/>
Figure BDA0003963547310000037
的表达式为:
Figure BDA0003963547310000038
其中,Ka1、Ka2为引力系数,da为引力作用阈值;引力
Figure BDA0003963547310000039
的方向由机器人的当前位置X指向机器人的目标位置Xg
机器人的虚拟目标位置Xv对机器人的虚拟引力
Figure BDA00039635473100000310
等于虚拟势场函数Uv的负梯度,虚拟引力/>
Figure BDA00039635473100000311
的幅值/>
Figure BDA00039635473100000312
的表达式为:
Figure BDA00039635473100000313
其中,Kv为虚拟引力系数;虚拟引力
Figure BDA00039635473100000314
的方向由机器人的当前位置X指向机器人的虚拟目标位置Xv
第j个障碍物对机器人的斥力
Figure BDA00039635473100000315
等于第j个障碍物产生的斥力势场Ur,j的负梯度,斥力/>
Figure BDA00039635473100000316
的幅值/>
Figure BDA00039635473100000317
的表达式为:
Figure BDA00039635473100000318
其中,Kr为斥力系数,dr为障碍物影响距离;第j个障碍物对机器人的斥力
Figure BDA00039635473100000319
的方向由第j个障碍物的位置Xj指向机器人的当前位置X;
机器人所受的合力
Figure BDA00039635473100000320
由机器人所受的引力/>
Figure BDA00039635473100000321
虚拟引力/>
Figure BDA00039635473100000322
及斥力/>
Figure BDA00039635473100000323
相加得来,其表达式为:
Figure BDA00039635473100000324
进一步地,所述步骤五采用粒子群算法优化机器人的移动步长x的具体步骤为:
步骤1:初始化粒子群算法的参数,定义适应度函数,设置初代粒子的位置和更新速度,建立初代粒子群,令迭代次数i=0;
步骤2:根据适应度函数计算初代粒子群中每个粒子的适应度,选出个体最优粒子和全局最优粒子;
步骤3:根据个体最优粒子和全局最优粒子计算新一代粒子的更新速度;
步骤4:根据当代粒子的位置和新一代粒子的更新速度计算新一代粒子的位置;
步骤5:令i=i+1,根据适应度函数计算新一代粒子群中每个粒子的适应度,选出个体最优粒子和全局最优粒子;
步骤6:判断是否满足迭代终止条件,若是,则全局最优粒子的位置即为机器人的最优移动步长x*,终止迭代;否则,返回步骤3。
进一步地,所述步骤六判断获得的下一位置Xn使得机器人到达目标位置Xg的条件为:Xg-Xn≤l,l为目标位置判定参数。
进一步地,所述步骤七判断机器人陷入局部极小点位置的条件为:机器人的当前位置X与之前某一位置的距离小于或等于机器人最小移动步长xmin的若干整数倍。
进一步地,所述步骤七当机器人陷入局部极小点位置时,选取机器人的当前位置与目标位置连线的中垂线上的一点,用该点位置来更新虚拟目标位置Xv;更新后的虚拟目标位置Xv通过联立下面的方程求解:
Figure BDA0003963547310000041
其中,dv为虚拟目标位置的偏置距离。
本发明提供的技术方案具有以下有益效果:
本发明通过改进传统人工势场法的引力势场函数和斥力势场函数;引入虚拟目标位置,定义虚拟势场函数,使得机器人在引力、虚拟引力和斥力的共同作用下向目标位置移动;当机器人陷入局部极小点位置时,更新虚拟目标位置,重新求解机器人的下一位置,从而激励机器人逃离局部极小点位置。本发明克服了传统人工势场法易陷入局部极小点、目标位置不可达的缺陷,使机器人在多障碍物的复杂环境中能以最优路径到达目标位置。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明实施例中一种基于改进人工势场法的机器人路径规划方法的流程图;
图2为本发明实施例中机器人的运动任务与工作环境的示例图;
图3为传统人工势场法下机器人陷入局部极小点位置的示例图;
图4为传统人工势场法下机器人陷入局部极小点位置时所受合力的变化曲线图;
图5为传统人工势场法下机器人目标位置不可达的示例图;
图6为传统人工势场法下机器人目标位置不可达时所受合力的变化曲线图;
图7为本发明实施例中某次优化机器人移动步长时全局最优粒子适应度随迭代次数的变化曲线图;
图8为本发明实施例中机器人路径规划结果的示例图;
图9为本发明实施例中机器人所受合力的变化曲线图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本实施例中,选取的研究对象为某一六自由度机械臂,利用本发明为该机械臂规划一条从起始位置到目标位置、无碰撞的最优路径。
本实施例中,一种基于改进人工势场法的机器人路径规划方法,具体步骤如图1所示,包括:
步骤一:初始化人工势场法的参数,确定机器人的起始位置X0、机器人的目标位置Xg、障碍物总数m和第j个障碍物的位置Xj,j=1,2,…,m;
步骤二:定义引力势场函数Ua、虚拟势场函数Uv和斥力势场函数Ur
步骤三:设置机器人的虚拟目标位置Xv为机器人的当前位置X;
步骤四:分别根据引力势场函数Ua、虚拟势场函数Uv和斥力势场函数Ur计算机器人所受的引力
Figure BDA0003963547310000061
虚拟引力/>
Figure BDA0003963547310000062
和斥力/>
Figure BDA0003963547310000063
进而计算机器人所受的合力/>
Figure BDA0003963547310000064
步骤五:采用粒子群算法优化机器人的移动步长x,根据最优移动步长x*确定机器人的下一位置Xn
步骤六:判断获得的下一位置Xn是否能使机器人到达目标位置Xg,若是,则机器人移动至下一位置Xn,结束路径规划;否则,执行步骤七;
步骤七:判断机器人是否陷入局部极小点位置,若是,则机器人不移动,舍弃获得的下一位置Xn,更新机器人的虚拟目标位置Xv,返回步骤四;否则,机器人移动至下一位置Xn,返回步骤三。
本实施例中,机器人的运动任务与工作环境如图2所示,机器人的起始位置X0(0,0,0),机器人的目标位置Xg(100,100,100),障碍物总数m=6,障碍物的位置分别为X1(20,20,20)、X2(35,28,30)、X3(47,45,47)、X4(58,50,60)、X5(70,75,75)、X6(87,80,80);障碍物均为球体,半径分别为R1=3、R2=3、R3=3.4、R4=3.5、R5=2.7、R6=5.3。
具体地,步骤一需要初始化的人工势场法的参数包括:引力系数Ka1与Ka2、虚拟引力系数Kv、斥力系数Kr、引力作用阈值da、障碍物影响距离dr、虚拟目标位置的偏置距离dv、目标位置判定参数l、机器人的最小移动步长xmin及最大移动步长xmax
本实施例中,引力系数Ka1=35,Ka2=35,虚拟引力系数Kv=20,斥力系数Kr=20,引力作用阈值da=315,障碍物影响距离dr=10,虚拟目标的偏置距离dv=5,目标位置判定参数l=0.25,机器人的最小移动步长xmin=1,最大移动步长xmax=2。
需要说明的是,上述参数的具体数值仅是本发明的一种优选的示例,在其他实施例中,具体数值可根据实际情况进行调整。
具体地,步骤二定义引力势场函数Ua为:
Figure BDA0003963547310000065
其中,Ka1、Ka2为引力系数,X为机器人的当前位置,Xg为机器人的目标位置,da为引力作用阈值。
具体地,步骤二定义虚拟势场函数Uv为:
Figure BDA0003963547310000071
其中,Kv为虚拟引力系数,X为机器人的当前位置,Xv为机器人的虚拟目标位置。
具体地,步骤二定义斥力势场函数Ur为:
Figure BDA0003963547310000072
其中,Ur,j为第j个障碍物产生的斥力势场,Kr为斥力系数,X为机器人的当前位置,Xg为机器人的目标位置,Xj为第j个障碍物的位置,dr为障碍物影响距离。
具体地,步骤四计算机器人所受的引力
Figure BDA0003963547310000073
虚拟引力/>
Figure BDA0003963547310000074
斥力/>
Figure BDA0003963547310000075
及合力/>
Figure BDA0003963547310000076
的具体方法为:
机器人的目标位置Xg对机器人的引力
Figure BDA0003963547310000077
等于引力势场函数Ua的负梯度,引力/>
Figure BDA0003963547310000078
的幅值/>
Figure BDA0003963547310000079
的表达式为:
Figure BDA00039635473100000710
/>
其中,Ka1、Ka2为引力系数,da为引力作用阈值;引力
Figure BDA00039635473100000711
的方向由机器人的当前位置X指向机器人的目标位置Xg
机器人的虚拟目标位置Xv对机器人的虚拟引力
Figure BDA00039635473100000712
等于虚拟势场函数Uv的负梯度,虚拟引力/>
Figure BDA00039635473100000713
的幅值/>
Figure BDA00039635473100000714
的表达式为:
Figure BDA00039635473100000715
其中,Kv为虚拟引力系数;虚拟引力
Figure BDA00039635473100000716
的方向由机器人的当前位置X指向机器人的虚拟目标位置Xv
第j个障碍物对机器人的斥力
Figure BDA00039635473100000717
等于第j个障碍物产生的斥力势场Ur,j的负梯度,斥力/>
Figure BDA00039635473100000718
的幅值/>
Figure BDA00039635473100000719
的表达式为:
Figure BDA0003963547310000081
其中,Kr为斥力系数,dr为障碍物影响距离;第j个障碍物对机器人的斥力
Figure BDA0003963547310000082
的方向由第j个障碍物的位置Xj指向机器人的当前位置X;
机器人所受的合力
Figure BDA0003963547310000083
由机器人所受的引力/>
Figure BDA0003963547310000084
虚拟引力/>
Figure BDA0003963547310000085
及斥力/>
Figure BDA0003963547310000086
相加得来,其表达式为:
Figure BDA0003963547310000087
具体地,步骤五采用粒子群算法优化机器人的移动步长x的具体步骤为:
步骤1:初始化粒子群算法的参数,定义适应度函数,设置初代粒子的位置和更新速度,建立初代粒子群,令迭代次数i=0;
步骤2:根据适应度函数计算初代粒子群中每个粒子的适应度,选出个体最优粒子和全局最优粒子;
步骤3:根据个体最优粒子和全局最优粒子计算新一代粒子的更新速度;
步骤4:根据当代粒子的位置和新一代粒子的更新速度计算新一代粒子的位置;
步骤5:令i=i+1,根据适应度函数计算新一代粒子群中每个粒子的适应度,选出个体最优粒子和全局最优粒子;
步骤6:判断是否满足迭代终止条件,若是,则全局最优粒子的位置即为机器人的最优移动步长x*,终止迭代;否则,返回步骤3。
本实施例中,设粒子群规模为50,最大迭代次数为25,惯性权重为0.8,自我学习因子为0.5,群体学习因子为0.5。初代粒子的位置在区间[xmin,xmax]随机产生,初代粒子的更新速度在区间[0.1xmin,0.1xmax]随机产生。
在其他实施例中,上述具体数值也可根据实际情况调整。
具体地,步骤六判断获得的下一位置Xn使得机器人到达目标位置Xg的条件为:|Xg-Xn|≤l,l为目标位置判定参数,本实施例中优选l=0.25。
具体地,步骤七判断机器人陷入局部极小点位置的条件为:机器人的当前位置X与之前某一位置的距离小于等于机器人最小移动步长xmin的若干整数倍。
本实施例中,机器人的当前位置X与当前位置倒数7步所在位置的距离,小于或等于机器人最小移动步长xmin的4倍,则机器人陷入局部极小点位置。
具体地,步骤七当机器人陷入局部极小点位置时,选取机器人的当前位置与目标位置连线的中垂线上的一点,用该点位置来更新虚拟目标位置Xv;更新后的虚拟目标位置Xv通过联立下面的方程求解:
Figure BDA0003963547310000091
其中,dv为虚拟目标位置的偏置距离。
传统人工势场法易使机器人陷入局部极小点位置。在图2所示的机器人的运动任务与工作环境下,利用传统人工势场法进行机器人路径规划,如图3所示,移动30步后,机器人在障碍物1附近陷入局部极小点位置,会在图中三角形标记的两点间往复移动,导致机器人无法逃离局部极小点位置继续向目标位置移动;机器人陷入局部极小点位置时所受合力的幅值变化情况如图4所示,当机器人陷入局部极小点位置后,机器人所受合力的幅值会在两个数值之间来回变化,但方向相反。
传统人工势场法的另一缺陷是:当机器人的目标位置附近存在障碍物时,机器人到达目标位置附近后无法继续靠近目标位置。在图2所示的机器人的运动任务与工作环境下,利用本发明方法激励机器人逃离障碍物1附近的局部极小点位置后,继续利用传统人工势场法进行机器人路径规划,如图5所示,由于机器人的目标位置附近存在障碍物6,机器人到达目标位置附近后,会在图中菱形标记的两点间往复移动,无法继续靠近目标位置;机器人目标位置不可达时所受合力的幅值变化情况如图6所示。
本发明方法在本实施例中的应用结果如图7-9所示;图7为某一步优化机器人移动步长时全局最优粒子适应度随迭代次数的变化曲线图,全局最优粒子适应度逐渐下降并收敛,说明利用粒子群算法能获得机器人的最优移动步长,使机器人能更快地到达目标位置;在图2所示的机器人的运动任务与工作环境下,利用本发明方法进行机器人路径规划,如图8所示,机器人未在障碍物1附近陷入局部极小点位置,即使机器人的目标位置附近存在障碍物6,机器人仍能到达目标位置;图9显示了机器人移动过程中所受合力的幅值变化情况;综上,本发明能够有效克服传统人工势场法易陷入局部极小点、目标位置不可达的缺陷,使机器人在多障碍物的复杂环境中能以最优路径到达目标位置。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为标识。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于改进人工势场法的机器人路径规划方法,其特征在于,具体步骤为:
步骤一:初始化人工势场法的参数,确定机器人的起始位置X0、机器人的目标位置Xg、障碍物总数m和第j个障碍物的位置Xj,j=1,2,…,m;
步骤二:定义引力势场函数Ua、虚拟势场函数Uv和斥力势场函数Ur
步骤三:设置机器人的虚拟目标位置Xv为机器人的当前位置X;
步骤四:分别根据引力势场函数Ua、虚拟势场函数Uv和斥力势场函数Ur计算机器人所受的引力
Figure FDA0003963547300000011
虚拟引力/>
Figure FDA0003963547300000012
和斥力/>
Figure FDA0003963547300000013
进而计算机器人所受的合力/>
Figure FDA0003963547300000014
步骤五:采用粒子群算法优化机器人的移动步长x,根据最优移动步长x*确定机器人的下一位置Xn
步骤六:判断获得的下一位置Xn是否能使机器人到达目标位置Xg,若是,则机器人移动至下一位置Xn,结束路径规划;否则,执行步骤七;
步骤七:判断机器人是否陷入局部极小点位置,若是,则机器人不移动,舍弃获得的下一位置Xn,更新机器人的虚拟目标位置Xv,返回步骤四;否则,机器人移动至下一位置Xn,返回步骤三。
2.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤一需要初始化的人工势场法的参数包括:引力系数Ka1与Ka2、虚拟引力系数Kv、斥力系数Kr、引力作用阈值da、障碍物影响距离dr、虚拟目标位置的偏置距离dv、目标位置判定参数l、机器人的最小移动步长xmin及最大移动步长xmax
3.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤二定义引力势场函数Ua为:
Figure FDA0003963547300000015
其中,Ka1、Ka2为引力系数,X为机器人的当前位置,Xg为机器人的目标位置,da为引力作用阈值。
4.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤二定义虚拟势场函数Uv为:
Figure FDA0003963547300000021
其中,Kv为虚拟引力系数,X为机器人的当前位置,Xv为机器人的虚拟目标位置。
5.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤二定义斥力势场函数Ur为:
Figure FDA0003963547300000022
其中,Ur,j为第j个障碍物产生的斥力势场,Kr为斥力系数,X为机器人的当前位置,Xg为机器人的目标位置,Xj为第j个障碍物的位置,dr为障碍物影响距离。
6.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤四计算机器人所受的引力
Figure FDA0003963547300000023
虚拟引力/>
Figure FDA0003963547300000024
斥力/>
Figure FDA0003963547300000025
及合力/>
Figure FDA0003963547300000026
的具体方法为:
机器人的目标位置Xg对机器人的引力
Figure FDA0003963547300000027
等于引力势场函数Ua的负梯度,引力/>
Figure FDA0003963547300000028
的幅值
Figure FDA0003963547300000029
的表达式为:
Figure FDA00039635473000000210
其中,Ka1、Ka2为引力系数,da为引力作用阈值;引力
Figure FDA00039635473000000211
的方向由机器人的当前位置X指向机器人的目标位置Xg
机器人的虚拟目标位置Xv对机器人的虚拟引力
Figure FDA00039635473000000212
等于虚拟势场函数Uv的负梯度,虚拟引力/>
Figure FDA00039635473000000213
的幅值/>
Figure FDA00039635473000000214
的表达式为:
Figure FDA00039635473000000215
其中,Kv为虚拟引力系数;虚拟引力
Figure FDA00039635473000000216
的方向由机器人的当前位置X指向机器人的虚拟目标位置Xv
第j个障碍物对机器人的斥力
Figure FDA00039635473000000217
等于第j个障碍物产生的斥力势场Ur,j的负梯度,斥力
Figure FDA0003963547300000031
的幅值/>
Figure FDA0003963547300000032
的表达式为:
Figure FDA0003963547300000033
其中,Kr为斥力系数,dr为障碍物影响距离;第j个障碍物对机器人的斥力
Figure FDA0003963547300000034
的方向由第j个障碍物的位置Xj指向机器人的当前位置X;
机器人所受的合力
Figure FDA0003963547300000035
由机器人所受的引力/>
Figure FDA0003963547300000036
虚拟引力/>
Figure FDA0003963547300000037
及斥力/>
Figure FDA0003963547300000038
相加得来,其表达式为:
Figure FDA0003963547300000039
7.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤五采用粒子群算法优化机器人的移动步长x的具体步骤为:
步骤1:初始化粒子群算法的参数,定义适应度函数,设置初代粒子的位置和更新速度,建立初代粒子群,令迭代次数i=0;
步骤2:根据适应度函数计算初代粒子群中每个粒子的适应度,选出个体最优粒子和全局最优粒子;
步骤3:根据个体最优粒子和全局最优粒子计算新一代粒子的更新速度;
步骤4:根据当代粒子的位置和新一代粒子的更新速度计算新一代粒子的位置;
步骤5:令i=i+1,根据适应度函数计算新一代粒子群中每个粒子的适应度,选出个体最优粒子和全局最优粒子;
步骤6:判断是否满足迭代终止条件,若是,则全局最优粒子的位置即为机器人的最优移动步长x*,终止迭代;否则,返回步骤3。
8.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤六判断获得的下一位置Xn使得机器人到达目标位置Xg的条件为:|Xg-Xn|≤l,l为目标位置判定参数。
9.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤七判断机器人陷入局部极小点位置的条件为:机器人的当前位置X与之前某一位置的距离小于或等于机器人最小移动步长xmin的若干整数倍。
10.根据权利要求1所述的基于改进人工势场法的机器人路径规划方法,其特征在于,所述步骤七当机器人陷入局部极小点位置时,选取机器人的当前位置与目标位置连线的中垂线上的一点,用该点位置来更新虚拟目标位置Xv;更新后的虚拟目标位置Xv通过联立下面的方程求解:
Figure FDA0003963547300000041
其中,dv为虚拟目标位置的偏置距离。
CN202211491769.9A 2022-11-25 2022-11-25 基于改进人工势场法的机器人路径规划方法 Pending CN115857493A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211491769.9A CN115857493A (zh) 2022-11-25 2022-11-25 基于改进人工势场法的机器人路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211491769.9A CN115857493A (zh) 2022-11-25 2022-11-25 基于改进人工势场法的机器人路径规划方法

Publications (1)

Publication Number Publication Date
CN115857493A true CN115857493A (zh) 2023-03-28

Family

ID=85666581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211491769.9A Pending CN115857493A (zh) 2022-11-25 2022-11-25 基于改进人工势场法的机器人路径规划方法

Country Status (1)

Country Link
CN (1) CN115857493A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369482A (zh) * 2023-12-06 2024-01-09 华润数字科技有限公司 移动机器人的路径规划方法、装置、设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369482A (zh) * 2023-12-06 2024-01-09 华润数字科技有限公司 移动机器人的路径规划方法、装置、设备及存储介质
CN117369482B (zh) * 2023-12-06 2024-03-12 华润数字科技有限公司 移动机器人的路径规划方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN105717929B (zh) 一种多分辨率障碍物环境下移动机器人混合路径规划方法
Antonova et al. Reinforcement learning for pivoting task
CN107234617B (zh) 一种避障任务无关人工势场引导的避障路径规划方法
Park et al. ITOMP: Incremental trajectory optimization for real-time replanning in dynamic environments
CN112344943B (zh) 一种改进人工势场算法的智能车路径规划方法
CN112926139B (zh) 一种基于混沌映射和黄金正弦策略的改进麻雀智能优化方法
CN111381600B (zh) 一种基于粒子群算法的uuv路径规划方法
JP4730440B2 (ja) 軌道計画装置及び軌道計画方法、並びにコンピューター・プログラム
CN109300144B (zh) 一种融合社会力模型和卡尔曼滤波的行人轨迹预测方法
Deepak et al. PSO based path planner of an autonomous mobile robot
CN115857493A (zh) 基于改进人工势场法的机器人路径规划方法
Curtis et al. Efficient and effective grasping of novel objects through learning and adapting a knowledge base
CN117103282B (zh) 一种基于matd3算法的双臂机器人协同运动控制方法
CN113534819B (zh) 用于领航跟随型多智能体编队路径规划的方法和存储介质
De Medio et al. Robot obstacle avoidance using vortex fields
JP2023528150A (ja) マルチタスク強化学習におけるメタ勾配を用いたアクション選択のための学習オプション
CN115502961A (zh) 基于人体手臂运动信息预测的人机在线避障方法及系统
Correa et al. Robust toppling for vacuum suction grasping
CN116736856A (zh) 一种改进人工势场法的移动机器人路径规划方法
Gong et al. Robot path planning in uncertain environments based on particle swarm optimization
Guo et al. Learning pushing skills using object detection and deep reinforcement learning
Abd Latiff et al. Fast convergence strategy for particle swarm optimization using spread factor
Kormushev et al. Comparative evaluation of reinforcement learning with scalar rewards and linear regression with multidimensional feedback
CN114820802A (zh) 高自由度灵巧手抓取规划方法、装置和计算机设备
Xie et al. The vector model of artificial physics optimization algorithm for global optimization problems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination