CN115843330A - 冠状病毒疫苗 - Google Patents

冠状病毒疫苗 Download PDF

Info

Publication number
CN115843330A
CN115843330A CN202180030057.4A CN202180030057A CN115843330A CN 115843330 A CN115843330 A CN 115843330A CN 202180030057 A CN202180030057 A CN 202180030057A CN 115843330 A CN115843330 A CN 115843330A
Authority
CN
China
Prior art keywords
cov
sars
tray
container
days
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180030057.4A
Other languages
English (en)
Inventor
M·瑙塔
D·J·佩特斯
T·F·S·范多尔斯拉尔
A·V·巴德卡尔
R·达尔瓦里
N·W·沃恩
J·琼
D·P·G·亨德里克斯
U·沙欣
A·居勒
A·库恩
A·穆伊克
A·福格尔
K·瓦尔策
S·威策尔
S·海因
O·蒂雷西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Europe Inc
Pfizer Inc
Original Assignee
Biotechnology Europe Inc
Pfizer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Europe Inc, Pfizer Inc filed Critical Biotechnology Europe Inc
Publication of CN115843330A publication Critical patent/CN115843330A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/12Devices using other cold materials; Devices using cold-storage bodies using solidified gases, e.g. carbon-dioxide snow
    • F25D3/125Movable containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • B65D77/0413Articles or materials enclosed in two or more containers disposed one within another the inner and outer containers being rigid or semi-rigid and the outer container being of polygonal cross-section formed by folding or erecting one or more blanks, e.g. carton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/127Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using rigid or semi-rigid sheets of shock-absorbing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0832Special goods or special handling procedures, e.g. handling of hazardous or fragile goods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0833Tracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20223Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/812Trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Economics (AREA)
  • Microbiology (AREA)
  • Combustion & Propulsion (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Thermal Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本公开涉及温度敏感材料如生物和/或药物产品的包装、运输和储存领域。本文为可用于治疗和/或预防疾病的超低温材料提供此类包装、运输和储存的各个方面。本公开还提供用于将生物和/或药物材料保持在超低温下以保持材料完整性的包装材料、运输方法和储存方法。本公开进一步涉及预防或治疗冠状病毒感染的RNA的领域。

Description

冠状病毒疫苗
技术领域
本公开涉及用于预防或治疗冠状病毒感染的RNA的领域。特别地,本公开涉及用于针对冠状病毒感染进行疫苗接种并诱导有效的冠状病毒抗原特异性免疫应答如抗体和/或T细胞应答的方法和药剂。这些方法和药剂特别可用于预防或治疗冠状病毒感染。向受试者给药本文公开的RNA可以保护受试者免于冠状病毒感染。具体地,在一实施方案中,本公开涉及这样的方法,其包括向受试者给药编码包含SARS-CoV-2刺突蛋白(spike protein)(S蛋白)表位的肽或蛋白的RNA(即编码疫苗抗原的疫苗RNA)用于在受试者中诱导针对冠状病毒S蛋白(特别是SARS-CoV-2的S蛋白)的免疫应答。向受试者给药编码疫苗抗原的RNA可以(在通过适当的靶细胞表达RNA之后)提供疫苗抗原,用于在受试者中诱导针对疫苗抗原(和疾病相关抗原)的免疫应答。
本公开进一步涉及温度敏感材料如生物和/或药物产品的包装、运输和储存领域。本文为可用于治疗和/或预防疾病的超低温材料提供此类包装、运输和储存的各个方面。本公开还提供用于将生物和/或药物材料保持在超低温下以保持材料完整性的包装材料、运输方法和储存方法。
背景技术
SARS-CoV-2(严重急性呼吸综合征冠状病毒2;SARS-CoV-2)的基因序列已为WHO和公众所用(MN908947.3),并且该病毒被分类为β冠状病毒亚科。通过序列分析,系统发生树显示与严重急性呼吸综合征(SARS)病毒分离株的关系比与另一种感染人的冠状病毒即中东呼吸综合征(MERS)病毒的关系更紧密。2月2日,在包括德国在内的24个国家中,全球确认了总计14,557例病例,并且随后自我维持的人与人之间的病毒传播导致SARS-CoV-2成为全球流行病。
冠状病毒是正义单链RNA((+)ssRNA)包膜病毒,其编码总共4种结构蛋白,刺突蛋白(S)、包膜蛋白(E)、膜蛋白(M)和核壳蛋白(N)。刺突蛋白(S蛋白)负责受体识别,附着至细胞,通过内体途径感染以及由病毒和内体膜融合驱动的基因组释放。虽然不同家族成员之间的序列不同,但是在S蛋白内有保守区域和基序,使得可以将S蛋白分为两个子结构域:S1和S2。S2,具有其跨膜结构域,负责膜融合,而S1结构域识别病毒特异性受体并结合至靶宿主细胞。在几种冠状病毒分离株内,鉴定了受体结合结构域(RBD)并定义了S蛋白的一般结构(图1)。
目前尚无针对SARS-CoV-2的疫苗方法和疗法,但是迫切需要。
由于S蛋白在宿主细胞识别和进入以及宿主免疫系统诱导病毒中和抗体中的重要性,我们决定靶向SARS-CoV-2的病毒S蛋白以及S蛋白的子结构域如S1或RBD用于疫苗开发。对于构象重要的区域内的突变可能有益于诱导更强的保护性免疫应答。因此,我们设想测试几种构建体(图2)。由于幼稚的S蛋白是三聚体,并且这种三聚体结构很有可能影响蛋白的稳定性和抗原性,因此我们基于稳定的构建体引入一种策略,引入T4噬菌体次要纤维蛋白(fibritin)结构域,其也用于HIV中用于生成稳定的gp140三聚体并对SARS RBD-构建体起作用。
发明内容
本发明一般包括受试者的免疫治疗,包括给药RNA,即疫苗RNA,其编码氨基酸序列,即疫苗抗原,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段,即抗原肽或蛋白。因此,疫苗抗原包含SARS-CoV-2 S蛋白的表位,用于在受试者中诱导针对冠状病毒S蛋白,特别是SARS-CoV-2 S蛋白的免疫应答。给药编码疫苗抗原的RNA以(在通过适当的靶细胞表达多核苷酸之后)提供抗原,用于诱导,即刺激、引发和/或扩大免疫应答,例如,抗体和/或免疫效应细胞,其靶向靶抗原(冠状病毒S蛋白,特别是SARS-CoV-2 S蛋白)或其加工产物。在一实施方案中,根据本公开诱导的免疫应答是B细胞介导的免疫应答,即抗体介导的免疫应答。额外地或可选地,在一实施方案中,根据本公开诱导的免疫应答是T细胞介导的免疫应答。在一实施方案中,免疫应答是抗冠状病毒,特别是抗SARS-CoV-2免疫应答。
本文描述的疫苗包含作为有效成分的单链RNA,其可以在进入接受者细胞后翻译为相应的蛋白。除了编码抗原序列的野生型或密码子优化的序列,RNA还可以包含一个或多个结构元件,这些结构元件针对RNA在稳定性和翻译效率方面的最大效力进行优化(5'帽、5'UTR、3'UTR、poly(A)-尾)。在一实施方案中,RNA包含所有这些元件。在一实施方案中,β-S-ARCA(D1)(m2 7,2'-OGppSpG)或m2 7,3’-OGppp(m1 2’-O)ApG可以用作RNA药物物质5'-端的特定加帽结构。作为5'-UTR序列,可以使用人α-珠蛋白mRNA的5'-UTR序列,任选地具有优化的“Kozak序列”以提高翻译效率。作为3'-UTR序列,可以使用置于编码序列和poly(A)-尾之间的源自“分裂的氨基末端增强子(amino terminal enhancer of split)”(AES)mRNA(称作F)和线粒体编码的12S核糖体RNA(称作I)的两个序列元件的组合(FI元件)以确保更高的最大蛋白水平和延长的mRNA持久性。这些通过对赋予RNA稳定性并增加总蛋白表达的序列的离体选择过程进行鉴定(参见WO2017/060314,援引加入本文)。或者,3'-UTR可以是人β-珠蛋白mRNA的两个重复的3'-UTR。此外,可以使用长度为110个核苷酸的poly(A)-尾,其由一段30个腺苷残基,随后10个核苷酸接头序列(随机核苷酸)和另一70个腺苷残基组成。设计这个poly(A)-尾序列以增强RNA稳定性和翻译效率。
此外,可以将分泌信号肽(sec)优选以sec翻译为N末端标签的方式融合至抗原编码区。在一实施方案中,sec对应于S蛋白的分泌信号肽。通常用于融合蛋白的编码主要由氨基酸甘氨酸(G)和丝氨酸(S)组成的短接头肽的序列可以用作GS/接头。
本文描述的疫苗RNA可以与蛋白和/或脂质(优选脂质)复合,以产生用于给药的RNA-颗粒。如果使用不同RNA的组合,可以将RNA一起或分别与蛋白和/或脂质复合以产生用于给药的RNA-颗粒。
在一方面,本发明涉及一种组合物或药物制品(medical preparation),其包含编码氨基酸序列的RNA,所述氨基酸序列包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段。
在一实施方案中,所述SARS-CoV-2 S蛋白的免疫原性片段包含SARS-CoV-2 S蛋白的S1亚基或者SARS-CoV-2 S蛋白的S1亚基的受体结合结构域(RBD)。
在一实施方案中,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列能够形成多聚体复合物,特别是三聚体复合物。为此,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列可以包含允许形成多聚体复合物的结构域,特别是包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的三聚体复合物。在一实施方案中,允许形成多聚体复合物的结构域包含三聚结构域,例如,本文描述的三聚结构域。
在一实施方案中,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列由编码序列编码,与野生型编码序列相比,所述编码序列是密码子优化的和/或G/C含量增加,其中所述密码子优化和/或G/C含量增加优选地不改变编码的氨基酸序列的序列。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:1的氨基酸327-528的氨基酸序列,与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸327-528的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:1的氨基酸17-685的氨基酸序列,与SEQ ID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸17-685的氨基酸序列的免疫原性片段或与SEQID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列,与SEQ IDNO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列的免疫原性片段或与SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列包含分泌信号肽。
在一实施方案中,所述分泌信号肽融合,优选通过N-末端融合,至SARS-CoV-2S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段。
在一实施方案中,
(i)编码所述分泌信号肽的RNA包含SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)所述分泌信号肽包含SEQ ID NO:1的氨基酸1-16的氨基酸序列,与SEQ IDNO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-16的氨基酸序列的功能片段或与SEQID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:6的核苷酸序列,与SEQ ID NO:6的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:6的核苷酸序列的片段或与SEQ ID NO:6的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:5的氨基酸序列,与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:5的氨基酸序列的免疫原性片段或与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,所述RNA是修饰的RNA,特别是稳定的mRNA。在一实施方案中,所述RNA包含修饰的核苷,以代替至少一个尿苷。在一实施方案中,所述RNA包含修饰的核苷,以代替每个尿苷。在一实施方案中,所述修饰的核苷独立地选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。
在一实施方案中,所述RNA包含修饰的核苷,以代替尿苷。
在一实施方案中,所述修饰的核苷选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。
在一实施方案中,所述RNA包含5’帽。
在一实施方案中,编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA包含5’UTR,其包含SEQID NO:12的核苷酸序列,或与SEQ ID NO:12的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
在一实施方案中,编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA包含3’UTR,其包含SEQID NO:13的核苷酸序列,或与SEQ ID NO:13的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
在一实施方案中,编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA包含poly-A序列。
在一实施方案中,所述poly-A序列包含至少100个核苷酸。
在一实施方案中,所述poly-A序列包含SEQ ID NO:14的核苷酸序列,或由SEQ IDNO:14的核苷酸序列组成。
在一实施方案中,所述RNA配制为或待配制为液体、固体或其组合。
在一实施方案中,所述RNA配制为或待配制为用于注射。
在一实施方案中,所述RNA配制为或待配制为用于肌肉内给药。
在一实施方案中,所述RNA配制为或待配制为颗粒。
在一实施方案中,所述颗粒为脂质纳米颗粒(LNP)或lipoplex(LPX)颗粒。
在一实施方案中,所述LNP颗粒包含((4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-癸酸己酯)(((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate))、2-[(聚乙二醇)-2000]-N,N-双十四烷基乙酰胺(2-[(polyethyleneglycol)-2000]-N,N-ditetradecylacetamide)、1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱(1,2-Distearoyl-sn-glycero-3-phosphocholine)和胆固醇(cholesterol)。
在一实施方案中,所述RNA lipoplex颗粒可通过混合RNA与脂质体获得。在一实施方案中,所述RNA lipoplex颗粒可通过混合RNA与脂质获得。
在一实施方案中,所述RNA配制为或待配制为胶体。在一实施方案中,所述RNA配制为或待配制为颗粒,形成胶体的分散相。在一实施方案中,所述分散相中存在50%或更多、75%或更多或者85%或更多的RNA。在一实施方案中,所述RNA配制或待配制为包含RNA和脂质的颗粒。在一实施方案中,所述颗粒通过使溶于水相中的RNA暴露于溶于有机相中的脂质形成。在一实施方案中,所述有机相包含乙醇。在一实施方案中,所述颗粒通过使溶于水相中的RNA暴露于分散于水相中的脂质形成。在一实施方案中,所述分散于水相中的脂质形成脂质体。
在一实施方案中,所述RNA为mRNA或saRNA。
在一实施方案中,所述组合物或药物制品为药物组合物。
在一实施方案中,所述组合物或药物制品为疫苗。
在一实施方案中,所述药物组合物进一步包含一种或多种药学上可接受的载剂、稀释剂和/或赋形剂。
在一实施方案中,所述组合物或药物制品为试剂盒。
在一实施方案中,所述RNA和任选存在的颗粒形成组分在不同的小瓶中。
在一实施方案中,所述试剂盒还包含使用所述组合物或药物制品在受试者中诱导针对冠状病毒的免疫应答的说明书。
在一方面,本发明涉及本文描述的组合物或药物制品,其用于制药用途。
在一实施方案中,所述制药用途包括在受试者中诱导针对冠状病毒的免疫应答。
在一实施方案中,所述制药用途包括冠状病毒感染的治疗或预防性治疗。
在一实施方案中,本文描述的组合物或药物制品用于向人给药。
在一实施方案中,所述冠状病毒为β冠状病毒。
在一实施方案中,所述冠状病毒为沙贝病毒(sarbecovirus)。
在一实施方案中,所述冠状病毒为SARS-CoV-2。
在一方面,本发明涉及一种在受试者中诱导针对冠状病毒的免疫应答的方法,所述方法包括向受试者给药包含编码氨基酸序列的RNA的组合物,所述氨基酸序列包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段。
在一实施方案中,SARS-CoV-2 S蛋白的免疫原性片段包含SARS-CoV-2 S蛋白的S1亚基或者SARS-CoV-2 S蛋白的S1亚基的受体结合结构域(RBD)。
在一实施方案中,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列能够形成多聚体复合物,特别是三聚体复合物。为此,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列可以包含允许形成多聚体复合物的结构域,特别是这样的氨基酸序列的三聚体复合物,所述氨基酸序列包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段。在一实施方案中,允许形成多聚体复合物的结构域包含三聚结构域,例如,本文描述的三聚结构域。
在一实施方案中,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列由编码序列编码,与野生型编码序列相比,所述编码序列编码是密码子优化的和/或G/C含量增加,其中所述密码子优化和/或G/C含量增加优选地不改变编码的氨基酸序列的序列。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:1的氨基酸327-528的氨基酸序列,与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸327-528的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:1的氨基酸17-685的氨基酸序列,与SEQ ID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸17-685的氨基酸序列的免疫原性片段或与SEQID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列,与SEQ IDNO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列的免疫原性片段或与SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列包含分泌信号肽。
在一实施方案中,所述分泌信号肽融合,优选通过N-末端融合,至SARS-CoV-2S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段。
在一实施方案中,
(i)编码所述分泌信号肽的RNA包含SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)所述信号肽包含SEQ ID NO:1的氨基酸1-16的氨基酸序列,与SEQ ID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-16的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。
在一实施方案中,
(i)编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA包含SEQ ID NO:6的核苷酸序列,与SEQ ID NO:6的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:6的核苷酸序列的片段或与SEQ ID NO:6的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或
(ⅱ)SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含SEQ ID NO:5的氨基酸序列,与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:5的氨基酸序列的免疫原性片段或与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。
在一实施方案中,所述RNA是修饰的RNA,特别是稳定的mRNA。在一实施方案中,所述RNA包含修饰的核苷,以代替至少一个尿苷。在一实施方案中,所述RNA包含修饰的核苷,以代替每个尿苷。在一实施方案中,所述修饰的核苷独立地选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。
在一实施方案中,所述RNA包含修饰的核苷,以代替尿苷。
在一实施方案中,所述修饰的核苷选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。
在一实施方案中,所述RNA包含帽。
在一实施方案中,编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA包含5’UTR,其包含SEQID NO:12的核苷酸序列,或与SEQ ID NO:12的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
在一实施方案中,编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA包含3’UTR,其包含SEQID NO:13的核苷酸序列,或与SEQ ID NO:13的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
在一实施方案中,编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA包含poly-A序列。
在一实施方案中,所述poly-A序列包含至少100个核苷酸。
在一实施方案中,所述poly-A序列包含SEQ ID NO:14的核苷酸序列,或由SEQ IDNO:14的核苷酸序列组成。
在一实施方案中,所述RNA配制为液体、固体或其组合。
在一实施方案中,所述RNA通过注射给药。
在一实施方案中,所述RNA通过肌肉内给药来施用。
在一实施方案中,所述RNA配制为颗粒。
在一实施方案中,所述颗粒为脂质纳米颗粒(LNP)或lipoplex(LPX)颗粒。
在一实施方案中,所述LNP颗粒包含((4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-癸酸己酯)、2-[(聚乙二醇)-2000]-N,N-双十四烷基乙酰胺、1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱和胆固醇。
在一实施方案中,所述RNA lipoplex颗粒可通过混合RNA与脂质体获得。在一实施方案中,所述RNA lipoplex颗粒可通过混合RNA与脂质获得。
在一实施方案中,所述RNA配制为胶体。在一实施方案中,所述RNA配制为颗粒,形成胶体的分散相。在一实施方案中,所述分散相中存在50%或更多、75%或更多或者85%或更多的RNA。在一实施方案中,所述RNA配制为包含RNA和脂质的颗粒。在一实施方案中,所述颗粒通过使溶于水相中的RNA暴露于溶于有机相中的脂质形成。在一实施方案中,所述有机相包含乙醇。在一实施方案中,所述颗粒通过使溶于水相中的RNA暴露于分散于水相中的脂质形成。在一实施方案中,所述分散于水相中的脂质形成脂质体。
在一实施方案中,所述RNA为mRNA或saRNA。
在一实施方案中,所述方法为针对冠状病毒进行疫苗接种的方法。
在一实施方案中,所述方法为用于冠状病毒感染的治疗或预防性治疗的方法。
在一实施方案中,所述受试者为人。
在一实施方案中,所述冠状病毒为β冠状病毒。
在一实施方案中,所述冠状病毒为沙贝病毒(sarbecovirus)。
在一实施方案中,所述冠状病毒为SARS-CoV-2。
在本文描述的方法的一实验方案中,所述组合物为本文描述的组合物。
在一方面,本发明涉及本文描述的组合物或药物制品,其用于本文描述的方法。
其中,本公开证实包含脂质纳米颗粒包裹的mRNA的组合物可以在根据方案(包括给药至少一个剂量的疫苗组合物)向成年人受试者群体给药之后7天内实现血清中针对表位的可检测的抗体滴度,所述mRNA编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位)。此外,本公开证实这种抗体滴度的持久性。在一些实施方案中,本公开证实与用相应的未修饰的mRNA所达到的相比,当使用修饰的mRNA时这种抗体滴度增加。
在一些实施方案中,提供的方案包括至少一个剂量。在一些实施方案中,提供的方案包括第一剂量和至少一个后续剂量。在一些实施方案中,所述第一剂量是与至少一个后续剂量相同的量。在一些实施方案中,所述第一剂量是与所有后续剂量相同的量。在一些实施方案中,所述第一剂量是与至少一个后续剂量不同的量。在一些实施方案中,所述第一剂量是与所有后续剂量不同的量。在一些实施方案中,提供的方案包括两个剂量。在一些实施方案中,提供的方案由两个剂量组成。
在特定实施方案中,所述免疫原性组合物配制为容器(例如,小瓶)中单剂量。在一些实施方案中,所述免疫原性组合物配制为小瓶中的多剂量制剂。在一些实施方案中,所述多剂量制剂包括至少2个剂量/瓶。在一些实施方案中,所述多剂量制剂包括总计2-20个剂量/瓶,例如,2、3、4、5、6、7、8、9、10、11或12个剂量/瓶。在一些实施方案中,小瓶中的每个剂量体积相等。在一些实施方案中,第一剂量与后续剂量的体积不同。
“稳定的”多剂量制剂没有表现出不可接受的微生物生长水平,并且基本上没有或没有活性生物分子组分的分解或降解。如本文所用,“稳定的”免疫原性组合物包括在给予受试者时仍能够引发期望的免疫应答的制剂。
在一些实施方案中,多剂量制剂在多次或重复接入(inoculation)/插入多剂量容器后,在指定时间内保持稳定。例如,在一些实施方案中,当包含在多剂量容器内时,多剂量制剂可以稳定至少3天,多达10次使用。在一些实施方案中,多剂量制剂在2-20次接种/插入后保持稳定。
在一些实施方案中,给药包含脂质纳米颗粒包裹的mRNA的组合物,例如根据如本文描述的方案,可以在一些受试者中(例如,在所有受试者中,在大多数受试者中,在约50%或更少中,在约40%或更少中,在约40%或更少中,在约25%或更少中,在约20%或更少中,在约15%或更少中,在约10%或更少中,在约5%或更少中等)导致淋巴细胞减少,所述mRNA编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位)。其中,本公开证实这种淋巴细胞减少可以随时间消退(resolve)。例如,在一些实施方案中,淋巴细胞减少在约14、约10、约9、约8、约7天或更短时间内消退。在一些实施方案中,淋巴细胞减少是3级、2级或更低。
因此,本公开提供包含脂质纳米颗粒包裹的mRNA的组合物,所述mRNA编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位),所述组合物的特征在于,当给予相关成年人群体时,显示如本文描述的某些特征(例如,实现某些效果)。在一些实施方案中,提供的组合物可以在温度不超过特定阈值的条件下制备、储存、运输、表征和/或使用。可选地或额外地,在一些实施方案中,提供的组合物可以在其制备、储存、运输、表征和/或使用的一些或全部中进行保护以免受光(例如,免受某些波长)的影响。在一些实施方案中,提供的组合物的一个或多个特征(例如,mRNA稳定性,例如可以通过大小、特定部分的存在或修饰等中的一种或多种来评价;脂质纳米颗粒稳定性或聚集,pH等)可以或已经在给药之前在制备、储存、运输和/或使用中的一个或多个点进行评价。
其中,本公开记录了其中mRNA内的核苷酸未修饰(例如,是天然存在的A、U、C、G)的某些提供的组合物和/或涉及这类组合物的提供的方法(例如,当给予相关群体时,在一些实施方案中其可以是或包含成年人群体)的特征在于内在佐剂作用。在一些实施方案中,这样的组合物和/或方法可以诱导抗体和/或T细胞应答。在一些实施方案中,与常规疫苗(例如,非mRNA疫苗如蛋白疫苗)相比,这样的组合物和/或方法可以诱导更高的T细胞应答。
可选地或额外地,本公开记录了其中mRNA内的核苷酸经修饰的提供的组合物(例如,包含脂质纳米颗粒包裹的mRNA的组合物,所述mRNA编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位))和/或涉及这类组合物的提供的方法(例如,当给予相关群体时,在一些实施方案中其可以是或包含成年人群体)的特征在于不存在内在佐剂作用,或者与具有未修饰的结果的其他可比组合物(或方法)相比减少的内在佐剂作用。可选地或额外地,在一些实施方案中,这类组合物(或方法)的特征在于它们(例如,当给予相关群体时,在一些实施方案中其可以是或包含成年人群体)诱导抗体应答和/或CD4+ T细胞应答。进一步可选地或额外地,在一些实施方案中,这类组合物(或方法)的特征在于它们(例如,当给予相关群体时,在一些实施方案中其可以是或包含成年人群体)诱导比用可选疫苗形式(例如,肽疫苗)观察到的更高的CD4+ T细胞应答。在涉及修饰的核苷酸的一些实施方案中,这类修饰的核苷酸可以存在于例如3’UTR序列、抗原编码序列和/或5’UTR序列中。在一些实施方案中,修饰的核苷酸是或包括一个或多个修饰的尿嘧啶残基和/或一个或多个修饰的胞嘧啶残基。
其中,本公开记录了提供的组合物(例如,包含脂质纳米颗粒包裹的mRNA的组合物,所述mRNA编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位))和/或方法(例如,当给予相关群体时,在一些实施方案中其可以是或包含成年人群体)的特征在于编码的多肽(例如,SARS-CoV-2编码的蛋白[如S蛋白]或其部分,在一些实施方案中,所述部分可以是或包含其表位)的持续表达。例如,在一些实施方案中,这类组合物和/或方法的特征在于,当给予人时,它们在来自这样的人的生物样品(例如,血清)中实现可检测的多肽表达,并且在一些实施方案中,这种表达持续至少36小时或更长的时间段,包括,例如,至少48小时、至少60小时、至少72小时、至少96小时、至少120小时、至少148小时或更长。
阅读本公开的本领域技术人员会理解它描述了各种mRNA构建体,其编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位)。阅读本公开的这些普通技术人员会特别理解它描述了各种mRNA构建体,其编码SARS-CoV-2 S蛋白的至少一部分,例如至少SARS-CoV-2 S蛋白的RBD部分。更进一步,阅读本公开的普通技术人员会理解它描述了mRNA构建体的特定特征和/或优点,所述mRNA构建体编码SARS-CoV-2编码的多肽(例如,SARS-CoV-2编码的S蛋白)的至少一部分(例如,是或包含表位)。其中,本公开特别记录了某些mRNA构建体的令人惊讶和有用的特征和/或优点,所述mRNA构建体编码SARS-CoV-2 RBD部分,并且在一些实施方案中,不编码全长SARS-CoV-2 S蛋白。不希望受任何特定理论的束缚,本公开表明提供的编码少于全长SARS-CoV-2 S蛋白的mRNA构建体,特别是编码至少这类SARS-CoV-2 S蛋白的RBD部分的mRNA构建体对于用作或用于免疫原性组合物(例如,疫苗)和/或实现如本文描述的免疫效果(例如,产生SARS-CoV-2中和抗体,和/或T细胞应答(例如,CD4+和/或CD8+ T细胞应答))特别有用和/或有效。
在一些实施方案中,本公开提供包含编码多肽的开放阅读框的RNA(例如,mRNA),所述多肽包含SARS-CoV-2 S蛋白的受体结合部分,所述RNA适合所述多肽的细胞内表达。在一些实施方案中,这样的编码的多肽不包含完整的S蛋白。在一些实施方案中,编码的多肽包含受体结合结构域(RBD),例如,如SEQ ID NO:5所示。在一些实施方案中,编码的多肽包含根据SEQ ID NO:29或31的肽。在一些实施方案中,这样的RNA(例如,mRNA)可以由(聚)阳离子聚合物、polyplex、蛋白或肽复合。在一些实施方案中,这样的RNA可以配制于脂质纳米颗粒(例如,本文描述的脂质纳米颗粒)中。在一些实施方案中,这样的RNA(例如,mRNA)可以对于用作或用于免疫原性组合物(例如,疫苗),和/或用于实现如本文描述的免疫效果(例如,产生SARS-CoV-2中和抗体,和/或T细胞应答(例如,CD4+和/或CD8+ T细胞应答))特别有用和/或有效。在一些实施方案中,这样的RNA(例如,mRNA)可以用于对人(包括,例如,已知被SARS-CoV-2暴露和/或感染的人,和/或未知已暴露于SARS-CoV-2的人)进行疫苗接种。
阅读本公开的本领域技术人员会进一步理解它描述了各种mRNA构建体,其包含编码全长SARS-CoV-2刺突蛋白的核酸序列(例如,包括其中这样的编码的SARS-CoV-2刺突蛋白可以包含至少一个或多个氨基酸取代的实施方案,例如,如本文描述的脯氨酸取代,和/或其中mRNA序列针对受试者(例如,哺乳动物,例如,人)进行密码子优化的实施方案)。在一些实施方案中,这样的全长SARS-CoV-2刺突蛋白可以具有的氨基酸序列是或包含SEQ IDNO:7所示的氨基酸序列。更进一步,阅读本公开的这样的普通技术人员会理解它描述了包含编码全长SARS-CoV-2刺突蛋白的核酸序列的某些mRNA构建体的特定特征和/或优点。不希望受任何特定理论的束缚,本公开表明提供的编码全长SARS-CoV-2 S蛋白的mRNA构建体可以对于在特定受试者群体(例如,特定年龄群体)中用作或用于免疫原性组合物(例如,疫苗)特别有用和/或有效。例如,在一些实施方案中,这样的mRNA组合物可以在年轻(例如,25岁以下、20岁以下、18岁以下、15岁以下、10岁或更低)的受试者中特别有用;可选地或额外地,在一些实施方案中,这样的mRNA组合物可以在老年受试者(例如,55岁以上、60岁以上、65岁以上、70岁以上、75岁以上、80岁以上、85岁或更高)中特别有用。在特定实施方案中,至少在一些受试者中(例如,在一些受试者年龄组中),包含本文提供的这样的mRNA构建体的免疫原性组合物在剂量水平和/或剂量数量依赖性全身性反应原性(例如,发烧、疲劳、头痛、寒战、腹泻、肌肉疼痛和/或关节疼痛等)和/或局部耐受性(例如,疼痛、发红和/或肿胀等)方面表现出最小至中等的增加(例如,不超过30%的增加,不超过20%的增加,或不超过10%的增加或更低);在一些实施方案中,特别在年轻的年龄组(例如,25岁以下、20岁以下、18岁或更低)受试者和/或在年长的(例如,老年)年龄组(例如,65-85岁)中观察到这样的反应原性和/或局部耐受性。在一些实施方案中,提供的编码全长SARS-CoV-2 S蛋白的mRNA构建体可以对于用作或用于免疫原性组合物(例如,疫苗)在具有与SARS-CoV-2感染相关的严重疾病的高风险的受试者群体(例如,老年群体,例如,65-85岁组)中诱导SARS-CoV-2中和抗体应答水平是特别有用和/或有效的。在一些实施方案中,阅读本公开的普通技术人员会理解提供的编码全长SARS-CoV-2 S蛋白的mRNA构建体,其在年轻和老年群体中表现出有利的反应原性谱(例如,如本文所述),可以对于用作或用于免疫原性组合物(例如,疫苗)实现如本文描述的免疫效果(例如,产生SARS-CoV-2中和抗体,和/或T细胞应答(例如,CD4+和/或CD8+ T细胞应答))特别有用和/或有效。在一些实施方案中,本公开还表明提供的编码全长SARS-CoV-2 S蛋白的mRNA构建体可以对于提供针对SARS-CoV-2感染的保护特别有效,其特征在于在用包含这类mRNA构建体的免疫原性组合物免疫然后受到SARS-CoV-2毒株攻击的非人哺乳动物受试者(例如,恒河猴)中较早清除SARS-CoV-2病毒RNA。在一些实施方案中,可以在用包含这样的mRNA构建体的免疫原性组合物免疫然后受到SARS-CoV-2毒株攻击的非人哺乳动物受试者(例如,恒河猴)的鼻子中观察到这样的SARS-CoV-2病毒RNA的较早清除。
在一些实施方案中,本公开提供包含编码全长SARS-CoV-2 S蛋白(例如,具有一个或多个氨基酸取代的全长SARS-CoV-2 S蛋白)的开放阅读框的RNA(例如,mRNA),所述RNA适合多肽的细胞内表达。在一些实施方案中,编码的多肽包含SEQ ID NO:7的氨基酸序列。在一些实施方案中,这样的RNA(例如,mRNA)可以由(聚)阳离子聚合物、polyplex、蛋白或肽复合。在一些实施方案中,这样的RNA可以配制于脂质纳米颗粒(例如,本文描述的脂质纳米颗粒)中。
在一些实施方案中,本文提供的免疫原性组合物可以包含SARS-CoV-2多肽或其变体的多个(例如,至少2个或更多个,包括,例如,至少3个,至少4个,至少5个,至少6个,至少7个,至少8个,至少9个,至少10个等)免疫原性表位。在一些这样的实施方案中,这样的多个免疫原性表位可以由多个RNA(例如,mRNA)编码。在一些这样的实施方案中,这样的多个免疫原性表位可以由单一RNA(例如,mRNA)编码。在一些实施方案中,编码多个免疫原性表位的核酸序列可以通过接头(例如,在一些实施方案中为肽接头)在单一RNA(例如,mRNA)中互相分开。不希望受任何特定理论的束缚,在一些实施方案中,当考虑SARS-CoV-2变体的遗传多样性时,提供的多表位免疫原性组合物(包括,例如,编码全长SARS-CoV-2刺突蛋白的那些)可以特别用于提供针对多种病毒变体的保护和/或可以提供更大的机会来开发多样化和/或稳健(例如,持久,例如在给药一个或多个剂量之后约5、10、15、20、25、30、35、40、45、50、55、60或更多天可检测)的中和抗体和/或T细胞应答,特别是特别稳健的TH1型T细胞(例如,CD4+和/或CD8+ T细胞)应答。
在一些实施方案中,本公开记录了提供的组合物和/或方法的特征在于(例如,当给予相关群体时,在一些实施方案中其可以是或包含成年人群体)它们用单一给药实现一种或多种特定治疗结果(例如,如本文描述的有效免疫应答和/或编码的SARS-CoV-2 S蛋白或其免疫原性片段的可检测表达);在一些这样的实施方案中,例如,可以与不存在本文描述的mRNA疫苗时观察到的结果进行比较来评价结果。在一些实施方案中,可以以比一种或多种替代的策略所需的剂量低的剂量实现特定结果。
在一些实施方案中,本公开提供包含分离的信使核糖核酸(mRNA)多核苷酸的免疫原性组合物,其中所述分离的mRNA多核苷酸包含编码包含SARs-CoV-2 S蛋白的受体结合部分的多肽的开放阅读框,并且其中所述分离的mRNA多核苷酸配制在至少一种脂质纳米颗粒中。例如,在一些实施方案中,这样的脂质纳米颗粒可以包含摩尔比的20-60%可电离的阳离子脂质、5-25%非阳离子脂质(例如,中性脂质)、25-55%固醇或类固醇以及0.5-15%聚合物缀合的脂质(例如,PEG-修饰的脂质)。在一些实施方案中,脂质纳米颗粒中包含的固醇或类固醇可以是或包含胆固醇。在一些实施方案中,中性脂质可以是或包含1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱(DSPC)。在一些实施方案中,聚合物缀合的脂质可以是或包含PEG2000 DMG。在一些实施方案中,这样的免疫原性组合物可以包含约1mg-10mg、或3mg-8mg、或4mg-6mg的总脂质含量。在一些实施方案中,这样的免疫原性组合物可以包含约5mg/mL-15mg/mL或7.5mg/mL-12.5mg/mL或9-11mg/mL的总脂质含量。在一些实施方案中,以有效量提供这样的分离的mRNA多核苷酸以在给药至少一个剂量的免疫原性组合物的受试者中诱导免疫应答。在一些实施方案中,提供的分离的mRNA多核苷酸编码的多肽不包含完整的S蛋白。在一些实施方案中,在免疫原性组合物中提供的这样的分离的mRNA多核苷酸不是自我复制的RNA。
在一些实施方案中,免疫应答可以包括产生针对SARS-CoV-2蛋白(在一些实施方案中包括例如稳定的融合前刺突三聚体)或其片段的结合抗体滴度。在一些实施方案中,免疫应答可以包括产生针对SARS-CoV-2刺突蛋白的受体结合结构域(RBD)的结合抗体滴度。在一些实施方案中,已建立提供的免疫原性组合物,以在给药第一剂量之后实现可检测的结合抗体滴度,在至少70%(包括,例如,至少80%、至少90%、至少95%和至多100%)的接受这样的提供的免疫原性组合物的受试者群体中具有血清转换,例如,至约2周。
在一些实施方案中,免疫应答可以包括产生针对SARS-CoV-2蛋白(在一些实施方案中包括例如稳定的融合前刺突三聚体)或其片段的中和抗体滴度。在一些实施方案中,免疫应答可以包括产生针对SARS-CoV-2刺突蛋白的受体结合结构域(RBD)的中和抗体滴度。在一些实施方案中,已建立提供的免疫原性组合物,以在适当的系统中(例如,在感染有SARS-CoV-2的人和/或其群体中,和/或在其模型系统中)实现中和抗体滴度。例如,在一些实施方案中,这样的中和抗体滴度可能已在一个或多个人类群体、非人灵长类模型(例如,恒河猴)和/或小鼠模型中得到证实。
在一些实施方案中,中和抗体滴度是(例如,已建立为)相对于适当对照(例如,未疫苗接种的对照受试者,或者用活减毒病毒疫苗、灭活病毒疫苗或蛋白亚单位(subunit)病毒疫苗或者其组合进行疫苗接种的受试者)所观察到的足以减少B细胞的病毒感染的滴度。在一些这样的实施方案中,这样的减少是至少30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更多。
在一些实施方案中,中和抗体滴度是(例如,已建立为)相对于适当对照(例如,未疫苗接种的对照受试者,或者用活减毒病毒疫苗、灭活病毒疫苗或蛋白亚单位病毒疫苗或者其组合进行疫苗接种的受试者)所观察到的足以减少无症状病毒感染率的滴度。在一些这样的实施方案中,这样的减少是至少30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更多。在一些实施方案中,这样的减少可以通过评价SARS-CoV-2N蛋白血清学来表征。还通过现实生活观察结果证实针对无症状感染的显著保护作用(还参见Dagan N.et al.,N Engl J Med.2021,doi:10.1056/NEJMoa2101765.Epubahead of print.PMID:33626250)。
在一些实施方案中,中和抗体滴度是(例如,已建立为)相对于适当对照(例如,未疫苗接种的对照受试者,或者用活减毒病毒疫苗、灭活病毒疫苗或蛋白亚单位病毒疫苗或者其组合进行疫苗接种的受试者)所观察到的足以减少或阻断病毒与疫苗接种的受试者的上皮细胞和/或B细胞融合的滴度。在一些这样的实施方案中,这样的减少是至少30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更多。
在一些实施方案中,诱导中和抗体滴度的特征可以在于B细胞数量升高,在一些实施方案中,其可以包括浆细胞、类别转换的IgG1-和IgG2-阳性B细胞和/或生发中心B细胞。在一些实施方案中,已建立提供的免疫原性组合物,以在适当的系统中(例如,在感染有SARS-CoV-2的人和/或其群体中,和/或在其模型系统中)实现这样的B细胞数量升高。例如,在一些实施方案中,这样的B细胞数量升高可能已在一个或多个人类群体、非人灵长类模型(例如,恒河猴)和/或小鼠模型中得到证实。在一些实施方案中,可能已在用提供的免疫原性组合物免疫这样的小鼠模型之后(例如,至少7天、至少8天、至少9天、至少10天、至少11天、至少12天、至少13天、至少14天之后)在小鼠模型的引流淋巴结和/或脾中证实这样的B细胞数量升高。在一些实施方案中,诱导中和抗体滴度的特征可以在于血液中循环B细胞的数量减少。在一些实施方案中,已建立提供的免疫原性组合物,以在适当系统(例如,在感染SARS-CoV-2的人和/或其群体中,和/或在其模型系统中)的血液中实现这样的循环B细胞数量减少。例如,在一些实施方案中,血液中这样的循环B细胞数量减少可能已在一个或多个人类群体、非人灵长类模型(例如,恒河猴)和/或小鼠模型中得到证实。在一些实施方案中,可能已在用提供的免疫原性组合物免疫这样的小鼠模型之后(例如,至少4天、至少5天、至少6天、至少7天、至少8天、至少9天、至少10天之后)在小鼠模型中证实血液中这样的循环B细胞数量减少。不希望受理论束缚,血液中循环B细胞减少可能是由于B细胞归巢至淋巴区室。
在一些实施方案中,提供的免疫原性组合物诱导的免疫应答可以包括T细胞数量升高。在一些实施方案中,这样的T细胞数量升高可以包括滤泡辅助性T(TFH)细胞的数量升高,在一些实施方案中,其可以包括具有ICOS上调的一个或多个子集。本领域技术人员会理解TFH在生发中心中的增殖对于适应性B细胞应答的产生是必需的,而且在人中,疫苗接种之后循环中出现的TFH通常与高频率的抗原特异性抗体相关。在一些实施方案中,已建立提供的免疫原性组合物,以在适当的系统中(例如,在感染有SARS-CoV-2的人和/或其群体中,和/或在其模型系统中)实现这样的T细胞(例如,TFH细胞)数量升高。例如,在一些实施方案中,这样的T细胞(例如,TFH细胞)数量升高可能已在一个或多个人类群体、非人灵长类模型(例如,恒河猴)和/或小鼠模型中得到证实。在一些实施方案中,可能已在用提供的免疫原性组合物免疫这样的小鼠模型之后(例如,至少4天、至少5天、至少6天、至少7天、至少8天、至少9天、至少10天、至少11天、至少12天、至少13天、至少14天之后)在小鼠模型的引流淋巴结、脾和/或血液中证实这样的T细胞(例如,TFH细胞)数量升高。
在一些实施方案中,已在SARS-CoV-2的适当模型系统中建立了提供的免疫原性组合物诱导的针对SARS-CoV-2的保护性应答。例如,在一些实施方案中,这样的保护性应答可能已在动物模型,例如非人灵长类模型(例如,恒河猴)和/或小鼠模型中得到证实。在一些实施方案中,例如,通过鼻内和/或气管内途径用SARS-CoV-2攻击已接受用提供的免疫原性组合物至少一次免疫的非人灵长类(例如,恒河猴)或其群体。在一些实施方案中,这样的攻击可以在用提供的免疫原性组合物进行至少一次免疫(包括,例如,至少两次免疫)之后数周(例如,5-10周)进行。在一些实施方案中,当在已接受用提供的免疫原性组合物至少一次免疫(包括,例如,至少两次免疫)的非人灵长类(例如,恒河猴)中实现可检测水平的SARS-CoV-2中和滴度(例如,对SARS-CoV-2刺突蛋白和/或其片段的抗体应答,包括,例如,但不限于稳定的融合前刺突三聚体、S-2P,和/或对SARS-CoV-2的受体结合部分的抗体应答)时,可以进行这样的攻击。在一些实施方案中,保护性应答的特征在于被攻击的非人灵长类(例如,恒河猴)的支气管肺泡灌洗液(BAL)和/或鼻拭子中不存在可检测的病毒RNA或可检测的病毒RNA减少。在一些实施方案中,本文描述的免疫原性组合物特征可以在于,与未免疫的动物群体(例如,非人灵长类(例如,恒河猴))相比,已接受用提供的免疫原性组合物至少一次免疫(包括,例如,至少两次免疫)的受到攻击的动物(例如,群体中的非人灵长类(例如,恒河猴))的较大百分比显示在它们的BAL和/或鼻拭子中不存在可检测的RNA。在一些实施方案中,本文描述的免疫原性组合物特征可以在于,与未免疫的动物群体(例如,非人灵长类(例如,恒河猴))相比,已接受用提供的免疫原性组合物至少一次免疫(包括,例如,至少两次免疫)的受到攻击的动物(例如,群体中的非人(例如,恒河猴)),可以不迟于10天,包括,例如,不迟于8天、不迟于6天、不迟于4天等显示鼻拭子中病毒RNA的清除。
在一些实施方案中,当给予有此需要的受试者时,本文描述的免疫原性组合物基本上不增加疫苗相关的增强型呼吸道疾病的风险。在一些实施方案中,这样的疫苗相关的增强型呼吸道疾病可能与抗体依赖性的复制增强相关和/或与诱导中和活性差的抗体和Th2偏向的应答的疫苗抗原相关。在一些实施方案中,当给予有此需要的受试者时,本文描述的免疫原性组合物基本上不增加抗体依赖性的复制增强的风险。
在一些实施方案中,单剂量的mRNA组合物(例如,配制于脂质纳米颗粒中)可以在10天以下的疫苗接种中诱导治疗性抗体应答。在一些实施方案中,这样的治疗性抗体应答特征可以在于,这样的mRNA疫苗可以在动物模型中以0.1-10μg或0.2-5μg的剂量疫苗接种之后10天测量时诱导产生约10-100μg/mL IgG。在一些实施方案中,这样的治疗性抗体应答特征可以在于,这样的mRNA疫苗在动物模型中以0.1-10μg或0.2-5μg的剂量疫苗接种的20天测量时诱导约100-1000μg/mL IgG。在一些实施方案中,如在动物模型中测量的,疫苗接种之后15天,单剂量可以诱导10-200pVN50滴度的假病毒中和滴度。在一些实施方案中,如在动物模型中测量的,疫苗接种之后15天,单剂量可以诱导50-500pVN50滴度的假病毒中和滴度。
在一些实施方案中,与在不存在这样的编码SARS-COV-2免疫原性蛋白或其片段(例如,刺突蛋白和/或受体结合结构域)的mRNA构建体的情况下观察到的相比,单剂量的mRNA组合物可以使抗原特异性CD8和/或CD4 T细胞应答扩大至少50%或更多(包括,例如,至少60%、至少70%、至少80%、至少90%、至少95%或更多)。在一些实施方案中,与在不存在这样的编码SARS-COV-2免疫原性蛋白或其片段(例如,刺突蛋白和/或受体结合结构域)的mRNA构建体的情况下观察到的相比,单剂量的mRNA组合物可以使抗原特异性CD8和/或CD4 T细胞应答扩大至少1.5倍或更多(包括,例如,至少2倍、至少3倍、至少5倍、至少10倍、至少50倍、至少100倍、至少500倍、至少1000倍或更多)。
在一些实施方案中,与在不存在这样的编码SARS-COV-2免疫原性蛋白或其片段(例如,刺突蛋白和/或受体结合结构域)的mRNA构建体的情况下观察到的相比,方案(例如,单剂量的mRNA组合物)可以使表现出Th1表型的T细胞(例如,特征在于表达IFN-γ、IL-2、IL-4和/或IL-5)扩大至少50%或更多(包括,例如,至少60%、至少70%、至少80%、至少90%、至少95%或更多)。在一些实施方案中,与在不存在这样的编码SARS-COV-2免疫原性蛋白或其片段(例如,刺突蛋白和/或受体结合结构域)的mRNA构建体的情况下观察到的相比,方案(例如,单剂量的mRNA组合物)可以使表现出Th1表型的T细胞(例如,特征在于表达IFN-γ、IL-2、IL-4和/或IL-5)扩大例如至少1.5倍或更多(包括,例如,至少2倍、至少3倍、至少5倍、至少10倍、至少50倍、至少100倍、至少500倍、至少1000倍或更多)。在一些实施方案中,T细胞表型可以是或包括Th1占优势的细胞因子谱(例如,特征在于IFN-γ阳性和/或IL-2阳性),和/或没有或生物学上不显著的IL-4分泌。
在一些实施方案中,如本文描述的方案(例如,一个或多个剂量的mRNA组合物)诱导和/或实现RBD特异性CD4+ T细胞的产生。其中,本公开记录了编码SARS-CoV-2刺突蛋白的包含RBD的部分(例如,不编码全长SARS-CoV-2刺突蛋白)的mRNA组合物可以在这样的诱导和/或产生RBD特异性CD4+ T细胞中特别有用和/或有效。在一些实施方案中,由本文描述的mRNA组合物(例如,由编码SARS-CoV-2刺突蛋白的包含RBD的部分,并且在一些实施方案中不编码全长SARS-CoV-2刺突蛋白的mRNA组合物)诱导的RBD特异性CD4+ T细胞证实Th1占优势的细胞因子谱(例如,特征在于IFN-γ阳性和/或IL-2阳性),和/或没有或生物学上不显著的IL-4分泌。
在一些实施方案中,接受mRNA组合物(例如,如本文所述)的受试者中CD4+和/或CD8+ T细胞应答(例如,如本文所述)的表征可以利用离体测定使用采集自受试者的PBMC进行,例如,实施例中描述的测定。
在一些实施方案中,本文描述的mRNA组合物的免疫原性可以通过以下血清学免疫原性测定中的一种或多种进行评价:检测接受提供的mRNA组合物的受试者的血液样品中存在的针对SARS-CoV-2 S蛋白的IgG、IgM和/或IgA,和/或使用SARS-CoV-2假病毒和/或野生型SARS-CoV-2病毒的中和测定。
在一些实施方案中,在以10μg–100μg或1μg-50μg的剂量疫苗接种之后7天内,mRNA组合物(例如,如本文所述)提供相对低的不良反应(例如,1级-2级疼痛,发红和/或肿胀)。在一些实施方案中,在以10μg–100μg的剂量疫苗接种之后7天内,mRNA组合物(例如,如本文所述)提供相对低的全身性事件(例如,1级-2级发烧、疲劳、头痛、寒战、呕吐、腹泻、肌肉疼痛、关节疼痛、药物治疗(medication)和它们的组合)的观察值。
在一些实施方案中,mRNA组合物的特征在于,当以10-100μg剂量或1μg-50μg给予受试者时,在疫苗接种之后21天可以以100-100,000U/mL或500-50,000U/mL的水平产生针对SARS-CoV-2免疫原性蛋白或其片段(例如,刺突蛋白和/或受体结合结构域)的IgG。
在一些实施方案中,mRNA编码SARS-CoV-2的天然折叠的三聚体受体结合蛋白。在一些实施方案中,mRNA编码这样的受体结合蛋白的变体,从而编码的变体以10pM或更低的Kd结合至ACE2,包括,例如,以9pM、8pM、7pM、6pM、5pM、4pM或更低的Kd。在一些实施方案中,mRNA编码这样的受体结合蛋白的变体,从而编码的变体以5pM的Kd结合至ACE2。在一些实施方案中,mRNA编码包含ACE2受体结合位点的SARS-CoV-2的三聚体受体结合部分。在一些实施方案中,mRNA包含SARS-CoV-2的受体结合部分和三聚结构域(例如,T4次要纤维蛋白的天然三聚结构域(折叠子(foldon))的编码序列,从而所述编码序列指导具有ACE2受体结合位点并结合ACE2的三聚体蛋白的表达。在一些实施方案中,mRNA编码SARS-CoV-2的三聚体受体结合部分或其变体,从而它的Kd小于SARS-CoV-2的单体受体结合结构域(RBD)的Kd。例如,在一些实施方案中,mRNA编码SARS-CoV-2的三聚体受体结合部分或其变体,从而它的Kd比SARS-CoV-2的RBD的Kd小至少10倍(包括,例如,至少50倍、至少100倍、至少500倍、至少1000倍等)。
在一些实施方案中,如通过冷冻电镜术(cryoEM)表征的,当与ACE2和B0AT1中性氨基酸转运蛋白在闭合构象中复合时,可以确定mRNA(例如,如本文所述)编码的SARS-CoV-2的三聚体受体结合部分的大小为约3-4埃。在一些实施方案中,表征和/或通过如本文描述的mRNA组合物或方法实现的几何平均SARS-CoV-2中和滴度可以达到COVID-19康复期(convalescent)人组(例如,在症状发作后20-40天和无症状康复开始之后至少14天获得的来自COVID-19康复期人的血清组)的至少1.5倍,包括,至少2倍、至少2.5倍、至少3倍或更高。
在一些实施方案中,如本文提供的mRNA组合物特征可以在于,与适当的对照(例如,尚未这样治疗且已在合理可比的暴露条件下暴露于病毒的可比受试者或群体的既定预期水平)相比,已用这类组合物治疗(例如,用至少一个剂量,至少两个剂量等)的受试者可以在相关部位(例如,鼻和/或肺等,和/或任何其他易受感染的组织)显示病毒RNA减少和/或更短暂存在。
在一些实施方案中,可以通过添加T4次要纤维蛋白衍生的“折叠子”三聚结构域来修饰mRNA构建体(例如,如本文所述)表达的RBD抗原,例如,以增加它的免疫原性。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,某些局部反应(例如,疼痛、发红和/或肿胀等)和/或全身性事件(例如,发烧、疲劳、头痛等)可能在疫苗接种之后第2天出现和/或达到峰值。在一些实施方案中,本文描述的mRNA组合物的特征在于,某些局部反应(例如,疼痛、发红和/或肿胀等)和/或全身性事件(例如,发烧、疲劳、头痛等)可以到疫苗接种之后第7天消退。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,在接受mRNA组合物(如本文所述)的受试者中未观察到常规临床实验室值的1级或更大变化或者实验室异常。这类临床实验室测定的实例可以包括淋巴细胞计数、血液学变化等。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,与一组COVID-19康复期人血清的602单位/mL相比,在第一剂量(例如,10-100μg,包括10和100μg或1μg-50μg,包括1μg和50μg)之后21天,针对SARS-CoV-2 S多肽或其免疫原性片段(例如RBD)的IgG的几何平均浓度(GMC)可以达到200-3000单位/mL或500-3000单位/mL或500-2000单位/mL。在一些实施方案中,本文描述的mRNA组合物的特征在于,在第二剂量(例如,10-30μg,包括10和30μg;或1μg-50μg,包括1μg和50μg)之后7天,针对SARS-CoV-2刺突多肽或其免疫原性片段(例如,RBD)的IgG的几何平均浓度(GMC)可以增加至少8倍或更高,包括,例如,至少9倍、至少10倍、至少15倍、至少20倍、至少25倍、至少30倍、至少35倍、至少40倍或更高。在一些实施方案中,本文描述的mRNA组合物的特征在于,在第二剂量(例如,10-30μg,包括10和30μg;或1μg-50μg,包括1μg和50μg)之后7天,针对SARS-CoV-2 S多肽或其免疫原性片段(例如RBD)的IgG的几何平均浓度(GMC)可以增加至1500单位/mL-40,000单位/mL或4000单位/mL-40,000单位/mL。在一些实施方案中,本文描述的抗体浓度可以在第一剂量之后持续至少20天或更长时间,包括,例如,至少25天、至少30天、至少35天、至少40天、至少45天、至少50天,或者在第二剂量之后持续至少10天或更长时间,包括,例如,至少15天、至少20天、至少25天或更长时间。在一些实施方案中,抗体浓度可以在第一剂量之后持续35天,或者在第二剂量之后持续至少14天。
在一些实施方案中,本文描述的mRNA组合物的特征在于,与一组COVID-19康复期人血清中观察到的抗体浓度相比,当在第二剂量(例如,1-50μg,包括1和50μg)之后7天测量时,针对SARS-CoV-2 S多肽或其免疫原性片段(例如,RBD)的IgG的GMC高至少30%(包括,例如,高至少40%、高至少50%、高至少60%、高至少70%、高至少80%、高至少90%、高至少95%)。在许多实施方案中,本文描述的IgG的几何平均浓度(GMC)是结合RBD的IgG的GMC。
在一些实施方案中,本文描述的mRNA组合物的特征在于,与一组COVID-19康复期人血清中观察到的抗体浓度相比,当在第二剂量(例如,10-50μg,包括1和50μg)之后7天测量时,针对SARS-CoV-2 S多肽或其免疫原性片段(例如,RBD)的IgG的GMC是至少1.1倍(包括,例如,至少1.5倍、至少2倍、至少3倍、至少4倍、至少5倍、至少6倍、至少7倍、至少8倍、至少9倍、至少10倍、至少15倍、至少20倍、至少25倍、至少30倍)。在许多实施方案中,本文描述的IgG的几何平均浓度(GMC)是结合RBD的IgG的GMC。
在一些实施方案中,本文描述的mRNA组合物的特征在于,与一组COVID-19康复期人血清中观察到的抗体浓度相比,当在第二剂量之后21天测量时,针对SARS-CoV-2 S多肽或其免疫原性片段(例如,RBD)的IgG的GMC是至少5倍(包括,例如,至少6倍、至少7倍、至少8倍、至少9倍、至少10倍、至少15倍、至少20倍、至少25倍、至少30倍)。在许多实施方案中,本文描述的IgG的几何平均浓度(GMC)是结合RBD的IgG的GMC。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,在第一剂量之后21天观察到SARS-CoV-2中和几何平均滴度(GMT)增加(例如,至少30%、至少40%、至少50%或更多)。在一些实施方案中,本文描述的mRNA组合物的特征在于,与COVID-19康复期血清组的94相比,受试者接受第二剂量(例如,10μg-30μg,包括10μg和30μg)之后7天实现明显更高的血清中和GMT,达到150-300。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,给药第二剂量之后7天,保护效力(efficacy)是至少60%,例如,至少70%、至少80%、至少90%或至少95%。在一实施方案中,本文描述的mRNA组合物和/或方法的特征在于,给药第二剂量之后7天,保护效力是至少70%。在一实施方案中,本文描述的mRNA组合物和/或方法的特征在于,给药第二剂量之后7天,保护效率是至少80%。在一实施方案中,本文描述的mRNA组合物和/或方法的特征在于,给药第二剂量之后7天,保护效率是至少90%。在一实施方案中,本文描述的mRNA组合物和/或方法的特征在于,给药第二剂量之后7天,保护效力是至少95%。
在一些实施方案中,本文提供的RNA组合物的特征在于,它在剂量给药之后(例如,第二剂量之后)至少7天之后诱导针对SARS-CoV-2的免疫应答。在一些实施方案中,本文提供的RNA组合物的特征在于,它在剂量给药之后(例如,第二剂量之后)14天以下诱导针对SARS-CoV-2的免疫应答。在一些实施方案中,本文提供的RNA组合物的特征在于,它在疫苗接种方案之后至少7天之后诱导针对SARS-CoV-2的免疫应答。在一些实施方案中,疫苗接种方案包括第一剂量和第二剂量。在一些实施方案中,第一剂量和第二剂量间隔至少21天给药。在一些这类实施方案中,至少在第一剂量之后28天之后诱导针对SARS-CoV-2的免疫应答。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,如在来自接受本公开的mRNA组合物(例如,以10-30μg的剂量,包括10和30μg)的受试者的血清中测量的,针对SARS-CoV-2刺突多肽或其免疫原性片段(例如,RBD)的抗体的几何平均浓度(GMC)明显高于康复期血清组(例如,如本文所述)。在受试者可以接受第二剂量(例如,1个第一剂量之后21天)的一些实施方案中,如在来自受试者的血清中测量的,针对SARS-CoV-2刺突多肽或其免疫原性片段(例如,RBD)的抗体的几何平均浓度(GMC)可以是康复期血清组GMC的8.0倍至50倍。在受试者可以接收第二剂量(例如,1个第一剂量之后21天)的一些实施方案中,如在来自受试者的血清中测量的,针对SARS-CoV-2刺突多肽或其免疫原性片段(例如,RBD)的抗体的几何平均浓度(GMC)与康复期血清组GMC相比可以是至少8.0倍或更高,包括,例如,至少10倍、至少20倍、至少30倍、至少40倍、至少50倍、至少60倍或更高。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,如在第一剂量之后28天或第二剂量之后7天测量的,SARS-CoV-2中和几何平均滴度与康复期血清组的中和GMT相比可以是至少1.5倍或更高(包括,例如,至少2倍、至少2.5倍、至少3倍、至少3.5倍或更高)。
在一些实施方案中,给予受试者的方案可以是或包含单剂量。在一些实施方案中,给予受试者的方案可以包含多个剂量(例如,至少两个剂量,至少三个剂量或更多)。在一些实施方案中,给予受试者的方案可以包含第一剂量和第二剂量,其给予间隔至少2周、间隔至少3周、间隔至少4周或更长时间。在一些实施方案中,这样的剂量可以间隔至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月、至少7个月、至少8个月、至少9个月、至少10个月、至少11个月、至少12个月或更长时间。在一些实施方案中,剂量可以间隔几天给药,如间隔1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60天或更多天。在一些实施方案中,剂量可以间隔约1至约3周,或间隔约1至约4周,或间隔约1至约5周,或间隔约1至约6周,或间隔约1至超过6周给药。在一些实施方案中,剂量可以分开约7至约60天的时间段,例如约14-约48天等。在一些实施方案中,剂量之间的最小天数可以是约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21或更多。在一些实施方案中,剂量之间的最大天数可以是约60、59、58、57、56、55、54、53、52、51、50、49、48、47、46、45、44、43、42、41、40、39、38、37、36、35、34、33、32、31、30、29、28、27、26、25、24、23、22、21或更少。在一些实施方案中,剂量可以间隔约21至约28天。在一些实施方案中,剂量可以间隔约19至约42天。在一些实施方案中,剂量可以间隔约7至约28天。在一些实施方案中,剂量间隔可以是约14至约24天。在一些实施方案中,剂量间隔可以是约21至约42天。
在一些实施方案中,特别是对于建立的在长于约3周的时间段实现升高的抗体和/或T细胞滴度的组合物–例如,在一些实施方案中,建立提供的组合物以在长于约3周的时间段实现升高的抗体和/或T细胞滴度(例如,SARS-CoV-2刺突蛋白的相关部分特异性的),在一些这样的实施方案中,剂量给药方案可以仅涉及单剂量,或者可以涉及两个或更多个剂量,在一些实施方案中,其可以互相分开长于约21天或3周的时间段。例如,在一些这样的实施方案中,这样的时间段可以是约4周、5周、6周、7周、8周、9周、10周、11周、12周、13周、14周、15周、16周、17周、18周、19周、20周或更长,或者约1个月、2个月、3个月、4个月、5个月、6个月、7个月、8个月、9个月、10个月、11个月、12个月或更长,或者在一些实施方案中约一年或更长。
在一些实施方案中,第一剂量和第二剂量(和/或其他后续剂量)可以通过肌肉内注射给药。在一些实施方案中,第一剂量和第二剂量可以在三角肌中给药。在一些实施方案中,第一剂量和第二剂量可以在同一手臂中给药。在一些实施方案中,本文描述的mRNA组合物作为一系列的两个剂量(例如,每个0.3mL)间隔21天给药(例如,通过肌肉内注射)。在一些实施方案中,每个剂量是约30μg。在一些实施方案中,每个剂量可以高于30μg,例如,约40μg、约50μg、约60μg。在一些实施方案中,每个剂量可以低于30μg,例如,约20μg、约10μg、约5μg等。在一些实施方案中,每个剂量是约3μg或更低,例如,约1μg。在一些这样的实施方案中,将本文描述的mRNA组合物给予16岁或以上(包括,例如,16-85岁)的受试者。在一些这样的实施方案中,将本文描述的mRNA组合物给予18-55岁的受试者。在一些这样的实施方案中,将本文描述的mRNA组合物给予56-85岁的受试者。在一些实施方案中,本文描述的mRNA组合物作为单剂量给药(例如,通过肌肉内注射)。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,与具有SARS-CoV-2 RBD结合亲和力的参考人单克隆抗体(例如,如J.ter Meulen et al.,PLOS Med.3,e237(2006)中描述的CR3022)相比,这类mRNA组合物和/或方法诱导的RBD特异性IgG(例如,多克隆应答)表现出更高的对RBD的结合亲和力。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清在(例如,至少10个,至少15个或更多个)SARs-CoV-2刺突变体的整个(across)组中表现出中和活性。在一些实施方案中,这类SARs-CoV-2刺突变体包括RBD中的突变(例如,但不限于Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H、H519P等,与SEQ ID NO:1相比)和/或刺突蛋白中的突变(例如,但不限于D614G等,与SEQ ID NO:1相比)。本领域技术人员知道各种刺突变体,和/或记录它们的资源(例如,由COVID-19病毒基因组分析渠道维护并在https://cov.lanl.gov/components/sequence/COV/int_sites_tbls.comp找到的刺突中的突变位点表)(最后访问2020年8月24日),并且,阅读本公开会理解本文描述的mRNA组合物和/或方法的特征可以是它们在疫苗接种的受试者中诱导血清的能力,所述血清表现出关于任何或所有这类变体和/或其组合的中和活性。
在特定实施方案中,编码SARS-CoV-2刺突蛋白的RBD的mRNA组合物的特征在于,疫苗接种的受试者的血清在(例如,至少10个,至少15个或更多个)SARs-CoV-2刺突变体的整个组中表现出中和活性,所述SARs-CoV-2刺突变体包括RBD变体(例如,但不限于Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H、H519P等,与SEQ ID NO:1相比)和刺突蛋白变体(例如,但不限于D614G,与SEQ ID NO:1相比)。
在特定实施方案中,编码在S2亚基的中央螺旋顶部,在氨基酸位置986和987处包括两个连续脯氨酸取代的SARS-CoV-2刺突蛋白变体的mRNA组合物的特征在于,疫苗接种的受试者的血清在(例如,至少10个,至少15个或更多个)SARs-CoV-2刺突变体的整个组中表现出中和活性,所述SARs-CoV-2刺突变体包括RBD变体(例如,但不限于Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H、H519P等,与SEQ ID NO:1相比)和刺突蛋白变体(例如,但不限于D614G,与SEQ ID NO:1相比)。例如,在一些实施方案中,编码SEQ ID NO:7(S P2)的mRNA组合物引发针对任一种SARs-CoV-2刺突变体的免疫应答,所述SARs-CoV-2刺突变体包括RBD变体(例如,但不限于Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H、H519P等,与SEQ ID NO:1相比)和刺突蛋白变体(例如,但不限于D614G,与SEQ ID NO:1相比)。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置501处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括N501Y突变。
与SEQ ID NO:1相比,所述与SEQ ID NO:1相比在刺突蛋白中的位置501处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括N501Y突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、E484K、A701V、L18F、R246I、K417N、L242/A243/L244缺失等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“关注的变体202012/01”(VOC-202012/01;也称作谱系B.1.1.7)的中和活性。该变体先前已被英国公共卫生局(Public HealthEngland)在2020年12月命名为第一个正在研究的变体(VUI–202012/01),但是重新分类为关注的变体(VOC-202012/01)。VOC-202012/01是SARS-CoV-2的变体,其在英国COVID-19大流行期间于2020年10月从前一个月采集的样品中首次检测到,并且迅速在12月中旬开始传播。它与英国COVID-19感染率的显著增加有关;据认为这种增加至少部分是由于刺突糖蛋白的受体结合结构域内的N501Y变化,这是结合至人细胞中的ACE2所需要的。VOC-202012/01变体由23个突变定义:13个非同义突变,4个缺失和6个同义突变(即,有17个改变蛋白的突变和6个不改变蛋白的突变)。VOC 202012/01中的刺突蛋白变化包括缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。VOC-202012/01中最重要的变化之一看来是N501Y,在氨基酸位点501处从天冬酰胺(N)至酪氨酸(Y)的变化。这个突变单独或与N末端结构域(NTD)中位置69/70处的缺失组合可以增强病毒的传播能力。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“501.V2”的中和活性。这种变体从2020年10月开始在样品中首次观察到,并且从那时起在南非通过全基因组测序(WGS)已确认超过300例具有501.V2变体,其中在2020年12月,它是病毒的主要形式。初步结果表明,这种变体可能具有增加的传播能力。501.V2变体由多个刺突蛋白变化定义,包括:D80A、D215G、E484K、N501Y和A701V,并且最近收集的病毒具有额外的变化:L18F、R246I、K417N和缺失242-244。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y和A701V,以及任选存在的:与SEQID NO:1相比,L18F、R246I、K417N和缺失242-244。与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体还可以包括D614G突变。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括H69/V70缺失。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中包括H69/V70缺失的一种或多种SARs-CoV-2刺突变体可能包括一个或多个其他突变(例如,但不限于Y144缺失、N501Y、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、E484K、A701V、L18F、R246I、K417N、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I等,与SEQID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“关注的变体202012/01”(VOC-202012/01;也称作谱系B.1.1.7)的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“簇(Cluster)5”的中和活性,其也被丹麦国家血清研究所(State Serum Institute,SSI)称作ΔFVI-刺突。它是在丹麦北日德兰半岛(North Jutland)发现的,并且据信已通过水貂养殖场从水貂传播至人。在簇5中,已确认病毒的刺突蛋白中的几个不同突变。具体突变包括69–70deltaHV(蛋白中第69和第70位置处的组氨酸和缬氨酸残基的缺失)、Y453F(在位置453处从酪氨酸变为苯丙氨酸)、I692V(在位置692处从异亮氨酸变为缬氨酸)、M1229I(在位置1229处从甲硫氨酸变为异亮氨酸)和任选存在的S1147L(在位置1147处从丝氨酸变为亮氨酸)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:缺失69-70、Y453F、I692V、M1229I和任选存在的S1147L。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置614处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括D614G突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置614处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括D614G突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、N501Y、A570D、P681H、T716I、S982A、D1118H、D80A、D215G、E484K、A701V、L18F、R246I、K417N、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“关注的变体202012/01”(VOC-202012/01;也称作谱系B.1.1.7)的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y、A701V和D614G,以及任选存在的:与SEQ ID NO:1相比,L18F、R246I、K417N和缺失242-244。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置501和614处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括N501Y突变和D614G突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置501和614处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括N501Y突变和D614G突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、A570D、P681H、T716I、S982A、D1118H、D80A、D215G、E484K、A701V、L18F、R246I、K417N、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“关注的变体202012/01”(VOC-202012/01;也称作谱系B.1.1.7)的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y、A701V和D614G,以及任选存在的:与SEQ ID NO:1相比,L18F、R246I、K417N和缺失242-244。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置484处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括E484K突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置484处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括E484K突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、N501Y、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、A701V、L18F、R246I、K417N、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I、T20N、P26S、D138Y、R190S、K417T、H655Y、T1027I、V1176F等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“501.V2”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y和A701V,以及任选存在的:与SEQID NO:1相比,L18F、R246I、K417N和缺失242-244。与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体还可以包括D614G突变。
称作巴西变体的谱系B.1.1.248是SARS-CoV-2的变体之一,其已命名为P.1谱系,具有17个独特的氨基酸变化,其中10个在它的刺突蛋白中,包括N501Y和E484K。B.1.1.248源自B.1.1.28。E484K存在于B.1.1.28和B.1.1.248中。B.1.1.248具有许多S-蛋白多态性[L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I、V1176F],并且在某些关键RBD位置(K417、E484、N501)与南非描述的变体相似。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“B.1.1.28”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“B.1.1.248”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置501和484处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括N501Y突变和E484K突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置501和484处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括N501Y突变和E484K突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、A701V、L18F、R246I、K417N、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I、T20N、P26S、D138Y、R190S、K417T、H655Y、T1027I、V1176F等,与SEQID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“501.V2”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y和A701V,以及任选存在的:与SEQID NO:1相比,L18F、R246I、K417N和缺失242-244。与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体还可以包括D614G突变。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“B.1.1.248”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置501、484和614处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括N501Y突变、E484K突变和D614G突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置501、484和614处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括N501Y突变、E484K突变和D614G突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、A570D、P681H、T716I、S982A、D1118H、D80A、D215G、A701V、L18F、R246I、K417N、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I、T20N、P26S、D138Y、R190S、K417T、H655Y、T1027I、V1176F等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y、A701V和D614G,以及任选存在的:与SEQ ID NO:1相比,L18F、R246I、K417N和缺失242-244。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括L242/A243/L244缺失。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中包括L242/A243/L244缺失的一种或多种SARs-CoV-2刺突变体可能包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、N501Y、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、E484K、A701V、L18F、R246I、K417N、Y453F、I692V、S1147L、M1229I、T20N、P26S、D138Y、R190S、K417T、H655Y、T1027I、V1176F等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“501.V2”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比D80A、D215G、E484K、N501Y、A701V和缺失242-244,以及任选存在的:与SEQ ID NO:1相比L18F、R246I和K417N。与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体还可以包括D614G突变。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置417处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括K417N或K417T突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置417处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ ID NO:1相比在刺突蛋白中包括K417N或K417T突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、N501Y、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、E484K、A701V、L18F、R246I、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I、T20N、P26S、D138Y、R190S、H655Y、T1027I、V1176F等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“501.V2”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y、A701V和K417N,以及任选存在的:与SEQ ID NO:1相比,L18F、R246I和缺失242-244。与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体还可以包括D614G突变。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“B.1.1.248”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中的位置417和484和/或501处包括突变。在一些实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对一种或多种SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体在刺突蛋白中包括K417N或K417T突变以及E484K和/或N501Y突变。
在一些实施方案中,与SEQ ID NO:1相比,与SEQ ID NO:1相比在刺突蛋白中的位置417和484和/或501处包括突变的一种或多种SARs-CoV-2刺突变体或者所述与SEQ IDNO:1相比在刺突蛋白中包括K417N或K417T突变以及E484K和/或N501Y突变的一种或多种SARs-CoV-2刺突变体可以包括一个或多个其他突变(例如,但不限于H69/V70缺失、Y144缺失、A570D、D614G、P681H、T716I、S982A、D1118H、D80A、D215G、A701V、L18F、R246I、L242/A243/L244缺失、Y453F、I692V、S1147L、M1229I、T20N、P26S、D138Y、R190S、H655Y、T1027I、V1176F等,与SEQ ID NO:1相比)。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“501.V2”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,所述SARs-CoV-2刺突变体包括以下突变:与SEQ ID NO:1相比,D80A、D215G、E484K、N501Y、A701V和K417N,以及任选存在的:与SEQ ID NO:1相比,L18F、R246I和缺失242-244。与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体还可以包括D614G突变。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体“B.1.1.248”的中和活性。
在特定实施方案中,本文描述的mRNA组合物和/或方法的特征在于,疫苗接种的受试者的血清表现出针对SARs-CoV-2刺突变体的中和活性,与SEQ ID NO:1相比,所述SARs-CoV-2刺突变体包括以下突变:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
与SEQ ID NO:1相比,本文描述的SARs-CoV-2刺突变体可以包括或不包括D614G突变。
在一些实施方案中,本文描述的mRNA组合物和/或方法可以在接受这类mRNA组合物和/或方法的至少50%受试者中提供针对SARS-CoV-2的保护和/或降低SARS-CoV-2感染的严重程度。
在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括18-55岁的受试者。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括56-85岁的受试者。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括年长受试者(例如,60岁以上、65岁以上、70岁以上、75岁以上、80岁以上、85岁以上等,例如65-85岁的受试者)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括18-85岁的受试者。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括18岁或更年轻的受试者。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括12岁或更年轻的受试者。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括10岁或更年轻的受试者。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括青春期群体(例如,大约12至大约17岁的个体)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括婴儿(例如,1岁以下)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体不包括其母亲在妊娠期间已接受本文描述的这类mRNA组合物的婴儿(例如,1岁以下)。不希望受任何特定理论的束缚,如实施例31所示的大鼠研究表明,在妊娠期间给予这类mRNA组合物的雌性大鼠中诱导的SARS-CoV-2中和抗体应答可以传递给胎儿。在一些实施方案中,用本文描述的mRNA组合物治疗的群体包括其母亲在妊娠期间未接受本文描述的这类mRNA组合物的婴儿(例如,1岁以下)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括孕妇;在一些实施方案中,其母亲在妊娠期间进行过疫苗接种(例如,接受至少一个剂量,或者仅接受两个剂量)的婴儿在出生后的最初几周、几个月甚至几年(例如,1、2、3、4、5、6、7、8周或更长时间,或者1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24个月或更长时间,或者1、2、3、4、5年或更长时间)不进行疫苗接种。可选地或额外地,在一些实施方案中,其母亲在妊娠期间进行过疫苗接种(例如,接受至少一个剂量,或者仅接受两个剂量)的婴儿在出生之后接受减少的疫苗接种(例如,较低剂量和/或较小数量的给药–例如,加强–和/或在给定时间段内较低的总暴露量),例如在出生后的最初几周、几个月甚至几年(例如,1、2、3、4、5、6、7、8周或更长时间,或者1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24个月或更长时间,或者1、2、3、4、5年或更长时间)可能需要减少的疫苗接种(例如,较低剂量和/或较小数量的给药–例如,加强–在给定时间内)。在一些实施方案中,将本文提供的组合物给予不包括孕妇的群体。
在一些特定实施方案中,根据方案将本文提供的组合物给予孕妇,所述方案包括在妊娠约24周之后(例如,妊娠约22、23、24、25、26、27、28或更多周之后)给药的第一剂量;在一些实施方案中,根据方案将本文提供的组合物给予孕妇,所述方案包括在妊娠约34周之前(例如,妊娠约30、31、32、33、34、35、36、37、38周之前)给药的第一剂量。在一些实施方案中,根据方案将本文提供的组合物给予孕妇,所述方案包括在妊娠约24周之后(例如,妊娠约27周之后,例如,约24周和34周之间,或者约27周和34周之间)给药的第一剂量以及约21天后给药的第二剂量;在一些实施方案中,两个剂量均在分娩之前给药。不希望受任何特定理论的束缚,建议这样的方案(例如,包括在妊娠约24周或27周之后并且任选地在妊娠约34周之前给药第一剂量),以及任选存在的约21天内(理想的是在分娩之前)的第二剂量,相对于替代的剂量给药方案(例如,在妊娠期间的任何时间给药,避免在妊娠期间剂量给药和/或例如在妊娠后期剂量给药从而在妊娠期间仅给药一个剂量),其在安全性(例如,降低早产风险或者胎儿发病率或死亡率的风险)和/或效力(例如,给予婴儿疫苗接种)方面可能具有某些优势。在一些实施方案中,如本文所述(还参见实施例34),由妊娠期间(例如根据本文描述的特定方案)进行疫苗接种的母亲所生的婴儿在出生后一段时间内(例如,如本文所述)可能不需要进一步的疫苗接种,或者可能需要减少的疫苗接种(例如,较低剂量和/或较小数量的给药–例如,加强–,和/或在给定时间段内较低的总暴露量)。
在一些实施方案中,将本文提供的组合物给予其中建议妇女在接种疫苗之后(例如,在接种第一剂量的疫苗之后,在接种最终剂量的疫苗之后等)一段时间内不要妊娠的群体;在一些这样的实施方案中,所述一段时间可以是至少1周、至少2周、至少3周、至少4周、至少5周、至少6周、至少7周、至少8周、至少9周、至少10周或更长时间,或者可以是至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月或更长时间。
在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括具有一种或多种特别高风险状况或历史的群体,例如,如本文所述。例如,在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括其职业和/或环境暴露可能大大增加其受到SARS-CoV-2感染风险的受试者(包括,例如,但不限于大规模运输、囚犯、杂货店工作人员、长期护理机构中的居民、屠夫或其他肉类加工工作人员、医护人员和/或急救人员,例如,应急人员)。在特定实施方案中,用本文描述的mRNA组合物治疗的群体可以包括医护人员和/或急救人员,如,应急人员。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括具有吸烟或电子烟历史的那些(例如,在6个月、12个月或更长时间内,包括慢性吸烟或电子烟历史)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括已确定对SARS-CoV-2感染更敏感的某些种族。
在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括某些血型的群体,这些群体可能已确定对SARS-CoV-2感染更敏感。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括免疫受损的受试者(例如,患有HIV/AIDS的那些;正在服用某些免疫抑制药物的癌症和移植患者;自身免疫性疾病或预期需要进行免疫抑制疗法的其他生理状况(例如,在3个月之内,在6个月或更长时间之内);以及患有影响免疫系统的遗传性疾病(例如,先天性无丙种球蛋白血症、先天性IgA缺乏症)的那些)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括患有传染病的那些。例如,在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括感染有人免疫缺陷病毒(HIV)和/或肝炎病毒(例如,HBV、HCV)的那些群体。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括具有潜在医学状况的那些。这类潜在医学状况的实例可以包括但不限于高血压、心血管疾病、糖尿病、慢性呼吸道疾病,例如,慢性肺部疾病,哮喘等,癌症和其他慢性疾病,例如,狼疮、类风湿性关节炎、慢性肝病(例如,第3阶段或更严重,例如在一些实施方案中,其特征是肾小球滤过率(GFR)为60mL/min/1.73m2以下)。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括超重或肥胖的受试者,例如,特别包括身体质量指数(BMI)约30kg/m2以上的那些。在一些实施方案中,用本文描述的mRNA组合物治疗的群体可以包括例如基于血清学或鼻拭子先前诊断为COVID-19或者有目前或先前SARS-CoV-2感染证据的受试者。在一些实施方案中,待治疗的群体包括白人和/或非西班牙裔/非拉丁裔。
在一些实施方案中,可以选择本文描述的某些mRNA组合物(例如,BNT162b1)用于给予亚洲群体(例如,中国群体),或者在特定实施方案中,给予年龄较大的亚洲群体(例如,60岁或以上,例如60-85或65-85岁)。
在一些实施方案中,将本文提供的mRNA组合物给予在给药之前已确定未显示先前感染和/或当前感染证据的受试者和/或在这样的受试者中进行评价;在一些实施方案中,先前感染和/或当前感染的证据可以是或包括受试者中存在的完整病毒或任何病毒核酸、蛋白、脂质等(例如,在其生物样品中,如血液、细胞、粘膜和/或组织),和/或受试者对其免疫应答的证据。在一些实施方案中,将本文提供的mRNA组合物给予在给药之前已确定显示先前感染和/或当前感染证据的受试者和/或在这样的受试者中进行评价;在一些实施方案中,先前感染和/或当前感染的证据可以是或包括受试者中存在的完整病毒或任何病毒核酸、蛋白、脂质等(例如,在其生物样品中,如血液、细胞、粘膜和/或组织),和/或受试者对其免疫应答的证据。在一些实施方案中,基于剂量1当天具有阳性N-结合抗体测试结果或阳性核酸扩增测试(NAAT)结果认为受试者有先前感染。
在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予已告知有副作用风险的受试者,所述副作用可能包括以下一种或多种,例如:寒战、发烧、头痛、注射部位疼痛、肌肉疼痛、疲劳;在一些实施方案中,将RNA(例如,mRNA)组合物给予受试者,已邀请所述受试者发生以下情况时通知医疗服务提供者:如果发生一种或多种这样的副作用,经历超过轻度或中度的副作用,持续超过一天或几天的时间,或者如果经历受试者合理认为可能与接受组合物相关的任何严重或意外事件。在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予受试者,已邀请所述受试者告知医疗机构特定医学状况,所述特定医学状况可以包括例如过敏、出血性病症或服用血液稀释药物、母乳喂养、发烧、免疫受损状态或服用影响免疫系统的药物、妊娠或计划妊娠等中的一种或多种。在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予受试者,已邀请所述受试者告知医疗机构已接受另一种COVID-19疫苗。在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予没有以下医学状况之一的受试者:经历发热性疾病、接受免疫抑制剂疗法、接受抗凝疗法、患有出血性病症(例如,禁止肌肉内注射的病症)或妊娠和/或母乳喂养/哺乳。在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予未接受另一种COVID-19疫苗的受试者。在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予对RNA(例如,mRNA)组合物的任何组分没有过敏反应的受试者。这种过敏反应的实例可以包括但不限于呼吸困难、呼吸道(fact)和/或喉咙肿胀、心跳快、皮疹、头晕和/或虚弱。在一些实施方案中,将本文提供的RNA(例如,mRNA)组合物给予接受第一剂量且对第一剂量没有过敏反应(例如,如本文所述)的受试者。在接受本文提供的RNA(例如,mRNA)组合物的剂量之后在受试者中发生过敏反应的一些实施方案中,可以给予这样的受试者一种或多种干预如治疗以处理和/或减少这类过敏反应的症状,例如,退烧药和/或抗炎物质。
在一些实施方案中,告知已接受至少一个剂量的本文提供的RNA(例如,mRNA)组合物的受试者避免暴露于冠状病毒(例如,SARS-CoV-2),除非并且直至自给药第二剂量以来已经过了几天(例如,至少7天、至少8天、9天、至少10天、至少11天、至少12天、至少13天、至少14天等)。例如,告知已接受至少一个剂量的本文提供的RNA(例如,mRNA)组合物的受试者采取针对SARS-CoV-2感染的预防措施(例如,保持社交距离、佩戴口罩、经常洗手等),除非并且直至自给药第二剂量以来已经过了几天(例如,至少7天、至少8天、9天、至少10天、至少11天、至少12天、至少13天、至少14天等)。因此,在一些实施方案中,给药本文提供的RNA(例如,mRNA)组合物的方法包括向接受第一剂量并采取预防措施以避免暴露于冠状病毒(例如,SARS-CoV-2)的受试者给药第二剂量的本文提供的这种RNA(例如,mRNA)组合物。
在一些实施方案中,可以将本文描述的mRNA组合物递送至有此需要的受试者的引流淋巴结,例如,用于疫苗引发(vaccine priming)。在一些实施方案中,这样的递送可以通过肌肉内给药提供的mRNA组合物来进行。
在一些实施方案中,可以将不同的特定mRNA组合物给予不同的受试者群体;可选地或额外地,在一些实施方案中,可以将不同的剂量给药方案给予不同的受试者群体。例如,在一些实施方案中,给予特定受试者群体的mRNA组合物可以通过在那些受试者群体中的一种或多种特定效应(例如,发生率和/或效应程度)来表征。在一些实施方案中,这类效应可以是或包括例如中和抗体和/或T细胞(例如,TH1型T细胞如CD4+和/或CD8+ T细胞)的滴度和/或持久性,针对攻击的保护(例如,通过注射和/或鼻暴露等),副作用(例如,反应原性)的发生率、严重程度和/或持久性等。
在一些实施方案中,可以根据建立的方案给药一种或多种本文描述的mRNA组合物,以减少每1000人-年的COVID-19发生率,例如,基于实验室测试如核酸扩增测试(NAAT)。在一些实施方案中,可以根据建立的方案给药一种或多种本文描述的mRNA组合物,以便基于受试者中的实验室测试如核酸扩增测试(NAAT),减少每1000人-年的COVID-19发生率,所述受试者接受至少一个剂量的提供的mRNA组合物,不具有既往SARS-CoV-2感染的血清学或病毒学证据(例如,在接受最后剂量之后达7天)。在一些实施方案中,可以根据建立的方案给药一种或多种本文描述的mRNA组合物,以减少每1000人-年的确认的严重COVID-19发生率。在一些实施方案中,可以根据建立的方案给药一种或多种本文描述的mRNA组合物,以便在受试者中减少每1000人-年的证实的严重COVID-19发生率,所述受试者接受至少一个剂量的提供的mRNA组合物,不具有既往SARS-CoV-2感染的血清学或病毒学证据。
在一些实施方案中,可以根据建立的方案给药一种或多种本文描述的mRNA组合物,以便在一段时间内产生针对SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)的中和抗体,如在来自受试者的血清中测量的,其达到或超过参考水平(例如,基于人SARS-CoV-2感染/COVID-19康复期血清确定的参考水平),和/或在一段时间内诱导细胞介导的免疫应答(例如,针对SARS-CoV-2的T细胞应答),包括,例如,在一些实施方案中,诱导识别SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)内的至少一个或多个MHC限制性(例如,MHC I类限制性)表位的T细胞。在一些这样的实施方案中,所述一段时间可以是至少2个月、3个月、至少4个月、至少5个月、至少6个月、至少7个月、至少8个月、至少9个月、至少10个月、至少11个月、至少12个月或更长时间。在一些实施方案中,疫苗诱导的T细胞(例如,CD8+T细胞)识别的一个或多个表位可以在MHC I类等位基因上呈递,所述MHC I类等位基因存在于群体中至少50%的受试者中,包括,例如,至少60%、至少70%、至少80%、至少90%或更多;在一些这样的实施方案中,所述MHC I类等位基因可以是HLA-B*0702、HLA-A*2402、HLA-B*3501、HLA-B*4401或HLA-A*0201。在一些实施方案中,表位可以包含HLA-A*0201YLQPRTFLL;HLA-A*0201RLQSLQTYV;HLA-A*2402QYIKWPWYI;HLA-A*2402NYNYLYRLF;HLA-A*2402KWPWYIWLGF;HLA-B*3501QPTESIVRF;HLA-B*3501IPFAMQMAY;或HLA-B*3501LPFNDGVYF。
在一些实施方案中,效力评价为在疫苗接种方案之前和期间没有既往SARS-CoV-2感染的血清学或病毒学证据的个体中每1000人-年的COVID-19发生率;可选地或额外地,在一些实施方案中,效力评价为在疫苗接种方案之前和期间有和没有既往SARS-CoV-2感染证据的受试者中每1000人-年的COVID-19发生率。在一些这样的实施方案中,这种发生率是在最终疫苗接种剂量(例如,单剂量方案中的第一剂量;两个剂量方案中的第二剂量等)之后的特定时间段内确认的COVID-19病例;在一些实施方案中,这样的时间段可以在特定天数(例如,3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30天或更多天)之内(即,长达并包括7天)。在一些实施方案中,这样的时间段可以在7天之内或在14天之内或在21天之内或在28天之内。在一些实施方案中,这样的时间段可以在7天之内。在一些实施方案中,这样的时间段可以在14天之内。
在一些实施方案中(例如,在评价效力的一些实施方案中),如果建立了以下一种或多种,则确定受试者已经历了COVID-19感染:在来自受试者的样品中检测到SARS-CoV-2核酸、检测到特异性识别SARS-CoV-2(例如,SARS-Co-V-2刺突蛋白)的抗体、COVID-19感染的一种或多种症状以及其组合。在一些这样的实施方案中,SARS-CoV-2核酸的检测可以涉及例如对中鼻甲拭子样品的NAAT测试。在一些这样的实施方案中,相关抗体的检测可以涉及血液样品或其部分的血清学测试。在一些这样的实施方案中,COVID-19感染的症状可以是或包括:发烧、新的或增加的咳嗽、新的或增加的呼吸急促、寒战、新的或增加的肌肉疼痛、新的味觉或嗅觉丧失、喉咙痛、腹泻、呕吐以及其组合。在一些这样的实施方案中,COVID-19感染的症状可以是或包括:发烧、新的或增加的咳嗽、新的或增加的呼吸急促、寒战、新的或增加的肌肉疼痛、新的味觉或嗅觉丧失、喉咙痛、腹泻、呕吐、疲劳、头痛、鼻塞或流涕、恶心以及其组合。在一些这样的实施方案中,如果受试者已经历一种这样的症状,并且还已接受SARS-CoV-2核酸或抗体或两者的阳性测试,则确定这样的受试者已经历COVID-19感染。在一些这样的实施方案中,如果受试者已经历一种这样的症状,并且还已接受SARS-CoV-2核酸的阳性测试,则确定这样的受试者已经历COVID-19感染。在一些这样的实施方案中,如果受试者已经历一种这样的症状,并且还已接受SARS-CoV-2抗体的阳性测试,则确定这样的受试者已经历COVID-19感染。
在一些实施方案中(例如,在评价效力的一些实施方案中),如果受试者已经历以下一种或多种,则确定这样的受试者已经历严重COVID-19感染:休息时指示性或严重的全身性疾病的临床表现(例如,每分钟大于或等于30次呼吸的呼吸频率、每分钟125次或以上的心率、在海平面的室内空气中SpO2小于或等于93%或者低于300m Hg的PaO2/FiO2中的一种或多种),呼吸衰竭(例如,需要高流量氧气、无创通气、机械通气、ECMO中的一种或多种),休克的证据(收缩压低于90mm Hg,舒张压低于60mm Hg,需要血管加压剂),严重的急性肾、肝或神经功能障碍,进入重症监护室,死亡以及其组合。
在一些实施方案中,可以根据建立的方案给药本文描述的一种或多种mRNA组合物以减少报告以下至少一种的受试者的百分比:(i)在每个剂量之后长达7天中的一种或多种局部反应(例如,如本文所述);(ⅱ)在每个剂量之后长达7天中的一次或多次全身性事件;(ⅲ)从第一剂量到最后一个剂量之后1个月的不良事件(例如,如本文所述);和/或(ⅳ)从第一剂量到最后一个剂量之后6个月的严重不良事件(例如,如本文所述)。
在一些实施方案中,可以监测已接受本文描述的RNA(例如,mRNA)组合物的一个或多个受试者(例如,持续至少1、2、3、4、5、6、7、8、9、10天或更长时间,包括,例如,1、2、3、4、5、6、7、8、9、10、11、12周或更长时间,包括例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24个月或更长时间,包括例如1、2、3、4、5、6、7、8、9、10年或更长时间)以评价例如对给药的组合物组分的免疫应答的存在,对SARS-CoV-2或另一冠状病毒暴露和/或免疫应答的证据,任何不良事件的证据等。在一些实施方案中,监测可以通过电话访视。可选地或额外地,在一些实施方案中,监测可以是面对面的。
在一些实施方案中,由本文描述的一种或多种mRNA组合物赋予的治疗效果可能特征在于:(i)预定阈值以上的SARS-CoV-2抗S1结合抗体水平;(ii)预定阈值以上的SARS-CoV-2抗RBD结合抗体水平;和/或(iii)阈值水平以上的SARS-CoV-2血清中和滴度,例如,在基线,疫苗接种完成之后1个月、3个月、6个月、9个月、12个月、18个月和/或24个月。在一些实施方案中,抗S1结合抗体水平和/或抗RBD结合抗体水平和/或血清中和滴度可以通过几何平均浓度(GMC)、几何平均滴度(GMT)或几何平均倍数升高(GMFR)来表征。
在一些实施方案中,由本文描述的一种或多种mRNA组合物赋予的治疗效果可能特征在于,表现出预定阈值(例如,在基线,在疫苗接种完成之后1个月、3个月、6个月、9个月、12个月、18个月和/或24个月)以上的SARS-CoV-2血清中和滴度的治疗受试者的百分比高于表现出这样的预定阈值(例如,如本文所述)以上的SARS-CoV-2血清中和滴度的未治疗受试者的百分比。在一些实施方案中,血清中和滴度可以通过几何平均浓度(GMC)、几何平均滴度(GMT)或几何平均倍数升高(GMFR)来表征。
在一些实施方案中,由本文描述的一种或多种mRNA组合物赋予的治疗效果可以通过检测SARS-CoV-2NVA特异性结合抗体来表征。
在一些实施方案中,由本文描述的一种或多种mRNA组合物赋予的治疗效果可以通过核酸扩增测试的SARS-CoV-2检测来表征。
在一些实施方案中,由本文描述的一种或多种mRNA组合物赋予的治疗效果可能特征在于细胞介导的免疫应答(例如,针对SARS-CoV-2的T细胞应答)的诱导,包括,例如,在一些实施方案中,识别SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)内的至少一个或多个MHC限制性(例如,MHC I类限制性)表位的T细胞的诱导。在一些实施方案中,疫苗诱导的T细胞(例如,CD8+ T细胞)识别的一个或多个表位可以在MHC I类等位基因上呈递,所述MHC I类等位基因存在于群体中至少50%的受试者中,包括,例如,至少60%、至少70%、至少80%、至少90%或更多;在一些这样的实施方案中,所述MHC I类等位基因可以是HLA-B*0702、HLA-A*2402、HLA-B*3501、HLA-B*4401或HLA-A*0201。在一些实施方案中,表位可以包含HLA-A*0201YLQPRTFLL;HLA-A*0201RLQSLQTYV;HLA-A*2402QYIKWPWYI;HLA-A*2402NYNYLYRLF;HLA-A*2402KWPWYIWLGF;HLA-B*3501QPTESIVRF;HLA-B*3501IPFAMQMAY;或HLA-B*3501LPFNDGVYF。
在一些实施方案中,当有足够的证据(后验概率)证明初级VE1或者初级VE1和初级VE2均>30%或更高时(包括,例如,40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、96%以上、97%以上、98%或更高),可以建立本文描述的一种或多种mRNA组合物的初级疫苗效力(VE),其中初级VE定义为初级VE=100×(1–IRR);并且IRR计算为疫苗组中COVID-19患病率比安慰剂组中相应患病率的比例。初级VE1代表在疫苗接种之前没有感染证据的参与者中本文描述的预防性mRNA组合物针对确认的COVID-19的VE,而初级VE2代表疫苗接种之后在所有参与者中本文描述的预防性mRNA组合物针对确认的COVID-19的VE。在一些实施方案中,可以顺序评价初级VE1和VE2以将总体I型错误控制在2.5%(分层测试)。在其中证实本文描述的一种或多种RNA(例如,mRNA)组合物达到如上文讨论的初级VE终点的一些实施方案中,可以顺序评价次级VE终点(例如,在疫苗接种之前没有感染证据的参与者中确认严重的COVID-19以及在所有参与者中确认严重的COVID-19),例如,通过如上文讨论的用于初级VE终点评价(分层测试)的相同方法。在一些实施方案中,初级和/或次级VE终点的评价可以基于以1:1比例随机分配至疫苗或安慰剂组的至少20,000或更多个受试者(例如,至少25,000或更多个受试者),例如,基于以下假设:(i)安慰剂组中每年1.0%患病率,以及(ⅱ)20%的参与者无法评价或具有先前感染SARS-CoV-2的血清学证据,有可能使他们对进一步的感染免疫。
在一些实施方案中,可以根据建立的方案给药本文描述的一种或多种mRNA组合物以实现维持和/或继续增强免疫应答。例如,在一些实施方案中,给药方案可以包括第一剂量,任选地随后是一个或多个后续剂量;在一些实施方案中,可以选择任何这类后续剂量的需求、时机和/或规模(magnitude)以维持、增强和/或修饰一种或多种免疫应答或其特征。在一些实施方案中,已建立在给予相关群体时有效的剂量的数量、时机和/或量。在一些实施方案中,可以对个体受试者调整剂量的数量、时机和/或量;例如,在一些实施方案中,可以在接受第一剂量之后评价个体受试者中免疫应答的一个或多个特征至少一次(并且任选地一次以上,例如多次,通常分隔开,通常以预先选择的间隔)。例如,可以评价抗体、B细胞和/或T细胞(例如,CD4+和/或CD8+ T细胞)的存在和/或由此分泌的细胞因子的存在和/或对特定抗原和/或表位的应答的性质(identity)和/或程度。在一些实施方案中,可以根据这类评价确定对后续剂量的需求、时机和/或量。
如上文所述,在一些实施方案中,可以从接受任何特定剂量起监测已接受本文描述的RNA(例如,mRNA)组合物的一个或多个受试者(例如,持续至少1、2、3、4、5、6、7、8、9、10天或更长时间,包括,例如,1、2、3、4、5、6、7、8、9、10、11、12周或更长时间,包括例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24个月或更长时间,包括例如1、2、3、4、5、6、7、8、9、10年或更长时间)以评价例如对给药的组合物组分的免疫应答的存在,对SARS-CoV-2或另一冠状病毒暴露和/或免疫应答的证据,任何不良事件的证据等,包括评价抗体、B细胞和/或T细胞(例如,CD4+和/或CD8+ T细胞)的存在和/或由此分泌的细胞因子的存在中的一种或多种,和/或可以评价对特定抗原和/或表位的应答的性质和/或程度。可以按照包括一个或多个这样的监测步骤的方案给药本文描述的组合物。
例如,在一些实施方案中,评价、确定和/或选择相对于第一剂量的第二剂量(和/或相对于先前剂量的后续剂量)的需求、时机和/或量,从而这样的第二(或后续)剂量的给药实现在第一(或其他先前)剂量之后观察到的免疫应答(例如,如本文所述)的放大或修饰。在一些实施方案中,与第一剂量之后观察到的免疫应答水平相比,免疫应答(例如,本文描述的免疫应答)的这种放大可以为至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或更高。在一些实施方案中,与第一剂量之后观察到的免疫应答水平相比,免疫应答在这种放大可以是至少1.5倍、至少2倍、至少3倍、至少4倍、至少5倍、至少6倍、至少7倍、至少8倍、至少9倍、至少10倍、至少20倍、至少30倍或更高。
在一些实施方案中,评价、确定和/或选择相对于第一(或其他先前)剂量的第二(或后续)剂量的需求、时机和/或量,从而较晚剂量的给药延长在较早剂量之后观察到的免疫应答(例如,如本文所述)的持久性;在一些这样的实施方案中,持久性可以延长至少1周、至少2周、至少3周、至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月、至少7个月、至少8个月、至少9个月或更长时间。在一些实施方案中,在第一剂量之后观察到的免疫应答可能特征在于,如在来自受试者的血清中测量的针对SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)的中和抗体的产生和/或细胞介导的免疫应答(例如,针对SARS-CoV-2的T细胞应答)的诱导,包括,例如,在一些实施方案中,识别SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)内的一个或多个MHC限制性(例如,MHC I类限制性)表位的T细胞的诱导。在一些实施方案中,疫苗诱导的T细胞(例如,CD8+ T细胞)识别的一个或多个表位可以在MHC I类等位基因上呈递,所述MHC I类等位基因存在于群体中至少50%的受试者中,包括,例如,至少60%、至少70%、至少80%、至少90%或更多;在一些这样的实施方案中,所述MHC I类等位基因可以是HLA-B*0702、HLA-A*2402、HLA-B*3501、HLA-B*4401或HLA-A*0201。在一些实施方案中,表位可以包含HLA-A*0201YLQPRTFLL;HLA-A*0201RLQSLQTYV;HLA-A*2402QYIKWPWYI;HLA-A*2402NYNYLYRLF;HLA-A*2402KWPWYIWLGF;HLA-B*3501QPTESIVRF;HLA-B*3501IPFAMQMAY;或HLA-B*3501LPFNDGVYF。
在一些实施方案中,评价、确定和/或选择相对于第一剂量的第二剂量(或相对于先前剂量的其他后续剂量)的需求、时机和/或量,从而这种第二(或后续)剂量的给药维持或超过免疫应答的参考水平;在一些这样的实施方案中,基于人SARS-CoV-2感染/COVID-19康复期血清和/或从受试者抽取的PBMC样品确定参考水平(例如,当受试者无症状时,在PCR确诊之后至少一段时间,如至少14天或更长时间,包括,例如,15天、16天、17天、18天、19天、20天、25天、30天、35天、40天、45天、50天、55天、60天或更长时间)。在一些实施方案中,免疫应答特征可以在于,如在来自受试者的血清中测量的针对SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)的中和抗体的产生和/或细胞介导的免疫应答(例如,针对SARS-CoV-2的T细胞应答)的诱导,包括,例如,在一些实施方案中,识别SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)内的一个或多个MHC限制性(例如,MHC I类限制性)表位的T细胞的诱导。在一些实施方案中,疫苗诱导的T细胞(例如,CD8+ T细胞)识别的一个或多个表位可以在MHC I类等位基因上呈递,所述MHC I类等位基因存在于群体中至少50%的受试者中,包括,例如,至少60%、至少70%、至少80%、至少90%或更多;在一些这样的实施方案中,所述MHC I类等位基因可以是HLA-B*0702、HLA-A*2402、HLA-B*3501、HLA-B*4401或HLA-A*0201。在一些实施方案中,表位可以包含HLA-A*0201YLQPRTFLL;HLA-A*0201RLQSLQTYV;HLA-A*2402QYIKWPWYI;HLA-A*2402NYNYLYRLF;HLA-A*2402KWPWYIWLGF;HLA-B*3501QPTESIVRF;HLA-B*3501IPFAMQMAY;或HLA-B*3501LPFNDGVYF。
在一些实施方案中,确定第二(或后续)剂量的需求、时机和/或量可以包括以下一个或多个步骤:在第一(或其他先前)剂量之后(例如,7、8、9、10、11、12、13、14、15、16、17、18、19、20、21天或更长时间之后),如在来自受试者的血清中测量的评价针对SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)的中和抗体的存在和/或表达水平,和/或评价细胞介导的免疫应答(例如,针对SARS-CoV-2的T细胞应答)的诱导,包括,例如,在一些实施方案中,识别SARS-CoV-2刺突多肽和/或其免疫原性片段(例如,RBD)内的一个或多个MHC限制性(例如,MHC I类限制性)表位的T细胞的诱导。在一些实施方案中,疫苗诱导的T细胞(例如,CD8+ T细胞)识别的一个或多个表位可以在MHC I类等位基因上呈递,所述MHC I类等位基因存在于群体中至少50%的受试者中,包括,例如,至少60%、至少70%、至少80%、至少90%或更多;在一些这样的实施方案中,所述MHC I类等位基因可以是HLA-B*0702、HLA-A*2402、HLA-B*3501、HLA-B*4401或HLA-A*0201。在一些实施方案中,表位可以包含HLA-A*0201YLQPRTFLL;HLA-A*0201RLQSLQTYV;HLA-A*2402QYIKWPWYI;HLA-A*2402NYNYLYRLF;HLA-A*2402KWPWYIWLGF;HLA-B*3501QPTESIVRF;HLA-B*3501IPFAMQMAY;或HLA-B*3501LPFNDGVYF。
在一些实施方案中,本文提供的试剂盒可以包含实时监测记录装置,例如在一些实施方案中,其能够提供运输温度、运输时间和/或位置。
在一些实施方案中,本文描述的RNA(例如,mRNA)组合物可以在容器(如小瓶或注射器)中运输、储存和/或利用,例如,玻璃容器(如玻璃小瓶或注射器),在一些实施方案中,其可以是单剂量容器或多剂量容器(例如,其可以布置或构造为容纳,和/或在一些实施方案中可以容纳单剂量或多剂量的用于给药的产品)。在一些实施方案中,多剂量容器(如多剂量小瓶或注射器)可以布置或构造为容纳,和/或可以容纳2、3、4、5、6、7、8、9、10个或更多个剂量;在一些特定实施方案中,其可以设计为容纳和/或可以容纳5个剂量。在一些实施方案中,单剂量或多剂量容器(如单剂量或多剂量小瓶或注射器)可以布置或构造为容纳和/或可以容纳大于所示剂量数量的体积或量,例如,以便允许转移和/或给药中的一些损失。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物可以在不含防腐剂的玻璃容器(例如,不含防腐剂的玻璃小瓶或注射器,例如,单剂量或多剂量不含防腐剂的玻璃小瓶或注射器)中运输、储存和/或使用。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物可以在包含0.45ml冷冻液体(例如,包括5个剂量)的不含防腐剂的玻璃容器(例如,不含防腐剂的玻璃小瓶或注射器,例如,单剂量或多剂量不含防腐剂的玻璃小瓶或注射器)中运输、储存和/或使用。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或在其中放置、运输、储存和/或使用所述组合物的容器(例如,小瓶或注射器)可以保持在低于室温的温度,在4℃或低于4℃、在0℃或低于0℃、在-20℃或低于-20℃、在-60℃或低于-60℃、在-70℃或低于-70℃、在-80℃或低于-80℃、在-90℃或低于-90℃等。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或在其中放置、运输、储存和/或利用本文描述的RNA(例如,mRNA)组合物的容器(例如,小瓶或注射器)可以保持在-80℃和-60℃之间的温度,并且在一些实施方案中避光。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或在其中放置、运输、储存和/或使用所述组合物的容器(例如,小瓶或注射器)可以保持在约25℃以下的温度,并且在一些实施方案中避光。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或在其中放置、运输、储存和/或使用所述组合物的容器(例如,小瓶或注射器)可以保持在约5℃以下的温度(例如,约4℃以下),并且在一些实施方案中避光。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或在其中放置、运输、储存和/或使用所述组合物的容器(例如,小瓶或注射器)可以保持在约-20℃以下的温度,并且在一些实施方案中避光。在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或在其中放置、运输、储存和/或使用所述组合物的容器(例如,小瓶或注射器)可以保持在约-60℃以上的温度(例如,在一些实施方案中在约-20℃或高于约-20℃,在一些实施方案中在约4-5℃或高于约4-5℃,无论哪种情况,任选约25℃以下),并且在一些实施方案中避光,或以其它方式不采用肯定的步骤(affirmative step)(例如,冷却措施)以使储存温度实质上为约-20℃以下。
在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或其中放置所述组合物的容器(例如,小瓶或注射器)可以与热保护材料或容器和/或温度调节材料一起和/或在其环境中运输、储存和/或利用。例如,在一些实施方案中,本文描述的RNA(例如,mRNA)组合物和/或其中放置所述组合物的容器(例如,小瓶或注射器)可以与冰和/或干冰和/或与隔热材料一起运输、储存和/或利用。在一些特定实施方案中,将其中放置RNA(例如,mRNA)组合物的容器(例如,小瓶或注射器)放置在托盘或其他固定装置中,并且使其进一步与温度调节(例如,冰和/或干冰)材料和/或隔热材料接触(或以其他方式存在)。在一些实施方案中,将其中放置提供的RNA(例如,mRNA)组合物的多个容器(例如,多个小瓶或注射器,如本文描述的单次使用或多次使用的小瓶或注射器)与温度调节(例如,冰和/或干冰)材料和/或隔热材料共定位(例如,在共同的托盘、架子、盒等中)和包装(或以其他方式存在)。举一个实例,在一些实施方案中,将其中放置RNA(例如,mRNA)组合物的多个容器(例如,多个小瓶或注射器,如本文描述的单次使用或多次使用的小瓶或注射器)放置在共同的托盘或架子中,并且将多个这样的托盘或架子叠在纸箱中,所述纸箱被保温(例如,隔热)运输工具中的温度调节材料(例如,干冰)包围。在一些实施方案中,定期补充温度调节材料(例如,在到达现场的24小时内,和/或每2小时、4小时、6小时、8小时、10小时、12小时、14小时、16小时、18小时、20小时、22小时、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天等)。优选地,应当很少重新进入保温运输工具,并且期望每天不应当发生两次以上。在一些实施方案中,保温运输工具在打开后的5、4、3、2或1分钟或更短时间内重新关闭。在一些实施方案中,已在保温运输工具内储存一段时间的提供的RNA(例如,mRNA)组合物,任选地在特定温度范围内仍然可用。例如,在一些实施方案中,如果包含提供的RNA(例如,mRNA)组合物的本文描述的保温运输工具处于或保持(例如,储存)在约15℃-约25℃的温度范围内,则RNA(例如,mRNA)组合物可以使用长达10天;即,在一些实施方案中,将保持在保温运输工具内不超过10天的提供的RNA(例如,mRNA)组合物给予受试者,所述保温运输工具在约15℃-约25℃的温度范围内。可选地或额外地,在一些实施方案中,如果提供的RNA(例如,mRNA)组合物处于或保持(例如,储存)在保温运输工具内,所述保温运输工具已保持(例如,储存)约15℃-约25℃的温度范围内,则它可以使用长达10天;即,在一些实施方案中,将保持在保温运输工具内不超过10天的提供的RNA(例如,mRNA)组合物给予受试者,所述保温运输工具已保持在约15℃-约25℃的温度范围内。
在一些实施方案中,将提供的RNA(例如,mRNA)组合物以冷冻状态运输和/或储存。在一些实施方案中,将提供的RNA(例如,mRNA)组合物作为冷冻悬浮液运输和/或储存,在一些实施方案中,其不含防腐剂。在一些实施方案中,将冷冻的RNA(例如,mRNA)组合物解冻。在一些实施方案中,解冻的RNA(例如,mRNA)组合物(例如,悬浮液)可以包含白色至灰白色的不透明无定形颗粒。在一些实施方案中,如果保持(例如,储存)在室温或低于室温的温度(例如,约30℃以下、约25℃以下、约20℃以下、约15℃以下、约10℃以下、约8℃以下、约4℃以下等),解冻的RNA(例如,mRNA)组合物可以在解冻之后使用少数几天(例如,1、2、3、4、5或6天)。在一些实施方案中,解冻的RNA(例如,mRNA)组合物可以在约2℃和约8℃之间的温度储存(例如,这样少的天数)之后使用;可选地或额外地,解冻的RNA(例如,mRNA)组合物可以在室温解冻之后的几个(例如,1、2、3、4、5或6个)小时内使用。因此,在一些实施方案中,将已解冻并保持在室温或低于室温(在一些实施方案中在约2℃和约8℃之间)的温度下保持不超过6、5、4、3、2或1天的提供的RNA(例如,mRNA)组合物给予受试者。可选地或额外地,在一些实施方案中,将已解冻并在室温保持不超过6、5、4、3、2或1小时的提供的RNA(例如,mRNA)组合物给予受试者。在一些实施方案中,将提供的RNA(例如,mRNA)组合物以浓缩状态运输和/或储存。在一些实施方案中,将这样的浓缩的组合物在给药之前稀释。在一些实施方案中,将稀释的组合物在稀释后约10、9、8、7、6、5、4、3、2或1小时内给药;在一些实施方案中,这样的给药在稀释后6小时之内。因此,在一些实施方案中,将提供的RNA(例如,mRNA)组合物的稀释制品在稀释后6小时内给予受试者(例如,如本文所述在已保持在适当温度之后,例如,在低于室温的温度,在4℃或低于4℃,在0℃或低于0℃,在-20℃或低于-20℃,在-60℃或低于-60℃,在-70℃或低于-70℃,在-80℃或低于-80℃等,并且通常在2℃或高于约2℃,例如在约2℃和约8℃之间或者在约2℃和约25℃之间)。在一些实施方案中,在稀释之后几小时内(例如,约10、约9、约8、约7、约6、约5小时或更短时间)丢弃未使用的组合物;在一些实施方案中,在稀释的6小时内丢弃未使用的组合物。
在一些实施方案中,储存、运输或使用的RNA(例如,mRNA)组合物(例如,冷冻的组合物、液体浓缩的组合物、稀释的液体组合物等)可以已经在实质上为-60℃以上的温度保持至少1、2、3、4、5、6、7天或更长时间段,或至少1、2、3、4、5、6、7、8、9、10周或更多,或至少1、2、3、4、5、6、7、8、9、10、11、12个月或更多;在一些这样的实施方案中,这样的组合物可以已经在约-20℃或高于约-20℃的温度保持这样的时间段,和/或在高达或约4-5℃的温度保持这样的时间段,和/或可以已经在高于约4-5℃并且任选地约25℃的温度保持至2个月以下和/或任选至约1个月的时间段。在一些实施方案中,这样的组合物可能不在实质上为约4-5℃以上的温度,并且特别地不在约25℃或不在接近约25℃的温度储存、运输或使用(或暴露)长约2周的时间段,或者在一些实施方案中,长1周的时间段。在一些实施方案中,这样的组合物可能不在实质上为约-20℃以上的温度,并且特别地不在约4-5℃或不在接近约4-5℃的温度储存、运输或使用(或暴露)长约12个月、11个月、10个月、9个月、8个月、7个月、6个月、5个月、4个月、3个月、2个月的时间段,或者,在一些实施方案中,长约8周或6周或实质上约2个月以上的时间段,或者,在一些实施方案中,3个月,或者,在一些实施方案中,4个月。
在一些实施方案中,可以保护储存、运输或使用的RNA(例如,mRNA)组合物(例如,冷冻的组合物、液体浓缩的组合物、稀释的液体组合物等)免受光照。在一些实施方案中,可以采取一个或多个步骤以减少或最小化这类组合物暴露于光(例如,可以将其放置在容器如小瓶或注射器内)。在一些实施方案中,避免暴露在直射的阳光和/或紫外光下。在一些实施方案中,稀释的溶液可以在正常的室内光线条件下操作和/或利用(例如,不采取特定步骤以最小化或减少暴露于室内光线)。应当理解在操作(例如,稀释和/或给药)本文描述的RNA(例如,mRNA)组合物期间,严格遵守无菌技术是可取的。在一些实施方案中,不静脉内给药(例如,不注射)本文描述的RNA(例如,mRNA)组合物。在一些实施方案中,不皮内给药(例如,不注射)本文描述的RNA(例如,mRNA)组合物。在一些实施方案中,不皮下给药(例如,不注射)本文描述的RNA(例如,mRNA)组合物。在一些实施方案中,不经静脉内、皮内或皮下给药(例如,不注射)本文描述的RNA(例如,mRNA)组合物。在一些实施方案中,不将本文描述的RNA(例如,mRNA)组合物给予对其任何成分具有已知超敏反应的受试者。在一些实施方案中,监测已给药RNA(例如,mRNA)组合物的受试者的一种或多种过敏反应迹象。在一些实施方案中,给药RNA(例如,mRNA)组合物的受试者以前已接受至少一个剂量的不同的SARS-CoV-2疫苗;在一些实施方案中,给药RNA(例如,mRNA)组合物的受试者以前未接受不同的SARS-CoV-2疫苗。在一些实施方案中,在给药RNA(例如,mRNA)组合物之前(例如,在解冻、稀释和/或给药这种组合物之前或之后不久)迅速测量受试者的体温;在一些实施方案中,如果确定该受试者发烧,则延迟或取消给药。在一些实施方案中,不将本文描述的RNA(例如,mRNA)组合物给予接受抗凝疗法或者患有禁止肌肉内注射的出血性病症或疾病状况或对其易感的受试者。在一些实施方案中,由医护专业人员给药本文描述的RNA(例如,mRNA)组合物,所述医护专业人员已与接受组合物的受试者沟通和副作用与风险相关的信息。在一些实施方案中,由医护专业人员给药本文描述的RNA(例如,mRNA)组合物,所述医护专业人员已同意就任何严重不良事件提交不良事件报告,所述严重不良事件可以包括例如以下一种或多种:死亡,残疾或先天性异常/出生缺陷的发展(例如,在受试者的孩子中),住院治疗(包括延长现有住院治疗),危及生命的事件,预防死亡的医学或手术干预,持续或严重或基本上破坏执行正常生活功能的能力;或者可能危及个体并且可能需要医学或手术干预(治疗)以防止其他后果之一的另一重要医学事件。
在一些实施方案中,例如根据建立的方案将提供的RNA组合物给予18岁以下、或17岁以下、或16岁以下、或15岁以下、或14岁以下、或13岁以下的群体,使得下文所示的一种或多种局部反应事件的发生率不超过下文所示的发生率:
·注射部位疼痛(第一剂量和/或第二剂量之后75%,和/或第二剂量之后较低的发生率,例如,第二剂量之后65%);
·注射部位发红(第一剂量和/或第二剂量之后5%以下);和/或
·注射部位肿胀(第一剂量和/或第二剂量之后5%以下)。
在一些实施方案中,例如根据建立的方案将提供的RNA组合物给予18岁以下、或17岁以下、或16岁以下、或15岁以下、或14岁以下、或13岁以下的群体,使得下文所示的一种或多种全身性反应事件的发生率不超过下文所示的发生率:
·疲劳(第一剂量和/或第二剂量之后55%);
·头痛(第一剂量和/或第二剂量之后50%);
·肌肉疼痛(第一剂量和/或第二剂量之后40%);
·寒战(第一剂量和/或第二剂量之后40%);
·关节疼痛(第一剂量和/或第二剂量之后20%);
·发烧(第一剂量和/或第二剂量之后25%);
·呕吐(第一剂量和/或第二剂量之后10%);和/或
·腹泻(第一剂量和/或第二剂量之后10%)。
在一些实施方案中,将缓解一种或多种局部反应和/或全身性反应事件(例如,本文所述)的一种或多种症状的药物给予已用提供的RNA组合物给药并经历一种或多种局部和/或全身性反应事件(例如,本文所述)的18岁以下、或17岁以下、或16岁以下、或15岁以下、或14岁以下、或13岁以下的个体。在一些实施方案中,可以将解热药和/或止痛药给予这类个体。
在一些实施方案中,本公开提供一种试剂盒和/或容器系统,其包括:a)主容器;b)有效负载(payload)容器;c)用于放置在所述有效负载容器内的至少一个托盘,其中所述至少一个托盘包含温度敏感材料;以及d)干冰容器;其中所述至少一个托盘的尺寸为A x B xH,其中A为约228至约233mm,B为约228至约233mm,H为约38至约46mm。例如,A尺寸可以为约228mm、229mm、230mm、231mm、232mm或约233mm;B尺寸可以为约228mm、229mm、230mm、231mm、232mm或约233mm;并且H尺寸可以为约38mm、39mm、40mm、41mm、42mm、43mm、44mm、45mm或约46mm。此外,例如,这种试剂盒中的有效负载容器的尺寸可以为如229±10mm x 229±10mmx 229±10mm。
此外,例如,主容器(或保温运输工具)的内部尺寸可以为约200mm至约300mm X约200mm至约300mm X约200mm至约300mm;以及外部尺寸可以为约300mm至约500mm X约300mm至约500mm X约350mm至约700mm。例如,主容器的内部尺寸可以为A x B x C,其中A和B各自独立地为约200mm、220mm、230mm、240mm、245mm、255mm、260mm、265mm、270mm、280mm、290mm或约300mm;并且其中C独立地为约200mm、220mm、230mm、235mm、237mm、238mm、239mm、240mm、241mm、242mm、243mm、244mm、245mm、255mm、260mm、265mm、270mm、280mm、290mm或约300mm。此外,例如,主容器的外部尺寸可以为A x B x C,其中A和B各自独立地为约300mm、320mm、340mm、360mm、380mm、390mm、395mm、400mm、405mm、410mm、420mm、440mm、460mm、480mm或约500mm;并且其中C独立地为约350mm、370mm、390mm、410mm、430mm、450mm、470mm、490mm、510mm、520mm、530mm、540mm、550mm、555mm、560mm、565mm、570mm、575mm、580mm、600mm、620mm、640mm、660mm、680mm或约700mm。
此外,例如,本文公开的试剂盒和/或容器系统能够将托盘内的材料和/或有效负载容器内部的温度保持在-10℃或更低、-20℃或更低、-30℃或更低、-40℃或更低、-50℃或更低、-60℃或更低、-70℃或更低、-80℃或更低或者-90℃或更低,至少1、2、3、4、5、6、7、8、9或至少10天。在另一实例中,所述试剂盒和/或容器系统还可以包括温度监测系统。例如,温度监测系统可以包括温度传感器和显示器,其中当材料的温度或容器系统内特定区域的温度达到特定阈值温度以上的温度时,温度监测系统显示或警告。例如,这种阈值温度可以是约-10℃、-20℃、-30℃、-40℃、-50℃、-60℃、-70℃、-80℃或约-90℃。
此外,例如,本文公开的试剂盒和/或容器系统可以具有放置在主容器底部的有效负载容器,并且进一步地,其中干冰容器放置在有效负载容器的顶部(或底部)。
此外,例如,本文公开的试剂盒和/或容器系统可以具有放置在有效负载容器内的至少一个托盘。例如,在有效负载容器内可以有1、2、3、4、5、6、7、8、9、10或更多个托盘。
此外,例如,温度敏感材料可以包含在至少一个玻璃小瓶内,其中所述至少一个玻璃小瓶放置在托盘内。温度敏感材料还可以包含在样品管、袋或注射器内。这类小瓶、注射器、管和/或袋可以是单剂量或多剂量的。
此外,例如,本文描述的托盘可以各自包含任何数量的小瓶,如10、15、20、30、40、50、60、70、80、90、100、125、150、175、185、195、200或更多个。
本文进一步公开一种运输温度敏感材料的方法,包括以下步骤:a)将所述材料放置在如本文所公开的试剂盒或容器系统中;以及b)将所述试剂盒或容器系统运输至预定目的地。在一些实例中,在整个运输过程中连续监测有效负载容器内部和/或其位置的温度。在一些实例中,运输是在陆地、空中和/或水上进行的。在一些实例中,运输通过陆地车辆(如送货卡车或货车)、飞机(或其他空中运输方式如无人机或直升机)和/或船进行。在其他实例中,有效负载容器内的温度在整个运输过程中保持在-10℃或更低、-20℃或更低、-30℃或更低、-40℃或更低、-50℃或更低、-60℃或更低、-70℃或更低、-80℃或更低或者-90℃或更低。在其他实例中,在整个运输过程中,每个托盘中有至少10、15、20、30、40、50、60、70、80、90、100、125、150、175、185、195、200或更多个小瓶。在其他实例中,在整个运输过程中,有效负载容器内有至少1、2、3、4、5、6、7、8、9或至少10个托盘。在其他实例中,通过使用全球定位系统(GPS)定期或连续监测试剂盒或容器系统的位置。
本文进一步公开尺寸为A x B x C的有效负载容器,其中A、B和C尺寸中的每一个可以独立地为约225mm、226mm、227mm、228mm、229mm、230mm、231mm或约232mm。此外,例如,将至少1、2、3、4、5、6、7、8、9或至少10个托盘放置在有效负载容器内,其中每个托盘包含至少50、75、100、125、150、160、170、180、185、190、195或至少200瓶温度敏感材料。
本文进一步公开一种用于承载温度敏感材料的托盘,其中所述托盘的尺寸为A xB x H,其中:A为约227mm、228mm、229mm、230mm、231mm、232mm或约233mm;B为约227mm、228mm、229mm、230mm、231mm、232mm或约233mm;并且H为约38mm、39mm、40mm、41mm、42mm、43mm、44mm、45mm或约46mm。此外,例如,托盘包含至少50、75、100、125、150、160、170、180、185、190、195或至少200瓶温度敏感材料。在一些实施方案中,托盘由聚丙烯(例如
Figure GDA0004051824180000381
或其等同物)制成。
在另一实例中,如果在15℃-25℃不打开的情况下储存,则本公开的试剂盒和/或容器系统可以用于储存温度敏感材料长达10天。例如,在这类条件下,温度敏感材料可以储存1、2、3、4、5、6、7、8、9或10天。在另一实例中,在主容器打开后,其可以在24小时内补充干冰。例如,补充可以在运输后打开后的1小时内、2小时内、4小时内、8小时内、12小时内、16小时内、20小时内或24小时内进行。此外,例如,用于补充试剂盒或容器系统的干冰的量可以高达1kg、5kg、10kg、15kg、20kg、21kg、22kg、22kg、23kg、24kg、25kg或高达30kg。可以使用的干冰包括各种尺寸,如1mm颗粒到20mm颗粒。试剂盒或容器系统可以重新冷冻,例如,每1天、每2天、每3天、每4天、每5天、每6天、每7天、每8天、每9天或每10天。在另一实例中,试剂盒或容器系统每天打开不超过一次,或每天不超过两次。在另一实例中,试剂盒或容器系统可以在打开后1分钟(或更短)内、2分钟(或更短)内、3分钟(或更短)内、4分钟(或更短)内或5分钟(或更短)内关闭。在一些实例中,温度敏感材料可以在约2℃至约8℃下储存长达2天,或在室温下储存不超过1小时,或在解冻后储存不超过2小时。
附图说明
图1:SARS-CoV-2 S蛋白的S蛋白组织的示意图
S1亚基内的序列由信号序列(SS)和受体结合结构域(RBD)组成,受体结合结构域(RBD)是S蛋白内与结合至人细胞受体ACE2相关的关键亚基。S2亚基包含S2蛋白酶切割位点(S2’),然后是用于膜融合的融合肽(FP),具有中央螺旋(CH)结构域的七肽重复(HR1和HR2),跨膜结构域(TM)和胞质尾(CT)。
图2:用于开发SARS-CoV-2疫苗的预期构建体
基于完整和野生型S蛋白,我们已设计不同构建体,其编码(1)在第一个七肽重复(HRP1)近距离内具有突变的完整蛋白,其包括保留中和敏感位点的稳定突变,(2)S1结构域或(3)仅RB结构域(RBD)。此外,为了稳定蛋白片段,将次要纤维蛋白结构域(F)融合至C-末端。所有构建体均以信号肽(SP)开始以确保高尔基体转运至细胞膜。
图3:使用LNP配制的modRNA的针对流感HA的抗体免疫应答
将BALB/c小鼠用1μg疫苗候选物免疫2次。通过ELISA测量病毒抗原特异性免疫球蛋白G(IgG)的总量。通过VNT评价抗体的功能性。
图4:使用LNP配制的modRNA平台的针对流感HA的T细胞应答
将BALB/c小鼠用1μg候选疫苗IM免疫2次。利用抗原特异性肽对从脾回收的T细胞刺激进行T细胞应答分析。在肽刺激之后利用ELISpot测定测量IFNγ释放。
图5:用BNT162a1免疫之后7、14、21和28天的抗S蛋白IgG应答
将BALB/c小鼠用1、5或10μg的LNP配制的RBL063.3IM免疫一次。在免疫之后第7、14、21和28天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第7天、第14天、第21天和第28天,图中包括1∶100的血清稀释度的值。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图6:用BNT162b1免疫之后7、14、21和28天的抗S蛋白IgG应答
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBP020.3IM免疫一次。在免疫之后第7、14、21和28天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第7天(1∶100)、第14天(1∶300)、第21天(1∶900)和第28天(1∶2700),图中包括不同的血清稀释度。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图7:用BNT162b1免疫之后14、21和28天,SARS-CoV-2假病毒的中和
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBP020.3IM免疫一次。在免疫之后14、21和28天,将动物放血,并且测试血清的SARS CoV-2假病毒中和。图示出pVN50血清稀释度(与没有血清的阳性对照相比,感染事件减少50%)。图中的一个点代表一只小鼠。每只小鼠样品均一式两份进行测量。组大小n=8。每组均用带有须(whisker)的水平条显示平均值+SEM。LLOQ,定量下限。ULOQ,定量上限。
图8:用BNT162c1免疫之后7、14和21天的抗S蛋白IgG应答
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBS004.3IM免疫一次。在免疫之后第7、14和21天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第7天(1∶100)、第14天(1∶300)和第21天(1∶900),图中包括不同的血清稀释度。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图9:用BNT162c1免疫之后14和21天,SARS-CoV-2假病毒的中和
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBS004.3IM免疫一次。在免疫之后14和21天,将动物放血,并且测试血清的SARS CoV-2假病毒中和。图示出pVN50血清稀释度(与没有血清的阳性对照相比,感染事件减少50%)。图中的一个点代表一只小鼠。每只小鼠样品均一式两份进行测量。组大小n=8。每组均用带有须的水平条显示平均值+SEM。LLOQ,定量下限。ULOQ,定量上限。
图10:用LNP配制的RBL063.1免疫之后7、14、21和28天的抗S蛋白IgG应答
将BALB/c小鼠用1、5或10μg的LNP配制的RBL063.1IM免疫一次。在免疫之后第7、14、21和28天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第7天(1∶100)、第14天(1∶100)、第21天(1∶300)和第28天(1∶900),图中包括不同的血清稀释度。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图11:用LNP配制的RBL063.1免疫之后14、21和28天,SARS-CoV-2假病毒的中和
将BALB/c小鼠用1、5或10μg的LNP配制的RBL063.1IM免疫一次。在免疫之后14、21和28天,将动物放血,并且测试血清的SARS CoV-2假病毒中和。图示出pVN50血清稀释度(与没有血清的阳性对照相比,感染事件减少50%)。图中的一个点代表一只小鼠。每只小鼠样品均一式两份进行测量。组大小n=8。每组均用带有须的水平条显示平均值+SEM。LLOQ,定量下限。ULOQ,定量上限。
图12:用BNT162b2(LNP配制的RBP020.1)免疫之后7、14和21天的抗S蛋白IgG应答
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBP020.1IM免疫一次。在免疫之后第7、14和21天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第7天(1∶100)、第14天(1:300)和第21天(1∶1100),图中包括不同的血清稀释度。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图13:用BNT162b2(LNP配制的RBP020.1)免疫之后14和21天,SARS-CoV-2假病毒的中和
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBP020.1IM免疫一次。在免疫之后第14和21天,将动物放血,并且测试血清的SARS CoV-2假病毒中和。图示出pVN50血清稀释度(与没有血清的阳性对照相比,感染事件减少50%)。图中的一个点代表一只小鼠。每只小鼠样品均一式两份进行测量。组大小n=8。每组均用带有须的水平条显示平均值+SEM。LLOQ,定量下限。ULOQ,定量上限。
图14:用LNP配制的RBS004.2免疫之后7、14和21天的抗S蛋白IgG应答
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBS004.2IM免疫一次。在免疫之后第7、14和21天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第7天(1∶100)、第14天(1∶300)和第21天(1∶900),图中包括不同的血清稀释度。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图15:用LNP配制的RBS004.2免疫之后14和21天,SARS-CoV-2假病毒的中和
将BALB/c小鼠用0.2、1或5μg的LNP配制的RBS004.2IM免疫一次。在免疫之后14和21天,将动物放血,并且测试血清的SARS CoV-2假病毒中和。图示出pVN50血清稀释度(与没有血清的阳性对照相比,感染事件减少50%)。图中的一个点代表一只小鼠。每只小鼠样品均一式两份进行测量。组大小n=8。每组均用带有须的水平条显示平均值+SEM。LLOQ,定量下限。ULOQ,定量上限。
图16:筛选过程中的ALC-0315活性
图17:在存在或不存在ApoE3的情况下,在野生型(WT)或ApoE敲除C57B1/6小鼠中肌肉内给药之后,在动物的右侧(注射部位)、背侧(注射部位)和腹侧(引流至肝)监测萤光素酶表达。在给药后4、24、72和96小时利用Xenolight D-荧光素Rediject检测萤光素酶表达。
图18:在存在(KO+)或不存在(KO)ApoE3的情况下,在野生型(WT)或ApoE敲除C57Bl/6小鼠中静脉内(IV)和肌肉内(IM)给药之后的萤光素酶活性。在给药后4小时利用Xenolight D-荧光素Rediject检测萤光素酶表达。
图19:RNA的一般结构
具有5′-帽、5′-和3′-非翻译区、具有内在分泌信号肽以及GS-接头的编码序列、以及poly(A)-尾的RNA疫苗的一般结构的示意图。请注意,与各个元件的序列长度相比,各个元件未完全按比例绘制。
UTR=非翻译区;sec=分泌信号肽;RBD=受体结合结构域;GS=甘氨酸-丝氨酸接头。
图20:RNA的一般结构
具有5′-帽、5′-和3′-非翻译区、具有内在分泌信号肽以及GS-接头的编码序列、以及poly(A)-尾的RNA药物物质的一般结构的示意图。请注意,与各个元件的序列长度相比,各个元件未完全按比例绘制。
GS=甘氨酸-丝氨酸接头;UTR=非翻译区;Sec=分泌信号肽;RBD=受体结合结构域。
图21:RNA的一般结构
具有5′-帽、5′-和3′-非翻译区、具有内在分泌信号肽以及GS-接头的委内瑞拉马脑炎病毒(VEEV)RNA依赖性RNA聚合酶复制酶和SARS-CoV-2抗原的编码序列、以及poly(A)-尾的RNA疫苗的一般结构的示意图。请注意,与各个元件的序列长度相比,各个元件未完全按比例绘制。
UTR=非翻译区;Sec=分泌信号肽;RBD=受体结合结构域;GS=甘氨酸-丝氨酸接头。
图22:用BNT162b1免疫之后28天的ELISpot分析
将BALB/c小鼠用1μg的LNP配制的RBP020.3IM免疫一次。在免疫之后第28天,将小鼠安乐死并制备脾细胞。利用MACS分选的CD4+和CD8+ T细胞进行ELISpot测定。用S蛋白或RBD特异性重叠肽池刺激T细胞,并且测量IFN-γ分泌以评价T细胞应答。图中的一个点代表一只小鼠的个体斑点计数,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值)。
图23:用BNT162b1免疫之后12天,重新刺激的脾细胞上清液中的细胞因子浓度
将BALB/c小鼠用5μg的LNP配制的RBP020.3IM免疫一次。在免疫后第12天,将小鼠安乐死。制备脾细胞并用S蛋白特异性重叠肽池刺激。刺激48h之后,收集上清液并确定细胞因子浓度。图中的一个点代表一只小鼠的个体细胞因子浓度,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值)。
图24:用BNT162b1免疫之后7天,PBMC中的T细胞免疫表型分型
将BALB/c小鼠用5μg的LNP配制的RBP020.3IM免疫一次。在免疫后第7天,将小鼠放血。对T细胞进行PBMC的流式细胞术分析。将T细胞定义为活的CD3+ CD4+和CD3+ CD8+ T细胞。图中包括额外的表型分型标志物。Tfh细胞从CD4+ T细胞门控,并且定义为CD4+ T-bet-GATA3- CD44+ CD62L- PD-1+ CXCR5+细胞。图中的一个点代表一只小鼠的个体细胞级分(组大小n=8;各组包括平均值)。
图25:用BNT162b1免疫之后12天,引流淋巴结中的B细胞的免疫表型分型
将BALB/c小鼠用5μg的LNP配制的RBP020.3IM免疫一次。在免疫后第12天,将小鼠安乐死。对B细胞进行淋巴细胞的流式细胞术分析。将激活的B细胞在单个、活淋巴细胞内门控,并且定义为IgD-Dump(CD4,CD8,F4/80,GR-1)-细胞。浆细胞定义为CD138+B220low/-细胞。转换的B细胞从非浆细胞门控,并且定义为CD19+ CD138- IgM-。生发中心(GC)B细胞从转换的B细胞门控,并且定义为CD19+ IgM- CD38- CD95+细胞并门控IgG1和IgG2a。图中的一个点代表一只小鼠的个体细胞级分(组大小n=8;各组包括平均值)。
图26:用LNP配制的modRNA RBP020.1免疫之后28天的ELISpot分析
将BALB/c小鼠用5μg的LNP配制的RBP020.1IM免疫一次。在免疫之后第28天,将小鼠安乐死并制备脾细胞。利用MACS分选的CD4+和CD8+ T细胞进行ELISpot测定。用S蛋白特异性重叠肽池刺激T细胞,并且测量IFN-γ分泌以评价T细胞应答。图中的一个点代表一只小鼠的个体斑点计数,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值)。
图27:用LNP配制的modRNA RBP020.1免疫之后28天,重新刺激的脾细胞上清液中的细胞因子浓度
将BALB/c小鼠用5μg的LNP配制的RBP020.1 IM免疫一次。在免疫后第28天,将小鼠安乐死。制备脾细胞并用S蛋白特异性重叠肽池刺激。刺激48h之后,收集上清液并确定细胞因子浓度。图中的一个点代表一只小鼠的个体细胞因子浓度,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值)。
图28:用LNP配制的saRNA RBS004.2免疫之后28天的ELISpot分析
将BALB/c小鼠用5μg的LNP配制的RBS004.2IM免疫一次。在免疫之后第28天,将小鼠安乐死并制备脾细胞。利用MACS分选的CD4+和CD8+ T细胞进行ELISpot测定。用S蛋白特异性重叠肽池刺激T细胞,并且测量IFN-γ分泌以评价T细胞应答。图中的一个点代表一只小鼠的个体斑点计数,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值)。
图29:用LNP配制的saRNA RBS004.2免疫之后28天,重新刺激的脾细胞上清液中的细胞因子浓度
将BALB/c小鼠用1μg的LNP配制的RBS004.2IM免疫一次。在免疫后第28天,将小鼠安乐死。制备脾细胞并用S蛋白特异性重叠肽池刺激。刺激48h之后,收集上清液并确定细胞因子浓度。图中的一个点代表一只小鼠的个体细胞因子浓度,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值)。
图30:SARS-CoV-2 S蛋白的S蛋白组织和用于开发SARS-CoV-2疫苗的新构建体的示意图
基于野生型S蛋白,我们设计了两种不同的基于跨膜锚定的RBD的疫苗构建体,其编码融合至T4次要纤维蛋白三聚结构域(F)和原生(autochthonus)跨膜结构域(TM)的RBD片段。构建体(1)从SARS-CoV-2-S信号肽(SP;S蛋白的AA 1-19)开始,而构建体(2)从人Ig重链信号肽(huSec)开始以确保高尔基体转运至细胞膜。
图31:用LNP-C12配制的modRNA免疫之后6、14和21天的抗S蛋白IgG应答,所述modRNA编码基于跨膜锚定的RBD的疫苗构建体
将BALB/c小鼠用4μg的LNP-C12配制的基于跨膜锚定的RBD的疫苗构建体(替代BNT162b3c/BNT162b3d)IM免疫一次。在免疫之后第6、14和21天,将动物放血并分析血清样品中通过ELISA测量的抗S1(左)和抗RBD(右)抗原特异性免疫球蛋白G(IgG)的总量。对于第6天(1:50)、第14天(1:300)和第21天(1:900),图中包括不同的血清稀释度。图中的一个点代表一只小鼠,每只小鼠样品均一式两份进行测量(组大小n=8;各组包括平均值+SEM)。
图32:用LNP-C12配制的modRNA免疫之后6、14和21天,SARS-CoV-2假病毒的中和,所述modRNA编码基于跨膜锚定的RBD的疫苗构建体
将BALB/c小鼠用4μg的LNP-C12配制的基于跨膜锚定的RBD的疫苗构建体(替代BNT162b3c/BNT162b3d)IM免疫一次。在免疫之后第6、14和21天,将动物放血,并且测试血清的SARS CoV-2假病毒中和。图示出pVN50血清稀释度(与没有血清的阳性对照相比,感染事件减少50%)。图中的一个点代表一只小鼠。每只小鼠样品均一式两份进行测量。组大小n=8。每组均用带有须的水平条显示平均值+SEM。LLOQ,定量下限。ULOQ,定量上限。
图33:BNT162b1在恒河猴中的免疫原性以及与人康复期血清的比较
在第0天和第21天,将恒河猴用30μg或100μg的BNT162b1或安慰剂(0.9%NaCl)免疫。在免疫之前以及免疫之后14、21、28和35天获得血清;在免疫之前以及免疫之后14和42天获得PBMC。在症状发作之后20-40天以及无症状康复期至少14天之后获得来自COVID-19患者的血清。a,在免疫之后所示时间提取的恒河猴血清中(n=6/组,安慰剂组的所有测量时间点在“对照”下示出)和在人康复期血清中(n=62),结合至SARS-CoV-2 S的重组S1蛋白酶片段的IgG的几何平均浓度。b,恒河猴血清(n=6/组,安慰剂组的所有测量时间点在“对照”下示出)和人康复期血清(n=38)的SARS-CoV-2几何平均50%中和滴度。通过双尾单向ANOVA和Dunnett′s多重比较检验确定P值。c,在第42天,恒河猴PBMC中产生IFNγ、IL-2、TNF(TH1)、IL-21或IL-4(TH2)细胞因子的CD4+ T细胞的流式细胞术分析。通过双尾Kruskal-Wallis检验然后Dunn′s多重比较检验确定P值。每个数据点对应个体的动物。
图34:研究群体的概述
图35:所有剂量水平疫苗接种的7天内报告的局部反应
征求的注射部位(局部)反应为:注射部位疼痛(轻度=不干扰活动;中度=干扰活动;严重=阻止日常活动;4级=急诊就诊或住院)以及发红和肿胀(轻度=直径2.5-5.0cm;中度=直径5.5-10.0cm;严重=直径>10.0cm;4级=发红为坏死或剥脱性皮炎,肿胀为坏死)。每次疫苗接种之后14天使用电子日记收集数据。
图36:a:疫苗接种1之后7天内报道的全身性事件:所有剂量水平;b:疫苗接种2之后7天内报告的全身性事件:10μg&30μg剂量水平
征求的全身性事件为:恶心/呕吐(轻度=对活动没有干扰或在24小时内1-2次;中度=对活动有一些干扰或在24小时内>2次;严重=阻止日常活动或需要静脉内补水;4级=因低血压性休克急诊就诊或住院),腹泻(轻度,在24小时内2-3次稀便;中度,在24小时内4-5次稀便;严重,在24小时内≥6次稀便;4级=急诊就诊或住院),头痛(轻度=对活动没有干扰;中度=重复使用非麻醉性止痛药>24小时或对活动有一些干扰;严重=显著,任何使用麻醉性止痛药或阻止日常活动;4级=急诊就诊或住院),疲劳/疲倦(轻度=对活动没有干扰;中度=对活动有一些干扰;严重=显著;阻止日常活动;4级=急诊就诊或住院),肌肉疼痛(发生在注射部位以外区域的疼痛;轻度=对活动没有干扰;中度=对活动有一些干扰;严重=显著;阻止日常活动;4级=急诊就诊或住院),关节疼痛(轻度=对活动没有干扰;中度=对活动有一些干扰;严重=显著;阻止日常活动;4级=急诊就诊或住院),以及发烧(轻度=100.4°F-101.1°F[38.0℃-38.4℃];中度=101.2°F-102.0°F[38.5℃-38.9℃];严重=102.1°F-104.0°F[39.0℃-40.0℃];4级=>104.0°F[>40.0℃])。
图37:BNT162b1的免疫原性-1或2个剂量之后结合RBD的IgG GMC和SARS CoV250%中和滴度
在第1天(所有剂量水平和安慰剂)和第21天(10μg和30μg剂量水平和安慰剂),将15个组的受试者用所示剂量水平的BNT162b1(n=12)或安慰剂(P,n=3)免疫。在免疫之前(第1天)以及第一次免疫之后的7、21和28天获得血清。在症状发作之后20-40天以及无症状康复期至少14天之后获得人COVID-19康复期血清(HCS)(n=38)。a,结合重组RBD的IgG的GMC。定量下限(LLOQ)1.15(虚线)。b,50%SARS-CoV-2中和GMT。每个数据点代表一种血清样品,并且每个垂直条代表具有95%置信区间的几何平均值。
图38:BNT162b1在人中诱导强CD4和CD8 T细胞应答
BNT162诱导的T细胞:离体INFγELISpot;8名测试的受试者中的8名的T细胞应答。这里:用10μg BNT162b1初免/加强疫苗接种的受试者;CEF:CMV、EBV、流感CD8 T细胞表位混合物,CEFT:CMV、EBV、流感、破伤风CD4 T细胞表位混合物。
图39:BNT162b1诱导的IgG浓度
在第1天(所有剂量水平)和第22天(除60μg外的所有剂量水平),将受试者用BNT162b1免疫(n=12/组,从第22天开始,对于10μg和50μg队列(cohort),n=11)。在第1天(初免前)以及在第8、22(加强前)、29和43天获得血清。将所有剂量水平的剂量前应答合并。在PCR确诊之后至少14天以及在供体不再有症状时获得人COVID-19康复期血清(HCS,n=38)。对于低于定量下限(LLOQ=1.15)的结合RBD的IgG浓度,将LLOQ/2值作图。箭头指示疫苗接种。方格条表示未进行加强免疫。条形上方的值是具有95%置信区间的几何平均值。在提交时,第43天数据等待50μg队列的5个受试者和60μg队列的所有受试者。
图40:BNT162b1诱导的病毒中和滴度
疫苗接种时间表和血清采样与图39相同。a,免疫的受试者和COVID-19康复期患者(HCS)中的SARS-CoV-2 50%中和滴度(VNT50)。对于低于定量下限(LLOQ)=20的值,将LLOQ/2值作图。箭头指示免疫日。方格条表示未进行加强免疫。具有95%置信区间的几何平均值(条形上方的值)。在提交时,尚无50μg队列的5个受试者和60μg队列的所有受试者的第43天数据,b,在第29天结合RBD的IgG结合平均浓度(GMC)(如图39)与VNT50的相关性(所有可评价的受试者血清)。非参数Spearman相关性。c,显示17种SARS-CoV-2刺突蛋白变体(包括16种RBD突变体和占主导的刺突蛋白变体D614G)的假病毒组中的假病毒50%中和滴度(pVNT50)(剂量水平10、30和50μg,n=1-2每组;第29天)。定量下限(LLOQ)=40。几何平均值。
图41:BNT162b1诱导的CD4+和CD8+ T细胞应答的频率和规模
疫苗接种时间表如图39。在第1天(之前)和第29天(之后,加强之后7天)(1和50μg,每个n=8;10和30μg,每个n=10)获得的PBMC富含CD4+或CD8+ T细胞效应物,并且用代表疫苗编码的RBD的重叠肽池单独刺激过夜用于在直接离体IFNγ ELISpot中进行评价。常见病原体T细胞表位池CEF(CMV、EBV、流感病毒HLA I类表位)和CEFT(CMV、EBV、流感病毒、破伤风类毒素HLA II类表位)用来评价一般T细胞反应性,培养基用作阴性对照。每个点代表减去仅培养基的对照之后,来自一名研究对象的重复孔的归一化平均斑点计数。a,疫苗接种后数据点上方的比例是每个剂量队列的测试受试者总数内具有可检测的CD4+或CD8+ T细胞应答的受试者数量。b,10μg队列受试者的示例性CD4+和CD8+ ELISpot。c,所有初免/加强疫苗接种的受试者中的RBD特异性CD4+和CD8+ T细胞应答以及他们的基线CEFT和CEF特异性T细胞应答。d,剂量队列10-50μg(1和50μg,每个n=8;10和30μg,每个n=10)的VNT50(如图40a)与CD4+ T细胞应答(如图41)的相关性。非参数Spearman相关性。
图42:BNT162b1诱导的T细胞的细胞因子极化
疫苗接种时间表和PBMC采样如图41。用代表疫苗编码的RBD的重叠肽池刺激疫苗接种者和COVID-19康复的供体的PBMC(HCS n=6;在(c)中),并且通过流式细胞术(a-c)和基于珠的免疫测定(d)进行分析。a,10μg队列受试者的产生细胞因子的CD4+和CD8+ T细胞的示例性伪彩色流式细胞术图。b,产生所示细胞因子的RBD特异性CD4+ T细胞占总产生细胞因子的RBD特异性CD4+ T细胞的分数(fraction),以及c,产生所示细胞因子的RBD特异性CD8+(左)或CD4+(右)T细胞占相同子集的总循环T细胞的分数(fraction)。(b)中排除了来自30μg队列的一个CD4无应答者(<0.02%总产生细胞因子的T细胞)和一个CD8无应答者(<0.01%总产生细胞因子的T细胞)。数据点上方的值是所有剂量队列的平均分数。d,来自50-μg队列的PBMC。每个点代表一名研究对象从重复孔减去DMSO对照的平均值。定量下限(LLOQ)对于TNF是6.3pg/mL,对于IL-1β是2.5pg/mL,对于IL-12p70是7.6pg/mL。平均值(b)。
图43:疫苗接种的时间表和评价
图44:征求的不良事件
在第1天(所有剂量水平)和第22天(除60μg外的所有剂量水平),将受试者用所示剂量水平的BNT162b1免疫(n=12/组,从第22天开始,对于10μg和50μg队列,n=11)。a,b,到某天(第1-9天,第22-30天)和队列中有局部(a)或全身性反应(b)的受试者数量。不良事件的分级根据FDA推荐进行(U.S.Department of Health and Human Services,Administration,F.and D.&Research,C.for B.E.and.Toxicity grading scale forhealthy adult and adolescent volunteers enrolled in preventive vaccineclinical trials.(2007).见https://www.fda.gov/regulatory-information/search-fda-guidance-documents/toxicity-grading-scale-healthy-adult-and-adolescent-volunteers-enrolled-preventive-vaccine-clinical.)。
图45:药效学标志物
在第1天(所有剂量水平)和第22天(除60μg外的所有剂量水平)用所示剂量水平的BNT162b1免疫受试者。a,C-反应蛋白(CRP)水平的动力学以及b,淋巴细胞计数的动力学。虚线表示参考范围的上限和下限。对于低于定量下限(LLOQ=0.3)的值,将LLOQ/2值作图(a)。
图46:抗体和T-应答的相关性
在第1天(所有剂量水平)和第22天(除60μg外的所有剂量水平)用所示剂量水平的BNT162b1免疫受试者。a,在第29天RBD特异性IgG应答(来自图39a)与CD4+ T细胞应答的相关性(1和50μg,每个n=8;10和30μg,每个n=10)。非参数Spearman相关性。b,剂量队列10-50μg(1和50μg,每个n=8;10和30μg,每个n=10)的CD4+ 与CD8+ T细胞应答(如图41)的相关性。参数Pearson相关性。c,在第29天RBD特异性IgG应答(来自图39a)与CD8+ T细胞应答的相关性(1和50μg,每个n=8;10和30μg,每个n=10)。非参数Spearman相关性。
图47:图42中示出的数据的流式细胞术分析的门控策略
用于鉴定研究对象PBMC样品中分泌IFNγ、IL-2和IL-4的T细胞的流式细胞术门控策略。a,将CD4+和CD8+ T细胞门控在单一、活淋巴细胞内。b,c,CD4+ T细胞中IFNγ、IL-2和IL-4的门控(b)以及CD8+ T细胞中IFNγ和IL-2的门控(c)。
图48:BNT162b1 18-55岁:每个剂量之后的局部反应
图49:BNT162b1 18-55岁:每个剂量之后的全身性事件
图50:BNT162b1 65-85岁:结合RBD的IgG GMC
图51:BNT162b1 65-85岁:50%SARS-CoV-2中和GMT
图52:BNT162b2 18-55岁:每个剂量之后的局部反应
图53:BNT162b2 18-55岁:每个剂量之后的全身性事件
图54:BNT162b2 65-85岁:每个剂量之后的局部反应
图55:BNT162b2 65-85岁:每个剂量之后的全身性事件
图56:BNT162b2 18-55岁:结合S1的IgG GMC
图57:BNT162b2 18-55岁:50%SARS-CoV-2中和GMT
图58:BNT162b2 65-85岁:结合S1的IgG GMC
图59:BNT162b2 65-85岁:50%SARS-CoV-2中和GMT
图60:小鼠中BNT162b2引发的T细胞应答
将用BNT162b2或缓冲液IM免疫的BALB/c小鼠的脾细胞用全长S肽混合物或阴性对照(a中的无关肽,右)离体重新刺激;(a,左)和(c)中没有肽。通过双尾配对t-检验确定P-值。(a)用5μg BNT162b2免疫小鼠(n=8/组)之后12天收集的脾细胞的IFNγELISpot(左)。用1μg BNT162b2免疫小鼠(n=8只小鼠/组)之后28天,分离的脾CD4+T细胞或CD8+ T细胞的IFNγ ELISpot(中和右)。(b)用5μg BNT162b2或缓冲液(对照)免疫的小鼠(n=8/组)脾细胞的CD8+ T细胞特异性细胞因子释放,通过流式细胞术确定。针对背景(无肽)校正S肽特异性应答。(c)用1μg BNT162b2免疫小鼠(n=8/组,对于IL-4、IL-5和IL-13,n=7,因为对于S肽刺激的样品,通过routs测试去除了一个异常值[Q=1%])之后28天获得的脾细胞的细胞因子生成,通过基于珠的多重分析确定的。
图61:用10μg BNT162b2疫苗接种的5个受试者的IFNγELISpot数据
每106个细胞在疫苗接种之前(之前)和第29天(之后-加强后7天)来自重复样本的减去背景的斑点计数。利用验证的离体IFNγELISpot测定以符合GCLP的方式进行T细胞应答分析。所有测试均一式两份进行,并且包括阴性和阳性对照(仅培养基和抗CD3)。此外,源自巨细胞病毒(CMV)、Epstein Barr病毒(EBV)和流感病毒的肽表位用作阳性对照。在预包被的ELISpot板(Mabtech)中用覆盖刺突糖蛋白的N-末端部分和C-末端部分的重叠肽刺激去除CD4或CD8的PBMC16-20h。为了分析离体T细胞应答,通过碱性磷酸酶缀合的二抗使结合的IFNγ可见。利用Robot ELISPOT读取器扫描板并通过ImmunoCapture V6.3或AIDELISPOT7.0软件进行分析。斑点计数总结为每个重复样本的平均值。T细胞计数计算为用S池1和S池2刺激之后检测的斑点计数的总和。基于根据Moodie et al.(Moodie Z.et al.,JImmunol Methods 315,2006,121-32;Moodie Z.et al.,Cancer Immunol Immunother 59,2010,1489-501)的两个统计测试(无分配重采样),利用ELISpot数据分析工具(EDA)将肽刺激的T细胞应答与作为阴性对照的仅用培养基孵育的效应物进行比较,因此在保持对假阳性率的控制的同时提供敏感性。在之前和第29天针对来自CMV、EBV和流感病毒的阳性对照肽的T细胞应答之间未观察到显著变化(未显示)。
图62:CD4+和CD8+IFNγELISpot数据的实例
如图61,利用在免疫之前和10μg BNT162b2的剂量1之后第29天(剂量2后7天)获得自受试者的PBMC进行IFNγELISpot。HLA I类和II类肽池CEF(巨细胞病毒[CMV]、EpsteinBarr病毒[EBV](剂量2后7天)和流感病毒,HLA I类表位混合物)和CEFT(CMV、EBV、流感病毒和破伤风类毒素HLA II类细胞表位混合物)用作基准对照以评价CD8+和CD4+ T细胞反应性。
图63:BNT162b2引发的应答和基准INFγELISpot应答的比较
从第1天和第22天用10μg的BNT162b2免疫的5个受试者获得的来自第29天(剂量2后7天)PBMC样品的IFNγspot计数。CEF(CMV、EBV和流感病毒HLA I类表位混合物)和CEFT(CMV、EBV、流感病毒和破伤风类毒素HLA II类细胞表位混合物)用作基准对照以评价CD8+和CD4+ T细胞反应性。水平线表示中值。
图64:免疫原的设计和表征
a,BNT162b1的结构。RNA的线性图(左)和LNP的卡通图(右)。UTR,非翻译区;SP,信号肽。b,来自负染色的RBD-折叠子三聚体的电子显微镜术的代表性2D类平均值(2D)。框边缘:37nm。c,结合至RBD单体的ACE2胞外结构域的专注细化之后,ACE2/B0AT1/RBD-折叠子三聚体复合物在
Figure GDA0004051824180000461
的密度图。表面颜色-按亚基编码。细化至密度的带状模型显示RBD-ACE2结合界面,标记了可能介导极性相互作用的残基。
图65:小鼠免疫原性
a-c,将BALB/c小鼠(n=8/组)用0.2、1或5μg的BNT162b1或缓冲液肌肉内(IM)免疫。每组的几何平均值±95%CI,P-值比较第28天与未免疫(0μg;n=8)的基线血清(利用Dunnett’s多重比较检验的混合效应分析的多重比较)(a,c)。a,免疫之后7、14、21和28天获得的血清中结合RBD的IgG应答,通过ELISA确定。对于第0天,进行随机动物的预筛选(n=4)。b,His标记的RBD与固定的小鼠IgG的结合动力学的代表性表面等离子共振传感图,所述小鼠IgG来自用5μg BNT162b1免疫之后28天的血清(n=8)。实际结合(绿色)以及数据与1∶1结合模型的最佳拟合(黑色)。c,VSV-SARS-CoV-2假病毒50%血清中和滴度(pVNT50)。d-f,将用BNT162b1或缓冲液(对照)IM免疫的BALB/c小鼠的脾细胞用全长S肽混合物或阴性对照((d,左)和(e,f)中没有肽;(d,右)中的无关肽)离体重新刺激。通过双尾配对t-检验确定P-值。d,用5μg BNT162b1免疫小鼠(n=8/组)之后12天收集的脾细胞的IFNγELISpot(左)。用1μg BNT162b1免疫之后28天,分离的脾CD4+ T细胞(n=7,通过Grubbs测试去除了一个异常值,a=0.05)或CD8+ T细胞(n=8)的IFNγELISpot(中和右)。e,用5μg BNT162b1免疫的小鼠(n=8/组)脾细胞的T细胞特异性细胞因子释放,通过流式细胞术确定。针对背景(无肽)校正S肽特异性应答。f,用0.2μg BNT162b1免疫小鼠(n=8/组)之后28天获得的脾细胞的细胞因子生成,通过基于珠的多重分析确定。
图66:BNT162b1在恒河猴中的免疫原性以及与人康复期血清的比较
a,b,将2-4岁的雄性恒河猴(n=6/组)在第0天和第21天用30μg或100μg的BNT162b1或者用缓冲液IM免疫,并且在免疫之前以及免疫之后14、21、28、35和42天获得血清。在PCR确诊之后至少14天以及在急性COVID-19症状已消退时从SARS-CoV-2感染的患者获得人康复期血清(HCS)(n=38)。条形上方的值给出几何平均值。a,结合重组SARS-CoV-2RBD的IgG的几何平均浓度(GMC)。虚线表示来自安慰剂组所有时间点的血清的几何平均值(1.72U/mL)。利用单向ANOVA用Dunnett’s多重比较校正来分析每个时间点的组IgG滴度对HCS样品的统计显著性,并且在30μg剂量水平组(第28天,p<0.0001;第35天,p=0.0016)和100μg剂量水平组(第28、35和42天,所有p<0.0001)中证实了统计显著性。b,SARS-CoV-250%中和滴度(VNT50)。虚线表示来自安慰剂组所有时间点的血清的几何平均值(10.31U/mL)。利用单向ANOVA用Dunnett’s多重比较校正来分析每个时间点的组VNT50对HCS样品的统计显著性,并且在30μg剂量水平组(第28天,p<0.0001)和100μg剂量水平组(第28和35天,p<0.0001;第42天,p=0.007)中证实了统计显著性。
图67:SARS-CoV-2攻击之后未免疫和已免疫的恒河猴中的病毒RNA
如图66所述将恒河猴(n=6/组)在第0天和第21天用100μg BNT162b1或缓冲液(对照)免疫。第二次免疫之后41-48天,将动物用IN和IT途径之间均分的1×106总pfu的SARS-CoV-2攻击。将3只未免疫的年龄匹配的雄性恒河猴用细胞培养基(Sentinel)攻击。通过RT-qPCR检测病毒RNA水平。数据点上方的比例是每组所有动物内病毒RNA阳性动物的数量。a,攻击之前,以及攻击之后第3天和第6天获得的支气管肺泡灌洗液(BAL)中的病毒RNA。在第6天,对照和BNT162b1免疫的动物之间的病毒载量在统计上具有显著意义(p=0.0131)。b,攻击之前以及攻击之后第1、3和6天获得的鼻拭子中的病毒RNA。在第3天,对照和BNT162b1免疫的动物之间的病毒载量在统计上具有显著意义(p=0.0229)。虚线表示检测下限(LLOD)。将阴性样本设为LLOD的1/2。通过分类分析确定二项式响应的P-值(攻击之后不可检测的病毒载量为成功,攻击之后可检测的病毒载量为失败)。
图68:BNT162b1和b2 V8免疫减少用SARS-CoV-2攻击之后恒河猴中的病毒RNA;b2显示鼻中较早的清除
图69:示例性大流行病供应产品包装概述
图70:在疫苗接种点的示例性疫苗储存&操作
图71:示例性多剂量制品
图72.几何平均滴度和95%CI:SARS-CoV-2中和测定-NT50-1期,2个剂量,间隔21天-18-55岁-BNT162b1-可评价的免疫原性群体
图73.几何平均滴度和95%CI:SARS-CoV-2中和测定-NT50-1期,2个剂量,间隔21天-65-85岁-BNT162b1-可评价的免疫原性群体
图74.几何平均滴度和95%CI:SARS-CoV-2中和测定-NT50-1期,2个剂量,间隔21天-18-55岁-BNT162b2-可评价的免疫原性群体
图75.几何平均滴度和95%CI:SARS-CoV-2中和测定-NT50-1期,2个剂量,间隔21天-65-85岁-BNT162b2-可评价的免疫原性群体
图76.几何平均浓度和95%CI:结合SARS-CoV-2 RBD的IgG水平测定-1期,2个剂量,间隔21天-18-55岁-BNT162b1-可评价的免疫原性群体
图77.几何平均浓度和95%CI:结合SARS-CoV-2 RBD的IgG水平测定-1期,2个剂量,间隔21天-65-85岁,BNT162b1-可评价的免疫原性群体
图78.几何平均浓度和95%CI:结合SARS-CoV-2 S1的IgG水平测定-1期,2个剂量,间隔21天-18-55岁-BNT162b1-可评价的免疫原性群体
图79.几何平均浓度和95%CI:结合SARS-CoV-2 S1的IgG水平测定-1期,2个剂量,间隔21天-65-85岁-BNT162b1-可评价的免疫原性群体
图80.几何平均浓度和95%CI:结合SARS-CoV-2 S1的IgG水平测定-1期,2个剂量,间隔21天-18-55岁-BNT162b2-可评价的免疫原性群体
图81.几何平均浓度和95%CI:结合SARS-CoV-2 S1的IgG水平测定-1期,2个剂量,间隔21天-65-85岁-BNT162b2-可评价的免疫原性群体
图82.几何平均浓度和95%CI:结合SARS-CoV-2 RBD的IgG水平测定-1期,2个剂量,间隔21天-18-55岁-BNT162b2-可评价的免疫原性群体
图83.几何平均浓度和95%CI:结合SARS-CoV-2 RBD的IgG水平测定-1期,2个剂量,间隔21天-65-85岁-BNT162b2-可评价的免疫原性群体
图84.在每个剂量之后7天内以最大严重程度报告局部反应的受试者-1期,2个剂量,间隔21天-18-55岁-BNT162b1-安全性群体
图85.在每个剂量之后7天内以最大严重程度报告局部反应的受试者-1期,2个剂量,间隔21天-65-85岁-BNT162b1-安全性群体
图86.在每个剂量之后7天内以最大严重程度报告局部反应的受试者-1期,2个剂量,间隔21天-18-55岁-BNT162b2-安全性群体
图87.在每个剂量之后7天内以最大严重程度报告局部反应的受试者-1期,2个剂量,间隔21天-65-85岁-BNT162b2-安全性群体
图88.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者-1期,2个剂量,间隔21天-18-55岁-BNT162b1-安全性群体
图89.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者-1期,2个剂量,间隔21天-65-85岁-BNT162b1-安全性群体
图90.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者-1期,2个剂量,间隔21天-18-55岁-BNT162b2-安全性群体
图91.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者-1期,2个剂量,间隔21天-65-85岁-BNT162b2-安全性群体
图92.在每个剂量之后7天内以最大严重程度报告局部反应的受试者,年龄组18-55岁-2期-安全性群体
图93.在每个剂量之后7天内以最大严重程度报告局部反应的受试者,年龄组56-85岁-2期-安全性群体
图94.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者,年龄组18-55岁-2期-安全性群体
图95.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者,年龄组56-85岁-2期-安全性群体
图96.在每个剂量之后7天内以最大严重程度报告局部反应的受试者,年龄组1855岁-对于2/3期,~6000个受试者-安全性群体
图97.在每个剂量之后7天内以最大严重程度报告局部反应的受试者,年龄组5685岁-对于2/3期,~6000个受试者-安全性群体
图98.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者,年龄组18-55岁-对于2/3期,~6000个受试者-安全性群体
图99.在每个剂量之后7天内以最大严重程度报告全身性事件的受试者,年龄组56-85岁-对于2/3期,~6000个受试者-安全性群体
图100.剂量1之后首次COVID-19发生的累积发生率曲线-剂量1所有可用效力群体
图101.BNT162b2-示例性功能性50%SARS-CoV-2中和抗体滴度(VN50)
在第1天和第22天将年轻的成年人(18-55岁)和年长的成年人(56-85岁)用BNT162b2免疫(n=12/组)。在第1天(基线)以及在第8、22(加强前)、29、43、50和85天从年轻的成年人获得血清。在第1天(基线)以及在第8、22和29天从年长的成年人获得血清。在确诊之后至少14天以及在供体不再有症状时获得人COVID-19康复期血清(HSC,n=38)。对于用1、3、10、20或30μg BNT162b2免疫的年轻的成年人以及用20μg BNT162b2免疫的年长的成年人,示出具有95%置信区间的SARS-CoV-2 50%中和滴度(VN50滴度)。将小于检测极限(LOD)的值作图为0.5*LOD。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。水平虚线表示LOD。VN50=50%SARS-CoV-2中和抗体滴度;HCS=人COVID-19康复期血清。
图102.BNT162b1-在功能性50%SARS-CoV-2中和抗体滴度(VN50)中从基线的示例性倍数增加
疫苗接种时间表和血清采样与图39相同(n=12/组)。对于用1、10、30、50或60μgBNT162b1免疫的年轻的参与者(18-55岁),示出具有95%置信区间的VN50滴度中从基线的几何平均倍数增加(GMFI)。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。在60μg剂量组中未进行剂量2。水平虚线表示血清转换的阈值(倍数增加≥4)。VN50=50%SARS-CoV-2中和抗体滴度。
图103.BNT162b2-在功能性50%SARS-CoV-2中和抗体滴度(VN50)中从基线的示例性倍数增加
疫苗接种时间表和血清采样与图101相同。对于(A)用1、3、10、20或30μg BNT162b2免疫的年轻的参与者(18-55岁),以及(B)用20μg BNT162b2免疫的年长的参与者(56-85岁),示出具有95%置信区间的VN50滴度中从基线的几何平均倍数增加(GMFI)。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。水平虚线表示血清转换的阈值(倍数增加≥4)。VN50=50%SARS-CoV-2中和抗体滴度。
图104.用BNT162b1免疫之后具有SARS-CoV-2 GMT血清转换的参与者的示例性频率
疫苗接种时间表和血清采样与图39相同(n=12/组)。对于用1、10、30、50或60μgBNT162b1免疫的年轻的参与者(18-55岁),示出关于50%SARS-CoV-2中和抗体滴度(VN50)的血清转换。血清转换定义为与基线相比功能性抗体应答的最小4倍增加。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。在60μg剂量组中未进行剂量2。GMT=几何平均滴度。
图105.用BNT162b2免疫之后具有SARS-CoV-2 GMT血清转换的参与者的示例性频率
疫苗接种时间表和血清采样与图101相同。对于(A)用1、3、10、20或30μg BNT162b2剂量给药的年轻的参与者(18-55岁),以及(B)用20μg BNT162b2剂量给药的年长的参与者(56-85岁),示出关于50%SARS-CoV-2中和抗体滴度(VN50)的血清转换。血清转换定义为与基线相比功能性抗体应答的最小4倍增加。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。GMT=几何平均滴度。
图106.用BNT162b1免疫之后结合S1的抗体浓度中从基线的示例性倍数增加
疫苗接种时间表和血清采样与图39相同(n=12/组)。对于用1、10、30、50或60μgBNT162b1免疫的年轻的参与者(18-55岁),示出具有95%置信区间的结合S1的抗体浓度中从基线的几何平均倍数增加(GMFI)。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。在60μg剂量组中未进行剂量2。水平虚线表示血清转换的阈值(倍数增加≥4)。
图107.用BNT162b2免疫之后结合S1的抗体浓度中从基线的示例性倍数增加
疫苗接种时间表和血清采样与图101相同。对于(A)用1、3、10、20或30μg BNT162b2免疫的年轻的参与者(18-55岁),以及(B)用20μg BNT162b2免疫的年长的参与者(56-85岁),示出具有95%置信区间的结合S1的抗体浓度中从基线的几何平均倍数增加(GMFI)。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。水平虚线表示血清转换的阈值(倍数增加≥4)
图108.用BNT162b1免疫之后具有结合S1的IgG GMC血清转换的参与者的示例性频率。
疫苗接种时间表和血清采样与图39相同(n=12/组)。对于用1、10、30、50或60μgBNT162b1免疫的年轻的参与者(18-55岁),示出关于结合S1的抗体GMC的血清转换。血清转换定义为与基线相比结合S1的IgG GMC应答的至少4倍增加。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。在60μg剂量组中未进行剂量2。GMC=几何平均浓度。
图109.用BNT162b2免疫之后具有结合S1的IgG GMC血清转换的参与者的示例性频率
疫苗接种时间表和血清采样与图101相同。对于(A)用1、3、10、20或30μg BNT162b2免疫的年轻的参与者(18-55岁),以及(B)用20μg BNT162b2剂量给药的年长的参与者(56-85岁),示出关于结合S1的抗体GMC的血清转换。血清转换定义为与基线相比结合S1的IgGGMC应答的至少4倍增加。箭头指示基线(剂量1前,第1天)和剂量2(第22天)。GMC=几何平均浓度。
图110.由来自用BNT162b2免疫的年轻的参与者的S特异性CD4+ T细胞产生的细胞因子生成的示例性结果
在基线(剂量1前)和剂量1之后29天(±3天)收集从用不同剂量的BNT162b2治疗的参与者血液分离的外周血单个核细胞(PBMC)细胞级分并进行分析。参与者包括以1μg(n=8)、3μg(n=9)、10μg(n=10)、20μg(n=9)或30μg(n=10)剂量给药的年轻的参与者(年龄18-55岁)。条形图显示具有95%置信区间的算术平均值。通过将所有对IFNγ、IL-2或IL-4呈阳性的CD4+ T细胞的级分相加,将这个总和设为100%并计算其每个产生特定细胞因子的子集的分数,来计算细胞因子生成。这个分析排除来自1μg队列的2名参与者、来自3μg队列的1名参与者以及来自10μg队列的1名参与者(产生总细胞因子的CD4+ T细胞频率<0.03%)。IFN=干扰素;IL=白介素;年轻的参与者=18-55岁的参与者;S蛋白=SARS-CoV-2刺突蛋白。
图111.由来自用BNT162b2免疫的年长的参与者的S特异性CD4+ T细胞产生的细胞因子生成的示例性结果
在基线(剂量1前)和剂量1之后29天(±3天)收集从用不同剂量的BNT162b2治疗的参与者血液分离的外周血单个核细胞(PBMC)细胞级分并进行分析。参与者包括以10μg(n=11)、20μg(n=8)或30μg(n=9)剂量给药的年长的参与者(年龄56-85岁)。条形图显示具有95%CI的算术平均值。通过将所有对IFNγ、IL-2或IL-4呈阳性的CD4+ T细胞的级分相加,将这个总和设为100%并计算其每个产生特定细胞因子的子集的分数,来计算细胞因子生成。这个分析排除来自10μg队列的6名参与者和来自20μg队列的1名参与者(产生总细胞因子的CD4+ T细胞频率<0.03%)。IFN=干扰素;IL=白介素;年长的参与者=56-85岁的参与者;S蛋白=SARS-CoV-2刺突蛋白。
图112.BNT162b2诱导的T细胞应答的发生率和规模
在第1天(初免前)和第29天(加强后7天)(剂量队列1、10和20μg,每个n=9;30μg,n=10)获得的PBMC富含CD4+或CD8+ T细胞效应物,并且用代表SARS-CoV-2 S的野生型序列的不同部分的3个重叠肽池(N-末端池S池1和RBD,以及C-末端S池2)分别刺激过夜,用于在直接离体IFNγELISpot中进行评价。常见病原体T细胞表位池CEF(CMV、EBV、流感病毒的免疫优势HLA I类表位)和CEFT(CMV、EBV、流感病毒、破伤风类毒素的免疫优势HLA II类表位)用作对照。细胞培养基用作阴性对照。每个点代表减去仅培养基的对照之后,来自一名研究参与者的重复孔的归一化平均斑点计数(a,c)。a,每个剂量队列的抗原特异性CD4+和CD8+ T细胞应答。提供在每个剂量队列测试的参与者总数中在第29天具有可检测的T细胞应答的参与者数量。来自20μg剂量队列的2名参与者的斑点计数数据不可以归一化,并且未作图。b,30μg剂量队列参与者的CD4+和CD8+ ELISpot的实例。c,识别任一S肽池的所有参与者中的S特异性T细胞应答以及他们的基线CEFT和CEF特异性T细胞应答。水平条表示中值。
图113.BNT162b2诱导的S特异性CD8+和CD4+ T细胞
将免疫的参与者的CD4+或CD8+ T细胞效应物富集的级分用覆盖野生型SARS-CoV-2S的两个重叠肽池(S池1和S池2)刺激过夜,用于在直接离体IFNγ ELISpot中进行评价(a-c),所述CD4+或CD8+ T细胞效应物富集的级分源自第1天(初免前)和第29天(加强后7天)(1、10和20μg剂量队列,每个n=9;30μg剂量队列,n=10)获得的PBMC。每个点代表减去仅培养基的对照之后,来自一名研究参与者的重复孔的归一化平均斑点计数。将每名参与者针对S池1和S池2的T细胞应答合并。来自20μg剂量队列的2名参与者的斑点计数数据不可以归一化,并且未作图。如上所述刺激第29天(加强后7天)(剂量队列1μg,n=7;10和30μg,n=10;20μg,n=9)来自疫苗接种的参与者的PBMC,并且通过流式细胞术进行分析(d,e)。a,每个剂量队列的S特异性CD4+和CD8+ T细胞应答。提供在每个剂量队列测试的参与者总数中在第29天具有可检测的T细胞应答的参与者数量。b,具有可评价的基线数据的参与者(对于CD4+ T细胞应答,n=34,对于CD8+ T细胞应答,n=37)对S的不同部分的疫苗诱导的应答的作图。从头诱导或放大的应答分类为BNT162b2诱导的应答;无应答或未通过疫苗接种放大的预先存在的应答分类为无疫苗应答(无)。c,对S池2有或没有预先存在的应答的个体中对S池1的应答强度。排除来自1μg剂量队列的数据,因为在这个剂量队列中不存在对S池2的基线应答。水平条代表每组的中位数。d,来自用30μg BNT162b初免/加强疫苗接种的参与者的产生细胞因子的CD4+和CD8+ T细胞的伪彩色流式细胞术图的实例。e,疫苗诱导的S特异性IFNγ+CD4+ T细胞对IL4+ CD4+ T细胞的频率。利用S池1和S池2的肽混合物进行ICS刺激。每个数据点代表一名研究参与者(1μg剂量队列,n=8;20μg剂量队列;n=8;10和30μg,每个n=10)。排除来自20μg剂量队列的对S池2有很强的预先存在的CD4+ T细胞应答的一名参与者。f,对于图116中分析的3名参与者,通过pMHC I类多聚体染色(CD8+的%多聚体+)、ICS和ELISpot(CD8+的%IFNγ+)确定的抗原特异性CD8+ T细胞频率。将S池1和S池2的信号合并。
图114.抗体和T-应答的相关性
从第29天起对所有初免/加强疫苗接种的参与者(剂量队列1、10、20和30μg)的数据作图,从相关性分析中排除没有可检测的T细胞应答的参与者的数据点(空心圆;b,c)。a,S1特异性IgG应答与S特异性CD4+ T细胞应答的相关性。b,S特异性CD4+与CD8+ T细胞应答的相关性。c,S1特异性IgG应答与S特异性CD8+ T细胞应答的相关性。
图115.BNT162b2诱导的T细胞的细胞因子极化
将第1天(初免前)和第29天(加强后7天)(剂量队列1μg,n=8;10和30μg,每个n=10;20μg,n=9)获得的PBMC以及COVID-19康复供体(HCS,n=18;c,d)的PBMC用代表SARS-CoV-2 S野生型序列的不同部分的3个重叠肽池(N-末端池S池1[aa 1-643]和RBD[aa1-16融合至S的aa 327-528],以及C-末端S池2[aa 633-1273])刺激过夜,并且通过流式细胞术进行分析。a,来自30μg剂量队列参与者的对S池1应答的产生细胞因子的CD4+和CD8+ T细胞的伪彩色流式细胞术图的实例。b,产生所示细胞因子的S特异性CD4+ T细胞,占对S池1和S池2应答的总产生细胞因子的S特异性CD4+ T细胞的分数。排除CD4无应答者(<0.03%总产生细胞因子的T细胞:1μg,n=2[S池1]和n=1[S池2];10μg,n=1)。具有95%置信区间的算术平均值。产生所示细胞因子的c,S特异性CD4+(S池1,S池2和RBD)和d,CD8+ T细胞(S池1,S池2和RBD),占相同子集的总循环T细胞的分数。数据点上方的值表示每个剂量队列的平均分数。参与者PBMC作为单一实例进行测试(b-d)。
图116.BNT162b2诱导的T细胞在单个表位水平上的表征
将第1天(初免前)和第29天(加强后7天)获得的3名疫苗接种参与者(剂量队列10μg,n=1;30μg,n=2)的PBMC用单独(individual)的pMHC I类多聚体混合物染色并通过流式细胞术分析T细胞表位特异性(a)和表型(b;来自参与者3的实例;YLQPRTFLL)。点图上方的肽序列表示pMHC I类多聚体表位特异性,点图上方数字表示对应于S内的表位的氨基酸。c,鉴定的MHC I类限制性表位在S内的定位。
图117.示例性队列血清的ELISA筛选分析以检测针对重组SARS-CoV-2刺突蛋白S1结构域的抗体应答
使用BNT162c1两次免疫(在第1天和第8天初免/加强)之后第10天,或者BNT162a1、BNT162b1或BNT162b2的三次给药(在第1/8/15天初免/加强)之后第17天采集的血清样品进行ELISA以分析引发的抗体应答。针对S1蛋白测试血清样品。通过跨越1∶100至1∶24,300的血清稀释度的点示出n=20只小鼠/组的组平均ΔOD值。
图118.示例性队列血清的ELISA筛选分析以检测针对重组SARS-CoV-2刺突蛋白RBD结构域的抗体应答
使用BNT162c1两次免疫(在第1天和第8天初免/加强)之后第10天,或者BNT162a1、BNT162b1或BNT162b2的三次给药之后第17天采集的血清样品进行ELISA以分析引发的抗体应答。针对RBD结构域测试血清样品。通过跨越1∶100至1∶24,300的血清稀释度的点示出n=20只小鼠/组的组平均ΔOD值。
图119.作图为pVN50滴度的示例性队列血清的假病毒中和活性
在动物的首次免疫之后第10天(BNT162c1,saRNA)或第17天(所有其他队列)采集血清样品,并且通过基于假病毒的中和测试(pVNT)确定病毒中和抗体的滴度。圆点表示导致50%假病毒中和(pVN50)的单个VNT滴度;组平均值用水平条表示(±SEM,平均值的标准误差)。
图120.参与者中对RBD和S1的病毒中和抗体和特异性结合抗体应答
RBD=受体结合结构域。GMT=几何平均滴度。在年轻的成年人组中,在疫苗接种之前(第1天)以及初免疫苗接种之后第8、22、29和43天获得血清样品,并且在年长的成年人组中,在疫苗接种之前(第1天)以及初免疫苗接种之后第22、29和43天获得血清样品。在COVID-19患者中,在PCR确诊之后至少14天获得一组人COVID-19康复期血清(n=24)。(A)SARS-CoV-2中和抗体的GMT。(B)通过ELISA测量的RBD的结合抗体的GMT。(C)S1的ELISA抗体的GMT。每个点代表一种血清样品,并且每个垂直条代表具有95%CI的几何平均值。
图121.通过IFN-γELISpot测量的疫苗接种之前和之后参与者中的T细胞应答
IFN=干扰素。PBMC=外周血单个核细胞。S1肽池覆盖SARS-CoV-2刺突的N-末端一半,包括RBD。S2肽池覆盖SARS-CoV-2刺突的C-末端一半,不包括RBD。CEF肽池由来自人巨细胞病毒、Epstein Barr病毒和流感病毒的32种MHC I类限制性病毒肽组成。图A示出在18-55岁的年轻的参与者中,在第1、29和43天分泌IFN-γ的特异性T细胞的数量。图B示出在65-85岁的年长的参与者中,在第1、29和43天分泌IFN-γ的特异性T细胞的数量。
图122.来自BNT162b2疫苗接受者的16份血清对包含武汉或谱系B.1.1.7刺突蛋白的VSV-SARS-CoV-2-S假病毒的50%假病毒中和滴度
测试在第43天(剂量2之后21天)提取的来自年轻的成年人(18-55岁;通过三角形表示)和年长的成年人(56-85岁;通过圆形表示)的各N=8份代表性血清。
图123.产生包含SARS-CoV-2 S蛋白的VSV假病毒的示意图。(1)将SARS-CoV-2-S表达质粒转染至HEK293/T17细胞中。(2)用在其基因组中缺少VSV-G并编码报告基因的补充有VSV-G的输入病毒(VSVΔG)感染表达SARS-CoV-2 S的细胞。(3)通过添加抗VSV-G抗体中和残余的补充有VSV-G的输入病毒,产生SARS-CoV-2 S假型VSVΔG作为活SARS-CoV-2的替代。
图124.利用GFP感染的细胞作为读出,在Vero 76细胞上滴定SARS-CoV-2武汉参考毒株和谱系B.1.1.7刺突-假型VSV。
图125.BNT162b2疫苗接种和血清采样的方案。
图126.SARS-CoV-2谱系B.1.1.7和武汉参考毒株刺突-假型VSV之间pVNT50比率的图。三角形代表来自年轻的成年人(18-55岁)的血清,而圆形代表来自年长的成年人(56-85岁)的血清。在第43天(剂量2之后21天)抽取血清。
图127.来自BNT162b2疫苗接受者的12份血清对包含武汉Hu-1参考、谱系B.1.1.298或谱系B.1.351刺突蛋白的VSV-SARS-CoV-2-S假病毒的50%假病毒中和滴度(pVNT50)
测试在第29天或第43天(剂量2之后7或21天)抽取的来自用30μg BNT162b2免疫的年轻成年人的N=12份血清。示出几何平均滴度。通过Wilcoxon配对符号秩检验计算武汉Hu-1参考假病毒与谱系B.1.1.298或谱系B.1.351假病毒之间差异的统计显著性。报告了双尾p-值。ns,不显著;***,P<0.001;LLOQ,定量下限。
图128.来自BNT162b2疫苗接受者的20份血清针对N501和Y501 SARS-CoV-2的50%噬斑减少中和滴度
在疫苗的第二剂量之后2周抽取7份血清(通过三角形表示);第二剂量之后4周抽取13份血清(通过圆形表示)。
图129.N501Y取代的图。L-前导序列;ORF-开放阅读框;RBD-受体结合结构域;S-刺突糖蛋白;S1-S的N-末端弗林蛋白酶切割片段;S2-S的C-末端弗林蛋白酶切割片段;E-包膜蛋白;M-膜蛋白;N-核蛋白;UTR-非翻译区。
图130.N501和Y501 SARS-CoV-2在Vero E6细胞上的噬斑形态。
图131.BNT162疫苗接种和血清采样的方案。
图132.Y501和N501病毒之间PRNT50比率的图。三角形代表第二剂量之后2周抽取的血清;圆形代表第二剂量之后4周抽取的血清。
图133.工程化的突变
示出核苷酸和氨基酸位置。通过虚线示出缺失。突变核苷酸为红色。L,前导序列;ORF,开放阅读框;RBD,受体结合结构域;S,刺突糖蛋白;S1,S的N-末端弗林蛋白酶切割片段;S2,S的C-末端弗林蛋白酶切割片段;E,包膜蛋白;M,膜蛋白;N,核蛋白;UTR,非翻译区。
图134.WT(USA-WA1/2020)、突变体N501Y、A69/70+N501Y+D614G和E484K+N501Y+D614G SARS-CoV-2s在Vero E6细胞上的噬斑形态
图135.BNT162疫苗接种和血清采样的方案
图136. 20份BNT162b2疫苗接种的人血清对野生型(WT)和突变体SARS-CoV-2的PRNT50
(a)WT(USA-WA1/2020)和突变体N501Y。(b)WT和Δ69/70+N501Y+D614G。(c)WT和E484K+N501Y+D614G。在疫苗接种的第二剂量之后2和4周分别抽取7(三角形)和13份(圆形)血清。将对WT和突变病毒具有不同PRNT50的血清通过线连接。(a)中的结果来自一个实验;(b)和(c)中的结果来自另一组实验。每个数据点是重复测定结果的平均值。
图137.针对突变体病毒的中和GMT与针对WT病毒的GMT的比例
三角形代表疫苗接种的第二剂量之后2周抽取的血清;圆形代表疫苗接种的第二剂量之后4周抽取的血清。
图138.工程化的刺突取代和缺失示意图
在这项研究中,将临床分离株USA-WA1/2020的基因组和序列用作野生型病毒。存在来自英国B.1.1.7、巴西P.1和南非B.1.351谱系的突变。通过虚线示出缺失。突变的核苷酸为红色。示出核苷酸和氨基酸位置。L-前导序列;ORF-开放阅读框;RBD-受体结合结构域S-刺突糖蛋白;S1-S的N-末端弗林蛋白酶(furin)切割片段;S2-S的C-末端弗林蛋白酶切割片段;E-包膜蛋白M-膜蛋白;N-核蛋白;UTR-非翻译区。
图139.USA-WA1/2020和突变体SARS-CoV-2的噬斑形态
噬斑测定在6孔板中的Vero E6细胞上进行。
图140.BNT162免疫和血清采样的方案
图141.BNT162b2疫苗的第二剂量后SARS-CoV-2的变体毒株的血清中和
示出给药BNT162b2疫苗的第二剂量后2周(圆形)或4周(三角形),使用从15名试验参与者获得的20份样品进行的50%噬斑减少中和测试(PRNT50)的结果。通过将B.1.1.7、P.1.或B.1.351谱系中的全套突变或者B.1.351谱系中S基因突变的子集(B.1.351-Δ242-244+D614G和B.1.351-RBD-D614G)设计入USA-WA1/2020获得突变体病毒。每个数据点代表用针对示出的病毒的血清样品获得的几何平均PRNT50,包括来自重复实验的数据,如表31中详述。USA-WA1/2020的数据来自三个实验;对于B.1.1.7刺突、B.1.351-Δ242-244+D614G和B.1.351-RBD-D614G病毒的每个,数据来自一个实验;对于P.1刺突和B.1.351刺突病毒的每个,数据来自两个实验。在每个实验中,在一式两份的测定中确定中和滴度,取几何平均值。LOD:检测极限。
图142.BNT162b2诱导的T细胞应答的持久性
在离体IFNγELISpot中分析第1天(初免前)、第29天、第85天和第184天(分别为加强后7天、9周和23周)获得的PBMC(详情参见GA-RB-022-01A)。常见的病原T细胞表位池CEF(CMV、EBV和流感病毒HLA I类表位)和CEFT(CMV、EBV、流感病毒和破伤风类毒素HLA II类表位)用来评价一般T细胞反应性,培养基用作阴性对照。每个点代表减去仅培养基的对照之后,来自一名研究受试者的重复孔的归一化平均斑点计数的总和,所述重复孔用对应于全长wt S蛋白的两个肽池刺激。疫苗接种后数据点上方的比例是每个剂量队列和时间点的测试受试者总数内具有可检测的CD4+或CD8+ T细胞应答的受试者数。
图143.在双IHC-ISH测定中,利用modV9探针,注射后6小时在LN中检测到特异性疫苗mRNA信号(红色)。疫苗主要定位在被膜下淋巴窦(位置9和5中的LN)和B细胞滤泡(位置12和1中的LN)。树突细胞通过CD11c染色(蓝绿色,上图)可视化并且其仅有一些吸收疫苗。大部分CD169+巨噬细胞(被膜下淋巴窦巨噬细胞,蓝绿色,中图)对疫苗是阳性的。B细胞(CD19+,蓝绿色,下图)是第二主要的表现出疫苗信号的群体。
图144.在双IHC-ISH测定中,注射后6小时,利用modV9探针,在脾中检测到特异性疫苗mRNA信号(红色)。在白髓中检测到主要的疫苗信号。树突细胞通过CD11c染色(蓝绿色,上图)可视化并且其仅有一些吸收疫苗。少部分F4/80+巨噬细胞(蓝绿色,中图)吸收疫苗。B细胞(CD19+,蓝绿色,下图)是主要的表现出疫苗信号的群体。
图145.示例性稳定性数据
来自某些稳定性研究的示例性数据(参见,例如,实施例42)显示在所示浓度和温度条件下的BNT162b2 LNP制备品通过ELISA评估以表征抗体对S1刺突蛋白的反应性。
图146提供示例性大流行病供应产品包装概览。
图147提供疫苗接种点的疫苗储存和处理的示例性概览。
图148提供根据FEFCO 0201和FEFCO 0204的示例小瓶托盘示意图。
图149提供根据FEFCO 0426的示例小瓶托盘示意图。
图150提供示例小瓶托盘的示意图(实施例45中表33的托盘7)。
图151提供一种可以使用的保温运输工具的图片,具有以下描述:A)干冰舱-容纳顶层干冰;B)小瓶托盘-小瓶托盘看起来像小披萨盒。每个小瓶托盘包含多个剂量小瓶。每个保温运输容器内部可以容纳多达5个小瓶托盘。C)盛放小瓶托盘的盒子-保温运输容器内包含小瓶托盘的盒子。这个盒子有把手,并且可以从保温运输容器中完全取出。D)泡沫盖-顶部泡沫盖,包括嵌入式温度监测装置并保持与盒子的连接;E)保温运输容器-保温运输容器的外箱。
图152提供一种可以使用的保温运输工具的图片,具有以下描述:A)干冰舱-容纳顶层干冰;B)小瓶托盘-小瓶托盘看起来像小披萨盒。每个小瓶托盘包含多个剂量小瓶。C)盛放小瓶托盘的盒子-保温运输容器内包含小瓶托盘的盒子。这个盒子可以从保温运输容器中完全取出。D)泡沫盖-顶部泡沫盖,可以从保温运输容器中取出。温度监测装置位于盖子顶部的泡沫包中。E)保温运输容器-保温运输容器的外箱。
图153提供小瓶托盘堆叠中边缘和中心小瓶的位置。
图154提供5分钟步行期间的动态解冻曲线。
图155提供10分钟步行期间的动态解冻曲线。
图156提供15分钟步行期间的动态解冻曲线。
图157提供如表35所述的配置A的描述。图157i)示出如何将小瓶放置在托盘中;图157ii)示出如何将托盘堆叠在有效负载箱中;图157iii)示出单个托盘的尺寸;图157iv)示出如何将托盘堆叠在有效负载箱中的俯视图。
图158提供如表35所述的配置B的描述。图158i)示出如何将小瓶放置在托盘中;图158ii)示出如何将托盘堆叠在有效负载箱中;图158iii)示出单个托盘的尺寸;图158iv)示出如何将托盘堆叠在有效负载箱中的俯视图。
图159提供如表35所述的配置C和D的描述。图159i)示出如何将小瓶放置在托盘中;图159ii)示出如何将托盘堆叠在有效负载箱中;图159iii)示出单个托盘的尺寸;图159iv)示出如何将托盘堆叠在有效负载箱中的俯视图。
图160提供如表35所述的配置E的描述。图160i)示出如何将小瓶放置在托盘中;图160ii)示出如何将托盘堆叠在有效负载箱中;图160iii)示出单个托盘的尺寸;图160iv)示出如何将托盘堆叠在有效负载箱中的俯视图。
图161提供如表35所述的配置F的描述。图161i)示出如何将小瓶放置在托盘中;图161ii)示出如何将托盘堆叠在有效负载箱中;图161iii)示出单个托盘的尺寸;图161iv)示出如何将托盘堆叠在有效负载箱中的俯视图。
图162提供如表35所述的配置G的描述。图162i)示出如何将小瓶放置在托盘中;图162ii)示出如何将托盘堆叠在有效负载箱中;图162iii)示出单个托盘的尺寸;图162iv)示出如何将托盘堆叠在有效负载箱中的俯视图。
图163提供如表35所述的配置H的描述。图163i)和ii)示出如何将小瓶放置在托盘中;图163iii)示出单个托盘的尺寸;图163iv)示出如何将托盘堆叠在有效负载箱中。
图164提供如表35所述的配置I的描述。图164i)示出如何将小瓶放置在托盘中;图164ii)示出单个托盘的尺寸;图164iii)示出如何将托盘堆叠在有效负载箱中。
图165提供如表35所述的配置J的描述。图165i)示出如何将小瓶放置在托盘中;图165ii)示出单个托盘的尺寸;图165iii)示出如何将托盘堆叠在有效负载箱中。
图166提供如表35所述的配置K的描述。图166示出如何将小瓶放置在托盘中以及托盘长度和底座的尺寸。
图167提供如表35所述的配置L的描述。图167示出如何将小瓶放置在托盘中以及托盘长度和底座的尺寸。
序列说明
下表提供本文引用的某些序列的列表。
Figure GDA0004051824180000551
Figure GDA0004051824180000561
Figure GDA0004051824180000571
Figure GDA0004051824180000581
Figure GDA0004051824180000591
具体实施方式
虽然下文详细描述了本公开,但是应当理解本公开并不限于本文描述的特定方法、方案和试剂,因为这些可以变化。还应当理解本文使用的术语仅用于描述特定实施方案的目的,而不是为了限制本公开的范围,本公开的范围仅受所附权利要求书的限制。除非另有定义,否则本文使用的所有技术和科学术语均具有与本领域技术人员通常理解的相同的含义。
优选地,本文使用的术语如″A multilingual glossary of biotechnologicalterms:(IUPAC Recommendations)″,H.G.W.Leuenberger,B.Nagel,and H.
Figure GDA0004051824180000592
Eds.,Helvetica Chimica Acta,CH-4010 Basel,Switzerland,(1995)所述定义。
除非另有说明,否则本公开的实施会采用化学、生物化学、细胞生物学、免疫学和重组DNA技术的常规方法,其在所述领域的文献中解释(参见,例如,Molecular Cloning:ALaboratory Manual,2nd Edition,J.Sambrook et al.eds.,Cold Spring HarborLaboratory Press,Cold Spring Harbor 1989)。
在下文中会描述本公开的元素。这些元素用具体实施方案列出,但是,应当理解它们可以以任何方式和任何数量组合以产生额外的实施方案。以前描述的实例和实施方案不应当理解为将本公开仅限于明确描述的实施方案。本说明书应当理解为公开并涵盖组合明确描述的实施方案与任何数量的公开元素的实施方案。此外,除非上下文另有指示,否则所有描述的元素的任何排列和组合都应当视为由本说明书公开。
术语“约”表示近似或接近,并且在一实施方案中在本文示出的数值或范围的上下文中表示列举或声称的数值或范围的±20%、±10%、±5%或±3%。
在描述本公开的上下文中(特别是在权利要求的上下文中)使用的术语“一个”和“这个”以及相似指称应当理解为覆盖单数和复数,除非在本文中另有指明或与上下文明显矛盾。本文中值的范围的列举仅为了用作单独提到落在所述范围内的每个不同值的速记方法。除非本文另有说明,否则每个单独的值如其在本文中单独列举地加入本说明书。除非本文另有说明或其他地方显然违背上下文,否则本文描述的所有方法可以以任何合适的顺序进行。本文提供的任何和所有实例或者示例性语言(例如,“如”)的使用仅为了更好地说明本公开,并不对权利要求书的范围构成限制。本说明书中任何语言都不应当理解为表明对于本公开的实施必要的任何未要求保护的元素。
除非另有明确说明,否则在本文件的上下文中术语“包含”用来表示除了由“包含”引入的列表成员,还可以任选地存在其他成员。但是,作为本公开的具体实施方案,考虑术语“包含”涵盖不存在其他成员的可能性,即,为了这个实施方案的目的,“包含”可以理解为具有“由...组成”或“基本上由...组成”的含义。
在这个说明书的整个正文中引用了几个文件。本文引用的每个文件(包括所有专利、专利申请、科学出版物、制造商的说明书、指导等),无论上文或下文,均整体援引加入本文。本文中的任何内容均不应理解为承认本公开无权先于这样的公开。
定义
在下文中,将提供适用于本公开的所有方面的定义。除非另有说明,否则以下术语具有以下含义。任何未定义的术语均具有其公认的含义。
本文使用的术语如“降低”、“减少”、“抑制”或“损害”涉及总体降低或引起总体降低的能力,优选在水平上降低至少5%、至少10%、至少20%、至少50%、至少75%或甚至更多。这些术语包括完全或基本上完全抑制,即降低至0或基本上至0。
术语如“增加”、“增强”或“超过”优选涉及增加或增强至少10%、至少20%、至少30%、至少40%、至少50%、至少80%、至少100%、至少200%、至少500%或甚至更多。
根据本公开,术语“肽”包含寡肽和多肽,并且是指包含通过肽键互相连接的约2个或更多个、约3个或更多个、约4个或更多个、约6个或更多个、约8个或更多个、约10个或更多个、约13个或更多个、约16个或更多个、约20个或更多个以及多达约50个、约100个或约150个连续氨基酸的物质。术语“蛋白”或“多肽”是指大的肽,特别是具有至少约150个氨基酸的肽,但是术语“肽”、“蛋白”和“多肽”在本文中通常用作同义词。
当以治疗有效量提供给受试者时,“治疗性蛋白”对受试者的状况或疾病状态具有积极或有利的作用。在一实施方案中,治疗性蛋白具有治疗或姑息特性,并且可以将其给药以改善、减轻、缓解、逆转、延迟疾病或病症的一种或多种症状的发作或者减轻疾病或病症的一种或多种症状的严重程度。治疗性蛋白可以具有预防特性,并且可以用来延迟疾病的发作或者减轻这类疾病或病理状况的严重程度。术语“治疗性蛋白”包括完整的蛋白或肽,并且还可以指其治疗活性片段。其还可以包括蛋白的治疗活性变体。治疗活性蛋白的实例包括但不限于用于疫苗接种的抗原和免疫刺激剂如细胞因子。
关于氨基酸序列(肽或蛋白),“片段”涉及氨基酸序列的一部分,即,代表在N-末端和/或C-末端变短的氨基酸序列的序列。可以例如通过缺少开放阅读框3'端的截短的开放阅读框的翻译获得在C-末端缩短的片段(N-末端片段)。可以例如通过缺少开放阅读框5'端的截短的开放阅读框的翻译获得在N-末端缩短的片段(C-末端片段),只要截短的开放阅读框包含用来起始翻译的起始密码子。氨基酸序列的片段包含例如来自氨基酸序列的氨基酸残基的至少50%、至少60%、至少70%、至少80%、至少90%。氨基酸序列的片段优选包含来自氨基酸序列的至少6个、特别是至少8个、至少12个、至少15个、至少20个、至少30个、至少50个或至少100个连续氨基酸。
本文中的“变体”表示由于至少一个氨基酸修饰而与亲本氨基酸序列不同的氨基酸序列。亲本氨基酸序列可以是天然存在的或野生型(WT)氨基酸序列,或者可以是野生型氨基酸的修饰形式。优选地,与亲本氨基酸序列相比,变体氨基酸序列具有至少一个氨基酸修饰,例如,与亲本相比,具有1至约20个氨基酸修饰,并且优选1至约10个或1至约5个氨基酸修饰。
本文中的“野生型”或“WT”或“天然”表示在自然界中发现的氨基酸序列,包括等位基因变异。野生型氨基酸序列、肽或蛋白具有未被故意修饰的氨基酸序列的片段。
为了本公开的目的,氨基酸序列(肽、蛋白或多肽)的“变体”包含氨基酸插入变体、氨基酸添加变体、氨基酸缺失变体和/或氨基酸取代变体。术语“变体”包括所有突变体、剪接变体、翻译后修饰变体、构象、同种型、等位基因变体、物种变体和物种同源物,特别是天然存在的那些。特别地,术语“变体”包括氨基酸序列的片段。
氨基酸插入变体包括在特定氨基酸序列中插入单个或两个或更多个氨基酸。在具有插入的氨基酸序列变体的情况下,将一个或多个氨基酸残基插入氨基酸序列中的特定位点,然而适当筛选所得产物的随机插入也是可以的。氨基酸添加变体包含一个或多个氨基酸的氨基-和/或羧基-末端融合,如1、2、3、5、10、20、30、50或更多个氨基酸。氨基酸缺失变体的特征在于从序列去除一个或多个氨基酸,如去除1、2、3、5、10、20、30、50或更多个氨基酸。缺失可以在蛋白的任何位置。在蛋白的N-末端和/或C-末端包含缺失的氨基酸缺失变体也称作N-末端和/或C-末端截短变体。氨基酸取代变体的特征在于去除序列中的至少一个残基并在其位置插入另一残基。优先考虑在同源蛋白或肽之间不保守的氨基酸序列位置中的修饰和/或用具有相似特性的其他氨基酸代替氨基酸。优选地,肽和蛋白变体中的氨基酸改变是保守的氨基酸改变,即,相似带电荷或不带电荷的氨基酸的取代。保守的氨基酸改变包括在它们的侧链中相关的氨基酸家族之一的取代。天然存在的氨基酸一般分为4个家族:酸性(天冬氨酸、谷氨酸),碱性(赖氨酸、精氨酸、组氨酸),非极性(丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸),和不带电荷的极性(甘氨酸、天冬酰胺、谷氨酰胺、半胱氨酸、丝氨酸、苏氨酸、酪氨酸)氨基酸。苯丙氨酸、色氨酸和酪氨酸有时共同归类为芳香氨基酸。在一实施方案中,保守氨基酸取代涉及以下组内的取代:
甘氨酸、丙氨酸;
缬氨酸、异亮氨酸、亮氨酸;
天冬氨酸、谷氨酸;
天冬酰胺、谷氨酰胺;
丝氨酸、苏氨酸;
赖氨酸、精氨酸;以及
苯丙氨酸、酪氨酸。
优选地,给定氨基酸序列和所述给定氨基酸序列变体的氨基酸序列之间的相似性程度,优选相同性程度是至少约60%、70%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%。优选对参考氨基酸序列的整个长度的至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或约100%的氨基酸区域给出相似性或相同性程度。例如,如果参考氨基酸序列由200个氨基酸组成,优选对至少约20、至少约40、至少约60、至少约80、至少约100、至少约120、至少约140、至少约160、至少约180或约200个氨基酸给出相似性或相同性程度,在一些实施方案中,连续氨基酸。在一些实施方案中,对参考氨基酸序列的整个长度给出相似性或相同性程度。可以用本领域已知的工具进行确定序列相似性,优选序列相同性的比对,优选利用最佳序列比对,例如,利用Align,利用标准设置,优选EMBOSS::needle、Matrix:Blosum62、Gap Open 10.0、Gap Extend 0.5。
“序列相似性”表示相同或代表保守氨基酸取代的氨基酸的百分比。两个氨基酸序列之间的“序列相同性”表示所述序列之间相同的氨基酸的百分比。两个核酸序列之间的“序列相同性”表示所述序列之间相同的核苷酸的百分比。
特别地,术语“%相同”、“%相同性”或相似术语是指在待比较的序列之间的最佳比对中相同的核苷酸或氨基酸的百分比。所述百分比纯粹是统计上的,并且两个序列之间的差异可以但不必一定随机分布在待比较的序列的整个长度上。通常在对区段或“比较窗口”最佳比对之后,通过比较序列进行两个序列的比较,以便鉴定相应序列的局部区域。可以手动或者借助于Smith and Waterman,1981,Ads App.Math.2,482的局部同源性算法,借助于Neddleman and Wunsch,1970,J.Mol.Biol.48,443的局部同源性算法,借助于Pearsonand Lipman,1988,Proc.Natl Acad.Sci.USA 88,2444的相似性搜索方法,或借助于使用所述算法的计算机程序(Wisconsin Genetics Software Package,Genetics ComputerGroup,575Science Drive,Madison,Wis.中的GAP、BESTFIT、FASTA、BLAST P、BLAST N和TFASTA)进行用于比较的最佳比对。在一些实施方案中,利用BLASTN或BLASTP算法确定两个序列的百分比相同性,可在美国国家生物技术信息中心(NCBI)网站(例如,在blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&LIN K_LOC=align2seq)上获得。在一些实施方案中,用于NCBI网站上的BLASTN算法的算法参数包括:(i)期望阈值设置为10;(ii)字长设置为28;(iii)查询范围中的最大匹配设置为0;(iv)匹配/错配评分设置为1,-2;(v)缺口成本设置为线性;以及(vi)用于低复杂度区域的过滤器。在一些实施方案中,用于NCBI网站上的BLASTP算法的算法参数包括:(i)期望阈值设置为10;(ii)字长设置为3;(iii)查询范围中的最大匹配设置为0;(iv)矩阵设置为BLOSUM62;(v)缺口成本设置为存在:11,延伸:1;以及(vi)条件成分评分矩阵调整。
通过确定待比较的序列对应的相同位置的数目,用这个数目除以比较的位置数目(例如,参考序列中的位置数目),并将这个结果乘以100,获得百分比相同性。
在一些实施方案中,对参考序列整个长度的至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或约100%的区域给出相似性或相同性程度。例如,如果参考核酸序列由200个核苷酸组成,对至少约100、至少约120、至少约140、至少约160、至少约180或约200个核苷酸给出相同性程度,在一些实施方案中,连续核苷酸。在一些实施方案中,对参考序列的整个长度给出相似性或相同性程度。
根据本公开,同源氨基酸序列表现出氨基酸残基的至少40%、特别是至少50%、至少60%、至少70%、至少80%、至少90%以及优选至少95%、至少98或至少99%相同性。
技术人员可以容易地制备本文描述的氨基酸序列变体,例如,通过重组DNA操作。例如,Sambrook等人(1989)详细描述了用于制备具有取代、添加、插入或缺失的肽或蛋白的DNA序列的操作。此外,本文描述的肽和氨基酸变体可以借助已知的肽合成技术容易地制备,例如,通过固相合成和相似方法。
在一实施方案中,氨基酸序列(肽或蛋白)的片段或变体优选是“功能片段”或“功能变体”。氨基酸序列的术语“功能片段”或“功能变体”是指表现出与其来源的氨基酸序列相同或相似的一种或多种功能特性的任何片段或变体,即,它是功能上等同的。关于抗原或抗原序列,一种特定功能是片段或变体来源的氨基酸序列表现出的一种或多种免疫原性活性。如本文所用,术语“功能片段”或“功能变体”特别是指这样的变体分子或序列,其包含与亲本分子或序列的氨基酸序列相比改变一个或多个氨基酸的氨基酸序列,并且仍能够完成亲本分子或序列的一种或多种功能,例如,诱导免疫应答。在一实施方案中,亲本分子或序列的氨基酸序列中的修饰不显著影响或改变分子或序列的特征。在不同实施方案中,功能片段或功能变体的功能可以降低但仍显著存在,例如,功能变体的免疫原性可以是亲本分子或序列的至少50%、至少60%、至少70%、至少80%或至少90%。但是,在其他实施方案中,与亲本分子或序列相比,可以增强功能片段或功能变体的免疫原性。
氨基酸序列(肽、蛋白或多肽)“源自”指定氨基酸序列(肽、蛋白或多肽)是指第一氨基酸序列的来源。优选地,源自特定氨基酸序列的氨基酸序列具有与该特定氨基酸序列或其片段相同、基本上相同或同源的氨基酸序列。源自特定氨基酸序列的氨基酸序列可以是该特定序列或其片段的变体。例如,本领域普通技术人员会理解,可以改变适合用于本文的抗原,从而它们的序列不同于其来源的天然存在的序列或天然序列,同时保留天然序列的可取活性。
如本文所用,“指导材料”或“说明书”包括可以用来传达本发明的组合物和方法的可用性的出版物、记录、图表或任何其他表达介质。本发明的试剂盒的指导材料可以例如粘帖至包含本发明的组合物的容器,或者与包含组合物的容器一起运输。或者,指导材料可以与容器分开运输,目的是指导材料和化合物由接受者合作使用。
“分离的”表示从自然状态改变或去除。例如,天然存在于活动物中的核酸或肽不是“分离的”,但是从其自然状态的共存材料部分或完全分离的相同核酸或肽是“分离的”。分离的核酸或蛋白可以以基本上纯的形式存在,或者可以存在于非天然环境中,例如,宿主细胞。
在本发明的上下文中术语“重组”表示通过“遗传工程制备”。优选地,在本发明的上下文中“重组物体”如重组核酸不是天然存在的。
如本文所用的术语“天然存在”是指物体可以在自然中发现这一事实。例如,存在于生物体(包括病毒)中且可以分离自自然来源并且尚未被人在实验室中有意修饰的肽或核酸是天然存在的。
如本文所用的“生理pH”是指约7.5的pH。
术语“遗传修饰”或简单地“修饰”包括用核酸转染细胞。术语“转染”涉及将核酸,特别是RNA,引入细胞。为了本发明的目的,术语“转染”还包括将核酸引入细胞或这种细胞摄取核酸,其中所述细胞可以存在于受试者中,例如,患者。因此,根据本发明,用于转染本文所述核酸的细胞可以存在于体外或体内,例如所述细胞可以形成器官的部分、组织和/或患者的生物体。根据本发明,转染可以是瞬时或稳定的。对于转染的一些应用,如果转染的遗传物质仅瞬时表达是足够的。可以将RNA转染入细胞以瞬时表达其编码的蛋白。因为转染过程中引入的核酸通常不整合入核基因组,外源核酸会通过有丝分裂稀释或降解。允许核酸的游离扩增的细胞大大降低稀释速率。如果期望转染的核酸实际上保留在细胞及其子细胞的基因组中,必须进行稳定转染。这种稳定的转染可以通过使用基于病毒的系统或基于转座子的系统进行转染来实现。通常,将编码抗原的核酸瞬时转染入细胞。可以将RNA转染入细胞以瞬时表达其编码的蛋白。
术语“血清转换”包括从疫苗接种之前至剂量2后1个月的≥4倍上升。
如本文所用,“主容器”是指系统或试剂盒的外部容器,其中可以将其他容器(如有效负载容器和/或干冰容器)放置在内部。
如本文所用,“有效负载容器”是指可以容纳希望保持在低温下的“有效负载”或温度敏感材料的容器。
如本文所用,“托盘”是指旨在容纳有效负载或温度敏感材料的容器,并且其中托盘旨在放置在有效负载容器内。
如本文所用,“温度敏感材料”是指生物和/或药物组合物,其中化学、物理和/或药用特性受升高的温度(例如0℃以上的温度)的影响。
如本文所用,“干冰容器”是指可以充分容纳本文所述试剂盒和/或容器系统内使用的干冰的容器。
冠状病毒
冠状病毒是有包膜的、正义的、单链RNA((+)ssRNA)病毒。它们具有已知RNA病毒中最大的基因组(26–32kb),并且在系统发生上分为4个属(α、β、γ和δ),而β冠状病毒进一步细分4个谱系(A、B、C和D)。冠状病毒感染广泛的鸟类和哺乳动物物种,包括人。一些人冠状病毒一般引起轻度呼吸道疾病,尽管在婴儿、老年人和免疫受损的人中严重程度可能更高。分别属于β冠状病毒谱系C和B的中东呼吸综合征冠状病毒(MERS-CoV)和严重急性呼吸综合征冠状病毒(SARS-CoV)具有高致病性。在过去15年内,这两种病毒都从动物宿主进入了人类群体,并且导致高病死率的爆发。SARS-CoV-2(MN908947.3)属于β冠状病毒谱系B。它与SARS-CoV具有至少70%序列相似性。
一般来说,冠状病毒具有4种结构蛋白,即,包膜(E)、膜(M)、核壳(N)和刺突(S)。E和M蛋白在病毒装配中具有重要功能,而N蛋白对于病毒RNA合成是必需的。关键糖蛋白S负责病毒结合和进入靶细胞。S蛋白合成为单链无活性前体,在生成细胞中被弗林蛋白酶样宿主蛋白酶切割为两个非共价结合的亚基S1和S2。S1亚基包含受体结合结构域(RBD),其识别宿主细胞受体。S2亚基包含融合肽、两个七肽重复和跨膜结构域,需要所有这些以通过经历大的构象重排来介导病毒和宿主细胞膜的融合。S1和S2亚基三聚化形成大的融合前刺突。
SARS-CoV-2的S前体蛋白可以被蛋白水解切割为S1(685aa)和S2(588aa)亚基。S1亚基由受体结合结构域(RBD)组成,其介导病毒通过宿主血管紧张素转化酶2(ACE2)受体进入敏感细胞。
抗原
本发明包括使用编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列的RNA。因此,所述RNA编码包含至少表位SARS-CoV-2 S蛋白或其免疫原性变体的肽或蛋白,用于在受试者中诱导针对冠状病毒S蛋白,特别是SARS-CoV-2 S蛋白的免疫应答。包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段(即,抗原肽或蛋白)的氨基酸序列在本文中还指定为“疫苗抗原”、“肽和蛋白抗原”、“抗原分子”或简称为“抗原”。SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段在本文中还指定为“抗原肽或蛋白”或者“抗原序列”。
SARS-CoV-2冠状病毒全长刺突(S)蛋白由1273个氨基酸组成(参见SEQ ID NO:1)。在具体实施方案中,以使原型融合前构象稳定的方式修饰根据SEQ ID NO:1的全长刺突(S)蛋白。可以通过在全长刺突蛋白中的AS残基986和987处引入两个连续的脯氨酸取代来获得融合前构象的稳定。具体地,以这样的方式获得刺突(S)蛋白稳定的蛋白变体,将位置986处的氨基酸残基交换为脯氨酸,并且将位置987处的氨基酸残基也交换为脯氨酸。在一实施方案中,SARS-CoV-2 S蛋白变体包含SEQ ID NO:7中示出的氨基酸序列。
在一实施方案中,本文描述的疫苗抗原包含SARS-CoV-2的刺突蛋白(S)、其变体或其片段,基本上由SARS-CoV-2的刺突蛋白(S)、其变体或其片段组成,或者由SARS-CoV-2的刺突蛋白(S)、其变体或其片段组成。
在一实施方案中,疫苗抗原包含SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列,与SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列的免疫原性片段或与SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列,与SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列的免疫原性片段或与SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸49-3819的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1或7的氨基酸17-1273的氨基酸序列。
在一实施方案中,疫苗抗原包含SARS-CoV-2刺突S1片段(S1)(SARS-CoV-2的刺突蛋白(S)的S1亚基)、其变体或其片段,基本上由SARS-CoV-2刺突S1片段(S1)、其变体或其片段组成,或者由SARS-CoV-2刺突S1片段(S1)、其变体或其片段组成。
在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸17-683的氨基酸序列,与SEQ ID NO:1的氨基酸17-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸17-683的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸17-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸17-683的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸49-2049的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-2049的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-2049的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-2049的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸17-683的氨基酸序列,与SEQ ID NO:1的氨基酸17-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸17-683的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸17-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸49-2049的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸17-683的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸17-685的氨基酸序列,与SEQ ID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸17-685的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸17-685的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸17-685的氨基酸序列,与SEQ ID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸17-685的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸17-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸49-2055的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸17-685的氨基酸序列。
在一实施方案中,所述疫苗抗原包含SARS-CoV-2的刺突蛋白(S)的S1亚基的受体结合结构域(RBD)、其变体或其片段,基本上由SARS-CoV-2的刺突蛋白(S)的S1亚基的受体结合结构域(RBD)、其变体或其片段组成,或者由SARS-CoV-2的刺突蛋白(S)的S1亚基的受体结合结构域(RBD)、其变体或其片段组成。SEQ ID NO:1的氨基酸327-528的氨基酸序列、其变体或其片段在本文中也称作“RBD”或“RBD结构域”。
在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸327-528的氨基酸序列,与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸327-528的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸327-528的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸327-528的氨基酸序列,与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸327-528的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸327-528的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸979-1584的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸327-528的氨基酸序列。
根据某些实施方案,将信号肽直接或通过接头融合至SARS-CoV-2 S蛋白、其变体或其片段,即,抗原肽或蛋白。因此,在一实施方案中,将信号肽融合至上述疫苗抗原包含的源自SARS-CoV-2 S蛋白或其免疫原性片段(抗原肽或蛋白)的上述氨基酸序列。
这类信号肽是这样的序列,其通常显示约15-30个氨基酸的长度,并且优选位于抗原肽或蛋白的N-末端,但不限于此。如本文定义的信号肽优选允许将所述RNA编码的抗原肽或蛋白转运至限定的细胞区室,优选细胞表面、内质网(ER)或内体-溶酶体区室。在一实施方案中,如本文定义的信号肽序列包括但不限于SARS-CoV-2 S蛋白的信号肽序列,特别是包含SEQ ID NO:1的氨基酸1-16或1-19的氨基酸序列或者其功能变体的序列。
在一实施方案中,信号序列包含SEQ ID NO:1的氨基酸1-16的氨基酸序列,与SEQID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-16的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,信号序列包含SEQ ID NO:1的氨基酸1-16的氨基酸序列。
在一实施方案中,编码信号序列的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1-16的氨基酸序列,与SEQ ID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-16的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1-16的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,编码信号序列的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-48的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ IDNO:1的氨基酸1-16的氨基酸序列。
在一实施方案中,信号序列包含SEQ ID NO:1的氨基酸1-19的氨基酸序列,与SEQID NO:1的氨基酸1-19的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-19的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1-19的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,信号序列包含SEQ ID NO:1的氨基酸1-19的氨基酸序列。
在一实施方案中,编码信号序列的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-57的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸1-57的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸1-57的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸1-57的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1-19的氨基酸序列,与SEQ ID NO:1的氨基酸1-19的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-19的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1-19的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,编码信号序列的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-57的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ IDNO:1的氨基酸1-19的氨基酸序列。
如本文定义的信号肽进一步包括但不限于免疫球蛋白的信号肽序列,例如免疫球蛋白重链可变区的信号肽序列,其中所述免疫球蛋白可以是人免疫球蛋白。特别地,如本文定义的信号肽序列包括这样的序列,其包含SEQ ID NO:31的氨基酸1-22的氨基酸序列或其功能变体。
在一实施方案中,信号序列包含SEQ ID NO:31的氨基酸1-22的氨基酸序列,与SEQID NO:31的氨基酸1-22的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-22的氨基酸序列的功能片段或与SEQ ID NO:31的氨基酸1-22的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,信号序列包含SEQ ID NO:31的氨基酸1-22的氨基酸序列。
在一实施方案中,编码信号序列的RNA(i)包含SEQ ID NO:32的核苷酸54-119的核苷酸序列,与SEQ ID NO:32的核苷酸54-119的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸54-119的核苷酸序列的片段或与SEQ ID NO:32的核苷酸54-119的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸1-22的氨基酸序列,与SEQ ID NO:31的氨基酸1-22的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-22的氨基酸序列的功能片段或与SEQ ID NO:31的氨基酸1-22的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,编码信号序列的RNA(i)包含SEQ ID NO:32的核苷酸54-119的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸1-22的氨基酸序列。
优选使用这类信号肽以促进编码的抗原肽或蛋白的分泌。更优选地,将如本文定义的信号肽融合至如本文定义的编码的抗原肽或蛋白。
因此,在特别优选的实施方案中,本文描述的RNA包含至少一个编码抗原肽或蛋白以及信号肽的编码区,所述信号肽优选融合至抗原肽或蛋白,更优选融合至本文描述的抗原肽或蛋白的N-末端。
在一实施方案中,疫苗抗原包含SEQ ID NO:1或7的氨基酸序列,与SEQ ID NO:1或7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1或7的氨基酸序列的免疫原性片段或与SEQ ID NO:1或7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1或7的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1或7的氨基酸序列,与SEQ ID NO:1或7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1或7的氨基酸序列的免疫原性片段或与SEQ IDNO:1或7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1或7的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:7的氨基酸序列,与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:7的氨基酸序列的免疫原性片段或与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:7的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:15、16、19、20、24或25的核苷酸序列,与SEQ ID NO:15、16、19、20、24或25的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:15、16、19、20、24或25的核苷酸序列的片段或与SEQ ID NO:15、16、19、20、24或25的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列,与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ IDNO:7的氨基酸序列的免疫原性片段或与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:15、16、19、20、24或25的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸1-683的氨基酸序列,与SEQID NO:1的氨基酸1-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-683的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸1-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸1-683的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-2049的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸1-2049的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸1-2049的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸1-2049的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1-683的氨基酸序列,与SEQID NO:1的氨基酸1-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-683的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸1-683的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-2049的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1-683的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸1-685的氨基酸序列,与SEQID NO:1的氨基酸1-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-685的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸1-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:1的氨基酸1-685的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-2055的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸1-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸1-2055的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸1-2055的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1-685的氨基酸序列,与SEQID NO:1的氨基酸1-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1-685的氨基酸序列的免疫原性片段或与SEQ ID NO:1的氨基酸1-685的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:2、8或9的核苷酸1-2055的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1-685的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:3的氨基酸序列,与SEQ ID NO:3的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:3的氨基酸序列的免疫原性片段或与SEQ ID NO:3的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:3的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:4的核苷酸序列,与SEQID NO:4的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:4的核苷酸序列的片段或与SEQ ID NO:4的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:3的氨基酸序列,与SEQ ID NO:3的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:3的氨基酸序列的免疫原性片段或与SEQ ID NO:3的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:4的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:3的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸1-221的氨基酸序列,与SEQ ID NO:29的氨基酸1-221的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸1-221的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸1-221的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸1-221的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸54-716的核苷酸序列,与SEQ ID NO:30的核苷酸54-716的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:30的核苷酸54-716的核苷酸序列的片段或与SEQ ID NO:30的核苷酸54-716的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸1-221的氨基酸序列,与SEQ ID NO:29的氨基酸1-221的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸1-221的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸1-221的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ IDNO:30的核苷酸54-716的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQID NO:29的氨基酸1-221的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸1-224的氨基酸序列,与SEQ ID NO:31的氨基酸1-224的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-224的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸1-224的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸1-224的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸54-725的核苷酸序列,与SEQ ID NO:32的核苷酸54-725的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸54-725的核苷酸序列的片段或与SEQ ID NO:32的核苷酸54-725的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸1-224的氨基酸序列,与SEQ ID NO:31的氨基酸1-224的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-224的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸1-224的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ IDNO:32的核苷酸54-725的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQID NO:31的氨基酸1-224的氨基酸序列。
根据某些实施方案,将三聚结构域直接或通过接头(例如,甘氨酸/丝氨酸接头)融合至SARS-CoV-2 S蛋白、其变体或其片段,即,抗原肽或蛋白。因此,在一实施方案中,将三聚结构域融合至上述疫苗抗原包含的源自SARS-CoV-2 S蛋白或其免疫原性片段(抗原肽或蛋白)的上述氨基酸序列(可以任选地将其融合至上述信号肽)。
这类三聚结构域优选位于抗原肽或蛋白的C-末端,但不限于此。如本文定义的三聚结构域优选允许所述RNA编码的抗原肽或蛋白的三聚化。如本文定义的三聚结构域的实例包括但不限于折叠子(foldon),T4次要纤维蛋白(fibritin)的天然三聚结构域。T4次要纤维蛋白的C-末端结构域(折叠子)对于次要纤维蛋白三聚体结构的形成必不可少,并且可以用作人工三聚结构域。在一实施方案中,如本文定义的三聚结构域包括但不限于这样的序列,其包含SEQ ID NO:10的氨基酸3-29的氨基酸序列或其功能变体。在一实施方案中,如本文定义的三聚结构域包括但不限于这样的序列,其包含SEQ ID NO:10的氨基酸序列或其功能变体。
在一实施方案中,三聚结构域包含SEQ ID NO:10的氨基酸3-29的氨基酸序列,与SEQ ID NO:10的氨基酸3-29的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:10的氨基酸3-29的氨基酸序列的功能片段或与SEQ ID NO:10的氨基酸3-29的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,三聚结构域包含SEQID NO:10的氨基酸3-29的氨基酸序列。
在一实施方案中,编码三聚结构域的RNA(i)包含SEQ ID NO:11的核苷酸7-87的核苷酸序列,与SEQ ID NO:11的核苷酸7-87的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:11的核苷酸7-87的核苷酸序列的片段或与SEQ ID NO:11的核苷酸7-87的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:10的氨基酸3-29的氨基酸序列,与SEQ ID NO:10的氨基酸3-29的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:10的氨基酸3-29的氨基酸序列的功能片段或与SEQ ID NO:10的氨基酸3-29的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,编码三聚结构域的RNA(i)包含SEQ ID NO:11的核苷酸7-87的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:10的氨基酸3-29的氨基酸序列。
在一实施方案中,三聚结构域包含SEQ ID NO:10的氨基酸序列,与SEQ ID NO:10的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:10的氨基酸序列的功能片段或与SEQ ID NO:10的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,三聚结构域包含SEQ ID NO:10的氨基酸序列。
在一实施方案中,编码三聚结构域的RNA(i)包含SEQ ID NO:11的核苷酸序列,与SEQ ID NO:11的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:11的核苷酸序列的片段或与SEQ ID NO:11的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:10的氨基酸序列,与SEQ ID NO:10的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:10的氨基酸序列的功能片段或与SEQ ID NO:10的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,编码三聚结构域的RNA(i)包含SEQ ID NO:11的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:10的氨基酸序列。
优选使用这类三聚结构域以促进编码的抗原肽或蛋白的三聚化。更优选地,将如本文定义的三聚结构域融合至如本文定义的抗原肽或蛋白。
因此,在特别优选的实施方案中,本文描述的RNA包含至少一个编码抗原肽或蛋白以及如本文定义的三聚结构域的编码区,所述三聚结构域优选融合至抗原肽或蛋白,更优选融合至抗原肽或蛋白的C-末端。
在一实施方案中,疫苗抗原包含SEQ ID NO:5的氨基酸序列,与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:5的氨基酸序列的免疫原性片段或与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:5的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:6的核苷酸序列,与SEQID NO:6的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:6的核苷酸序列的片段或与SEQ ID NO:6的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列,与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:5的氨基酸序列的免疫原性片段或与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:6的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:17、21或26的核苷酸序列,与SEQ ID NO:17、21或26的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:17、21或26的核苷酸序列的片段或与SEQID NO:17、21或26的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列,与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:5的氨基酸序列的免疫原性片段或与SEQID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:17、21或26的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:18的氨基酸序列,与SEQ ID NO:18的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:18的氨基酸序列的免疫原性片段或与SEQ ID NO:18的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:18的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸1-257的氨基酸序列,与SEQ ID NO:29的氨基酸1-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸1-257的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸1-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸1-257的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸54-824的核苷酸序列,与SEQ ID NO:30的核苷酸54-824的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:30的核苷酸54-824的核苷酸序列的片段或与SEQ ID NO:30的核苷酸54-824的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸1-257的氨基酸序列,与SEQ ID NO:29的氨基酸1-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸1-257的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸1-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ IDNO:30的核苷酸54-824的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQID NO:29的氨基酸1-257的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸1-260的氨基酸序列,与SEQ ID NO:31的氨基酸1-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-260的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸1-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸1-260的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸54-833的核苷酸序列,与SEQ ID NO:32的核苷酸54-833的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸54-833的核苷酸序列的片段或与SEQ ID NO:32的核苷酸54-833的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸1-260的氨基酸序列,与SEQ ID NO:31的氨基酸1-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-260的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸1-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ IDNO:32的核苷酸54-833的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQID NO:31的氨基酸1-260的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸20-257的氨基酸序列,与SEQ ID NO:29的氨基酸20-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸20-257的氨基酸序列的免疫原性片段或者与SEQ ID NO:29的氨基酸20-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸20-257的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸111-824的核苷酸序列,与SEQ ID NO:30的核苷酸111-824的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:30的核苷酸111-824的核苷酸序列的片段或与SEQ ID NO:30的核苷酸111-824的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸20-257的氨基酸序列,与SEQ ID NO:29的氨基酸20-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸20-257的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸20-257的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸111-824的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸20-257的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸23-260的氨基酸序列,与SEQ ID NO:31的氨基酸23-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸23-260的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸23-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸23-260的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸120-833的核苷酸序列,与SEQ ID NO:32的核苷酸120-833的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸120-833的核苷酸序列的片段或与SEQ ID NO:32的核苷酸120-833的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸23-260的氨基酸序列,与SEQ ID NO:31的氨基酸23-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸23-260的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸23-260的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸120-833的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸23-260的氨基酸序列。
根据某些实施方案,将跨膜结构域直接或通过接头(例如,甘氨酸/丝氨酸接头)融合至SARS-CoV-2 S蛋白、其变体或其片段,即,抗原肽或蛋白。因此,在一实施方案中,将跨膜结构域融合至上述疫苗抗原包含的源自SARS-CoV-2 S蛋白或其免疫原性片段(抗原肽或蛋白)的上述氨基酸序列(可以任选地将其融合至上述信号肽和/或三聚结构域)。
这类跨膜结构域优选位于抗原肽或蛋白的C-末端,但不限于此。优选地,这类跨膜结构域位于三聚结构域(如果存在)的C-末端,但不限于此。在一实施方案中,三聚结构域存在于SARS-CoV-2 S蛋白、其变体或其片段(即,抗原肽或蛋白)以及跨膜结构域之间。
如本文定义的跨膜结构域优选允许所述RNA编码的抗原肽或蛋白锚定在细胞膜中。
在一实施方案中,如本文定义的跨膜结构域序列包括但不限于SARS-CoV-2 S蛋白的跨膜结构域序列,特别是包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列或其功能变体的序列。
在一实施方案中,跨膜结构域序列包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列,与SEQ ID NO:1的氨基酸1207-1254的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1207-1254的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1207-1254的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,跨膜结构域序列包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列。
在一实施方案中,编码跨膜结构域序列的RNA(i)包含SEQ ID NO:2、8或9的核苷酸3619-3762的核苷酸序列,与SEQ ID NO:2、8或9的核苷酸3619-3762的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:2、8或9的核苷酸3619-3762的核苷酸序列的片段或与SEQ ID NO:2、8或9的核苷酸3619-3762的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列,与SEQ ID NO:1的氨基酸1207-1254的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:1的氨基酸1207-1254的氨基酸序列的功能片段或与SEQ ID NO:1的氨基酸1207-1254的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的功能片段。在一实施方案中,编码跨膜结构域序列的RNA(i)包含SEQ ID NO:2、8或9的核苷酸3619-3762的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸1-311的氨基酸序列,与SEQ ID NO:29的氨基酸1-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸1-311的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸1-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸1-311的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸54-986的核苷酸序列,与SEQ ID NO:30的核苷酸54-986的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:30的核苷酸54-986的核苷酸序列的片段或与SEQ ID NO:30的核苷酸54-986的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸1-311的氨基酸序列,与SEQ ID NO:29的氨基酸1-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸1-311的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸1-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ IDNO:30的核苷酸54-986的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQID NO:29的氨基酸1-311的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸1-314的氨基酸序列,与SEQ ID NO:31的氨基酸1-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-314的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸1-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸1-314的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸54-995的核苷酸序列,与SEQ ID NO:32的核苷酸54-995的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸54-995的核苷酸序列的片段或与SEQ ID NO:32的核苷酸54-995的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸1-314的氨基酸序列,与SEQ ID NO:31的氨基酸1-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸1-314的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸1-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ IDNO:32的核苷酸54-995的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQID NO:31的氨基酸1-314的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸20-311的氨基酸序列,与SEQ ID NO:29的氨基酸20-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸20-311的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸20-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:29的氨基酸20-311的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸111-986的核苷酸序列,与SEQ ID NO:30的核苷酸111-986的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:30的核苷酸111-986的核苷酸序列的片段或与SEQ ID NO:30的核苷酸111-986的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸20-311的氨基酸序列,与SEQ ID NO:29的氨基酸20-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸20-311的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸20-311的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸111-986的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸20-311的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸23-314的氨基酸序列,与SEQ ID NO:31的氨基酸23-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸23-314的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸23-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:31的氨基酸23-314的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸120-995的核苷酸序列,与SEQ ID NO:32的核苷酸120-995的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸120-995的核苷酸序列的片段或与SEQ ID NO:32的核苷酸120-995的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸23-314的氨基酸序列,与SEQ ID NO:31的氨基酸23-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸23-314的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸23-314的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸120-995的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸23-314的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸序列,与SEQID NO:30的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:30的核苷酸序列的片段或与SEQ ID NO:30的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸序列,与SEQ ID NO:29的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:29的氨基酸序列的免疫原性片段或与SEQ ID NO:29的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:30的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:29的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸序列,与SEQID NO:32的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:32的核苷酸序列的片段或与SEQ ID NO:32的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸序列,与SEQ ID NO:31的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:31的氨基酸序列的免疫原性片段或与SEQ ID NO:31的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:32的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:31的氨基酸序列。
在一实施方案中,疫苗抗原包含SEQ ID NO:28的氨基酸序列,与SEQ ID NO:28的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:28的氨基酸序列的免疫原性片段或与SEQ ID NO:28的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,疫苗抗原包含SEQ ID NO:28的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:27的核苷酸序列,与SEQID NO:27的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,或者SEQ ID NO:27的核苷酸序列的片段或与SEQ ID NO:27的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列的片段;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:28的氨基酸序列,与SEQ ID NO:28的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,或者SEQ ID NO:28的氨基酸序列的免疫原性片段或与SEQ ID NO:28的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列的免疫原性片段。在一实施方案中,编码疫苗抗原的RNA(i)包含SEQ ID NO:27的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:28的氨基酸序列。
在一实施方案中,上述疫苗抗原包含SARS-CoV-2冠状病毒刺突(S)蛋白的连续序列,所述连续序列由或基本上由上述疫苗抗原包含的源自SARS-CoV-2 S蛋白或其免疫原性片段(抗原肽或蛋白)的上述氨基酸序列组成。在一实施方案中,上述疫苗抗原包含不超过220个氨基酸、215个氨基酸、210个氨基酸或205个氨基酸的SARS-CoV-2冠状病毒刺突(S)蛋白的连续序列。
在一实施方案中,编码疫苗抗原的RNA是本文中描述为BNT162b1(RBP020.3)、BNT162b2(RBP020.1或RBP020.2)的核苷修饰的信使RNA(modRNA)。在一实施方案中,编码疫苗抗原的RNA是本文中描述为RBP020.2的核苷修饰的信使RNA(modRNA)。
在一实施方案中,编码疫苗抗原的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:21的核苷酸序列,与SEQ ID NO:21的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列,或者与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。在一实施方案中,编码疫苗抗原的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:21的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:19或20的核苷酸序列,与SEQ ID NO:19或20的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列,或者与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。在一实施方案中,编码疫苗抗原的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:19或20的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列。
在一实施方案中,编码疫苗抗原的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:20的核苷酸序列,与SEQ ID NO:20的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列,或者与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。在一实施方案中,编码疫苗抗原的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:20的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列。
如本文所用,术语“疫苗”是指在接种至受试者中时诱导免疫应答的组合物。在一些实施方案中,诱导的免疫应答提供保护性免疫。
在一实施方案中,在受试者的细胞中表达编码抗原分子的RNA以提供抗原分子。在一实施方案中,抗原分子的表达是在细胞表面或进入细胞外空间。在一实施方案中,抗原分子是在MHC的背景下呈递的。在一实施方案中,编码抗原分子的RNA在受试者的细胞中瞬时表达。在一实施方案中,在给药编码抗原分子的RNA之后,特别是在肌肉内给药编码抗原分子的RNA之后,在肌肉中表达编码抗原分子的RNA。在一实施方案中,在给药编码抗原分子的RNA之后,在脾中表达编码抗原分子的RNA。在一实施方案中,在给药编码抗原分子的RNA之后,在抗原呈递细胞中,优选在专职抗原呈递细胞中表达编码抗原分子的RNA。在一实施方案中,抗原呈递细胞选自树突细胞、巨噬细胞和B细胞。在一实施方案中,在给药编码抗原分子的RNA之后,在肺和/或肝中没有或基本上没有编码抗原分子的RNA的表达发生。在一实施方案中,在给药编码抗原分子的RNA之后,脾中编码抗原分子的RNA的表达是肺中表达量的至少5倍。
在一些实施方案中,向受试者给药之后,特别是肌肉内给药之后,本文描述的方法和药剂,例如,mRNA组合物,导致将编码疫苗抗原的RNA递送至淋巴结和/或脾。在一些实施方案中,给药之后6小时或更晚,并且优选长达6天或更长时间,编码疫苗抗原的RNA在淋巴结和/或脾中可检测。
在一些实施方案中,向受试者给药之后,特别是肌肉内给药之后,本文描述的方法和药剂,例如,mRNA组合物,导致将编码疫苗抗原的RNA递送至B细胞滤泡、被膜下淋巴窦和/或T细胞区,特别是淋巴结的B细胞滤泡和/或被膜下淋巴窦。
在一些实施方案中,向受试者给药之后,特别是肌肉内给药之后,本文描述的方法和药剂,例如,mRNA组合物,导致将编码疫苗抗原的RNA递送至淋巴结的T细胞区和中间窦中的B细胞(CD19+)、被膜下淋巴窦巨噬细胞(CD169+)和/或树突细胞(CD11c+),特别是淋巴结的B细胞(CD19+)和/或被膜下淋巴窦巨噬细胞(CD169+)。
在一些实施方案中,向受试者给药之后,特别是肌肉内给药之后,本文描述的方法和药剂,例如,mRNA组合物导致将编码疫苗抗原的RNA递送至脾的白髓。
在一些实施方案中,向受试者给药之后,特别是肌肉内给药之后,本文描述的方法和药剂,例如,mRNA组合物,导致将编码疫苗抗原的RNA递送至B细胞,DC(CD11c+),特别是B细胞周围的那些,和/或脾的巨噬细胞,特别是B细胞和/或DC(CD11c+)。
在一实施方案中,疫苗抗原在淋巴结和/或脾中表达,特别是在上述淋巴结和/或脾的细胞中表达。
适合根据本公开使用的肽和蛋白抗原通常包括这样的肽或蛋白,其包含SARS-CoV-2 S蛋白的表位或其功能片段用于诱导免疫应答。所述肽或蛋白或表位可以源自靶抗原,即针对其引发免疫应答的抗原。例如,肽或蛋白抗原或者肽或蛋白抗原内包含的表位可以是靶抗原或者靶抗原的片段或变体。靶抗原可以是冠状病毒S蛋白,特别是SARS-CoV-2 S蛋白。
抗原分子或其加工产物,例如,其片段,可以结合至免疫效应细胞携带的抗原受体如BCR或TCR,或者结合至抗体。
根据本发明通过给药编码肽和蛋白抗原的RNA提供给受试者的肽或蛋白抗原,即,疫苗抗原,优选导致在提供肽或蛋白抗原的受试者中诱导免疫应答,例如,体液和/或细胞免疫应答。所述免疫应答优选针对靶抗原,特别是冠状病毒S蛋白,特别是SARS-CoV-2 S蛋白。因此,疫苗抗原可以包含靶抗原、其变体或其片段。在一实施方案中,这样的片段或变体在免疫学上等同于靶抗原。在本公开的上下文中,术语“抗原的片段”或“抗原的变体”表示导致诱导免疫应答的物质,所述免疫应答靶向抗原,即靶抗原。因此,疫苗抗原可以对应于或可以包含靶抗原,可以对应于或可以包含靶抗原的片段,或者可以对应于或可以包含与靶抗原或其片段同源的抗原。因此,根据本公开,疫苗抗原可以包含靶抗原的免疫原性片段或与靶抗原的免疫原性片段同源的氨基酸序列。根据本公开的“抗原的免疫原性片段”优选涉及能够诱导针对靶抗原的免疫应答的抗原片段。疫苗抗原可以是重组抗原。
术语“在免疫学上等同”表示在免疫学上等同的分子,如在免疫学上等同的氨基酸序列表现出相同或基本上相同的免疫学特性和/或发挥相同或基本上相同的免疫学效应,例如,在免疫学效应的类型方面。在本公开的上下文中,术语“在免疫学上等同”优选关于用于免疫的抗原或抗原变体的免疫学效应或特性使用。例如,如果所述氨基酸序列在暴露于受试者的免疫系统时诱导具有与参考氨基酸序列反应特异性的免疫反应,则该氨基酸序列在免疫学上等同于参考氨基酸序列。
如本文所用,“激活”或“刺激”是指已充分刺激以诱导可检测的细胞增殖的免疫效应细胞如T细胞的状态。激活还可以与信号传导途径的启动、诱导的细胞因子生成和可检测的效应物功能相关。术语“激活的免疫效应细胞”是指经历细胞分裂的免疫效应细胞。
术语“初免”是指这样的过程,其中免疫效应细胞如T细胞与其特异性抗原首次接触并导致分化为效应细胞如效应T细胞。
术语“克隆扩增”或“扩增”是指其中特定实体增加的过程。在本公开的上下文中,该术语优选用于免疫学应答的上下文,其中免疫效应细胞被抗原刺激,增殖,并且识别所述抗原的特定免疫效应细胞扩增。优选地,克隆扩增导致免疫效应细胞的分化。
术语“抗原”涉及包含表位的物质,针对所述表位可以产生免疫应答。特别地,术语“抗原”包括蛋白和肽。在一实施方案中,抗原由免疫系统的细胞呈递,例如抗原呈递细胞,如树突细胞或巨噬细胞。在一实施方案中,抗原或其加工产物如T-细胞表位与T-或B-细胞受体结合,或者与免疫球蛋白分子如抗体结合。因此,抗原或其加工产物可以与抗体或T淋巴细胞(T细胞)特异性地反应。在一实施方案中,抗原是病毒抗原,如冠状病毒S蛋白,例如,SARS-CoV-2 S蛋白,并且表位源自这样的抗原。
术语“病毒抗原”是指具有抗原特性,即能够在个体中引起免疫应答的任何病毒组分。病毒抗原可以是冠状病毒S蛋白,例如,SARS-CoV-2 S蛋白。
术语“在细胞表面上表达”或“与细胞表面关联”表示分子如抗原与细胞的质膜关联并位于细胞的质膜上,其中至少一部分分子面向所述细胞的细胞外空间,并且可从所述细胞的外部接近,例如,通过位于细胞外部的抗体。在这个上下文中,一部分为优选至少4个、优选至少8个、优选至少12个、更优选至少20个氨基酸。所述关联可以是直接或间接的。例如,所述关联可以是通过一个或多个跨膜结构域,一个或多个脂质锚定物,或者通过与可以在细胞质膜的外小叶上发现的任何蛋白、脂质、糖或其他结构相互作用。例如,与细胞表面关联的分子可以是具有细胞外部分的跨膜蛋白,或者可以是通过与另一蛋白(其为跨膜蛋白)相互作用而与细胞表面关联的蛋白。
“细胞表面”或“细胞的表面”按照其在本领域中的正常含义使用,因此包括可被蛋白和其他分子接近而结合的细胞外部。如果抗原位于细胞表面并且可被例如添加至细胞的抗原特异性抗体接近而结合,则抗原在所述细胞表面上表达。
本发明的上下文中的术语“细胞外部分”或“胞外域(exodomain)”是指分子如蛋白的一部分,其面向细胞的胞外空间并且优选从所述细胞外可接近,例如通过位于细胞外的结合分子如抗体。优选地,该术语是指一个或多个细胞外环或结构域或其片段。
术语“表位”是指免疫系统识别的分子如抗原的一部分或片段。例如,表位可以被T细胞、B细胞或抗体识别。抗原的表位可以包括所述抗原的连续或不连续部分,并且可以长度为约5-约100,如约5-约50,更优选约8-约30,最优选约8-约25个氨基酸,例如,表位可以优选长度为9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25个氨基酸。在一实施方案中,表位长度为约10-约25个氨基酸。术语“表位”包括T细胞表位。
术语“T细胞表位”是指当在MHC分子的背景下呈递时被T细胞识别的蛋白的一部分或片段。术语“主要组织相容性复合物”和缩写“MHC”包括MHC I类和MHC II类分子,并且涉及所有脊椎动物中均存在的基因复合物。MHC蛋白或分子对于免疫反应中淋巴细胞与抗原呈递细胞或患病细胞之间的信号传导很重要,其中MHC蛋白或分子结合肽表位并呈递它们用于T细胞上的T细胞受体识别。MHC编码的蛋白在细胞表面上表达,并且向T细胞展示自身抗原(来自细胞自身的肽片段)和非自身抗原(例如,入侵微生物的片段)。在MHC I类/肽复合物的情况下,结合肽通常长约8-约10个氨基酸,尽管更长或更短的肽可能是有效的。在MHC II类/肽复合物的情况下,结合肽通常长约10-约25个氨基酸,特别是约13-约18个氨基酸,而更长或更短的肽可能是有效的。
肽和蛋白抗原可以长度为2-100个氨基酸,包括例如,5个氨基酸、10个氨基酸、15个氨基酸、20个氨基酸、25个氨基酸、30个氨基酸、35个氨基酸、40个氨基酸、45个氨基酸或50个氨基酸。在一些实施方案中,肽的长度可以为50个氨基酸以上。在一些实施方案中,肽的长度可以为100个氨基酸以上。
肽或蛋白抗原可以是任何肽和蛋白,其可以诱导或增加免疫系统发展对肽或蛋白的抗体和T细胞应答的能力。
在一实施方案中,疫苗抗原被免疫效应细胞识别。优选地,如果疫苗抗原被免疫效应细胞识别,其能够在适当的共刺激信号存在下诱导免疫效应细胞的刺激、引发(priming)和/或扩增,所述免疫效应细胞携带识别疫苗抗原的抗原受体。在本发明的实施方案的上下文中,疫苗抗原优选呈递或存在于细胞表面上,优选抗原呈递细胞。在一实施方案中,抗原是由患病细胞(如病毒感染的细胞)呈递的。在一实施方案中,抗原受体是TCR,其结合至在MHC的背景下呈递的抗原表位。在一实施方案中,当由T细胞表达和/或存在于T细胞上时,TCR结合至细胞(如抗原呈递细胞)呈递的抗原导致所述T细胞的刺激、引发和/或扩增。在一实施方案中,当由T细胞表达和/或存在于T细胞上时,TCR对患病细胞上呈递的抗原的结合导致患病细胞的细胞溶解和/或凋亡,其中所述T细胞优选释放细胞毒性因子,例如穿孔蛋白和颗粒酶。
在一实施方案中,抗原受体是结合至抗原中表位的抗体或B细胞受体。在一实施方案中,抗体或B细胞受体结合至抗原的天然表位。
核酸
如本文所用,术语“多核苷酸”或“核酸”意图包括DNA和RNA如基因组DNA、cDNA、mRNA,重组产生和化学合成的分子。核酸可以是单链或双链的。RNA包括体外转录的RNA(IVTRNA)或合成的RNA。根据本发明,多核苷酸优选是分离的。
核酸可以包含在载体中。如本文所用的术语“载体”包括技术人员已知的任何载体,包括质粒载体、粘粒载体、噬菌体载体(如λ噬菌体)、病毒载体(如逆转录病毒、腺病毒或杆状病毒载体)或者人工染色体载体(如细菌人工染色体(BAC)、酵母人工染色体(YAC)或P1人工染色体(PAC))。所述载体包括表达载体以及克隆载体。表达载体包含质粒以及病毒载体,并且一般包含期望的编码序列以及在特定宿主生物体(例如,细菌、酵母、植物、昆虫或哺乳动物)或体外表达系统中表达可操作地连接的编码序列所必需的适当DNA序列。克隆载体一般用来工程化和扩增某个期望的DNA片段,并且可以缺少表达期望的DNA片段所需要的功能序列。
在本发明的所有方面的一实施方案中,在细胞(如经处理以提供疫苗抗原的受试者的抗原呈递细胞)中表达编码疫苗抗原的RNA。
本文描述的核酸可以是重组和/或分离的分子。
在本公开中,术语“RNA”涉及包括核糖核苷酸残基的核酸分子。在优选的实施方案中,RNA包含全部或大部分核糖核苷酸残基。如本文所用,“核糖核苷酸”是指在β-D-呋喃核糖(β-D-ribofuranosyl)基团的2′位置具有羟基的核苷酸。RNA涵盖但不限于双链RNA、单链RNA、分离的RNA如部分纯化的RNA、基本上纯的RNA、合成的RNA、重组产生的RNA,以及通过添加、缺失、取代和/或改变一个或多个核苷酸而不同于天然存在的RNA的修饰的RNA。这类改变可以指将非核苷酸物质添加至内部RNA分子或RNA的末端。本文中还考虑RNA中的核苷酸可以是非标准核苷酸,如化学合成的核苷酸或脱氧核苷酸。对于本公开,认为这些改变的RNA是天然存在的RNA的类似物。
在本公开的某些实施方案中,所述RNA是与编码肽或蛋白的RNA转录物有关的信使RNA(mRNA)。如本领域中建立的,mRNA一般包含5′非翻译区(5′-UTR)、肽编码区和3'非翻译区(3'-UTR)。在一些实施方案中,所述RNA是通过体外转录或化学合成产生的。在一实施方案中,所述mRNA是利用DNA模板通过体外转录产生的,其中DNA是指包含脱氧核糖核苷酸的核酸。
在一实施方案中,RNA是体外转录的RNA(IVT-RNA),并且可以通过适当DNA模板的体外转录获得。用于控制转录的启动子可以是任何RNA聚合酶的任何启动子。用于体外转录的DNA模板可以通过克隆核酸,特别是cDNA,并将其引入用于体外转录的适当载体来获得。cDNA可以通过RNA的逆转录获得。
在本公开的某些实施方案中,所述RNA是“复制子RNA”或简单地是“复制子”,特别是“自我复制RNA”或“自我扩增RNA”。在一特别优选的实施方案中,复制子或自我复制RNA源自或包含源自ssRNA病毒的元件,特别是正链ssRNA病毒如甲病毒。甲病毒是正链RNA病毒的典型代表。甲病毒在感染细胞的细胞质中复制(甲病毒生命周期的综述参见Joséet al.,Future Microbiol.,2009,vol.4,pp.837–856)。许多甲病毒的总基因组长度通常范围在11,000和12,000个核苷酸之间,并且基因组RNA通常具有5’-帽和3’poly(A)尾。甲病毒的基因组编码非结构蛋白(参与病毒RNA的转录、修饰和复制以及蛋白修饰)和结构蛋白(形成病毒颗粒)。在基因组中通常有两个开放阅读框(ORF)。4个非结构蛋白(nsP1–nsP4)通常由在基因组5′末端附近开始的第一ORF一起编码,而甲病毒结构蛋白由第二ORF一起编码,所述第二ORF位于第一ORF下游并延伸至基因组的3’端附近。通常,第一ORF比第二ORF大,比例大概为2:1。在被甲病毒感染的细胞中,仅编码非结构蛋白的核酸序列从基因组RNA翻译,而编码结构蛋白的遗传信息可从亚基因组转录物翻译,其为类似于真核信使RNA的RNA分子(mRNA;Gould et al.,2010,Antiviral Res.,vol.87pp.111–124)。感染之后,即在病毒生命周期的早期,(+)链基因组RNA直接充当信使RNA,用于翻译编码非结构多蛋白(nsP1234)的开放阅读框。已建议将甲病毒衍生的载体用于将外来遗传信息递送至靶细胞或靶生物体中。在简单的方法中,编码甲病毒结构蛋白的开放阅读框被编码所关注的蛋白的开放阅读框代替。基于甲病毒的反式复制(trans-replication)系统依赖于两个单独的核酸分子上的甲病毒核苷酸序列元件:一个核酸分子编码病毒复制酶,而另一个核酸分子能够被所述复制酶反式复制(因此命名为反式复制系统)。反式复制需要在给定宿主细胞中存在这两种核酸分子。能够被复制酶反式复制的核酸分子必须包含某些甲病毒序列元件以允许甲病毒复制酶进行识别和RNA合成。
在一实施方案中,本文描述的RNA可以具有修饰的核苷。在一些实施方案中,所述RNA包含修饰的核苷,以代替至少一个(例如,每个)尿苷。
如本文所用,术语“尿嘧啶”描述可以在RNA的核酸中出现的核碱基之一。尿嘧啶的结构是:
Figure GDA0004051824180000821
如本文所用,术语“尿苷”描述可以在RNA中出现的核苷之一。尿苷的结构是:
Figure GDA0004051824180000831
UTP(尿苷5’-三磷酸)具有以下结构:
Figure GDA0004051824180000832
假-UTP(假尿苷5’-三磷酸)具有以下结构:
Figure GDA0004051824180000833
“假尿苷”是修饰的核苷的一个实例,其是尿苷的异构体,其中尿嘧啶通过碳-碳键而不是氮-碳糖苷键连接至戊糖环。
另一示例性修饰的核苷是N1-甲基-假尿苷(m1Ψ),其具有以下结构:
Figure GDA0004051824180000834
N1-甲基-假-UTP具有以下结构:
Figure GDA0004051824180000835
另一示例性修饰的核苷是5-甲基-尿苷(m5U),其具有以下结构:
Figure GDA0004051824180000841
在一些实施方案中,本文描述的RNA中的一个或多个尿苷被修饰的尿苷代替。在一些实施方案中,修饰的核苷是修饰的尿苷。
在一些实施方案中,RNA包含修饰的核苷,以代替至少一个尿苷。在一些实施方案中,RNA包含修饰的核苷,以代替每个尿苷。
在一些实施方案中,修饰的核苷独立地选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。在一些实施方案中,修饰的核苷包含假尿苷(ψ)。在一些实施方案中,修饰的核苷包含N1-甲基-假尿苷(m1ψ)。在一些实施方案中,修饰的核苷包含5-甲基-尿苷(m5U)。在一些实施方案中,RNA可以包含一种以上类型的修饰的核苷,并且修饰的核苷独立地选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。在一些实施方案中,修饰的核苷包含假尿苷(ψ)和N1-甲基-假尿苷(m1ψ)。在一些实施方案中,修饰的核苷包含假尿苷(ψ)和5-甲基-尿苷(m5U)。在一些实施方案中,修饰的核苷包含N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。在一些实施方案中,修饰的核苷包含假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)。
在一些实施方案中,代替RNA中的一个或多个(例如,全部)尿苷的修饰的核苷可以是以下任何一种或多种:3-甲基-尿苷(m3U)、5-甲氧基-尿苷(mo5U)、5-氮杂-尿苷、6-氮杂-尿苷、2-硫代-5-氮杂-尿苷、2-硫代-尿苷(s2U)、4-硫代-尿苷(s4U)、4-硫代-假尿苷、2-硫代-假尿苷、5-羟基-尿苷(ho5U)、5-氨基烯丙基-尿苷、5-卤代-尿苷(例如,5-碘-尿苷或5-溴-尿苷)、尿苷5-氧乙酸(cmo5U)、尿苷5-氧乙酸甲基酯(mcmo5U)、5-羧基甲基-尿苷(cm5U)、1-羧基甲基-假尿苷、5-羧基羟基甲基-尿苷(chm5U)、5-羧基羟基甲基-尿苷甲基酯(mchm5U)、5-甲氧基羰基甲基-尿苷(mcm5U)、5-甲氧基羰基甲基-2-硫代-尿苷(mcm5s2U)、5-氨基甲基-2-硫代-尿苷(nm5s2U)、5-甲基氨基甲基-尿苷(mnm5U)、1-乙基-假尿苷、5-甲基氨基甲基-2-硫代-尿苷(mnm5s2U)、5-甲基氨基甲基-2-硒代-尿苷(mnm5se2U)、5-氨甲酰基甲基-尿苷(ncm5U)、5-羧基甲基氨基甲基-尿苷(cmnm5U)、5-羧基甲基氨基甲基-2-硫代-尿苷(cmnm5s2U)、5-丙炔基-尿苷、1-丙炔基-假尿苷、5-牛磺酸甲基-尿苷(τm5U)、1-牛磺酸甲基-假尿苷、5-牛磺酸甲基-2-硫代-尿苷(τm5s2U)、1-牛磺酸甲基-4-硫代-假尿苷)、5-甲基-2-硫代-尿苷(m5s2U)、1-甲基-4-硫代-假尿苷(m1s4ψ)、4-硫代-1-甲基-假尿苷、3-甲基-假尿苷(m3ψ)、2-硫代-1-甲基-假尿苷、1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-1-脱氮-假尿苷、二氢尿苷(D)、二氢假尿苷、5,6-二氢尿苷、5-甲基-二氢尿苷(m5D)、2-硫代-二氢尿苷、2-硫代-二氢假尿苷、2-甲氧基-尿苷、2-甲氧基-4-硫代-尿苷、4-甲氧基-假尿苷、4-甲氧基-2-硫代-假尿苷、N1-甲基-假尿苷、3-(3-氨基-3-羧基丙基)尿苷(acp3U)、1-甲基-3-(3-氨基-3-羧基丙基)假尿苷(acp3ψ)、5-(异戊烯基氨基甲基)尿苷(inm5U)、5-(异戊烯基氨基甲基)-2-硫代-尿苷(inm5s2U)、α-硫代-尿苷、2′-O-甲基-尿苷(Um)、5,2′-O-二甲基-尿苷(m5Um)、2′-O-甲基-假尿苷(ψm)、2-硫代-2′-O-甲基-尿苷(s2Um)、5-甲氧基羰基甲基-2′-O-甲基-尿苷(mcm5Um)、5-氨甲酰基甲基-2′-O-甲基-尿苷(ncm5Um)、5-羧基甲基氨基甲基-2′-O-甲基-尿苷(cmnm5Um)、3,2′-O-二甲基-尿苷(m3Um)、5-(异戊烯基氨基甲基)-2′-O-甲基-尿苷(inm5Um)、1-硫代-尿苷、脱氧胸苷、2′-F-阿糖-尿苷(2′-F-ara-uridine)、2′-F-尿苷、2′-OH-阿糖-尿苷(2′-OH-ara-uridine)、5-(2-甲氧羰基乙烯基)尿苷、5-[3-(1-E-丙烯基氨基)尿苷或本领域已知的任何其他修饰的尿苷。
在一实施方案中,所述RNA包含其他修饰的核苷,或者包含进一步修饰的核苷,例如,修饰的胞苷。例如,在一实施方案中,在所述RNA中,5-甲基胞苷部分或完全,优选完全取代胞苷。在一实施方案中,所述RNA包含5-甲基胞苷以及选自假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)和5-甲基-尿苷(m5U)中的一种或多种。在一实施方案中,所述RNA包含5-甲基胞苷和N1-甲基-假尿苷(m1ψ)。在一些实施方案中,所述RNA包含5-甲基胞苷代替每个胞苷,以及N1-甲基-假尿苷(m1ψ)代替每个尿苷。
在一些实施方案中,根据本公开的RNA包含5’-帽。在一实施方案中,本公开的RNA没有无帽的5'-三磷酸。在一实施方案中,所述RNA可以通过5'-帽类似物修饰。术语“5'-帽”是指在mRNA分子的5'端上发现的结构,并且一般由通过5'-至5'-三磷酸键连接至mRNA的鸟苷核苷酸组成。在一实施方案中,这个鸟苷在7-位置甲基化。提供具有5'-帽或5'-帽类似物的RNA可以通过体外转录来实现,其中将5'-帽共转录表达至RNA链中,或者可以利用加帽酶转录后连接至RNA。
在一些实施方案中,RNA的构件(building block)帽是m2 7,3’-OGppp(m1 2’-O)ApG(有时也称作m2 7,3`OG(5’)ppp(5’)m2’-OApG),其具有以下结构:
Figure GDA0004051824180000851
以下是示例性Cap1 RNA,其包含RNA和m2 7,3`OG(5’)ppp(5’)m2’-OApG:
Figure GDA0004051824180000852
以下是另一示例性Cap1 RNA(没有帽类似物):
Figure GDA0004051824180000861
在一些实施方案中,用“Cap0”结构修饰RNA,在一些实施方案中,使用帽类似物抗反向帽(anti-reverse cap)(ARCA Cap(m2 7,3`OG(5’)ppp(5’)G)),其具有以下结构:
Figure GDA0004051824180000862
以下是包含RNA和m2 7,3`OG(5’)ppp(5’)G的示例性Cap0 RNA:
Figure GDA0004051824180000863
在一些实施方案中,利用具有以下结构的帽类似物β-S-ARCA(m2 7,2`OG(5’)ppSp(5’)G)产生“Cap0”结构:
Figure GDA0004051824180000864
以下是包含β-S-ARCA(m2 7,2`OG(5’)ppSp(5’)G)和RNA的示例性Cap0 RNA:
Figure GDA0004051824180000871
β-S-ARCA的“D1”非对映体或“β-S-ARCA(D1)”是β-S-ARCA的非对映体,与β-S-ARCA的D2非对映体(β-S-ARCA(D2))相比其在HPLC柱上首先洗脱,因此表现出较短的保留时间(参见WO 2011/015347,援引加入本文)。
特别优选的帽是β-S-ARCA(D1)(m2 7,2'-OGppSpG)或m2 7,3’-OGppp(m1 2’-O)ApG。
在一些实施方案中,根据本公开的RNA包含5'-UTR和/或3'-UTR。术语“非翻译区”或“UTR”涉及DNA分子中的区域,其转录但不翻译为氨基酸序列,或者涉及RNA分子(如mRNA分子)中的相应区域。非翻译区(UTR)可以存在于开放阅读框的5'(上游)(5'-UTR)和/或开放阅读框的3'(下游)(3'-UTR)。如果存在,5'-UTR位于5'端,蛋白编码区的起始密码子的上游。5'-UTR位于5'-帽(如果存在)的下游,例如直接与5'-帽相邻。如果存在,3'-UTR位于3'端,蛋白编码区的终止密码子的下游,但是术语“3'-UTR”优选不包括poly(A)序列。因此,3'-UTR位于poly(A)序列(如果存在)的上游,例如直接与poly(A)序列相邻。
在一些实施方案中,RNA包含5’-UTR,所述5’-UTR包含SEQ ID NO:12的核苷酸序列,或者与SEQ ID NO:12的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
在一些实施方案中,RNA包含3’-UTR,所述3’-UTR包含SEQ ID NO:13的核苷酸序列,或者与SEQ ID NO:13的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
特别优选的5’-UTR包含SEQ ID NO:12的核苷酸序列。特别优选的3’-UTR包含SEQID NO:13的核苷酸序列。
在一些实施方案中,根据本公开的RNA包含3'-poly(A)序列。
如本文所用,术语“poly(A)序列”或“poly-A尾”是指腺苷酸残基的不间断或间断序列,其通常位于RNA分子的3'端。Poly(A)序列是本领域技术人员已知的,并且可以跟随本文描述的RNA中的3’-UTR。不间断的poly(A)序列的特征在于连续的腺苷酸残基。在自然界中,不间断的poly(A)序列是典型的。本文公开的RNA可以具有转录之后通过不依赖于模板的RNA聚合酶连接至RNA的游离3'端的poly(A)序列,或者由DNA编码并由模板依赖性RNA聚合酶转录的poly(A)序列。
已证实约120个A核苷酸的poly(A)序列对转染的真核细胞中的RNA水平以及从存在于poly(A)序列上游(5’)的开放阅读框翻译的蛋白水平具有有益影响(Holtkamp etal.,2006,Blood,vol.108,pp.4009-4017)。
poly(A)序列可以具有任何长度。在一些实施方案中,poly(A)序列包含以下、基本上由以下组成或由以下组成:至少20、至少30、至少40、至少80或至少100以及多达500、多达400、多达300、多达200或多达150个A核苷酸,特别是约120个A核苷酸。在这种情况下,“基本上由…组成”表示poly(A)序列中的大多数核苷酸,通常poly(A)序列中核苷酸数量的至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%是A核苷酸,但是允许剩余的核苷酸是除A核苷酸以外的核苷酸,如U核苷酸(尿苷酸)、G核苷酸(鸟苷酸)或C核苷酸(胞苷酸)。在这种情况下,“由…组成”表示poly(A)序列的所有核苷酸,即,poly(A)序列中核苷酸数量的100%是A核苷酸。术语“A核苷酸”或“A”是指腺苷酸。
在一些实施方案中,基于在与编码链互补的链中包含重复的dT核苷酸(脱氧胸苷酸)的DNA模板,在RNA转录期间,例如,在制备体外转录的RNA期间,连接poly(A)序列。编码poly(A)序列的DNA序列(编码链)称作poly(A)盒。
在一些实施方案中,DNA编码链中存在的poly(A)盒基本上由dA核苷酸组成,但是被4种核苷酸(dA、dC、dG和dT)的随机序列中断。这样的随机序列的长度可以是5-50、10-30或10-20个核苷酸。在WO 2016/005324 A1中公开了这样的盒,其援引加入本文。WO 2016/005324 A1中公开的任何poly(A)盒均可以用于本发明。涵盖这样的poly(A)盒,其基本上由dA核苷酸组成,但是被具有均等分布的4种核苷酸(dA、dC、dG、dT)且具有例如5-50个核苷酸长度的随机序列中断,在DNA水平上在大肠杆菌(E.coli)中表现出质粒DNA的恒定增殖,并且在RNA水平上仍与支持RNA稳定性和翻译效率方面的有益特性相关。因此,在一些实施方案中,本文描述的RNA分子中包含的poly(A)序列基本上由A核苷酸组成,但是被4种核苷酸(A、C、G、U)的随机序列中断。这样的随机序列的长度可以是5-50、10-30或10-20个核苷酸。
在一些实施方案中,在poly(A)序列的3'端侧翼没有除A核苷酸以外的核苷酸,即,poly(A)序列在其3'端未被A以外的核苷酸掩盖或跟随。
在一些实施方案中,poly(A)序列可以包含至少20、至少30、至少40、至少80或至少100以及多达500、多达400、多达300、多达200或多达150个核苷酸。在一些实施方案中,poly(A)序列可以基本上由至少20、至少30、至少40、至少80或至少100以及多达500、多达400、多达300、多达200或多达150个核苷酸组成。在一些实施方案中,poly(A)序列可以由至少20、至少30、至少40、至少80或至少100以及多达500、多达400、多达300、多达200或多达150个核苷酸组成。在一些实施方案中,poly(A)序列包含至少100个核苷酸。在一些实施方案中,poly(A)序列包含约150个核苷酸。在一些实施方案中,poly(A)序列包含约120个核苷酸。
在一些实施方案中,RNA包含poly(A)序列,所述poly(A)序列包含SEQ ID NO:14的核苷酸序列,或者与SEQ ID NO:14的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列。
特别优选的poly(A)序列包含SEQ ID NO:14的核苷酸序列。
根据本公开,疫苗抗原优选作为单链、5'-加帽的mRNA给药,其在进入给药RNA的受试者的细胞时翻译为相应的蛋白。优选地,所述RNA包含在稳定性和翻译效率方面为RNA的最大效力优化的结构元件(5'-帽、5'-UTR、3'-UTR、poly(A)序列)。
在一实施方案中,β-S-ARCA(D1)用作RNA的5'端的特定加帽结构。在一实施方案中,m2 7,3’-OGppp(m1 2’-O)ApG用作RNA的5'端的特定加帽结构。在一实施方案中,5'-UTR序列源自人α-珠蛋白mRNA,并且任选地具有优化的“Kozak序列”以提高翻译效率。在一实施方案中,将源自“分裂的氨基末端增强子(amino terminal enhancer of split)”(AES)mRNA(称作F)和线粒体编码的12 S核糖体RNA(称作I)的两个序列元件的组合(FI元件)置于编码序列和poly(A)序列之间以确保更高的最大蛋白水平和延长的mRNA持久性。在一实施方案中,将源自人β-珠蛋白mRNA的两个重复的3'-UTR置于编码序列和poly(A)序列之间以确保更高的最大蛋白水平和延长的mRNA持久性。在一实施方案中,使用长度为110个核苷酸的poly(A)序列,其由一段30个腺苷残基,随后10个核苷酸接头序列和另一70个腺苷残基组成。设计这个poly(A)序列以增强RNA稳定性和翻译效率。
在本发明的所有方面的一实施方案中,在治疗的受试者的细胞中表达编码疫苗抗原的RNA以提供疫苗抗原。在本发明的所有方面的一实施方案中,在受试者的细胞中瞬时表达所述RNA。在本发明的所有方面的一实施方案中,所述RNA是体外转录的RNA。在本发明的所有方面的一实施方案中,疫苗抗原的表达在细胞表面。在本发明的所有方面的一实施方案中,疫苗抗原是在MHC的背景下表达和呈递的。在本发明的所有方面的一实施方案中,疫苗抗原的表达进入细胞外空间,即,疫苗抗原是分泌的。
在本公开的上下文中,术语“转录”涉及一个过程,其中将DNA序列中的遗传密码转录为RNA。随后,可以将RNA翻译为肽或蛋白。
根据本发明,术语“转录”包含“体外转录”,其中术语“体外转录”涉及一个过程,其中RNA,特别是mRNA,在不含细胞的系统中体外合成,优选使用适当的细胞提取物。优选地,将克隆载体用于产生转录物。这些克隆载体一般指定为转录载体,并且根据本发明涵盖在术语“载体”内。根据本发明,本发明中使用的RNA优选是体外转录的RNA(IVT-RNA),并且可以通过适当DNA模板的体外转录获得。用于控制转录的启动子可以是任何RNA聚合酶的任何启动子。RNA聚合酶的特别实例是T7、T3和SP6RNA聚合酶。优选地,根据本发明的体外转录由T7或SP6启动子控制。用于体外转录的DNA模板可以通过克隆核酸,特别是cDNA,并将其引入用于体外转录的适当载体来获得。cDNA可以通过RNA的逆转录获得。
关于RNA,术语“表达”或“翻译”涉及细胞核糖体中的过程,通过这个过程mRNA链指导氨基酸序列的组装以产生肽或蛋白。
在一实施方案中,给药本文描述的RNA之后,例如,配制为RNA脂质颗粒,将RNA的至少一部分递送至靶细胞。在一实施方案中,将RNA的至少一部分递送至靶细胞的胞质溶胶。在一实施方案中,通过靶细胞翻译RNA以产生其编码的肽或蛋白。在一实施方案中,靶细胞是脾细胞。在一实施方案中,靶细胞是抗原呈递细胞如脾中的专职抗原呈递细胞。在一实施方案中,靶细胞是树突细胞或巨噬细胞。本文描述的RNA颗粒(如RNA脂质颗粒)可以用于将RNA递送至这样的靶细胞。因此,本公开还涉及一种将RNA递送至受试者中的靶细胞的方法,所述方法包括将本文描述的RNA颗粒给予受试者。在一实施方案中,将所述RNA递送至靶细胞的胞质溶胶。在一实施方案中,通过靶细胞翻译RNA以产生所述RNA编码的肽或蛋白。
“编码”是指多核苷酸(如基因、cDNA或mRNA)中特定核苷酸序列的固有特性,以便用作模板用于在生物过程中合成其他聚合物或大分子,所述聚合物或大分子具有确定的核苷酸序列(即,rRNA、tRNA和mRNA)或确定的氨基酸序列以及由此所致的生物学特性。因此,如果对应于基因的mRNA的转录和翻译在细胞或其他生物系统中产生蛋白,则该基因编码该蛋白。其核苷酸序列与mRNA序列相同且通常在序列表中提供的编码链以及用作基因或cDNA转录模板的非编码链均可以称作编码该基因或者cDNA的蛋白或其他产物。
在一实施方案中,根据本发明给药的编码疫苗抗原的RNA是非免疫原性的。可以根据本发明给药编码免疫刺激剂的RNA以提供辅助作用。编码免疫刺激剂的RNA可以是标准RNA或非免疫原性RNA。
如本文所用的术语“非免疫原性RNA”是指这样的RNA,其在给予例如哺乳动物时不诱导免疫系统应答,或者诱导的应答比不同之处仅在于尚未进行使非免疫原性RNA成为非免疫原性的修饰和处理的相同RNA诱导的弱,即,比标准RNA(stdRNA)诱导的弱。在一优选实施方案中,通过将修饰的核苷掺入RNA并去除双链RNA(dsRNA),使得在本文中也称作修饰的RNA(modRNA)的非免疫原性RNA成为非免疫原性,所述修饰的核苷抑制RNA介导的先天免疫受体激活。
为了通过掺入修饰的核苷使非免疫原性RNA成为非免疫原性,可以使用任何修饰的核苷,只要其降低或抑制RNA的免疫原性。特别优选抑制RNA介导的先天免疫受体激活的修饰的核苷。在一实施方案中,修饰的核苷包括用包含修饰的核碱基的核苷置换一个或多个尿苷。在一实施方案中,修饰的核碱基是修饰的尿嘧啶。在一实施方案中,包含修饰的核碱基的核苷选自3-甲基-尿苷(m3U)、5-甲氧基-尿苷(mo5U)、5-氮杂-尿苷、6-氮杂-尿苷、2-硫代-5-氮杂-尿苷、2-硫代-尿苷(s2U)、4-硫代-尿苷(s4U)、4-硫代-假尿苷、2-硫代-假尿苷、5-羟基-尿苷(ho5U)、5-氨基烯丙基-尿苷、5-卤代-尿苷(例如,5-碘-尿苷或5-溴-尿苷)、尿苷5-氧乙酸(cmo5U)、尿苷5-氧乙酸甲基酯(mcmo5U)、5-羧基甲基-尿苷(cm5U)、1-羧基甲基-假尿苷、5-羧基羟基甲基-尿苷(chm5U)、5-羧基羟基甲基-尿苷甲基酯(mchm5U)、5-甲氧基羰基甲基-尿苷(mcm5U)、5-甲氧基羰基甲基-2-硫代-尿苷(mcm5s2U)、5-氨基甲基-2-硫代-尿苷(nm5s2U)、5-甲基氨基甲基-尿苷(mnm5U)、1-乙基-假尿苷、5-甲基氨基甲基-2-硫代-尿苷(mnm5s2U)、5-甲基氨基甲基-2-硒代-尿苷(mnm5se2U)、5-氨甲酰基甲基-尿苷(ncm5U)、5-羧基甲基氨基甲基-尿苷(cmnm5U)、5-羧基甲基氨基甲基-2-硫代-尿苷(cmnm5s2U)、5-丙炔基-尿苷、1-丙炔基-假尿苷、5-牛磺酸甲基-尿苷(τm5U)、1-牛磺酸甲基-假尿苷、5-牛磺酸甲基-2-硫代-尿苷(τm5s2U)、1-牛磺酸甲基-4-硫代-假尿苷)、5-甲基-2-硫代-尿苷(m5s2U)、1-甲基-4-硫代-假尿苷(m1s4ψ)、4-硫代-1-甲基-假尿苷、3-甲基-假尿苷(m3ψ)、2-硫代-1-甲基-假尿苷、1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-1-脱氮-假尿苷、二氢尿苷(D)、二氢假尿苷、5,6-二氢尿苷、5-甲基-二氢尿苷(m5D)、2-硫代-二氢尿苷、2-硫代-二氢假尿苷、2-甲氧基-尿苷、2-甲氧基-4-硫代-尿苷、4-甲氧基-假尿苷、4-甲氧基-2-硫代-假尿苷、N1-甲基-假尿苷、3-(3-氨基-3-羧基丙基)尿苷(acp3U)、1-甲基-3-(3-氨基-3-羧基丙基)假尿苷(acp3ψ)、5-(异戊烯基氨基甲基)尿苷(inm5U)、5-(异戊烯基氨基甲基)-2-硫代-尿苷(inm5s2U)、α-硫代-尿苷、2′-O-甲基-尿苷(Um)、5,2′-O-二甲基-尿苷(m5Um)、2′-O-甲基-假尿苷(ψm)、2-硫代-2′-O-甲基-尿苷(s2Um)、5-甲氧基羰基甲基-2′-O-甲基-尿苷(mcm5Um)、5-氨甲酰基甲基-2′-O-甲基-尿苷(ncm5Um)、5-羧基甲基氨基甲基-2′-O-甲基-尿苷(cmnm5Um)、3,2′-O-二甲基-尿苷(m3Um)、5-(异戊烯基氨基甲基)-2′-O-甲基-尿苷(inm5Um)、1-硫代-尿苷、脱氧胸苷、2′-F-阿糖-尿苷、2′-F-尿苷、2′-OH-阿糖-尿苷、5-(2-甲氧羰基乙烯基)尿苷以及5-[3-(1-E-丙烯基氨基)尿苷。在一特别优选的实施方案中,包含修饰的核碱基的核苷是假尿苷(ψ)、N1-甲基-假尿苷(m1ψ)或5-甲基-尿苷(m5U),特别是N1-甲基-假尿苷。
在一实施方案中,用包含修饰的核碱基的核苷置换一个或多个尿苷包括置换至少1%、至少2%、至少3%、至少4%、至少5%、至少10%、至少25%、至少50%、至少75%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或100%的尿苷。
在使用T7 RNA聚合酶通过体外转录(IVT)合成mRNA期间,由于酶的非常规活性,产生大量异常产物,包括双链RNA(dsRNA)。dsRNA诱导炎性细胞因子并激活效应酶,导致蛋白合成抑制。可以利用无孔或多孔的C-18聚苯乙烯-二乙烯基苯(PS-DVB)基质通过例如离子对反相HPLC从RNA(如IVT RNA)去除dsRNA。或者,可以使用基于酶的方法,使用特异性水解dsRNA但不水解ssRNA的大肠杆菌RNaseIII,从而从IVT RNA制品消除dsRNA污染物。此外,可以通过使用纤维素材料将dsRNA与ssRNA分开。在一实施方案中,使RNA制品与纤维素材料接触,并且在允许dsRNA结合至纤维素材料且不允许ssRNA结合至纤维素材料的条件下将ssRNA与纤维素材料分离。
当术语在本文中使用时,“去除”或“除去”是指第一物质群体(如非免疫原性RNA)的特征为与第二物质群体(如dsRNA)的附近分离,其中第一物质群体不必完全没有第二物质,并且第二物质群体不必完全没有第一物质。但是,与未分离的第一物质和第二物质的混合物相比,特征在于去除第二物质群体的第一物质群体具有可测量的更低含量的第二物质。
在一实施方案中,从非免疫原性RNA去除dsRNA包括去除dsRNA,从而非免疫原性RNA组合物中10%以下、5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.3%以下或0.1%以下的RNA是dsRNA。在一实施方案中,非免疫原性RNA不含或基本上不含dsRNA。在一些实施方案中,非免疫原性RNA组合物包含核苷修饰的单链RNA的纯化制品。例如,在一些实施方案中,核苷修饰的单链RNA的纯化制品基本上不含双链RNA(dsRNA)。在一些实施方案中,相对于所有其他核酸分子(DNA、dsRNA等),纯化的制品是至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%或至少99.9%核苷修饰的单链RNA。
在一实施方案中,与具有相同序列的标准RNA相比,非免疫原性RNA在细胞中的翻译效率更高。在一实施方案中,相对于其未修饰的对应物,翻译增强的倍数是2倍。在一实施方案中,翻译增强的倍数是3倍。在一实施方案中,翻译增强的倍数是4倍。在一实施方案中,翻译增强的倍数是5倍。在一实施方案中,翻译增强的倍数是6倍。在一实施方案中,翻译增强的倍数是7倍。在一实施方案中,翻译增强的倍数是8倍。在一实施方案中,翻译增强的倍数是9倍。在一实施方案中,翻译增强的倍数是10倍。在一实施方案中,翻译增强的倍数是15倍。在一实施方案中,翻译增强的倍数是20倍。在一实施方案中,翻译增强的倍数是50倍。在一实施方案中,翻译增强的倍数是100倍。在一实施方案中,翻译增强的倍数是200倍。在一实施方案中,翻译增强的倍数是500倍。在一实施方案中,翻译增强的倍数是1000倍。在一实施方案中,翻译增强的倍数是2000倍。在一实施方案中,倍数是10-1000倍。在一实施方案中,倍数是10-100倍。在一实施方案中,倍数是10-200倍。在一实施方案中,倍数是10-300倍。在一实施方案中,倍数是10-500倍。在一实施方案中,倍数是20-1000倍。在一实施方案中,倍数是30-1000倍。在一实施方案中,倍数是50-1000倍。在一实施方案中,倍数是100-1000倍。在一实施方案中,倍数是200-1000倍。在一实施方案中,翻译增强了任何其他显著的量或量的范围。
在一实施方案中,与具有相同序列的标准RNA相比,非免疫原性RNA表现出明显更低的先天免疫原性。在一实施方案中,非免疫原性RNA表现出比其未修饰的对应物少2倍的先天免疫应答。在一实施方案中,先天免疫原性减少的倍数是3倍。在一实施方案中,先天免疫原性减少的倍数是4倍。在一实施方案中,先天免疫原性减少的倍数是5倍。在一实施方案中,先天免疫原性减少的倍数是6倍。在一实施方案中,先天免疫原性减少的倍数是7倍。在一实施方案中,先天免疫原性减少的倍数是8倍。在一实施方案中,先天免疫原性减少的倍数是9倍。在一实施方案中,先天免疫原性减少的倍数是10倍。在一实施方案中,先天免疫原性减少的倍数是15倍。在一实施方案中,先天免疫原性减少的倍数是20倍。在一实施方案中,先天免疫原性减少的倍数是50倍。在一实施方案中,先天免疫原性减少的倍数是100倍。在一实施方案中,先天免疫原性减少的倍数是200倍。在一实施方案中,先天免疫原性减少的倍数是500倍。在一实施方案中,先天免疫原性减少的倍数是1000倍。在一实施方案中,先天免疫原性减少的倍数是2000倍。
术语“表现出明显更少的先天免疫原性”是指先天免疫原性的可检测的减少。在一实施方案中,该术语是指减少,使得可以给药有效量的非免疫原性RNA而不触发可检测的先天免疫应答。在一实施方案中,该术语是指减少,使得可以重复给药非免疫原性RNA而不引发先天免疫应答,所述先天免疫应答足以可检测地减少所述非免疫原性RNA编码的蛋白的产生。在一实施方案中,所述减少使得可以重复给药非免疫原性RNA而不引发先天免疫应答,所述先天免疫应答足以消除所述非免疫原性RNA编码的蛋白的可检测的产生。
“免疫原性”是外来物质(如RNA)在人或其他动物体内引起免疫应答的能力。先天免疫系统是免疫系统的组成部分,其是相对非特异性和即时的。它和适应性免疫系统一起是脊椎动物免疫系统的两个主要组成部分之一。
如本文所用,“内源”是指来自生物体、细胞、组织或系统内部或者在生物体、细胞、组织或系统内部产生的任何物质。
如本文所用,术语“外源”是指从生物体、细胞、组织或系统外部引入或者在生物体、细胞、组织或系统外部产生的任何物质。
如本文所用的术语“表达”定义为特定核苷酸序列的转录和/或翻译。
如本文所用,术语“连接”、“融合的”或“融合”可互换使用。这些术语是指两个或更多个元件或组件或结构域连接在一起。
密码子优化/G/C含量的增加
在一些实施方案中,本文描述的包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列由这样的编码序列编码,其与野生型编码序列相比是密码子优化和/或其G/C含量增加的。这还包括实施方案,其中与野生型编码序列的相应序列区域相比,编码序列的一个或多个序列区域是密码子优化和/或G/C含量增加的。在一实施方案中,密码子优化和/或G/C含量的增加优选不改变编码的氨基酸序列的序列。
术语“密码子优化”是指改变核酸分子的编码区中的密码子以反映宿主生物体的典型密码子使用,而优选不改变核酸分子编码的氨基酸序列。在本发明的上下文中,优选使用本文描述的RNA分子对编码区进行密码子优化以在待治疗的受试者中最佳表达。密码子优化是基于以下发现:翻译效率还由细胞中tRNA出现的不同频率决定。因此,可以修饰RNA的序列,从而插入可获得频繁出现的tRNA的密码子以代替“稀有密码子”。
在本发明的一些实施方案中,与野生型RNA的相应编码序列的G/C含量相比,本文描述的RNA的编码区的鸟苷/胞嘧啶(G/C)含量增加,其中与野生型RNA编码的氨基酸序列相比,所述RNA编码的氨基酸序列优选是未修饰的。RNA序列的这种修饰是基于以下事实:待翻译的任何RNA区域的序列对于该mRNA的高效翻译都很重要。具有增加的G(鸟苷)/C(胞嘧啶)含量的序列比具有增加的A(腺苷)/U(尿嘧啶)含量的序列更稳定。关于几个密码子编码一个和相同氨基酸(所谓的遗传密码的简并性)的事实,可以确定对于稳定性最有利的密码子(所谓的替代密码子使用)。取决于RNA编码的氨基酸,与其野生型序列相比,对于RNA序列的修饰有各种可能性。特别地,包含A和/或U核苷酸的密码子可以通过用其他密码子取代这些密码子来修饰,所述其他密码子编码相同氨基酸但不含A和/或U或者包含较低量的A和/或U核苷酸。
在各种实施方案中,与野生型RNA的编码区的G/C含量相比,本文描述的RNA的编码区的G/C含量增加至少10%、至少20%、至少30%、至少40%、至少50%、至少55%或甚至更多。
给药的RNA的实施方案
在一些实施方案中,本文描述的组合物或药物制品包含RNA,所述RNA编码包含SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的氨基酸序列。同样地,本文描述的方法包括给药这样的RNA。
用于本文的活性平台是基于编码抗原的RNA疫苗,以便诱导强健的中和抗体和伴随/相伴的T细胞应答,从而用优选的最小疫苗剂量实现保护性免疫。给药的RNA优选是体外转录的RNA。
特别优选三种不同的RNA平台,即未修饰的包含尿苷的mRNA(uRNA)、核苷修饰的mRNA(modRNA)和自我扩增RNA(saRNA)。在一特别优选的实施方案中,所述RNA是体外转录的RNA。
如本文所述,本文评价了这些平台中每个的实施方案(参见,例如实施例2),代表用于快速疫苗开发的新型且强大的方法和系统。所述方法和系统取得了显著和有效的成功,使得能够在提供抗原(例如,SARS-CoV-2 S1蛋白和/或其RBD)序列(如本文所述,相关序列信息(例如,GenBank:MN908947.3)在2020年1月可获得)的几个月内开发有效的临床候选物。所述方法和系统中体现的见解和优点包括,例如,直接比较不同策略的一个或多个特征以实现快速、高效和有效的开发的能力。其中,本公开涵盖用于疫苗开发的更典型的策略鉴定问题来源的见解。此外,本文包括的发现建立了各种优点和益处,特别是在快速疫苗开发中,特别是在大流行中具有特殊益处。
如本文所述,在一些实施方案中,评价疫苗候选物在模式生物(例如,小鼠;参见例如,实施例2)中诱导的针对编码的抗原(例如,S1蛋白)或其部分(例如,RBD)的抗体滴度。在一些实施方案中,评价疫苗候选物的诱导的抗体的假病毒中和(参见例如,实施例2)活性。在一些实施方案中,疫苗候选物的特征在于诱导的T细胞应答的性质(例如,TH1 vs TH2特征;参见,例如,实施例4)。在一些实施方案中,在一种以上模式生物中评价疫苗候选物(参见例如,实施例2、实施例4等)。
在下文中,描述了这三种不同RNA平台的实施方案,其中在描述其元件时使用的某些术语具有以下含义:
S1S2蛋白/S1S2 RBD:编码SARS-CoV-2的各抗原的序列。
nsP1、nsP2、nsP3和nsP4:编码委内瑞拉马脑炎病毒(Venezuelan equineencephalitis virus,VEEV)RNA依赖性RNA聚合酶复制酶和亚基因组启动子的野生型序列,以及支持复制和翻译的保守序列元件。
virUTR:编码部分亚基因组启动子以及复制和翻译支持序列元件的病毒非翻译区。
hAg-Kozak:人α-珠蛋白mRNA的5′-UTR序列,其具有优化的“Kozak序列”以提高翻译效率。
Sec:Sec对应于内在的S1S2蛋白分泌信号肽(sec),其指导新生多肽链易位至内质网。甘氨酸-丝氨酸接头(GS):编码主要由氨基酸甘氨酸(G)和丝氨酸(S)组成的短接头肽的序列,通常用于融合蛋白。
次要纤维蛋白:T4次要纤维蛋白的部分序列(折叠子),用作人工三聚结构域。
TM:TM序列对应于S1S2蛋白的跨膜部分。
FI元件:3′-UTR是源自“分裂的氨基末端增强子”(AES)mRNA(称作F)和线粒体编码的12S核糖体RNA(称作I)的两个序列元件的组合。通过对赋予RNA稳定性和增加总蛋白表达的序列的离体选择过程鉴定了这些。
A30L70:长度为110个核苷酸的poly(A)-尾,由一段30个腺苷残基,随后10个核苷酸接头序列和另一段70个腺苷残基组成,设计为增强树突细胞中的RNA稳定性和翻译效率。
一般来说,本文描述的疫苗RNA可以包含从5′至3′的以下结构之一:
Cap-5′-UTR-疫苗抗原-编码序列-3′-UTR-Poly(A)
或者
β-S-ARCA(D1)-hAg-Kozak-疫苗抗原-编码序列-FI-A30L70。
一般来说,本文描述的疫苗抗原可以包含从N-末端至C-末端的以下结构之一:
信号序列-RBD-三聚结构域
或者
信号序列-RBD-三聚结构域-跨膜结构域。
RBD和三聚结构域可以通过接头分开,特别是GS接头如具有氨基酸序列GSPGSGSGS的接头。三聚结构域和跨膜结构域可以通过接头分开,特别是GS接头如具有氨基酸序列GSGSGS的接头。
信号序列可以是如本文描述的信号序列。RBD可以是如本文描述的RBD结构域。三聚结构域可以是如本文描述的三聚结构域。跨膜结构域可以是如本文描述的跨膜结构域。
在一实施方案中,
信号序列包含SEQ ID NO:1的氨基酸1-16或1-19的氨基酸序列或者SEQ ID NO:31的氨基酸1-22的氨基酸序列,或者与这个氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,
RBD包含SEQ ID NO:1的氨基酸327-528的氨基酸序列,或者与这个氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列,
三聚结构域包含SEQ ID NO:10的氨基酸3-29的氨基酸序列或SEQ ID NO:10的氨基酸序列,或者与这个氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列;并且
跨膜结构域包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列,或者与这个氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。
在一实施方案中,
信号序列包含SEQ ID NO:1的氨基酸1-16或1-19的氨基酸序列或者SEQ ID NO:31的氨基酸1-22的氨基酸序列,
RBD包含SEQ ID NO:1的氨基酸327-528的氨基酸序列,
三聚结构域包含SEQ ID NO:10的氨基酸3-29的氨基酸序列或SEQ ID NO:10的氨基酸序列;并且
跨膜结构域包含SEQ ID NO:1的氨基酸1207-1254的氨基酸序列。
上述RNA或编码上述疫苗抗原的RNA可以是包含未修饰的尿苷的mRNA(uRNA)、核苷修饰的mRNA(modRNA)或自我扩增RNA(saRNA)。在一实施方案中,上述RNA或编码上述疫苗抗原的RNA是核苷修饰的mRNA(modRNA)。
未修饰的尿苷信使RNA(uRNA)
未修饰的信使RNA(uRNA)药物的活性成分是在进入细胞时翻译的单链mRNA。除了编码冠状病毒疫苗抗原的序列(即开放阅读框),每个uRNA优选包含在稳定性和翻译效率方面为RNA的最大效力优化的常见结构元件(5′-帽、5′-UTR、3′-UTR、poly(A)-尾)。优选的5’帽结构是β-S-ARCA(D1)(m2 7,2'-OGppSpG)。优选的5′-UTR和3′-UTR分别包含SEQ ID NO:12的核苷酸序列和SEQ ID NO:13的核苷酸序列。优选的poly(A)-尾包含SEQ ID NO:14的序列。
这个平台的不同实施方案如下:
RBL063.1(SEQ ID NO:15;SEQ ID NO:7)
结构 β-S-ARCA(D1)-hAg-Kozak-S1S2-PP-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(S1S2全长蛋白,序列变体)
RBL063.2(SEQ ID NO:16;SEQ ID NO:7)
结构 β-S-ARCA(D1)-hAg-Kozak-S1S2-PP-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(S1S2全长蛋白,序列变体)
BNT162a1;RBL063.3(SEQ ID NO:17;SEQ ID NO:5)
结构 β-S-ARCA(D1)-hAg-Kozak-RBD-GS-次要纤维蛋白-FI-A30L70编码的抗原SARS-CoV-2的病毒刺突蛋白(S蛋白)(部分序列,S1S2蛋白的受体结合结构域(RBD))
图19示意了编码抗原的RNA的一般结构。
RBL063.1的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180000951
Figure GDA0004051824180000961
Figure GDA0004051824180000971
Figure GDA0004051824180000981
Figure GDA0004051824180000991
RBL063.2的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180000992
Figure GDA0004051824180001001
Figure GDA0004051824180001011
Figure GDA0004051824180001021
Figure GDA0004051824180001031
Figure GDA0004051824180001041
RBL063.3的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001042
Figure GDA0004051824180001051
核苷修饰的信使RNA(modRNA)
核苷修饰的信使RNA(modRNA)药物的活性成分也是在进入细胞时翻译的单链mRNA。除了编码冠状病毒疫苗抗原的序列(即开放阅读框),每个modRNA包含为RNA的最大效力优化的常见结构元件(5′-帽、5′-UTR、3′-UTR、poly(A)-尾),如同uRNA那样。与uRNA相比,modRNA包含1-甲基-假尿苷代替尿苷。优选的5’帽结构是m27,3’-OGppp(m1 2’-O)ApG。优选的5′-UTR和3′-UTR分别包含SEQ ID NO:12的核苷酸序列和SEQ ID NO:13的核苷酸序列。优选的poly(A)-尾包含SEQ ID NO:14的序列。将额外的纯化步骤应用于modRNA以减少体外转录反应期间产生的dsRNA污染物。
这个平台的不同实施方案如下:
BNT162b2;RBP020.1(SEQ ID NO:19;SEQ ID NO:7)
结构 m2 7,3’-OGppp(m1 2’-O)ApG)-hAg-Kozak-S1S2-PP-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(S1S2全长蛋白,序列变体)
BNT162b2;RBP020.2(SEQ ID NO:20;SEQ ID NO:7)
结构 m2 7,3’-OGppp(m1 2’-O)ApG)-hAg-Kozak-S1S2-PP-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(S1S2全长蛋白,序列变体)
BNT162b1;RBP020.3(SEQ ID NO:21;SEQ ID NO:5)
结构 m2 7,3’-OGppp(m1 2’-O)ApG)-hAg-Kozak-RBD-GS-次要纤维蛋白-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(部分序列,融合至次要纤维蛋白的S1S2蛋白的受体结合结构域(RBD))
图20示意了编码抗原的RNA的一般结构。
RBP020.1的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001061
Figure GDA0004051824180001071
Figure GDA0004051824180001081
Figure GDA0004051824180001091
Figure GDA0004051824180001101
Figure GDA0004051824180001111
RBP020.2的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001112
Figure GDA0004051824180001121
Figure GDA0004051824180001131
Figure GDA0004051824180001141
Figure GDA0004051824180001151
RBP020.3核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001152
Figure GDA0004051824180001161
Figure GDA0004051824180001171
核苷修饰的信使RNA(modRNA)平台的其他实施方案如下:
BNT162b3c(SEQ ID NO:29;SEQ ID NO:30)
结构 m2 7,3’-OGppp(m1 2’-O)ApG-hAg-Kozak-RBD-GS-次要纤维蛋白-GS-TM-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(部分序列,S1S2蛋白的受体结合结构域(RBD),融合至次要纤维蛋白,融合至S1S2蛋白的跨膜结构域(TM));在抗原序列N-末端的内在S1S2蛋白分泌信号肽(aa 1-19)
Figure GDA0004051824180001172
Figure GDA0004051824180001181
Figure GDA0004051824180001191
BNT162b3d(SEQ ID NO:31;SEQ ID NO:32)
结构 m2 7,3’-OGppp(m1 2’-O)ApG-hAg-Kozak-RBD-GS-次要纤维蛋白-GS-TM-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S1S2蛋白)(部分序列,S1S2蛋白的受体结合结构域(RBD),融合至次要纤维蛋白,融合至S1S2蛋白的跨膜结构域(TM));在抗原序列N-末端的免疫球蛋白分泌信号肽(aa 1-22)
Figure GDA0004051824180001192
Figure GDA0004051824180001201
自我扩增RNA(saRNA)
自我扩增mRNA(saRNA)药物的活性成分是单链RNA,其在进入细胞时自我扩增,此后翻译冠状病毒疫苗抗原。与优选编码单一蛋白的uRNA和modRNA相反,saRNA的编码区包含两个开放阅读框(ORF)。5’-ORF编码RNA依赖性RNA聚合酶如委内瑞拉马脑炎病毒(VEEV)RNA依赖性RNA聚合酶(复制酶)。复制酶ORF 3’后跟随着亚基因组启动子和编码抗原的第二ORF。此外,saRNA UTR包含自我扩增所需的5’和3’保守序列元件(CSE)。saRNA包含为RNA的最大效力优化的常见结构元件(5′-帽、5′-UTR、3′-UTR、poly(A)-尾),如同uRNA那样。saRNA优选包含尿苷。优选的5’帽结构是β-S-ARCA(D1)(m2 7,2'-OGppSpG)。
saRNA的细胞质递送启动甲病毒样的生命周期。但是,saRNA不编码基因组包装或细胞进入所需的甲病毒结构蛋白,因此非常不可能至不可能产生可复制型的病毒颗粒。复制不涉及产生DNA的任何中间步骤。因此saRNA的使用/摄入不会对靶细胞内的基因组整合或其他永久性遗传修饰造成风险。此外,saRNA本身通过识别dsRNA中间体有效激活先天免疫应答来防止其持续复制。
这个平台的不同实施方案如下:
RBS004.1(SEQ ID NO:24;SEQ ID NO:7)
结构 β-S-ARCA(D1)-复制酶-S1S2-PP-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S蛋白)(S1S2全长蛋白,序列变体)
RBS004.2(SEQ ID NO:25;SEQ ID NO:7)
结构 β-S-ARCA(D1)-复制酶-S1S2-PP-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S蛋白)(S1S2全长蛋白,序列变体)
BNT162c1;RBS004.3(SEQ ID NO:26;SEQ ID NO:5)
结构 β-S-ARCA(D1)-复制酶-RBD-GS-次要纤维蛋白-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S蛋白)(部分序列,S1S2蛋白的受体结合结构域(RBD))
RBS004.4(SEQ ID NO:27;SEQ ID NO:28)
结构 β-S-ARCA(D1)-复制酶-RBD-GS-次要纤维蛋白-TM-FI-A30L70
编码的抗原 SARS-CoV-2的病毒刺突蛋白(S蛋白)(部分序列,S1S2蛋白的受体结合结构域(RBD))
图21示意了编码抗原的RNA的一般结构。
RBS004.1的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001211
Figure GDA0004051824180001221
Figure GDA0004051824180001231
Figure GDA0004051824180001241
Figure GDA0004051824180001251
Figure GDA0004051824180001261
Figure GDA0004051824180001271
Figure GDA0004051824180001281
Figure GDA0004051824180001291
Figure GDA0004051824180001301
Figure GDA0004051824180001311
Figure GDA0004051824180001321
Figure GDA0004051824180001331
Figure GDA0004051824180001341
RBS004.2的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001342
Figure GDA0004051824180001351
Figure GDA0004051824180001361
Figure GDA0004051824180001371
Figure GDA0004051824180001381
Figure GDA0004051824180001391
Figure GDA0004051824180001401
Figure GDA0004051824180001411
Figure GDA0004051824180001421
Figure GDA0004051824180001431
Figure GDA0004051824180001441
Figure GDA0004051824180001451
Figure GDA0004051824180001461
RBS004.3的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001471
Figure GDA0004051824180001481
Figure GDA0004051824180001491
Figure GDA0004051824180001501
Figure GDA0004051824180001511
Figure GDA0004051824180001521
Figure GDA0004051824180001531
Figure GDA0004051824180001541
Figure GDA0004051824180001551
Figure GDA0004051824180001561
RBS004.4的核苷酸序列
示出了核苷酸序列,其具有如粗体字母所示的单个序列元件。此外,翻译的蛋白的序列在编码核苷酸序列下方以斜体字母示出(*=终止密码子)。
Figure GDA0004051824180001562
Figure GDA0004051824180001571
Figure GDA0004051824180001581
Figure GDA0004051824180001591
Figure GDA0004051824180001601
Figure GDA0004051824180001611
Figure GDA0004051824180001621
Figure GDA0004051824180001631
Figure GDA0004051824180001641
Figure GDA0004051824180001651
Figure GDA0004051824180001661
在一些实施方案中,本文描述的疫苗RNA包含选自SEQ ID NO:15、16、17、19、20、21、24、25、26、27、30和32的核苷酸序列。本文描述的特别优选的疫苗RNA包含选自SEQ IDNO:15、17、19、21、25、26、30和32的核苷酸序列,如选自SEQ ID NO:17、19、21、26、30和32。
本文描述的RNA优选配制于脂质纳米颗粒(LNP)中。在一实施方案中,所述LNP包含阳离子脂质、中性脂质、类固醇、聚合物缀合的脂质;以及所述RNA。在一实施方案中,所述阳离子脂质是ALC-0315,所述中性脂质是DSPC,所述类固醇是胆固醇,并且所述聚合物缀合的脂质是ALC-0159。优选的给药模式是肌肉内给药,更优选在水性冷冻保护剂缓冲液中用于肌肉内给药。所述药品优选是配制于脂质纳米颗粒(LNP)中的RNA的不含防腐剂的无菌分散体,其在水性冷冻保护剂缓冲液中用于肌肉内给药。
在不同的实施方案中,所述药品包含以下示出的组分,优选以下示出的比例或浓度:
Figure GDA0004051824180001662
Figure GDA0004051824180001663
Figure GDA0004051824180001664
Figure GDA0004051824180001671
[1]ALC-0315=((4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-癸酸己酯)/6-[N-6-(2-己基癸酰基氧基)己基-N-(4-羟基丁基)氨基]己基2-癸酸己酯(((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate)/6-[N-6-(2-hexyldecanoyloxy)hexyl-N-(4-hydroxybutyl)amino]hexyl 2-hexyldecanoate)
[2]ALC-0159=2-[(聚乙二醇)-2000]-N,N-双十四烷基乙酰胺/2-[2-(ω-甲氧基(聚乙二醇2000)乙氧基]-N,N-双十四烷基乙酰胺(2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide/2-[2-(ω-methoxy(polyethyleneglycol2000)ethoxy]-N,N-ditetradecylacetamide)
[3]DSPC=1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱(1,2-Distearoyl-sn-glycero-3-phosphocholine)
q.s.=适量(尽可能可以足够)
ALC-0315:
Figure GDA0004051824180001672
ALC-0159:
Figure GDA0004051824180001673
DSPC:
Figure GDA0004051824180001674
胆固醇:
Figure GDA0004051824180001675
在一实施方案中,mRNA比总脂质(N/P)的比例在6.0和6.5之间,如约6.0或约6.3。
包含核酸的颗粒
本文描述的核酸(如编码疫苗抗原的RNA)可以配制为颗粒来给药。
在本公开的上下文中,术语“颗粒”涉及由分子或分子复合物形成的结构化实体。在一实施方案中,术语“颗粒”涉及微米或纳米大小的结构,如分散在介质中的微米或纳米大小的致密结构。在一实施方案中,颗粒是包含核酸的颗粒,如包含DNA、RNA或其混合物的颗粒。
带正电荷的分子(如聚合物和脂质)与带负电荷的核酸之间的静电相互作用参与颗粒形成。这导致核酸颗粒的复合和自发形成。在一实施方案中,核酸颗粒是纳米颗粒。
如本公开所用,“纳米颗粒”是指具有适合肠胃外给药的平均直径的颗粒。
“核酸颗粒”可以用来将核酸递送至所关注的靶位点(例如,细胞、组织、器官等)。核酸颗粒可以由至少一种阳离子或阳离子可电离的脂质或者脂质样材料、至少一种阳离子聚合物(如鱼精蛋白)或其混合物以及核酸形成。核酸颗粒包括基于脂质纳米颗粒(LNP)和基于lipoplex(LPX)的制剂。
不受任何理论的束缚,认为阳离子或阳离子可电离的脂质或者脂质样材料和/或阳离子聚合物与核酸结合在一起形成聚集体,并且这种聚集导致胶体稳定的颗粒。
在一实施方案中,本文描述的颗粒进一步包含除阳离子或阳离子可电离的脂质或脂质样材料以外的至少一种脂质或脂质样材料,除阳离子聚合物以外的至少一种聚合物,或者它们的混合物。
在一些实施方案中,核酸颗粒包含一种以上类型的核酸分子,其中核酸分子的分子参数可以互相相似或不同,例如关于摩尔质量或基本结构要素如分子结构、加帽、编码区或其他特征。
本文描述的核酸颗粒的平均直径在一实施方案中可以为约30nm-约1000nm、约50nm-约800nm、约70nm-约600nm、约90nm-约400nm、约100nm-约300nm。
本文描述的核酸颗粒可以表现出约0.5以下、约0.4以下、约0.3以下或约0.2或更少的多分散性指数。举例来说,所述核酸颗粒可以表现出在约0.1至约0.3或约0.2至约0.3的范围内的多分散性指数。
关于RNA脂质颗粒,N/P比例给出脂质中的氮基团比RNA中的磷酸基团数量的比例。它与电荷比例相关,因为氮原子(取决于pH)通常带正电荷,而磷酸基团带负电荷。当存在电荷平衡时,N/P比例取决于pH。脂质制剂通常以4以上,多至12的N/P比例形成,因为认为带正电荷的纳米颗粒有利于转染。在那种情况下,认为RNA完全结合至纳米颗粒。
本文描述的核酸颗粒可以使用广泛的方法制备,所述方法可以包括从至少一种阳离子或阳离子可电离的脂质或脂质样材料和/或至少一种阳离子聚合物获得胶体,并且将胶体与核酸混合以获得核酸颗粒。
如本文所用的术语“胶体”涉及其中分散的颗粒不沉淀的均匀混合物的类型。混合物中的不溶性颗粒是微观的,粒径在1-1000纳米之间。该混合物可以称为胶体或胶体悬浮液。有时术语“胶体”仅指混合物中的颗粒而不是整个悬浮液。
对于包含至少一种阳离子或阳离子可电离的脂质或脂质样材料和/或至少一种阳离子聚合物的胶体的制备,常规用于制备脂质体囊泡并适当调整的方法可适用于本文。制备脂质体囊泡的最常用方法享有以下基本步骤:(i)将脂质溶于有机溶剂中,(ii)干燥所得的溶液,以及(iii)将干燥的脂质水合(使用各种水性介质)。
在膜水合方法中,首先将脂质溶于合适的有机溶剂中,然后干燥以在烧瓶底部产生薄膜。使用适当的水性介质将获得的脂质膜水合以产生脂质体分散体。此外,可以包括额外的缩小步骤。
反相蒸发是用于制备脂质体囊泡的膜水合的可选方法,其涉及在水相和包含脂质的有机相之间形成油包水乳液。为了系统均质化,需要对这个混合物进行简短的超声处理。在减压下去除有机相产生乳状凝胶,其随后变为脂质体悬浮液。
术语“乙醇注射技术”是指这样的过程,其中通过针头将包含脂质的乙醇溶液快速注射至水性溶液中。这个行为将脂质分散在整个溶液中,并且促进脂质结构形成,例如脂质囊泡形成如脂质体形成。一般来说,本文描述的RNA lipoplex颗粒可通过将RNA添加至胶体脂质体分散体来获得。在一实施方案中,利用乙醇注射技术,如下形成这种胶体脂质体分散体:在搅拌下将包含脂质(如阳离子脂质)和额外脂质的乙醇溶液注射至水性溶液中。在一实施方案中,本文描述的RNA lipoplex颗粒无需挤出步骤即可获得。
术语“挤出”是指产生具有固定的横截面轮廓的颗粒。特别地,其是指颗粒的缩小,由此迫使颗粒通过具有限定孔的过滤器。
具有不含有机溶剂特征的其他方法也可以根据本公开用于制备胶体。
LNP通常包含4种组分:可电离的阳离子脂质,中性脂质如磷脂,类固醇如胆固醇和聚合物缀合的脂质如聚乙二醇(PEG)-脂质。每种组分负责有效载荷保护,并且实现有效的细胞内递送。LNP可以通过将溶于乙醇的脂质与水性缓冲液中的核酸快速混合来制备。
术语“平均直径”是指通过动态激光散射(DLS)并使用所谓的累积量算法进行数据分析而测得的颗粒的平均流体动力学直径,其结果是提供具有一定长度尺寸的所谓的Zaverage,以及无量纲的多分散性指数(PI)(Koppel,D.,J.Chem.Phys.57,1972,pp 4814-4820,ISO 13321)。这里颗粒的“平均直径”、“直径”或“大小”与Zaverage的这个值同义使用。
“多分散性指数”优选基于动态光散射测量,通过“平均直径”的定义中提到的所谓的累积量分析来计算。在某些先决条件下,可以将其作为纳米颗粒整体大小分布的度量。
以前已描述了不同类型的包含核酸的颗粒适合递送颗粒形式的核酸(例如Kaczmarek,J.C.et al.,2017,Genome Medicine 9,60)。对于非病毒核酸递送媒介物,核酸的纳米颗粒包裹物理上保护核酸免于降解,并且取决于特定化学,可以辅助细胞摄取和内体逃逸。
本公开描述了包含核酸、至少一种阳离子或阳离子可电离的脂质或脂质样材料和/或至少一种与核酸缔合的阳离子聚合物以形成核酸颗粒的颗粒,以及包含这类颗粒的组合物。所述核酸颗粒可以包含通过非共价相互作用以不同形式与颗粒复合的核酸。本文描述的颗粒不是病毒颗粒,特别是传染性病毒颗粒,即,它们不能病毒式地感染细胞。
合适的阳离子或阳离子可电离的脂质或脂质样材料以及阳离子聚合物是形成核酸颗粒的那些,并且包括在术语“颗粒形成组分”或“颗粒形成剂”中。术语“颗粒形成组分”或“颗粒形成剂”涉及与核酸缔合以形成核酸颗粒的任何组分。这类组分包括可以是核酸颗粒的一部分的任何组分。
阳离子聚合物
鉴于它们高度的化学柔韧性,聚合物是用于基于纳米颗粒的递送的常用材料。通常,阳离子聚合物用来将带负电荷的核酸静电凝聚为纳米颗粒。这些带正电荷的基团通常由胺组成,所述胺在5.5-7.5的pH范围内改变它们的质子化状态,据认为这引起离子失衡,导致内体破裂。聚合物如聚-L-赖氨酸、聚酰胺胺(polyamidoamine)、鱼精蛋白和聚乙烯亚胺以及天然存在的聚合物(如壳聚糖)全部已应用于核酸递送,并且适合作为本文的阳离子聚合物。此外,一些研究者已合成了专门用于核酸递送的聚合物。特别地,聚(β-氨基酯)由于其易于合成和生物可降解性而在核酸递送中获得了广泛应用。这类合成聚合物也适合作为本文的阳离子聚合物。
如本文所用,“聚合物”具有其通常的含义,即,包含通过共价键连接的一个或多个重复单元(单体)的分子结构。重复单元可以全部相同,或者在某些情况下,聚合物内可以存在一种以上类型的重复单元。在某些情况下,聚合物是生物衍生的,即,生物聚合物如蛋白。在某些情况下,聚合物中还可以存在额外的部分,例如靶向部分,如本文中描述的那些。
如果聚合物内存在一种以上类型的重复单元,则将该聚合物称为“共聚物”。应当理解本文中采用的聚合物可以是共聚物。形成共聚物的重复单元可以以任何方式排列。例如,重复单元可以以随机顺序、交替顺序排列,或者作为“嵌段”共聚物,即,包含一个或多个区域,每个区域包含第一重复单元(例如,第一嵌段),以及一个或多个区域,每个包含第二重复单元(例如,第二嵌段),等等。嵌段共聚物可以具有两个(二嵌段共聚物)、三个(三嵌段共聚物)或更多数量的不同嵌段。
在某些实施方案中,聚合物是生物相容的。生物相容性聚合物是在中等浓度下通常不会导致显著的细胞死亡的聚合物。在某些实施方案中,生物相容性聚合物是生物可降解的,即,聚合物能够在生理环境内如体内化学和/或生物降解。
在某些实施方案中,聚合物可以是鱼精蛋白或聚亚烷基亚胺,特别是鱼精蛋白。
术语“鱼精蛋白”是指富含精氨酸并发现在各种动物(如鱼)的精细胞中代替体细胞组蛋白特别与DNA关联的任何相对低分子量的强碱性蛋白。特别地,术语“鱼精蛋白”是指在鱼精子中发现的蛋白,其是强碱性的,在水中可溶,通过加热不凝结,并且在水解时主要产生精氨酸。在纯化形式中,它们用于胰岛素的长效制剂以及中和肝素的抗凝作用。
根据本公开,如本文所用的术语“鱼精蛋白”意指包含获得自或源自天然或生物来源的任何鱼精蛋白氨基酸序列,包括其片段以及所述氨基酸序列的多聚体形式或其片段以及(合成的)多肽,所述多肽是人工的,专门设计用于特定目的,并且不可以从天然或生物来源分离。
在一实施方案中,聚亚烷基亚胺包含聚乙烯亚胺和/或聚丙烯亚胺,优选聚乙烯亚胺。优选的聚亚烷基亚胺是聚乙烯亚胺(PEI)。PEI的平均分子量优选0.75·102-107Da,优选1000-105Da,更优选10000-40000Da,更优选15000-30000Da,甚至更优选20000-25000Da。
根据本公开优选线性聚亚烷基亚胺如线性聚乙烯亚胺(PEI)。
预期用于本文的阳离子聚合物(包括聚阳离子聚合物)包括能够静电结合核酸的任何阳离子聚合物。在一实施方案中,预期用于本文的阳离子聚合物包括核酸可以与其缔合的任何阳离子聚合物,例如通过与核酸形成复合物或者形成其中包围或包裹核酸的囊泡。
本文描述的颗粒还可以包含除阳离子聚合物以外的聚合物,即,非阳离子聚合物和/或阴离子聚合物。阴离子和中性聚合物在本文中统称为非阳离子聚合物。
脂质和脂质样材料
术语“脂质”和“脂质样材料”在本文中广泛定义为包含一个或多个疏水部分或基团以及任选地还包括一个或多个亲水部分或基团的分子。包含疏水部分和亲水部分的分子也常称作两亲分子。脂质通常难溶于水。在水性环境中,两亲性质允许分子自组装为有组织的结构和不同的相。那些相之一由脂质双层组成,因为它们存在于水性环境中的囊泡、多层/单层脂质体或膜中。可以通过包含非极性基团来赋予疏水性,所述非极性基团包括但不限于长链饱和和不饱和脂肪烃基团以及被一个或多个芳香族、脂环族或杂环基团取代的这类基团。亲水基团可以包含极性和/或带电荷的基团,并且包括碳水化合物、磷酸根、羧基、硫酸根、氨基、巯基、硝基、羟基和其他类似基团。
如本文所用,术语“两亲性”是指具有极性部分和非极性部分的分子。通常,两亲性化合物具有连接至长疏水尾的极性头。在一些实施方案中,极性部分可溶于水,而非极性部分不溶于水。此外,极性部分可以具有形式上的正电荷或形式上的负电荷。或者,极性部分可以具有形式上的正电荷和负电荷,并且可以是两性离子或内盐。为了本公开的目的,两亲性化合物可以是但不限于一种或多种天然或非天然脂质和脂质样化合物。
术语“脂质样材料”、“脂质样化合物”或“脂质样分子”涉及在结构和/或功能上与脂质相关但在严格意义上可以不视为脂质的物质。例如,该术语包括在水性环境中存在于囊泡、多层/单层脂质体或膜中时能够形成两亲性层的化合物,并且包括表面活性剂或者具有亲水和疏水部分的合成化合物。一般来说,该术语是指分子,其包含具有不同结构组织的亲水和疏水部分,其可以与脂质结构组织相似或不相似。如本文所用,术语“脂质”解释为涵盖脂质和脂质样材料,除非本文另有说明或明显与上下文矛盾。
可以包括在两亲性层中的两亲性化合物的具体实例包括但不限于磷脂、氨基脂质和鞘脂。
在某些实施方案中,两亲性化合物是脂质。术语“脂质”是指一组有机化合物,其特征在于不溶于水,但可溶于许多有机溶剂。一般来说,脂质可以分为8类:脂肪酸、甘油脂、甘油磷脂、鞘脂、糖脂、聚酮(源自酮酰亚基的缩合)、固醇脂质和萜醇(prenol)脂质(源自异戊二烯亚基的缩合)。尽管有时将术语“脂质”用作脂肪的同义词,但脂肪是称作甘油三酯的脂质亚组。脂质还涵盖分子如脂肪酸和它们的衍生物(包括甘油三酯、甘油二酯、单甘油酯和磷脂),以及包含固醇的代谢物如胆固醇。
脂肪酸或脂肪酸残基是由以羧酸基团终止的烃链形成的一组不同分子;这种排列赋予分子极性、亲水末端,以及不溶于水的非极性、疏水末端。通常长度为4-24个碳的碳链可以是饱和或不饱和的,并且可以连接至包含氧、卤素、氮和硫的官能团。如果脂肪酸包含双键,则可能具有顺式或反式几何异构现象,这显著影响分子的构型。顺式双键使脂肪酸链弯曲,这种作用与链中更多的双键混合在一起。脂肪酸类别中的其他主要脂质类别是脂肪酯和脂肪酰胺。
甘油脂包括单、二和三取代的甘油,最著名的是甘油的脂肪酸三酯,称作甘油三酯。词语“三酰甘油”有时与“甘油三酯”同义使用。在这些化合物中,甘油的三个羟基通常被不同脂肪酸各自酯化。甘油脂的其他亚类由糖基甘油代表,其特征在于存在通过糖苷键连接至甘油的一个或多个糖残基。
甘油磷脂是两亲性分子(包含疏水区和亲水区),其包含甘油核心,所述甘油核心通过酯键连接至两个脂肪酸衍生的“尾部”,并且通过磷酸酯键连接至一个“头部”基团。通常称作磷脂(尽管鞘磷脂也被分类为磷脂)的甘油磷脂的实例有磷脂酰胆碱(也称作PC、GPCho或卵磷脂)、磷脂酰乙醇胺(PE或GPEtn)和磷脂酰丝氨酸(PS或GPSer)。
鞘脂是一个复杂的化合物家族,其享有一个共同结构特征,鞘氨醇碱(sphingoidbase)骨架。哺乳动物中的主要鞘氨醇碱通常称作鞘氨醇。神经酰胺(N-酰基-鞘氨醇碱)是鞘氨醇碱衍生物的主要亚类,其具有酰胺连接的脂肪酸。脂肪酸通常是饱和或单不饱和的,具有16-26个碳原子的链长度。哺乳动物的主要磷脂鞘酯是鞘磷脂(神经酰胺磷酸胆碱),而昆虫主要包含神经酰胺磷酸乙醇胺,真菌则具有植物神经酰胺磷酸肌醇和包含甘露糖的头基。鞘糖脂是一个多样化的分子家族,其包括一个或多个通过糖苷键连接至鞘氨醇碱的糖残基。这些的实例有简单和复杂的鞘糖脂如脑苷脂和神经节苷脂。
固醇脂质,如胆固醇及其衍生物,或者生育酚及其衍生物,与甘油磷脂和鞘磷脂一起是膜脂质的重要组分。
糖脂描述其中脂肪酸直接连接至糖骨架,形成与膜双层相容的结构的化合物。在糖脂中,单糖取代甘油脂和甘油磷脂中存在的甘油骨架。最熟悉的糖脂是革兰氏阴性细菌中脂多糖的脂质A组分的酰化葡糖胺前体。典型的脂质A分子是葡糖胺的二糖,其由多达七个脂肪-酰基链衍生而成。在大肠杆菌生长中需要的最小脂多糖是Kdo2-脂质A,用两个3-脱氧-D-甘露-辛酮糖酸(3-deoxy-D-manno-octulosonic acid,Kdo)残基糖基化的葡糖胺的六酰化二糖。
聚酮是通过经典酶以及与脂肪酸合成酶享有机理特征的迭代和多模块酶聚合乙酰基和丙酰基亚基合成的。它们包含来自动物、植物、细菌、真菌和海洋来源的大量次级代谢物和天然产物,并且具有很大的结构多样性。许多聚酮是环状分子,其骨架通常通过糖基化、甲基化、羟基化、氧化或其他过程进一步修饰。
根据本公开,脂质和脂质样材料可以是阳离子、阴离子或中性的。中性脂质或脂质样材料在所选pH下以不带电荷或中性的两性离子形式存在。
阳离子或阳离子可电离的脂质或脂质样材料
本文描述的核酸颗粒可以包含至少一种阳离子或阳离子可电离的脂质或脂质样材料作为颗粒形成剂。预期用于本文的阳离子或阳离子可电离的脂质或脂质样材料包括能够静电结合核酸的任何阳离子或阳离子可电离的脂质或脂质样材料。在一实施方案中,预期用于本文的阳离子或阳离子可电离的脂质或脂质样材料可以与核酸缔合,例如通过与核酸形成复合物或者形成其中包围或包裹核酸的囊泡。
如本文所用,“阳离子脂质”或“阳离子脂质样材料”是指具有净正电荷的脂质或脂质样材料。阳离子脂质或脂质样材料通过静电相互作用结合带负电荷的核酸。一般来说,阳离子脂质具有亲脂性部分,如固醇、酰基链、二酰基或更多个酰基链,并且脂质的头基通常带有正电荷。
在某些实施方案中,阳离子脂质或脂质样材料仅在某些pH下,特别是在酸性pH下具有净正电荷,而在不同的,优选较高的pH如生理pH下,其优选没有净正电荷,优选没有电荷,即,其是中性的。与在生理pH下保持阳离子状态的颗粒相比,据认为这种可电离的行为通过帮助内体逃逸和降低毒性来增强效力。
为了本公开的目的,除非与语境矛盾,否则术语“阳离子脂质或脂质样材料”包含这类“阳离子可电离的”脂质或脂质样材料。
在一实施方案中,阳离子或阳离子可电离的脂质或脂质样材料包含头基,所述头基包括至少一个带正电荷或能够质子化的氮原子(N)。
阳离子脂质的实例包括但不限于1,2-二油酰基-3-三甲基铵-丙烷(1,2-dioleoyl-3-trimethylammonium propane,DOTAP);N,N-二甲基-2,3-二油基氧基丙胺(N,N-dimethyl-2,3-dioleyloxypropylamine,DODMA)、1,2-二-O-十八烯基-3-三甲基铵丙烷(1,2-di-O-octadecenyl-3-trimethylammonium propane,DOTMA)、3-(N—(N′,N′-二甲基氨基乙烷)-氨甲酰基)胆固醇(3-(N—(N′,N′-dimethylaminoethane)-carbamoyl)cholesterol,DC-Chol)、二甲基双十八烷基铵(dimethyldioctadecylammonium,DDAB);1,2-二油酰基-3-二甲基铵-丙烷(1,2-dioleoyl-3-dimethylammonium-propane,DODAP);1,2-二酰基氧基-3-二甲基铵丙烷(1,2-diacyloxy-3-dimethylammonium propane);1,2-二烷氧基-3-二甲基铵丙烷(1,2-dialkyloxy-3-dimethylammonium propane);双十八烷基二甲基氯化铵(dioctadecyldimethyl ammonium chloride,DODAC)、1,2-二硬脂基氧基-N,N-二甲基-3-氨基丙烷(1,2-distearyloxy-N,N-dimethyl-3-aminopropane,DSDMA)、2,3-二(十四烷基氧基)丙基-(2-羟基乙基)-二甲基氨鎓(2,3-di(tetradecoxy)propyl-(2-hydroxyethyl)-dimethylazanium,DMRIE)、1,2-二肉豆蔻酰基-sn-甘油-3-乙基磷酸胆碱(1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine,DMEPC)、l,2-二肉豆蔻酰基-3-三甲基铵丙烷(l,2-dimyristoyl-3-trimethylammonium propane,DMTAP)、1,2-二油基氧基丙基-3-二甲基-羟基乙基溴化铵(1,2-dioleyloxypropyl-3-dimethyl-hydroxyethylammonium bromide,DORIE)、和2,3-二油酰基氧基-N-[2(精胺羧酰胺)乙基]-N,N-二甲基-l-丙胺鎓三氟乙酸盐(2,3-dioleoyloxy-N-[2(spermine carboxamide)ethyl]-N,N-dimethyl-l-propanamium trifluoroacetate,DOSPA)、1,2-二亚油基氧基-N,N-二甲基氨基丙烷(1,2-dilinoleyloxy-N,N-dimethylaminopropane,DLinDMA)、1,2-二亚油烯基氧基-N,N-二甲基氨基丙烷(1,2-dilinolenyloxy-N,N-dimethylaminopropane,DLenDMA)、双十八烷基酰氨基甘氨酰基精胺(dioctadecylamidoglycyl spermine,DOGS)、3-二甲基氨基-2-(胆甾-5-烯-3-β-氧基丁烷-4-氧基)-1-(顺式,顺式-9,12-十八碳二烯基氧基)丙烷(3-dimethylamino-2-(cholest-5-en-3-beta-oxybutan-4-oxy)-1-(cis,cis-9,12-oc-tadecadienoxy)propane,CLinDMA)、2-[5′-(胆甾-5-烯-3-β-氧基)-3′-氧杂戊氧基)-3-二甲基-1-(顺式,顺式-9′,12′-十八碳二烯氧基)丙烷(2-[5′-(cholest-5-en-3-beta-oxy)-3′-oxapentoxy)-3-dimethyl-1-(cis,cis-9′,12′-octadecadienoxy)propane,CpLinDMA)、N,N-二甲基-3,4-二油基氧基苄胺(N,N-dimethyl-3,4-dioleyloxybenzylamine,DMOBA)、1,2-N,N′-二油基氨甲酰基-3-二甲基氨基丙烷(1,2-N,N′-dioleylcarbamyl-3-dimethylaminopropane,DOcarbDAP)、2,3-二亚油酰基氧基-N,N-二甲基丙胺(2,3-Dilinoleoyloxy-N,N-dimethylpropylamine,DLinDAP)、1,2-N,N′-二亚油基氨甲酰基-3-二甲基氨基丙烷(1,2-N,N′-Dilinoleylcarbamyl-3-dimethylaminopropane,DLincarbDAP)、1,2-二亚油酰基氨甲酰基-3-二甲基氨基丙烷(1,2-Dilinoleoylcarbamyl-3-dimethylaminopropane,DLinCDAP)、2,2-二亚油基-4-二甲基氨基甲基-[1,3]-二氧戊环(2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane,DLin-K-DMA)、2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环(2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane,DLin-K-XTC2-DMA)、2,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane,DLin-KC2-DMA)、三十七烷基-6,9,28,31-四烯-19-基-4-(二甲基氨基)丁酸酯(heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino)butanoate,DLin-MC3-DMA)、N-(2-羟基乙基)-N,N-二甲基-2,3-双(十四烷基氧基)-1-丙胺鎓溴化物(N-(2-Hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide,DMRIE)、(±)-N-(3-氨基丙基)-N,N-二甲基-2,3-双(顺式-9-十四烯基氧基)-1-丙胺鎓溴化物((±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(cis-9-tetradecenyloxy)-1-propanaminium bromide,GAP-DMORIE)、(±)-N-(3-氨基丙基)-N,N-二甲基-2,3-双(十二烷基氧基)-1-丙胺鎓溴化物((±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(dodecyloxy)-1-propanaminium bromide,GAP-DLRIE)、(±)-N-(3-氨基丙基)-N,N-二甲基-2,3-双(十四烷基氧基)-1-丙胺鎓溴化物((±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide,GAP-DMRIE)、N-(2-氨基乙基)-N,N-二甲基-2,3-双(十四烷基氧基)-1-丙胺鎓溴化物(N-(2-Aminoethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide,βAE-DMRIE)、N-(4-羧基苄基)-N,N-二甲基-2,3-双(油酰基氧基)丙烷-1-胺鎓(N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium,DOBAQ)、2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八-9,12-二烯-1-基氧基]丙烷-1-胺(2-({8-[(3β)-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-1-amine,Octyl-CLinDMA)、1,2-二肉豆蔻酰基-3-二甲基铵-丙烷(1,2-dimyristoyl-3-dimethylammonium-propane,DMDAP)、1,2-二棕榈酰-3-二甲基铵-丙烷(1,2-dipalmitoyl-3-dimethylammonium-propane,DPDAP)、N1-[2-((1S)-1-[(3-氨基丙基)氨基]-4-[二(3-氨基-丙基)氨基]丁基羧酰胺基)乙基]-3,4-二[油基氧基]-苯甲酰胺(N1-[2-((1S)-1-[(3-aminopropyl)amino]-4-[di(3-amino-propyl)amino]butylcarboxamido)ethyl]-3,4-di[oleyloxy]-benzamide,MVL5)、1,2-二油酰基-sn-甘油-3-乙基磷酸胆碱(1,2-dioleoyl-sn-glycero-3-ethylphosphocholine,DOEPC)、2,3-双(十二烷基氧基)-N-(2-羟基乙基)-N,N-二甲基丙烷-1-溴化铵(2,3-bis(dodecyloxy)-N-(2-hydroxyethyl)-N,N-dimethylpropan-1-amonium bromide,DLRIE)、N-(2-氨基乙基)-N,N-二甲基-2,3-双(十四烷基氧基)丙烷-1-胺鎓溴化物(N-(2-aminoethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)propan-1-aminium bromide,DMORIE)、二((Z)-壬-2-烯-1-基)8,8'-((((2(二甲基氨基)乙基)硫代)羰基)氮烷二基)二辛酸酯(di((Z)-non-2-en-1-yl)8,8'-((((2(dimethylamino)ethyl)thio)carbonyl)azanediyl)dioctanoate,ATX)、N,N-二甲基-2,3-双(十二烷基氧基)丙烷-1-胺(N,N-dimethyl-2,3-bis(dodecyloxy)propan-1-amine,DLDMA)、N,N-二甲基-2,3-双(十四烷基氧基)丙烷-1-胺(N,N-dimethyl-2,3-bis(tetradecyloxy)propan-1-amine,DMDMA)、二((Z)-壬-2-烯-1-基)-9-((4-(二甲基氨基丁酰基)氧基)十七烷二酸酯(Di((Z)-non-2-en-1-yl)-9-((4-(dimethylaminobutanoyl)oxy)heptadecanedioate,L319)、N-十二烷基-3-((2-十二烷基氨甲酰基-乙基)-{2-[(2-十二烷基氨甲酰基-乙基)-2-{(2-十二烷基氨甲酰基-乙基)-[2-(2-十二烷基氨甲酰基-乙基氨基)-乙基]-氨基}-乙基氨基)丙酰胺(N-Dodecyl-3-((2-dodecylcarbamoyl-ethyl)-{2-[(2-dodecylcarbamoyl-ethyl)-2-{(2-dodecylcarbamoyl-ethyl)-[2-(2-dodecylcarbamoyl-ethylamino)-ethyl]-amino}-ethylamino)propionamide,lipidoid 98N12-5)、1-[2-[双(2-羟基十二烷基)氨基]乙基-[2-[4-[2-[双(2羟基十二烷基)氨基]乙基]哌嗪-1-基]乙基]氨基]十二烷-2-醇(1-[2-[bis(2-hydroxydodecyl)amino]ethyl-[2-[4-[2-[bis(2hydroxydodecyl)amino]ethyl]piperazin-1-yl]ethyl]amino]dodecan-2-ol,lipidoid C12-200)。
在一些实施方案中,阳离子脂质可以包含颗粒中存在的总脂质的约10摩尔(mol)%-约100摩尔%、约20摩尔%-约100摩尔%、约30摩尔%-约100摩尔%、约40摩尔%-约100摩尔%或约50摩尔%-约100摩尔%。
额外的脂质或脂质样材料
本文描述的颗粒还可以包含除阳离子或阳离子可电离的脂质或脂质样材料以外的脂质或脂质样材料,即,非阳离子脂质或脂质样材料(包括非阳离子可电离的脂质或脂质样材料)。阴离子和中性脂质或脂质样材料在本文中统称为非阳离子脂质或脂质样材料。通过添加除可电离/阳离子脂质或脂质样材料以外的其他疏水部分如胆固醇和脂质来优化核酸颗粒的制剂,可以增强颗粒稳定性和核酸递送的效力。
可以掺入额外的脂质或脂质样材料,其可以影响或不影响核酸颗粒的总电荷。在某些实施方案中,额外的脂质或脂质样材料是非阳离子脂质或脂质样材料。非阳离子脂质可以包含例如一种或多种阴离子脂质和/或中性脂质。如本文所用,“阴离子脂质”是指在所选pH下带负电荷的任何脂质。如本文所用,“中性脂质”是指在所选pH下以不带电荷或中性的两性离子形式存在的多种脂质种类中的任一种。在优选的实施方案中,额外的脂质包含以下中性脂质组分之一:(1)磷脂,(2)胆固醇或其衍生物;或者(3)磷脂和胆固醇或其衍生物的混合物。胆固醇衍生物的实例包括但不限于胆甾烷醇、胆甾烷酮、胆甾烯酮、粪固醇、胆固醇基-2'-羟基乙基醚、胆固醇基-4'-羟基丁基醚、生育酚及其衍生物,以及它们的混合物。
可以使用的具体磷脂包括但不限于磷脂酰胆碱(phosphatidylcholine)、磷脂酰乙醇胺(phosphatidylethanolamine)、磷脂酰甘油(phosphatidylglycerol)、磷脂酸(phosphatidic acid)、磷脂酰丝氨酸(phosphatidylserine)或鞘磷脂(sphingomyelin)。这类磷脂特别包括二酰基磷脂酰胆碱(diacylphosphatidylcholine),如二硬脂酰基磷脂酰胆碱(distearoylphosphatidylcholine,DSPC)、二油酰基磷脂酰胆碱(dioleoylphosphatidylcholine,DOPC)、二肉豆蔻酰基磷脂酰胆碱(dimyristoylphosphatidylcholine,DMPC)、双十五酰基磷脂酰胆碱(dipentadecanoylphosphatidylcholine)、二月桂酰基磷脂酰胆碱(dilauroylphosphatidylcholine)、二棕榈酰磷脂酰胆碱(dipalmitoylphosphatidylcholine,DPPC)、二花生四烯酰基磷脂酰胆碱(diarachidoylphosphatidylcholine,DAPC)、二二十二酰基磷脂酰胆碱(dibehenoylphosphatidylcholine,DBPC)、二二十三酰基磷脂酰胆碱(ditricosanoylphosphatidylcholine,DTPC)、二二十四酰基磷脂酰胆碱(dilignoceroylphatidylcholine,DLPC)、棕榈酰油酰基-磷脂酰胆碱(palmitoyloleoyl-phosphatidylcholine,POPC)、1,2-二-O-十八烯基-sn-甘油-3-磷酸胆碱(1,2-di-O-octadecenyl-sn-glycero-3-phosphocholine,18:0Diether PC)、1-油酰基-2-胆固醇基半琥珀酰基-sn-甘油-3-磷酸胆碱(1-oleoyl-2-cholesterylhemisuccinoyl-sn-glycero-3-phosphocholine,OChemsPC)、1-十六烷基-sn-甘油-3-磷酸胆碱(1-hexadecyl-sn-glycero-3-phosphocholine,C16Lyso PC)和磷脂酰乙醇胺(phosphatidylethanolamine),特别是二酰基磷脂酰乙醇胺(diacylphosphatidylethanolamine),如二油酰基磷脂酰乙醇胺(dioleoylphosphatidylethanolamine,DOPE)、二硬脂酰基-磷脂酰乙醇胺(distearoyl-phosphatidylethanolamine,DSPE)、二棕榈酰-磷脂酰乙醇胺(dipalmitoyl-phosphatidylethanolamine,DPPE)、二肉豆蔻酰基-磷脂酰乙醇胺(dimyristoyl-phosphatidylethanolamine,DMPE)、二月桂酰基-磷脂酰乙醇胺(dilauroyl-phosphatidylethanolamine,DLPE)、二植烷酰基-磷脂酰乙醇胺(diphytanoyl-phosphatidylethanolamine,DPyPE),以及具有不同疏水链的其他磷脂酰乙醇胺脂质。
在某些优选的实施方案中,额外的脂质是DSPC或DSPC和胆固醇。
在某些实施方案中,核酸颗粒包括阳离子脂质和额外的脂质。
在一实施方案中,本文描述的颗粒包括聚合物缀合的脂质如聚乙二醇化的脂质。术语“聚乙二醇化的脂质”是指包含脂质部分和聚乙二醇部分的分子。聚乙二醇化的脂质是本领域已知的。
不希望受理论束缚,与至少一种额外的脂质的量相比,至少一种阳离子脂质的量可能影响重要的核酸颗粒特征,如电荷、粒径、稳定性、组织选择性和核酸的生物活性。因此,在一些实施方案中,至少一种阳离子脂质比至少一种额外的脂质的摩尔比是约10:0至约1:9、约4:1至约1:2或约3:1至约1:1。
在一些实施方案中,非阳离子脂质,特别是中性脂质(例如,一种或多种磷脂和/或胆固醇)可以包含颗粒中存在的总脂质的约0摩尔%-约90摩尔%、约0摩尔%-约80摩尔%、约0摩尔%-约70摩尔%、约0摩尔%-约60摩尔%或约0摩尔%-约50摩尔%。
LipopIex颗粒
在本公开的某些实施方案中,本文描述的RNA可以存在于RNA lipoplex颗粒中。
在本公开的上下文中,术语“RNA lipoplex颗粒”涉及包含脂质,特别是阳离子脂质和RNA的颗粒。带正电荷的脂质体和带负电荷的RNA之间的静电相互作用导致RNAlipoplex颗粒的复合(complexation)和自发形成。带正电荷的脂质体一般可以利用阳离子脂质如DOTMA和额外的脂质如DOPE合成。在一实施方案中,RNA lipoplex颗粒是纳米颗粒。
在某些实施方案中,RNA lipoplex颗粒包括阳离子脂质和额外的脂质。在一示例性实施方案中,阳离子脂质是DOTMA,额外的脂质是DOPE。
在一些实施方案中,至少一种阳离子脂质比至少一种额外的脂质的摩尔比是约10:0至约1:9、约4:1至约1:2或约3:1至约1:1。在具体实施方案中,所述摩尔比可以是约3:1、约2.75:1、约2.5:1、约2.25:1、约2:1、约1.75:1、约1.5:1、约1.25:1或约1:1。在一示例性实施方案中,至少一种阳离子脂质比至少一种额外的脂质的摩尔比是约2:1。
本文描述的RNA lipoplex颗粒的平均直径在一实施方案中可以为约200nm-约1000nm、约200nm-约800nm、约250-约700nm、约400-约600nm、约300nm-约500nm或约350nm-约400nm。在具体实施方案中,RNA lipoplex颗粒的平均直径为约200nm、约225nm、约250nm、约275nm、约300nm、约325nm、约350nm、约375nm、约400nm、约425nm、约450nm、约475nm、约500nm、约525nm、约550nm、约575nm、约600nm、约625nm、约650nm、约700nm、约725nm、约750nm、约775nm、约800nm、约825nm、约850nm、约875nm、约900nm、约925nm、约950nm、约975nm或约1000nm。在一实施方案中,RNA lipoplex颗粒的平均直径为约250nm-约700nm。在另一实施方案中,RNA lipoplex颗粒的平均直径为约300nm-约500nm。在一示例性实施方案中,RNA lipoplex颗粒的平均直径为约400nm。
本文描述的RNA lipoplex颗粒和包含RNA lipoplex颗粒的组合物可用于在肠胃外给药之后,特别是静脉内给药之后,将RNA递送至靶组织。可以利用脂质体制备RNAlipoplex颗粒,所述脂质体可以通过将脂质在乙醇中的溶液注射至水或合适的水相中来获得。在一实施方案中,所述水相具有酸性pH。在一实施方案中,所述水相包含乙酸,例如,约5mM的量。通过将脂质体与RNA混合,脂质体可以用于制备RNA lipoplex颗粒。在一实施方案中,脂质体和RNA lipoplex颗粒包含至少一种阳离子脂质和至少一种额外的脂质。在一实施方案中,所述至少一种阳离子脂质包含1,2-二-O-十八烯基-3-三甲基铵丙烷(1,2-di-O-octadecenyl-3-trimethylammonium propane,DOTMA)和/或1,2-二油酰基-3-三甲基铵-丙烷(1,2-dioleoyl-3-trimethylammonium-propane,DOTAP)。在一实施方案中,所述至少一种额外的脂质包含1,2-二-(9Z-十八烯酰基)-sn-甘油-3-磷酸乙醇胺(1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine,DOPE)、胆固醇(cholesterol,Chol)和/或1,2-二油酰基-sn-甘油-3-磷酸胆碱(1,2-dioleoyl-sn-glycero-3-phosphocholine,DOPC)。在一实施方案中,所述至少一种阳离子脂质包含1,2-二-O-十八烯基-3-三甲基铵丙烷(1,2-di-O-octadecenyl-3-trimethylammonium propane,DOTMA),而所述至少一种额外的脂质包含1,2-二-(9Z-十八烯酰基)-sn-甘油-3-磷酸乙醇胺(1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine,DOPE)。在一实施方案中,脂质体和RNA lipoplex颗粒包含1,2-二-O-十八烯基-3-三甲基铵丙烷(1,2-di-O-octadecenyl-3-trimethylammonium propane,DOTMA)和1,2-二-(9Z-十八烯酰基)-sn-甘油-3-磷酸乙醇胺(1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine,DOPE)。
WO 2013/143683中描述了靶向脾的RNA lipoplex颗粒,其援引加入本文。已发现具有净负电荷的RNA lipoplex颗粒可以用来优先靶向脾组织或脾细胞如抗原呈递细胞,特别是树突细胞。因此,在给药RNA lipoplex颗粒之后,在脾中发生RNA积累和/或RNA表达。因此,本公开的RNA lipoplex颗粒可以用于在脾中表达RNA。在一实施方案中,在给药RNAlipoplex颗粒之后,在肺和/或肝中不发生或基本上不发生RNA积累和/或RNA表达。在一实施方案中,在给药RNA lipoplex颗粒之后,在抗原呈递细胞如脾中的专职抗原呈递细胞中发生RNA积累和/或RNA表达。因此,本公开的RNA lipoplex颗粒可以用于在这类抗原呈递细胞中表达RNA。在一实施方案中,抗原呈递细胞是树突细胞和/或巨噬细胞。
脂质纳米颗粒(LNP)
在一实施方案中,本文描述的核酸如RNA以脂质纳米颗粒(LNP)的形式给药。LNP可以包含能够形成颗粒的任何脂质,一个或多个核酸分子附着在所述脂质上,或者一个或多个核酸分子包裹在所述脂质中。
在一实施方案中,LNP包含一种或多种阳离子脂质,以及一种或多种稳定脂质。稳定脂质包括中性脂质和聚乙二醇化的脂质。
在一实施方案中,LNP包含阳离子脂质、中性脂质、类固醇、聚合物缀合的脂质;以及RNA,包裹在脂质纳米颗粒内或与脂质纳米颗粒缔合。
在一实施方案中,LNP包含40-55摩尔百分比、40-50摩尔百分比、41-49摩尔百分比、41-48摩尔百分比、42-48摩尔百分比、43-48摩尔百分比、44-48摩尔百分比、45-48摩尔百分比、46-48摩尔百分比、47-48摩尔百分比或47.2-47.8摩尔百分比的阳离子脂质。在一实施方案中,LNP包含约47.0、47.1、47.2、47.3、47.4、47.5、47.6、47.7、47.8、47.9或48.0摩尔百分比的阳离子脂质。
在一实施方案中,中性脂质以5-15摩尔百分比、7-13摩尔百分比或9-11摩尔百分比的浓度存在。在一实施方案中,中性脂质以约9.5、10或10.5摩尔百分比的浓度存在。
在一实施方案中,类固醇以30-50摩尔百分比、35-45摩尔百分比或38-43摩尔百分比的浓度存在。在一实施方案中,类固醇以约40、41、42、43、44、45或46摩尔百分比的浓度存在。
在一实施方案中,LNP包含1-10摩尔百分比、1-5摩尔百分比或1-2.5摩尔百分比的聚合物缀合的脂质。
在一实施方案中,LNP包含40-50摩尔百分比的阳离子脂质;5-15摩尔百分比的中性脂质;35-45摩尔百分比的类固醇;1-10摩尔百分比的聚合物缀合的脂质;以及RNA,包裹在脂质纳米颗粒内或与脂质纳米颗粒缔合。
在一实施方案中,基于脂质纳米颗粒中存在的脂质的总摩尔来确定摩尔百分比。
在一实施方案中,中性脂质选自DSPC、DPPC、DMPC、DOPC、POPC、DOPE、DOPG、DPPG、POPE、DPPE、DMPE、DSPE和SM。在一实施方案中,中性脂质选自DSPC、DPPC、DMPC、DOPC、POPC、DOPE和SM。在一实施方案中,中性脂质是DSPC。
在一实施方案中,类固醇是胆固醇。
在一实施方案中,聚合物缀合的脂质是聚乙二醇化的脂质。在一实施方案中,聚乙二醇化的脂质具有以下结构:
Figure GDA0004051824180001771
或者其药学可接受的盐、互变异构体或立体异构体,其中:
R12和R13各自独立地是包含10-30个碳原子的直链或支化的、饱和或不饱和的烷基链,其中所述烷基链任选地被一个或多个酯键中断;并且w的平均值为30-60。在一实施方案中,R12和R13各自独立地是包含12-16个碳原子的直链、饱和的烷基链。在一实施方案中,w的平均值为40-55。在一实施方案中,平均w为约45。在一实施方案中,R12和R13各自独立地是包含约14个碳原子的直链、饱和的烷基链,并且w的平均值为约45。
在一实施方案中,聚乙二醇化的脂质是DMG-PEG 2000,例如,具有以下结构:
Figure GDA0004051824180001772
在一些实施方案中,LNP的阳离子脂质组分具有式(III)的结构:
Figure GDA0004051824180001773
或者其药学可接受的盐、互变异构体、前药或立体异构体,其中:
L1或L2之一是–O(C=O)-、-(C=O)O-、-C(=O)-、-O-、-S(O)x-、-S-S-、-C(=O)S-、
SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-,
并且L1或L2中的另一个是–O(C=O)-、-(C=O)O-、-C(=O)-、-O-、-S(O)x-、-S-S-、-C(=O)S-、SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-或直接的键;
G1和G2各自独立地是未取代的C1-C12亚烷基或C1-C12亚烯基;
G3是C1-C24亚烷基、C1-C24亚烯基、C3-C8亚环烷基、C3-C8亚环烯基;
Ra是H或C1-C12烷基;
R1和R2各自独立地是C6-C24烷基或C6-C24烯基;
R3是H、OR5、CN、-C(=O)OR4、-OC(=O)R4或–NR5C(=O)R4
R4是C1-C12烷基;
R5是H或C1-C6烷基;并且
x是0、1或2。
在式(III)的一些前述实施方案中,脂质具有以下结构(IIIA)或(IIIB)之一:
Figure GDA0004051824180001781
其中:
A是3-8元环烷基或亚环烷基环;
在每次出现时,R6独立地是H、OH或C1-C24烷基;
n是1-15的整数。
在式(III)的一些前述实施方案中,脂质具有结构(IIIA),并且在其他实施方案中,脂质具有结构(IIIB)。
在式(III)的其他实施方案中,脂质具有以下结构(IIIC)或(IIID)之一:
Figure GDA0004051824180001782
其中y和z各自独立地是1-12的整数。
在式(III)的任何前述实施方案中,L1或L2之一是-O(C=O)-。例如,在一些实施方案中,L1和L2各自是-O(C=O)-。在前述任一项的一些不同实施方案中,L1和L2各自独立地是-(C=O)O-或-O(C=O)-。例如,在一些实施方案中,L1和L2各自是-(C=O)O-。
在式(III)的一些不同实施方案中,脂质具有以下结构(IIIE)或(IIIF)之一:
Figure GDA0004051824180001783
在式(III)的一些前述实施方案中,脂质具有以下结构(IIIG)、(IIIH)、(IIII)或(IIIJ)之一:
Figure GDA0004051824180001784
Figure GDA0004051824180001791
在式(III)的一些前述实施方案中,n是2-12的整数,例如2-8或2-4。例如,在一些实施方案中,n是3、4、5或6。在一些实施方案中,n是3。在一些实施方案中,n是4。在一些实施方案中,n是5。在一些实施方案中,n是6。
在式(III)的一些其他前述实施方案中,y和z各自独立地是2-10的整数。例如,在一些实施方案中,y和z各自独立地是4-9或4-6的整数。
在式(III)的一些前述实施方案中,R6是H。在其他前述实施方案中,R6是C1-C24烷基。在其他实施方案中,R6是OH。
在式(III)的一些实施方案中,G3是未取代的。在其他实施方案中,G3是取代的。在各种不同实施方案中,G3是线性C1-C24亚烷基或线性C1-C24亚烯基。
在式(III)的一些其他前述实施方案中,R1或R2或两者是C6-C24烯基。例如,在一些实施方案中,R1和R2各自独立地具有以下结构:
Figure GDA0004051824180001792
其中:
在每次出现时,R7a和R7b独立地是H或C1-C12烷基;并且
a是2-12的整数,
其中各自选择R7a、R7b和a,从而R1和R2各自独立地包含6-20个碳原子。例如,在一些实施方案中,a是5-9或8-12的整数。
在式(III)的一些前述实施方案中,R7的至少一次出现是H。例如,在一些实施方案中,在每次出现时R7a是H。在前述其他不同实施方案中,R7b的至少一次出现是C1-C8烷基。例如,在一些实施方案中,C1-C8烷基是甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正己基或正辛基。
在式(III)的不同实施方案中,R1或R2或两者具有以下结构之一:
Figure GDA0004051824180001793
在式(III)的一些前述实施方案中,R3是OH、CN、-C(=O)OR4、-OC(=O)R4或–NHC(=O)R4。在一些实施方案中,R4是甲基或乙基。
在各种不同实施方案中,式(III)的阳离子脂质具有下表所示的结构之一。
式(III)的代表性化合物.
Figure GDA0004051824180001801
Figure GDA0004051824180001811
Figure GDA0004051824180001821
Figure GDA0004051824180001831
Figure GDA0004051824180001841
在一些实施方案中,LNP包含式(III)的脂质、RNA、中性脂质、类固醇和聚乙二醇化的脂质。在一些实施方案中,式(III)的脂质是化合物III-3。在一些实施方案中,中性脂质是DSPC。在一些实施方案中,类固醇是胆固醇。在一些实施方案中,聚乙二醇化的脂质是ALC-0159。
在一些实施方案中,阳离子脂质以约40-约50摩尔百分比的量存在于LNP中。在一实施方案中,中性脂质以约5-约15摩尔百分比的量存在于LNP中。在一实施方案中,类固醇以约35-约45摩尔百分比的量存在于LNP中。在一实施方案中,聚乙二醇化的脂质以约1-约10摩尔百分比的量存在于LNP中。
在一些实施方案中,LNP包含约40-约50摩尔百分比的量的化合物III-3,约5-约15摩尔百分比量的DSPC,约35-约45摩尔百分比量的胆固醇,以及约1-约10摩尔百分比量的ALC-0159。
在一些实施方案中,LNP包含约47.5摩尔百分比的量的化合物III-3,约10摩尔百分比量的DSPC,约40.7摩尔百分比量的胆固醇,以及约1.8摩尔百分比量的ALC-0159。
在各种不同实施方案中,阳离子脂质具有下表所示的结构之一。
Figure GDA0004051824180001851
在一些实施方案中,LNP包含上表所示的阳离子脂质(例如,式(B)或式(D)的阳离子脂质,特别是式(D)的阳离子脂质),RNA,中性脂质,类固醇和聚乙二醇化的脂质。在一些实施方案中,中性脂质是DSPC。在一些实施方案中,类固醇是胆固醇。在一些实施方案中,聚乙二醇化的脂质是DMG-PEG 2000。
在一实施方案中,LNP包含阳离子脂质,其是可电离的脂质样材料(lipidoid)。在一实施方案中,阳离子脂质具有以下结构:
Figure GDA0004051824180001852
N/P值优选是至少约4。在一些实施方案中,N/P值的范围为4-20、4-12、4-10、4-8或5-7。在一实施方案中,N/P值是约6。
本文描述的LNP的平均直径在一实施方案中可以是约30nm-约200nm或约60nm-约120nm。
RNA靶向
本公开的一些方面包括本文公开的RNA(例如,编码疫苗抗原和/或免疫刺激剂的RNA)的靶向递送。
在一实施方案中,本公开包括靶向肺。如果给药的RNA是编码疫苗抗原的RNA,则特别优选靶向肺。例如,通过吸入,通过给药可以配制为如本文描述的颗粒如脂质颗粒的RNA,可以将RNA递送至肺。
在一实施方案中,本公开包括靶向淋巴系统,特别是次级淋巴器官,更具体地是脾。如果给药的RNA是编码疫苗抗原的RNA,则特别优选靶向淋巴系统,特别是次级淋巴器官,更具体地是脾。
在一实施方案中,靶细胞是脾细胞。在一实施方案中,靶细胞是抗原呈递细胞如脾中的专职抗原呈递细胞。在一实施方案中,靶细胞是脾中的树突细胞。
“淋巴系统”是循环系统的一部分,并且是免疫系统的重要部分,包含携带淋巴的淋巴管网络。淋巴系统由淋巴器官、淋巴管的传导网络和循环淋巴组成。主要或中央淋巴器官从未成熟的祖细胞产生淋巴细胞。胸腺和骨髓构成主要淋巴器官。包括淋巴结和脾在内的次级或外周淋巴器官维持成熟的幼稚淋巴细胞并启动适应性免疫应答。
可以通过所谓的lipoplex制剂将RNA递送至脾,其中RNA结合至包含阳离子脂质以及任选存在的额外的或辅助脂质的脂质体以形成可注射的纳米颗粒制剂。脂质体可以通过将脂质在乙醇中的溶液注射至水或合适的水相中来获得。RNA lipoplex颗粒可以通过将脂质体与RNA混合来制备。WO 2013/143683中描述了靶向脾的RNA lipoplex颗粒,其援引加入本文。已发现具有净负电荷的RNA lipoplex颗粒可以用来优先靶向脾组织或脾细胞如抗原呈递细胞,特别是树突细胞。因此,在给药RNA lipoplex颗粒之后,在脾中发生RNA积累和/或RNA表达。因此,本公开的RNA lipoplex颗粒可以用于在脾中表达RNA。在一实施方案中,在给药RNA lipoplex颗粒之后,在肺和/或肝中不发生或基本上不发生RNA积累和/或RNA表达。在一实施方案中,在给药RNA lipoplex颗粒之后,在抗原呈递细胞如脾中的专职抗原呈递细胞中发生RNA积累和/或RNA表达。因此,本公开的RNA lipoplex颗粒可以用于在这类抗原呈递细胞中表达RNA。在一实施方案中,抗原呈递细胞是树突细胞和/或巨噬细胞。
本公开的RNA lipoplex颗粒的电荷是至少一种阳离子脂质中存在的电荷和RNA中存在的电荷的总和。电荷比是至少一种阳离子脂质中存在的正电荷比RNA中存在的负电荷的比例。通过以下等式计算至少一种阳离子脂质中存在的正电荷比RNA中存在的负电荷的电荷比:电荷比=[(阳离子脂质浓度(摩尔))*(阳离子脂质中正电荷的总数)]/[(RNA浓度(摩尔))*(RNA中负电荷的总数)]。
本文描述的靶向脾的RNA lipoplex颗粒在生理pH下优选具有净负电荷,如正电荷比负电荷的电荷比为约1.9:2-约1:2,或约1.6:2-约1:2,或约1.6:2-约1.1:2。在具体实施方案中,在生理pH下RNA lipoplex颗粒中正电荷比负电荷的电荷比为约1.9:2.0、约1.8:2.0、约1.7:2.0、约1.6:2.0、约1.5:2.0、约1.4:2.0、约1.3:2.0、约1.2:2.0、约1.1:2.0或约1:2.0。
可以通过在将RNA优先递送至肝或肝组织的制剂中向受试者给药编码免疫刺激剂的RNA来向受试者提供免疫刺激剂。优选将RNA递送至这样的靶器官或组织,特别地,如果期望表达大量的免疫刺激剂和/或如果期望或需要全身存在免疫刺激剂,特别是大量。
RNA递送系统对肝有天生的偏好。这涉及基于脂质的颗粒,阳离子和中性纳米颗粒,特别是脂质纳米颗粒如脂质体、纳米胶束和生物缀合物中的亲脂性配体。肝积累是由肝血管系统或脂质代谢(脂质体以及脂质或胆固醇缀合物)的不连续性质引起的。
为了将RNA体内递送至肝,药物递送系统可以用来通过防止其降解将RNA运送至肝。例如,由聚(乙二醇)(PEG)包被的表面和包含mRNA的核心组成的polyplex纳米胶束是可用的系统,因为纳米胶束在生理条件下提供优秀的RNA体内稳定性。此外,包含密集的PEG栅栏的polyplex纳米胶束表面提供的隐形特性有效规避宿主免疫防御。
用于靶向肝的合适免疫刺激剂的实例有参与T细胞增殖和/或维持的细胞因子。合适的细胞因子的实例包括IL2或IL7,其片段和变体,以及这些细胞因子、片段和变体的融合蛋白,如延长的PK细胞因子。
在另一实施方案中,编码免疫刺激剂的RNA可以在将RNA优先递送至淋巴系统(特别是次级淋巴器官,更具体地是脾)的制剂中给药。优选将免疫刺激剂递送至这样的靶组织,特别地,如果期望在这种器官或组织中存在免疫刺激剂(例如,为了诱导免疫应答,特别是在T-细胞引发期间或为了激活常驻免疫细胞需要免疫刺激剂如细胞因子的情况下),但是不期望免疫刺激剂全身存在,特别是大量存在(例如,因为免疫刺激剂具有全身毒性)。
合适的免疫刺激剂的实例有参与T细胞引发的细胞因子。合适的细胞因子的实例包括IL12、IL15、IFN-或IFN-β,其片段和变体,以及这些细胞因子、片段和变体的融合蛋白,如延长的PK细胞因子。
免疫刺激剂
在一实施方案中,编码疫苗抗原的RNA可以是非免疫原性的。在这个和其他实施方案中,编码疫苗抗原的RNA可以与免疫刺激剂或编码免疫刺激剂的RNA共同给药。如果将免疫刺激剂连接至药物动力学修饰基团(此后称作“延长药物动力学(PK)”免疫刺激剂),本文描述的方法和药剂特别有效。如果以编码免疫刺激剂的RNA的形式给药免疫刺激剂,本文描述的方法和药剂特别有效。在一实施方案中,为了全身可用性,将所述RNA靶向肝。肝细胞可以被高效转染,并且能够产生大量的蛋白。
“免疫刺激剂”是通过诱导任何免疫系统组分,特别是免疫效应细胞的激活或增加其活性来刺激免疫系统的任何物质。免疫刺激剂可以是促炎的。
根据一方面,免疫刺激剂是细胞因子或其变体。细胞因子的实例包括干扰素,如干扰素-α(IFN-)或干扰素-γ(IFN-γ),白介素,如IL2、IL7、IL12、IL15和IL23,集落刺激因子,如M-CSF和GM-CSF,以及肿瘤坏死因子。根据另一方面,免疫刺激剂包括佐剂型免疫刺激剂如APC Toll样受体激动剂或共刺激/细胞粘附膜蛋白。Toll样受体激动剂的实例包括共刺激/粘附蛋白如CD80、CD86和ICAM-1。
细胞因子是在细胞信号传导中很重要的一类小蛋白(~5-20kDa)。它们的释放对它们周围细胞的行为有影响。细胞因子作为免疫调节剂参与自分泌信号传导、旁分泌信号传导和内分泌信号传导。细胞因子包括趋化因子、干扰素、白介素、淋巴因子和肿瘤坏死因子,但是一般不包括激素或生长因子(尽管一些在术语中重叠)。细胞因子由广泛的细胞产生,包括免疫细胞如巨噬细胞、B淋巴细胞、T淋巴细胞和肥大细胞,以及内皮细胞,成纤维细胞和各种基质细胞。给定细胞因子可以由一种以上类型的细胞产生。细胞因子通过受体发挥作用,并且在免疫系统中特别重要;细胞因子调节体液和基于细胞的免疫应答之自的平衡,并且它们调节特定细胞群体的成熟、生长和反应性。一些细胞因子以复杂的方式增强或抑制其他细胞因子的作用。
根据本公开,细胞因子可以是天然存在的细胞因子或者其功能片段或变体。细胞因子可以是人细胞因子,并且可以源自任何脊椎动物,特别是任何哺乳动物。一种特别优选的细胞因子是干扰素-α。
干扰素
干扰素(IFN)是宿主细胞响应几种病原体如病毒、细菌、寄生虫还有肿瘤细胞的存在而产生和释放的一组信号传导蛋白。在典型情况下,病毒感染的细胞会释放干扰素,引起附近的细胞增强它们的抗病毒防御。
基于它们通过其传导信号的受体的类型,干扰素通常分为三类:I型干扰素、II型干扰素和III型干扰素。
所有I型干扰素均结合至称作IFN-α/β受体(IFNAR)的特异性细胞表面受体复合物,其由IFNAR1和IFNAR2链组成。
人中存在的I型干扰素是IFN、IFNβ、IFNε、IFNκ和IFN。一般来说,当身体识别已入侵的病毒时产生I型干扰素。它们由成纤维细胞和单核细胞产生。一旦释放,I型干扰素结合至靶细胞上的特异性受体,这导致蛋白表达,从而防止病毒产生和复制其RNA和DNA。
IFNα蛋白主要由浆细胞样树突细胞(pDC)产生。它们主要参与针对病毒感染的先天免疫。负责它们合成的基因有13个亚型,分别称作IFNA1、IFNA2、IFNA4、IFNA5、IFNA6、IFNA7、IFNA8、IFNA10、IFNA13、IFNA14、IFNA16、IFNA17、IFNA21。这些基因一起发现在染色体9上的簇中。
IFNβ蛋白由成纤维细胞大量产生。它们具有抗病毒活性,主要参与先天免疫应答。已描述了两种类型的IFNβ,IFNβ1和IFNβ3。IFNβ1的天然和重组形式具有抗病毒、抗细菌和抗癌特性。
II型干扰素(人中的IFNγ)也称作免疫干扰素,并且被IL12激活。此外,II型干扰素由细胞毒性T细胞和T辅助细胞释放。
III型干扰素通过由IL10R2(也称作CRF2-4)和IFNLR1(也称作CRF2-12)组成的受体复合物传导信号。虽然比I型和II型IFN的发现时间更近,但是最近的信息证实III型IFN在某些类型的病毒或真菌感染中的重要性。
一般来说,I型和II型干扰素负责调节和激活免疫应答。
根据本公开,I型干扰素优选IFNα或IFNβ,更优选IFNα。
根据本公开,干扰素可以是天然存在的干扰素或者其功能片段或变体。干扰素可以是人干扰素,并且可以源自任何脊椎动物,特别是任何哺乳动物。
白介素
白介素(IL)是一组细胞因子(分泌蛋白或信号分子),基于区分的结构特征可以将其分为四大组。但是,它们的氨基酸序列相似性很弱(通常15-25%相同性)。人基因组编码超过50种白介素和相关蛋白。
根据本公开,白介素可以是天然存在的白介素或者其功能片段或变体。白介素可以是人白介素,并且可以源自任何脊椎动物,特别是任何哺乳动物。
延长的PK基团
本文描述的免疫刺激剂多肽可以制备为融合或嵌合多肽,其包括免疫刺激剂部分和异源多肽(即,不是免疫刺激剂的多肽)。可以将免疫刺激剂融合至延长的PK基团,其增加循环半衰期。下文描述了延长的PK基团的非限制性实例。应当理解增加免疫刺激剂如细胞因子或其变体的循环半衰期的其他PK基团也适用于本公开。在某些实施方案中,延长的PK基团是血清白蛋白结构域(例如,小鼠血清白蛋白、人血清白蛋白)。
如本文所用,术语“PK”是“药物动力学”的首字母缩写,并且涵盖化合物的特性,包括例如受试者的吸收、分布、代谢和消除。如本文所用,“延长的PK基团”是指与生物活性分子融合或一起给药时增加生物活性分子的循环半衰期的蛋白、肽或部分。延长的PK基团的实例包括血清白蛋白(例如,HSA),免疫球蛋白Fc或Fc片段及其变体,转铁蛋白及其变体以及人血清白蛋白(HSA)结合剂(如美国公开号2005/0287153和2007/0003549中公开的)。Kontermann,Expert Opin Biol Ther,2016 Jul;16(7):903-15中公开了其他示例性延长的PK基团,其整体援引加入本文。如本文所用,“延长的PK”免疫刺激剂是指与延长的PK基团组合的免疫刺激剂部分。在一实施方案中,延长的PK免疫刺激剂是融合蛋白,其中免疫刺激剂部分连接或融合至延长的PK基团。
在某些实施方案中,相对于单独的免疫刺激剂(即,未融合至延长的PK基团的免疫刺激剂),延长的PK免疫刺激剂的血清半衰期增加。在某些实施方案中,延长的PK免疫刺激剂的血清半衰期相对于单独的免疫刺激剂的血清半衰期长至少20、40、60、80、100、120、150、180、200、400、600、800或1000%。在某些实施方案中,延长的PK免疫刺激剂的血清半衰期是单独的免疫刺激剂的血清半衰期的至少1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、10倍、12倍、13倍、15倍、17倍、20倍、22倍、25倍、27倍、30倍、35倍、40倍或50倍。在某些实施方案中,延长的PK免疫刺激剂的血清半衰期是至少10小时、15小时、20小时、25小时、30小时、35小时、40小时、50小时、60小时、70小时、80小时、90小时、100小时、110小时、120小时、130小时、135小时、140小时、150小时、160小时或200小时。
如本文所用,“半衰期”是指化合物如肽或蛋白的血清或血浆浓度在体内例如由于自然机制的降解和/或清除或螯合而减少50%所花费的时间。适合用于本文的延长的PK免疫刺激剂在体内是稳定的,并且其半衰期通过例如融合至抗降解和/或清除或螯合的血清白蛋白(例如,HSA或MSA)而增加。半衰期可以通过本身已知的任何方式确定,如通过药物动力学分析。合适的技术对于本领域技术人员是熟知的,并且例如一般可以包括以下步骤:向受试者合适地给药合适剂量的氨基酸序列或化合物;定期从所述受试者采集血液样品或其他样品;确定所述血液样品中氨基酸序列或化合物的水平或浓度;并且从由此获得的数据(的图)计算直至氨基酸序列或化合物的水平或浓度与剂量给药时的初始水平相比降低50%为止的时间。进一步的细节在例如标准手册中提供,如Kenneth,A.et al.,ChemicalStability of Pharmaceuticals:A Handbook for Pharmacists and in Peters et al.,Pharmacokinetic Analysis:A Practical Approach(1996)。还参考Gibaldi,M.et al.,Pharmacokinetics,2nd Rev.Edition,Marcel Dekker(1982)。
在某些实施方案中,延长的PK基团包括血清白蛋白或其片段,或者血清白蛋白的变体或其片段(为了本公开的目的,所有这些均包括在术语“白蛋白”中)。可以将本文描述的多肽融合至白蛋白(或者其片段或变体)以形成白蛋白融合蛋白。美国公开号20070048282中描述了这样的白蛋白融合蛋白。
如本文所用,“白蛋白融合蛋白”是指通过将白蛋白(或者其片段或变体)的至少一个分子与蛋白(如治疗性蛋白,特别是免疫刺激剂)的至少一个分子融合而形成的蛋白。可以通过翻译核酸产生白蛋白融合蛋白,在所述核酸中编码治疗性蛋白的多核苷酸与编码白蛋白的多核苷酸符合读框地(in-frame)连接。一旦是白蛋白融合蛋白的一部分,治疗性蛋白和白蛋白可以各自称作白蛋白融合蛋白的“部分(portion)”、“区域”或“部分(moiety)”(例如,“治疗性蛋白部分”或“白蛋白部分”)。在高度优选的实施方案中,白蛋白融合蛋白包含至少一个分子的治疗性蛋白(包括但不限于治疗性蛋白的成熟形式)和至少一个分子的白蛋白(包括但不限于白蛋白的成熟形式)。在一实施方案中,白蛋白融合蛋白由宿主细胞如靶器官的细胞加工用于给药的RNA,例如肝细胞,并且分泌至循环中。用于RNA表达的宿主细胞的分泌途径中发生的新生白蛋白融合蛋白的加工可以包括但不限于信号肽切割;二硫键的形成;适当折叠;碳水化合物的添加和加工(例如,N-和O-连接的糖基化);特异性蛋白水解切割;和/或组装为多聚体蛋白。白蛋白融合蛋白优选由RNA以未加工形式编码,其特别在N-末端具有信号肽,并且在细胞分泌之后优选以加工形式存在,其中特别已切割掉信号肽。在最优选的实施方案中,“白蛋白融合蛋白的加工形式”是指已经历N-末端信号肽切割的白蛋白融合蛋白产物,在本文中也称作“成熟的白蛋白融合蛋白”。
在优选的实施方案中,与不融合至白蛋白时的相同治疗性蛋白的血浆稳定性相比,包含治疗性蛋白的白蛋白融合蛋白具有更高的血浆稳定性。血浆稳定性通常是指从体内给药治疗性蛋白并进入血流到治疗性蛋白降解并从血流清除进入最终从体内清除治疗性蛋白的器官(如肾或肝)的时间段。根据治疗性蛋白在血流中的半衰期计算血浆稳定性。治疗性蛋白在血流中的半衰期可以通过本领域已知的常见测定容易地确定。
如本文所用,“白蛋白”统指具有白蛋白的一种或多种功能活性(例如,生物活性)的白蛋白或氨基酸序列,或者白蛋白片段或变体。特别地,“白蛋白”是指人白蛋白或者其片段或变体,特别是人白蛋白的成熟形式,或者来自其他脊椎动物的白蛋白或其片段,或者这些分子的变体。白蛋白可以源自任何脊椎动物,特别是任何哺乳动物,例如人、牛、羊或猪。非哺乳动物白蛋白包括但不限于鸡和鲑鱼白蛋白。白蛋白融合蛋白的白蛋白部分可以来自与治疗性蛋白不同的动物。
在某些实施方案中,白蛋白是人血清白蛋白(HSA),或者其片段或变体,如US 5,876,969、WO 2011/124718、WO 2013/075066和WO 2011/0514789中公开的那些。
术语人血清白蛋白(HSA)和人白蛋白(HA)在本文中可互换使用。术语“白蛋白”和“血清白蛋白”更广泛,并且涵盖人血清白蛋白(以及其片段和变体)以及来自其他物种的白蛋白(以及其片段和变体)。
如本文所用,足以延长治疗性蛋白的治疗活性或血浆稳定性的白蛋白片段是指长度和结构足以稳定或延长蛋白的治疗活性或血浆稳定性的白蛋白片段,从而与非融合状态下的血浆稳定性相比,白蛋白融合蛋白的治疗性蛋白部分的血浆稳定性延长或延伸。
白蛋白融合蛋白的白蛋白部分可以包含白蛋白序列的全长,或者可以包括其一个或多个能够稳定或延长治疗活性或血浆稳定性的片段。这类片段的长度可以是10个或更多个氨基酸,或者可以包括来自白蛋白序列的约15、20、25、30、50或更多个连续氨基酸,或者可以包括白蛋白的特定结构域的一部分或全部。例如,可以使用跨越前两个免疫球蛋白样结构域的HSA的一个或多个片段。在一优选实施方案中,HSA片段是HSA的成熟形式。
一般来说,白蛋白片段或变体的长度为至少100个氨基酸,优选长度为至少150个氨基酸。
根据本公开,白蛋白可以是天然存在的白蛋白或者其片段或变体。白蛋白可以是人白蛋白,并且可以源自任何脊椎动物,特别是任何哺乳动物。
优选地,白蛋白融合蛋白包含白蛋白作为N-末端部分,以及治疗性蛋白作为C-末端部分。或者,还可以使用包含白蛋白作为C-末端部分,以及治疗性蛋白作为N-末端部分的白蛋白融合蛋白。在其他实施方案中,白蛋白融合蛋白具有融合至白蛋白的N-末端和C-末端的治疗性蛋白。在一优选实施方案中,融合在N-和C-末端的治疗性蛋白是相同的治疗性蛋白。在另一优选实施方案中,融合在N-和C-末端的治疗性蛋白是不同的治疗性蛋白。在一实施方案中,不同的治疗性蛋白都是细胞因子。
在一实施方案中,治疗性蛋白通过肽接头连接至白蛋白。融合部分之间的接头肽可以在部分之间提供更大的物理间隔,因此使治疗性蛋白的可接近性最大化,例如,用于结合至其同源受体。接头肽可以由氨基酸组成,从而它是柔性的或更刚性的。接头序列可以蛋白酶或化学可切割的。
如本文所用,术语“Fc区”是指天然免疫球蛋白由其两条重链各自的Fc结构域(或Fc部分)形成的部分。如本文所用,术语“Fc结构域”是指单个免疫球蛋白(Ig)重链的一部分或片段,其中所述Fc结构域不含Fv结构域。在某些实施方案中,Fc结构域开始于木瓜蛋白酶切割位点上游的铰链区,并且终止于抗体的C-末端。因此,完整的Fc结构域至少包含铰链区、CH2结构域和CH3结构域。在某些实施方案中,Fc结构域包含以下至少一个:铰链(例如,上、中和/或下铰链区)结构域、CH2结构域、CH3结构域、CH4结构域或者其变体、部分或片段。在某些实施方案中,Fc结构域包含完整的Fc结构域(即,铰链结构域、CH2结构域和CH3结构域)。在某些实施方案中,Fc结构域包含融合至CH3结构域(或其部分)的铰链结构域(或其部分)。在某些实施方案中,Fc结构域包含融合至CH3结构域(或其部分)的CH2结构域(或其部分)。在某些实施方案中,Fc结构域由CH3结构域或其部分组成。在某些实施方案中,Fc结构域由铰链结构域(或其部分)和CH3结构域(或其部分)组成。在某些实施方案中,Fc结构域由CH2结构域(或其部分)和CH3结构域组成。在某些实施方案中,Fc结构域由铰链结构域(或其部分)和CH2结构域(或其部分)组成。在某些实施方案中,Fc结构域缺少CH2结构域的至少一部分(例如,CH2结构域的全部或部分)。本文中的Fc结构域一般是指包含免疫球蛋白重链的Fc结构域的全部或部分的多肽。这包括但不限于包含完整CH1、铰链、CH2和/或CH3结构域的多肽以及仅包含例如铰链、CH2和CH3结构域的这类肽的片段。Fc结构域可以源自任何物种和/或任何亚型的免疫球蛋白,包括但不限于人IgG1、IgG2、IgG3、IgG4、IgD、IgA、IgE或IgM抗体。Fc结构域涵盖天然Fc和Fc变体分子。如本文所示,本领域普通技术人员会理解可以修饰任何Fc结构域,从而其氨基酸序列与天然存在的免疫球蛋白分子的天然Fc结构域不同。在某些实施方案中,Fc结构域具有降低的效应物功能(例如,FcγR结合)。
本文描述的多肽的Fc结构域可以源自不同免疫球蛋白分子。例如,多肽的Fc结构域可以包含源自IgG1分子的CH2和/或CH3结构域以及源自IgG3分子的铰链区。在另一实例中,Fc结构域可以包含嵌合铰链区,所述嵌合铰链区部分源自IgG1分子,并且部分源自IgG3分子。在另一实例中,Fc结构域可以包含嵌合铰链,所述嵌合铰链部分源自IgG1分子,并且部分源自IgG4分子。
在某些实施方案中,延长的PK基团包括Fc结构域或其片段,或者Fc结构域的变体或其片段(为了本公开的目的,所有这些均包括在术语“Fc结构域”中)。Fc结构域不含结合至抗原的可变区。适合用于本公开的Fc结构域可以获得自许多不同来源。在某些实施方案中,Fc结构域源自人免疫球蛋白。在某些实施方案中,Fc结构域来自人IgG1恒定区。但是,应当理解,Fc结构域可以源自另一哺乳动物物种的免疫球蛋白,包括例如,啮齿动物(例如小鼠、大鼠、兔、豚鼠)或非人灵长类(例如黑猩猩、猕猴)物种。
此外,Fc结构域(或者其片段或变体)可以源自任何免疫球蛋白类别,包括IgM、IgG、IgD、IgA和IgE,以及任何免疫球蛋白同种型,包括IgG1、IgG2、IgG3和IgG4。
各种Fc结构域基因序列(例如,小鼠和人恒定区基因序列)可以公众可得的保藏物的形式获得。可以选择缺少特定效应物功能和/或具有特定修饰以减少免疫原性的包含Fc结构域序列的恒定区结构域。已公开了许多抗体和抗体编码基因的序列,并且可以利用本领域公知的技术从这些序列衍生合适的Fc结构域序列(例如铰链、CH2和/或CH3序列,或者其片段或变体)。
在某些实施方案中,延长的PK基团是血清白蛋白结合蛋白如US2005/0287153、US2007/0003549、US2007/0178082、US2007/0269422、US2010/0113339、WO2009/083804和WO2009/133208中描述的那些,它们整体援引加入本文。在某些实施方案中,延长的PK基团是转铁蛋白,如US 7,176,278和US 8,158,579中公开的,它们整体援引加入本文。在某些实施方案中,延长的PK基团是血清免疫球蛋白结合蛋白如US2007/0178082、US2014/0220017和US2017/0145062中公开的那些,它们整体援引加入本文。在某些实施方案中,延长的PK基团是结合至血清白蛋白的基于纤连蛋白(Fn)的支架结构域蛋白,如US2012/0094909中公开的那些,其整体援引加入本文。US2012/0094909中还公开了制备基于纤连蛋白的支架结构域蛋白的方法。基于Fn3的延长的PK基团的非限制性实例有Fn3(HSA),即,结合至人血清白蛋白的Fn3蛋白。
在某些方面,适合根据本公开使用的延长的PK免疫刺激剂可以采用一种或多种肽接头。如本文所用,术语“肽接头”是指在多肽链的线性氨基酸序列中连接两个或更多个结构域(例如,延长的PK部分和免疫刺激剂部分)的肽或多肽序列。例如,肽接头可以用来将免疫刺激剂连接至HSA结构域。
适合将延长的PK基团融合至例如免疫刺激剂的接头是本领域公知的。示例性接头包括甘氨酸-丝氨酸多肽接头、甘氨酸-脯氨酸多肽接头和脯氨酸-丙氨酸多肽接头。在某些实施方案中,接头是甘氨酸-丝氨酸多肽接头,即,由甘氨酸和丝氨酸残基组成的肽。
除上述异源多肽以外或代替上述异源多肽,本文描述的免疫刺激剂多肽可以包含编码“标记”或“报告分子”的序列。标记或报告基因的实例包括β-内酰胺酶、氯霉素乙酰转移酶(CAT)、腺苷脱氨酶(ADA)、氨基糖苷磷酸转移酶、二氢叶酸还原酶(DHFR)、潮霉素-B-磷酸转移酶(hygromycin-B-hosphotransferase,HPH)、胸苷激酶(TK)、β-半乳糖苷酶和黄嘌呤鸟嘌呤磷酸核糖转移酶(XGPRT)。
药物组合物
本文描述的药剂(agent)可以在药物组合物或药物中给药,并且可以以任何合适的药物组合物的形式给药。
在一实施方案中,本文描述的药物组合物是用于在受试者中诱导针对冠状病毒的免疫应答的免疫原性组合物。例如,在一实施方案中,所述免疫原性组合物是疫苗。
在本发明的所有方面的一实施方案中,本文描述的组分如编码疫苗抗原的RNA可以在药物组合物中给药,所述药物组合物可以包含药学可接受的载剂,并且可以任选地包含一种或多种佐剂、稳定剂等。在一实施方案中,所述药物组合物用于治疗或预防性治疗,例如,用于治疗或预防冠状病毒感染。
术语“药物组合物”涉及包含治疗有效物质,优选与药学可接受的载剂、稀释剂和/或赋形剂一起的制剂。通过向受试者给药所述药物组合物,所述药物组合物可用于治疗、预防或降低疾病或病症的严重程度。药物组合物在本领域中也称作药物制剂。
本公开的药物组合物可以包含一种或多种佐剂,或者可以与一种或多种佐剂一起给药。术语“佐剂”涉及延长、增强或加速免疫应答的化合物。佐剂包含一组异质化合物如油乳剂(例如,弗氏佐剂)、矿物质(如明矾)、细菌产物(如百日咳杆菌毒素)或免疫刺激复合物。佐剂的实例包括但不限于LPS、GP96、CpG寡脱氧核苷酸、生长因子和细胞因子,如单核因子、淋巴因子、白介素、趋化因子。细胞因子可以是IL1、IL2、IL3、IL4、IL5、IL6、IL7、IL8、IL9、IL10、IL12、IFNα、IFNγ、GM-CSF、LT-a。其他已知的佐剂是氢氧化铝、弗氏佐剂或油(如,
Figure GDA0004051824180001921
ISA51)。用于本公开的其他合适的佐剂包括脂肽,如Pam3Cys。
根据本公开的药物组合物一般以“药学有效量”和“药学可接受的制剂”应用。
术语“药学可接受的”是指物质的无毒性,其不与药物组合物的活性组分的作用相互作用。
术语“药学有效量”或“治疗有效量”是指单独或与进一步的剂量一起实现期望反应或期望效果的量。在治疗特定疾病的情况下,期望的反应优选涉及抑制疾病过程。这包括减缓疾病的发展,以及特别地,中断或逆转疾病的发展。治疗疾病中的期望反应还可以是延迟所述疾病或所述疾病状况的发生或者防止所述疾病或所述疾病状况的发生。本文描述的组合物的有效量取决于待治疗的疾病状况,疾病的严重程度,患者的个体参数,包括年龄、生理状况、尺寸和体重,治疗的持续时间,伴随疗法的类型(如果存在),给药的具体途径以及相似因素。因此,本文描述的组合物的给药剂量可以取决于许多这样的参数。在用初始剂量患者中的反应不足的情况下,可以使用更高剂量(或者通过不同的、更局部化的给药途径有效达到的更高剂量)。
本公开的药物组合物可以包含盐、缓冲剂、防腐剂和任选存在的其他治疗剂。在一实施方案中,本公开的药物组合物包含一种或多种药学可接受的载剂、稀释剂和/或赋形剂。
用于本公开的药物组合物的合适的防腐剂包括但不限于苯扎氯铵、氯代丁醇、对羟基苯甲酸酯和硫柳汞。
如本文所用的术语“赋形剂”是指可以存在于本公开的药物组合物中但不是活性成分的物质。赋形剂的实例包括但不限于载剂、粘合剂、稀释剂、润滑剂、增稠剂、表面活性剂、防腐剂、稳定剂、乳化剂、缓冲剂、增香剂或着色剂。
术语“稀释剂”涉及稀释(diluting)和/或稀释(thinning)剂。此外,术语“稀释剂”包括流体、液体或固体悬浮液和/或混合介质中的任何一种或多种。合适的稀释剂的实例包括乙醇、甘油和水。
术语“载剂”是指可以是天然的、合成的、有机的、无机的组分,其中组合了活性组分以促进、增强或实现药物组合物的给药。如本文所用的载剂可以是一种或多种相容的固体或液体填充剂、稀释剂或包裹物质,其适合给予受试者。合适的载剂包括但不限于无菌水、林格氏液、乳酸林格氏液、无菌氯化钠溶液、等渗盐水、聚亚烷基二醇、氢化萘以及特别的生物相容性丙交酯聚合物、丙交酯/乙交酯共聚物或聚氧乙烯/聚氧-丙烯共聚物。在一实施方案中,本公开的药物组合物包括等渗盐水。
用于治疗用途的药学可接受的载剂、赋形剂或稀释剂是药学领域公知的,并且例如在Remington's Pharmaceutical Sciences,Mack Publishing Co.(A.R Gennaroedit.1985)中进行了描述。
药物载剂、赋形剂或稀释剂可以根据预期的给药途径和标准药物实践进行选择。
在一实施方案中,本文描述的药物组合物可以静脉内、动脉内、皮下、皮内或肌肉内给药。在某些实施方案中,将药物组合物配制用于局部给药或全身给药。全身给药可以包括肠道给药,其包括通过胃肠道吸收,或者肠胃外给药。如本文所用,术语“肠胃外给药”是指以通过胃肠道以外的任何方式给药,如通过静脉内注射。在一优选实施方案中,将药物组合物配制用于肌肉内给药。在另一实施方案中,将药物组合物配制用于全身给药,例如,用于静脉内给药。
如本文所用的术语“共给药”表示向同一患者给药不同化合物或组合物(例如,编码抗原的RNA和编码免疫刺激剂的RNA)的过程。不同化合物或组合物可以同时、基本上同时或顺序给药。
本文描述的药物组合物和产品可以作为用于注射的溶液的冷冻浓缩物提供,例如,浓度为0.50mg/mL。在一实施方案中,为了制备用于注射的溶液,将药物解冻并用等渗氯化钠溶液(例如,0.9% NaCl,盐水)稀释,例如,通过一步稀释法。在一些实施方案中,抑菌氯化钠溶液(例如,0.9% NaCl,盐水)不可以用作稀释剂。在一些实施方案中,稀释的药物产品是灰白色悬浮液。用于注射的最终溶液的浓度根据待给药的各剂量水平而变化。
在一实施方案中,由于微生物污染的风险并考虑制备过程的多剂量方法,因此在制备开始后6小时内进行给药。在一实施方案中,在这6小时时间段内,允许两个条件:制备、操作和转移的室温,以及储存的2-8℃。
本文描述的组合物可以在受控温度的条件下运输和/或储存,例如,约4-5℃或更低,约-20℃或更低,-70℃±10℃(例如,-80℃至-60℃)的温度条件,例如,利用冷却系统(如,其可以是或包括干冰)以保持期望温度。在一实施方案中,本文描述的组合物可以在受控温度的保温运输工具(thermal shipper)中运输。这类保温运输工具可以包含启用GPS的热传感器以追踪每次运输的位置和温度。所述组合物可以通过用例如干冰重新填充来储存。
治疗
本发明提供在受试者中诱导针对冠状病毒的适应性免疫应答的方法和药剂,其包括给药有效量的本文描述的包含编码冠状病毒疫苗抗原的RNA的组合物。
在一实施方案中,本文描述的方法和药剂在受试者中提供对冠状病毒、冠状病毒感染或者与冠状病毒相关的疾病或病症的免疫力。因此本发明提供用于治疗或预防与冠状病毒相关的感染、疾病或病症的方法和药剂。
在一实施方案中,将本文描述的方法和药剂给予患有与冠状病毒相关的感染、疾病或病症的受试者。在一实施方案中,将本文描述的方法和药剂给予有发展与冠状病毒相关的感染、疾病或病症的风险的受试者。例如,可以将本文描述的方法和药剂给予有与冠状病毒接触风险的受试者。在一实施方案中,将本文描述的方法和药剂给予生活、旅行或预期旅行至冠状病毒流行的地理区域的受试者。在一实施方案中,将本文描述的方法和药剂给予与生活、旅行或预期旅行至冠状病毒流行的地理区域的另一人接触或预期接触的受试者。在一实施方案中,将本文描述的方法和药剂给予已知通过其职业或其他接触而暴露于冠状病毒的受试者。在一实施方案中,冠状病毒是SARS-CoV-2。在一些实施方案中,将本文描述的方法和药剂给予这样的受试者,所述受试者具有以前暴露于和/或感染SARS-CoV-2和/或其抗原或表位或者与其交叉反应的证据。例如,在一些实施方案中,将本文描述的方法和药剂给予其中可检测和/或已检测到与SARS-CoV-2刺突蛋白的一个或多个表位反应的抗体、B细胞和/或T细胞的受试者。
对于用作疫苗的组合物,所述组合物必须在细胞、组织或受试者(例如,人)中诱导针对冠状病毒抗原的免疫应答。在一些实施方案中,所述组合物在细胞、组织或受试者(例如,人)中诱导针对冠状病毒抗原的免疫应答。在某些情况下,所述疫苗在哺乳动物中诱导保护性免疫应答。可以将本发明的治疗化合物或组合物预防性地(即,为了预防疾病或病症)或治疗性地(即,为了治疗疾病或病症)给予患有或有风险(或易于)发展疾病或病症的受试者。可以利用标准临床方法鉴定这类受试者。在本发明的上下文中,预防性给药发生在显示疾病的明显临床症状之前,从而预防疾病或病症或者延迟其发展。在医学领域的上下文中,术语“预防”涵盖减少疾病引起的死亡率或发病率负担的任何活动。预防可以发生在一级、二级和三级预防水平。虽然一级预防避免疾病的发展,但是预防的二级和三级水平涵盖旨在预防疾病发展和症状出现以及通过恢复功能和减少疾病相关并发症来减少已建立的疾病的负面影响的活动。
本公开报道了所提供的组合物的各种表征(参见,例如,实施例2;还参见其后的实施例),并且进一步建立了在人中有效的疫苗的参数。
在一些实施方案中,本发明的免疫原性组合物或疫苗的给药可以通过单次给药进行或通过多次给药加强。
在一些实施方案中,每剂量可以给药0.1μg-300μg、0.5μg-200μg或1μg-100μg,如约1μg、约3μg、约10μg、约30μg、约50μg或约100μg本文描述的RNA的量。在一实施方案中,本发明预想单剂量的给药。在一实施方案中,本发明预想初免剂量随后一个或多个加强剂量的给药。加强剂量或第一加强剂量可以在初免剂量给药之后7-28天或14-24天给药。
在一些实施方案中,每剂量可以给药60μg或更低、50μg或更低、40或更低、30μg或更低、20μg或更低、10μg或更低、5μg或更低、2.5μg或更低或者1μg或更低的本文描述的RNA的量。
在一些实施方案中,每剂量可以给药至少0.25μg、至少0.5μg、至少1μg、至少2μg、至少3μg、至少4μg、至少5μg、至少10μg、至少20μg、至少30μg或至少40μg本文描述的RNA的量。
在一些实施方案中,每剂量可以给药0.25μg-60μg、0.5μg-55μg、1μg-50μg、5μg-40μg或10μg-30μg本文描述的RNA的量。
在一实施方案中,每剂量给药约30μg本文描述的RNA的量。在一实施方案中,给药至少两个这样的剂量。例如,可以在给药第一剂量之后约21天给药第二剂量。
在一些实施方案中,本文描述的RNA疫苗的效力(例如,以两个剂量给药,其中第二剂量可以在给药第一剂量之后约21天给药,并且例如,以约30μg每剂量的量给药)在给药第二剂量之后开始7天(例如,如果在给药第一剂量之后21天给药第二剂量,则在给药第一剂量之后开始28天)是至少70%、至少80%、至少90或至少95%。在一些实施方案中,在至少50岁、至少55岁、至少60岁、至少65岁、至少70岁或更老的群体中观察到这样的效力。在一些实施方案中,本文描述的RNA疫苗的效力(例如,以两个剂量给药,其中第二剂量可以在给药第一剂量之后约21天给药,并且例如,以约30μg每剂量的量给药)在给药第二剂量之后开始7天(例如,如果在给药第一剂量之后21天给药第二剂量,则在给药第一剂量之后开始28天)在至少65岁如65-80、65-75或65-70岁的群体中是至少90%、至少91%、至少92%、至少93%、至少94%或至少95%。可以在长达1个月、2个月、3个月、6个月或更长的时间内观察到这样的效力。
在一实施方案中,疫苗效力定义为有感染证据的受试者数减少的百分比(疫苗接种的受试者对未疫苗接种的受试者)。
在一实施方案中,通过监视COVID-19的潜在病例评价效力。为了本文的目的,在任何时间,如果患者发展急性呼吸系统疾病,则可以认为该患者可能患有COVID-19疾病。评价可以包括鼻(中鼻甲)拭子,其可以利用逆转录-聚合酶链反应(RT-PCR)测试以检测SARS-CoV-2。此外,可以评价临床信息和来自当地护理标准测试的结果。
在一些实施方案中,效力评价可以利用SARS-CoV-2相关病例的定义,其中:
·确诊的COVID-19:在症状期间或者在症状期之前或之后4天内存在至少1种以下症状和SARS-CoV-2NAAT(基于核酸扩增的测试)阳性:发烧;新的或增加的咳嗽;新的或增加的呼吸急促;寒战;新的或增加的肌肉疼痛;新的味觉或嗅觉丧失;喉咙痛;腹泻;呕吐。
可选地或额外地,在一些实施方案中,效力评价可以利用SARS-CoV-2相关病例的定义,其中可以考虑CDC定义的一个或多个以下额外症状:疲劳;头痛、鼻塞或流涕;恶心。
在一些实施方案中,效力评价可以利用SARS-CoV-2相关严重病例的定义
·确诊的严重COVID-19:确诊的COVID-19并存在以下至少1种:在静息状态下指示严重全身疾病的临床表现(例如,RR≥30次呼吸/分钟,HR≥125次搏动/分钟,在海平面的室内空气中SpO2≤93%,或PaO2/FiO2<300mm Hg);呼吸衰竭(其可以定义为需要高流量氧气,无创通气,机械通气或ECMO);休克的证据(例如,SBP<90mm Hg、DBP<60mm Hg或需要血管加压剂);严重的急性肾、肝或神经功能障碍;进入ICU;死亡。
可选地或额外地,在一些实施方案中,血清学定义可以用于没有COVID-19临床表现的患者:例如,已证实血清转换为SARS-CoV-2而没有证实的COVID-19:例如,阳性N结合抗体导致具有先前阴性N结合抗体结果的患者。
在一些实施方案中,可以对血清样品进行任何或所有以下测定:SARS-CoV-2中和测定;S1结合IgG水平测定;RBD结合IgG水平测定;N结合抗体测定。
在一实施方案中,可以将本文描述的方法和药剂给予儿科群体。在各种实施方案中,儿科群体包括18岁以下的受试者或由18岁以下的受试者组成,例如,5至18岁以下,12至18岁以下,16至18岁以下,12至16岁以下或5至12岁以下。在各种实施方案中,儿科群体包括5岁以下的受试者或由5岁以下的受试者组成,例如,2至5岁以下,12至24个月以下,7至12个月以下或6个月以下。
在一实施方案中,儿科群体包括12至18岁以下的受试者或由12至18岁以下的受试者组成,包括16至18岁以下的受试者和/或12至16岁以下的受试者。在这个实施方案中,治疗可以包括间隔21天的2次疫苗接种,其中,在一实施方案中,疫苗以30μg RNA/剂量的量例如通过肌肉内给药来进行给药。
在一实施方案中,儿科群体包括5至18岁以下的受试者或由5至18岁以下的受试者组成,包括12至18岁以下的受试者和/或5至12岁以下的受试者。在这个实施方案中,治疗可以包括间隔21天的2次疫苗接种,其中,在各种实施方案中,疫苗以10μg、20μg或30μg RNA/剂量的量例如通过肌肉内给药来进行给药。
在一实施方案中,儿科群体包括5岁以下的受试者或由5岁以下的受试者组成,包括2至5岁以下的受试者,12至24个月以下的受试者,7至12个月以下的受试者,6至12个月以下的受试者和/或6个月以下的受试者。在这个实施方案中,治疗可以包括2次疫苗接种,例如,间隔21-42天,例如,间隔21天,其中,在各种实施方案中,疫苗以10μg、20μg或30μg RNA/剂量的量例如通过肌肉内给药来进行给药。
在一些实施方案中,可以通过本文描述的各种指标评价所述的mRNA组合物在儿科群体(例如,本文所述)中的效力(包括,例如但不限于没有过去SARS-CoV-2感染的血清学或病毒学证据的受试者中每1000人-年的COVID-19发病率;例如,第二剂量之后7天测量的SARS CoV-2中和滴度的几何平均比(GMR);等等)。
在一些实施方案中,在给药本文描述的RNA组合物(例如,mRNA)之后,可以监测本文描述的儿科群体(例如,12至16岁以下)的多系统炎症综合征(MIS)的发生(例如,不同身体部位如心脏、肺、肾、脑、皮肤、眼睛和/或胃肠器官中的炎症)。儿童中MIS的示例性症状可以包括但不限于发烧、腹痛、呕吐、腹泻、颈部疼痛、皮疹、眼部充血、感到极度疲倦和它们的组合。
在一实施方案中,如上所述给药的RNA是本文中描述为BNT162b1(RBP020.3)、BNT162b2(RBP020.1或RBP020.2)的核苷修饰的信使RNA(modRNA)。在一实施方案中,如上所述给药的RNA是本文中描述为RBP020.2的核苷修饰的信使RNA(modRNA)。
在一实施方案中,如上所述给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:21的核苷酸序列,与SEQ ID NO:21的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列,或者与SEQ ID NO:5的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。在一实施方案中,如上所述给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:21的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:5的氨基酸序列。
在一实施方案中,如上所述给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:19或20的核苷酸序列,与SEQ ID NO:19或20的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列,或者与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。在一实施方案中,如上所述给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:19或20的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列。
在一实施方案中,如上所述给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:20的核苷酸序列,与SEQ ID NO:20的核苷酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的核苷酸序列,和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列,或者与SEQ ID NO:7的氨基酸序列具有至少99%、98%、97%、96%、95%、90%、85%或80%相同性的氨基酸序列。在一实施方案中,如上所述给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ ID NO:20的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列。
在一实施方案中,给药的RNA是核苷修饰的信使RNA(modRNA),并且(i)包含SEQ IDNO:20的核苷酸序列;和/或(ii)编码氨基酸序列,所述氨基酸序列包含SEQ ID NO:7的氨基酸序列,并且以约30μg/剂量的量给药。在一实施方案中,给药至少两个这样的剂量。例如,可以在给药第一剂量之后约21天给药第二剂量。
在一些实施方案中,用本文描述的RNA治疗的群体包括以下、基本上由以下组成或由以下组成:年龄为至少50岁、至少55岁、至少60岁或至少65岁的受试者。在一些实施方案中,用本文描述的RNA治疗的群体包括以下、基本上由以下组成或由以下组成:年龄为55-90岁、60-85岁或65-85岁的受试者。
在一些实施方案中,给药的剂量之间的时间段是至少7天、至少14天或至少21天。在一些实施方案中,给药的剂量之间的时间段是7天至28天,如14天至23天。
在一些实施方案中,可以向受试者给药不超过5个剂量、不超过4个剂量或不超过3个剂量的本文描述的RNA。
在一些实施方案中,给予本文描述的方法和药剂(在方案中,例如,以剂量、剂量频率和/或剂量数量),从而不良事件(AE),即,患者中任何不希望的医疗情况,例如,与使用药物产品有关的任何不利和不期望的迹象、症状或疾病,无论是否与药物产品有关,强度为轻度或中度。在一些实施方案中,给予本文描述的方法和药剂,从而可以通过干预来管理不良事件(AE),例如用扑热息痛或其他提供止痛、退热(减少发热)和/或抗炎作用的其他药物治疗,例如,非甾体抗炎药(NSAID),例如,阿司匹林、布洛芬和萘普生。未分类为NSAID的扑热息痛或“对乙酰氨基酚”发挥弱的抗炎作用,并且可以根据本发明作为镇痛剂给药。
在一些实施方案中,本文描述的方法和药剂在受试者中提供对冠状病毒、冠状病毒感染或者与冠状病毒相关的疾病或病症的中和效应。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导阻断或中和冠状病毒的免疫应答。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导阻断或中和冠状病毒的抗体如IgG抗体的产生。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导阻断或中和冠状病毒S蛋白结合至ACE2的免疫应答。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导阻断或中和冠状病毒S蛋白结合至ACE2的抗体的产生。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导至少500U/ml、1000U/ml、2000U/ml、3000U/ml、4000U/ml、5000U/ml、10000U/ml、15000U/ml、20000U/ml、25000U/ml、30000U/ml或甚至更高的RBD结构域结合抗体如IgG抗体的几何平均浓度(GMC)。在一些实施方案中,升高的RBD结构域结合抗体的GMC持续至少14天、21天、28天、1个月、3个月、6个月、12个月或甚至更长时间。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导至少100U/ml、200U/ml、300U/ml、400U/ml、500U/ml、1000U/ml、1500U/ml或甚至更高的中和抗体如IgG抗体的几何平均滴度(GMT)。在一些实施方案中,升高的中和抗体的GMT持续至少14天、21天、28天、1个月、3个月、6个月、12个月或甚至更长时间。
如本文所用,术语“中和”是指其中结合剂如抗体结合至病毒的生物活性位点如受体结合蛋白,从而抑制细胞的病毒感染的事件。如本文所用,关于冠状病毒,特别是冠状病毒S蛋白的术语“中和”是指其中结合剂如抗体结合至S蛋白的RBD结构域,从而抑制细胞的病毒感染的事件。特别地,术语“中和”是指其中结合剂消除或显著降低所关注的病毒的毒力(例如感染细胞的能力)的事件。
对抗原攻击应答产生的免疫应答的类型一般可以通过参与应答的T辅助(Th)细胞的子集来区分。免疫应答可以大体上分为两个类型:Th1和Th2。Th1免疫激活针对细胞内感染如病毒优化,而Th2免疫应答针对体液(抗体)应答优化。Th1细胞产生白介素2(IL-2)、肿瘤坏死因子(TNFα)和干扰素γ(IFNγ)。Th2细胞产生IL-4、IL-5、IL-6、IL-9、IL-10和IL-13。在许多临床情况中最需要Th1免疫激活。专门引发Th2或体液免疫应答的疫苗组合物一般对大多数病毒性疾病无效。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导或促进Th1介导的免疫应答。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导或促进Th1介导的免疫应答典型的细胞因子谱。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导或促进白介素2(IL-2)、肿瘤坏死因子(TNFα)和/或干扰素γ(IFNγ)的产生。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导或促进白介素2(IL-2)和干扰素γ(IFNγ)的产生。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中不诱导或促进Th2介导的免疫应答,或者在受试者中诱导或促进与Th1介导的免疫应答的诱导或促进相比显著较低程度的Th2介导的免疫应答。在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中不诱导或促进Th2介导的免疫应答典型的细胞因子谱,或者在受试者中诱导或促进与Th1介导的免疫应答典型的细胞因子谱的诱导或促进相比显著较低程度的Th2介导的免疫应答典型的细胞因子谱。在一些实施方案中,给予受试者之后,本文描述的方法和药剂不诱导或促进IL-4、IL-5、IL-6、IL-9、IL-10和/或IL-13的产生,或者在受试者中诱导或促进与受试者中白介素2(IL-2)、肿瘤坏死因子(TNFα)和/或干扰素γ(IFNγ)的诱导或促进相比显著较低程度的IL-4、IL-5、IL-6、IL-9、IL-10和/或IL-13的产生。在一些实施方案中,给予受试者之后,本文描述的方法和药剂不诱导或促进IL-4的产生,或者在受试者中诱导或促进与受试者中白介素2(IL-2)和干扰素γ(IFNγ)的诱导或促进相比显著较低程度的IL-4的产生。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向一组不同的S蛋白变体如SARS-CoV-2 S蛋白变体,特别是天然存在的S蛋白变体。在一些实施方案中,该组不同的S蛋白变体包含至少5种、至少10种、至少15种或甚至更多种S蛋白变体。在一些实施方案中,这样的S蛋白变体包含在RBD结构域中具有氨基酸修饰的变体和/或在RBD结构域外具有氨基酸修饰的变体。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ IDNO:1中位置321(Q)的氨基酸是S。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置321(Q)的氨基酸是L。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ IDNO:1中位置341(V)的氨基酸是I。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置348(A)的氨基酸是T。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ IDNO:1中位置354(N)的氨基酸是D。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置359(S)的氨基酸是N。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ IDNO:1中位置367(V)的氨基酸是F。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置378(K)的氨基酸是S。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ IDNO:1中位置378(K)的氨基酸是R。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置408(R)的氨基酸是I。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ IDNO:1中位置409(Q)的氨基酸是E。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置435(A)的氨基酸是S。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置439(N)的氨基酸是K。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置458(K)的氨基酸是R。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置472(I)的氨基酸是V。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置476(G)的氨基酸是S。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置477(S)的氨基酸是N。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置483(V)的氨基酸是A。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置508(Y)的氨基酸是H。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置519(H)的氨基酸是P。在一实施方案中,这样的S蛋白变体包含SARS-CoV-2 S蛋白或其天然存在的变体,其中对应于SEQ ID NO:1中位置614(D)的氨基酸是G。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置501(N)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。
在对应于SEQ ID NO:1中位置501(N)的位置处包含突变的所述S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、484(E)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)和244(L)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ IDNO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置484(E)的氨基酸是K。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向VOC-202012/01。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向501.V2。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y和A701V,以及任选存在的:L18F、R246I、K417N和缺失242-244。所述S蛋白变体还可以在对应于SEQ ID NO:1中位置614的位置处包含D->G突变。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置69(H)和70(V)的位置处包含缺失的天然存在的S蛋白变体。
在一些实施方案中,在对应于SEQ ID NO:1中位置69(H)和70(V)的位置处包含缺失的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:144(Y)、501(N)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、484(E)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)和1229(M)。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置484(E)的氨基酸是K。在一实施方案中,对应于SEQ IDNO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向VOC-202012/01。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向“簇(Cluster)5”。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:缺失69-70、Y453F、I692V、M1229I和任选存在的S1147L。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置614(D)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。
在一些实施方案中,在对应于SEQ ID NO:1中位置614(D)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、501(N)、570(A)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、484(E)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)和1229(M)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ IDNO:1中位置484(E)的氨基酸是K。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向VOC-202012/01。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y、D614G和A701V,以及任选存在的:L18F、R246I、K417N和缺失242-244。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置501(N)和614(D)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y,并且对应于SEQ ID NO:1中位置614(D)的氨基酸是G。
在一些实施方案中,在对应于SEQ ID NO:1中位置501(N)和614(D)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、570(A)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、484(E)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)和1229(M)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置484(E)的氨基酸是K。在一实施方案中,对应于SEQ IDNO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向VOC-202012/01。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:缺失69-70、缺失144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y、D614G和A701V,以及任选存在的:L18F、R246I、K417N和缺失242-244。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置484(E)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置484(E)的氨基酸是K。
在一些实施方案中,在对应于SEQ ID NO:1中位置484(E)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、501(N)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)、1229(M)、20(T)、26(P)、138(D)、190(R)、417(K)、655(H)、1027(T)和1176(V)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQ IDNO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ IDNO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置20(T)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置26(P)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置138(D)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置190(R)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是T。在一实施方案中,对应于SEQ ID NO:1中位置655(H)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置1027(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置1176(V)的氨基酸是F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向501.V2。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y和A701V,以及任选存在的:L18F、R246I、K417N和缺失242-244。所述S蛋白变体还可以在对应于SEQ ID NO:1中位置614的位置处包含D->G突变。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向“B.1.1.28”。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向“B.1.1.248”。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置501(N)和484(E)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y,并且对应于SEQ ID NO:1中位置484(E)的氨基酸是K。
在一些实施方案中,在对应于SEQ ID NO:1中位置501(N)和484(E)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)、1229(M)、20(T)、26(P)、138(D)、190(R)、417(K)、655(H)、1027(T)和1176(V)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置20(T)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置26(P)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置138(D)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置190(R)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是T。在一实施方案中,对应于SEQ ID NO:1中位置655(H)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置1027(T)的氨基酸是I。在一实施方案中,对应于SEQID NO:1中位置1176(V)的氨基酸是F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向501.V2。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y和A701V,以及任选存在的:L18F、R246I、K417N和缺失242-244。所述S蛋白变体还可以在对应于SEQ ID NO:1中位置614的位置处包含D->G突变。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向“B.1.1.248”。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置501(N)、484(E)和614(D)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y,对应于SEQ ID NO:1中位置484(E)的氨基酸是K,并且对应于SEQ ID NO:1中位置614(D)的氨基酸是G。
在一些实施方案中,在对应于SEQ ID NO:1中位置501(N)、484(E)和614(D)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、570(A)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、701(A)、18(L)、246(R)、417(K)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)、1229(M)、20(T)、26(P)、138(D)、190(R)、417(K)、655(H)、1027(T)和1176(V)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ IDNO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置20(T)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置26(P)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置138(D)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置190(R)的氨基酸是S。在一实施方案中,对应于SEQ IDNO:1中位置417(K)的氨基酸是T。在一实施方案中,对应于SEQ ID NO:1中位置655(H)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置1027(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置1176(V)的氨基酸是F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y、A701V和D614G,以及任选存在的:L18F、R246I、K417N和缺失242-244。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置242(L)、243(A)和244(L)的位置处包含缺失的天然存在的S蛋白变体。
在一些实施方案中,在对应于SEQ ID NO:1中位置242(L)、243(A)和244(L)的位置处包含缺失的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、501(N)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、484(E)、701(A)、18(L)、246(R)、417(K)、453(Y)、692(I)、1147(S)、1229(M)、20(T)、26(P)、138(D)、190(R)、417(K)、655(H)、1027(T)和1176(V)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQ IDNO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置484(E)的氨基酸是K。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ IDNO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置20(T)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置26(P)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置138(D)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置190(R)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是T。在一实施方案中,对应于SEQ ID NO:1中位置655(H)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置1027(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置1176(V)的氨基酸是F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向501.V2。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y、A701V和缺失242-244,以及任选存在的:L18F、R246I和K417N。所述S蛋白变体还可以在对应于SEQ ID NO:1中位置614的位置处包含D->G突变。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置417(K)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是T。
在一些实施方案中,在对应于SEQ ID NO:1中位置417(K)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、501(N)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、484(E)、701(A)、18(L)、246(R)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)、1229(M)、20(T)、26(P)、138(D)、190(R)、655(H)、1027(T)和1176(V)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQ IDNO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置484(E)的氨基酸是K。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ IDNO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置20(T)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置26(P)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置138(D)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置190(R)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置655(H)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置1027(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置1176(V)的氨基酸是F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向501.V2。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y、A701V和K417N,以及任选存在的:L18F、R246I和缺失242-244。所述S蛋白变体还可以在对应于SEQ ID NO:1中位置614的位置处包含D->G突变。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向“B.1.1.248”。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向S蛋白变体如SARS-CoV-2 S蛋白变体,特别是在对应于SEQ ID NO:1中位置417(K)和484(E)和/或501(N)的位置处包含突变的天然存在的S蛋白变体。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是N,对应于SEQ ID NO:1中位置484(E)的氨基酸是K和/或对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置417(K)的氨基酸是T,对应于SEQ ID NO:1中位置484(E)的氨基酸是K和/或对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。
在一些实施方案中,在对应于SEQ ID NO:1中位置417(K)和484(E)和/或501(N)的位置处包含突变的S蛋白变体可以包含一个或多个其他突变。这样的一个或多个其他突变可以选自在对应于SEQ ID NO:1中以下位置的位置处的突变:69(H)、70(V)、144(Y)、570(A)、614(D)、681(P)、716(T)、982(S)、1118(D)、80(D)、215(D)、701(A)、18(L)、246(R)、242(L)、243(A)、244(L)、453(Y)、692(I)、1147(S)、1229(M)、20(T)、26(P)、138(D)、190(R)、655(H)、1027(T)和1176(V)。在一实施方案中,对应于SEQ ID NO:1中位置69(H)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置70(V)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置144(Y)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置570(A)的氨基酸是D。在一实施方案中,对应于SEQ ID NO:1中位置614(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置681(P)的氨基酸是H。在一实施方案中,对应于SEQ IDNO:1中位置716(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置982(S)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置1118(D)的氨基酸是H。在一实施方案中,对应于SEQ ID NO:1中位置80(D)的氨基酸是A。在一实施方案中,对应于SEQ ID NO:1中位置215(D)的氨基酸是G。在一实施方案中,对应于SEQ ID NO:1中位置701(A)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置18(L)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置246(R)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置242(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置243(A)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置244(L)的氨基酸缺失。在一实施方案中,对应于SEQ ID NO:1中位置453(Y)的氨基酸是F。在一实施方案中,对应于SEQ ID NO:1中位置692(I)的氨基酸是V。在一实施方案中,对应于SEQ ID NO:1中位置1147(S)的氨基酸是L。在一实施方案中,对应于SEQ ID NO:1中位置1229(M)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置20(T)的氨基酸是N。在一实施方案中,对应于SEQ ID NO:1中位置26(P)的氨基酸是S。在一实施方案中,对应于SEQ ID NO:1中位置138(D)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置190(R)的氨基酸是S。在一实施方案中,对应于SEQ IDNO:1中位置655(H)的氨基酸是Y。在一实施方案中,对应于SEQ ID NO:1中位置1027(T)的氨基酸是I。在一实施方案中,对应于SEQ ID NO:1中位置1176(V)的氨基酸是F。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向501.V2。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:D80A、D215G、E484K、N501Y、A701V和K417N,以及任选存在的:L18F、R246I和缺失242-244。所述S蛋白变体还可以在对应于SEQ ID NO:1中位置614的位置处包含D->G突变。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向“B.1.1.248”。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂在受试者中诱导抗体应答,特别是中和抗体应答,其靶向在对应于SEQ ID NO:1中以下位置的位置处包含以下突变的S蛋白变体:L18F、T20N、P26S、D138Y、R190S、K417T、E484K、N501Y、H655Y、T1027I和V1176F。
如本文所用的术语“对应于位置…的氨基酸”是指对应于SARS-CoV-2 S蛋白中氨基酸位置编号的氨基酸位置编号,特别是SEQ ID NO:1中示出的氨基酸序列。其他冠状病毒S蛋白变体如SARS-CoV-2 S蛋白变体中的相应氨基酸位置可以通过与SARS-CoV-2 S蛋白进行比对来找到,特别是与SEQ ID NO:1中示出的氨基酸序列进行比对。如何比对序列或序列中的片段,从而确定根据本发明的氨基酸序列在序列中的相应位置在本领域中是公知的。可以使用标准序列比对程序如ALIGN、ClustalW或相似程序,通常用默认设置。
在一些实施方案中,抗体应答靶向的不同S蛋白变体的组包含至少5个、至少10个、至少15个或甚至更多个选自以下的S蛋白变体:上文描述的Q321S、V341I、A348T、N354D、S359N、V367F、K378S、R408I、Q409E、A435S、K458R、I472V、G476S、V483A、Y508H、H519P和D614G。在一些实施方案中,抗体应答靶向的不同S蛋白变体的组包含由以下组成的组的所有S蛋白变体:上文描述的Q321S、V341I、A348T、N354D、S359N、V367F、K378S、R408I、Q409E、A435S、K458R、I472V、G476S、V483A、Y508H、H519P和D614G。
在一些实施方案中,抗体应答靶向的不同S蛋白变体的组包含至少5个、至少10个、至少15个或甚至更多个选自以下的S蛋白变体:上文描述的Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H、H519P和D614G。在一些实施方案中,抗体应答靶向的不同S蛋白变体的组包含由以下组成的组的所有S蛋白变体:上文描述的Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H、H519P和D614G。
在一些实施方案中,SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段,例如,如本文描述的RNA编码的,包含本文描述的S蛋白变体如SARS-CoV-2 S蛋白变体,特别是天然存在的S蛋白变体的一个或多个突变。在一实施方案中,SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段,例如,如本文描述的RNA编码的,在对应于SEQ ID NO:1中位置501(N)的位置处包含突变。在一实施方案中,对应于SEQ ID NO:1中位置501(N)的氨基酸是Y。在一些实施方案中,SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段,例如,如本文描述的RNA编码的,包含选自VOC-202012/01、501.V2、簇5和B.1.1.248的SARS-CoV-2变体的SARS-CoV-2 S蛋白的一个或多个突变,如所有突变。在一些实施方案中,例如由本文描述的RNA编码的SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含氨基酸序列,其在SEQ ID NO:1的位置80具有丙氨酸取代,在位置215具有甘氨酸取代,在位置484具有赖氨酸取代,在位置501具有酪氨酸取代,在位置701具有缬氨酸取代,在位置18具有苯丙氨酸取代,在位置246具有异亮氨酸取代,在位置417具有天冬酰胺取代,在位置614具有甘氨酸取代,在位置242-244缺失以及在位置986和987具有脯氨酸取代。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂,例如,mRNA组合物,诱导细胞介导的免疫应答(例如,CD4+和/或CD8+ T细胞应答)。在一些实施方案中,诱导识别一种或多种表位(例如,MHC I类限制性表位)的T细胞,所述表位选自LPFNDGVYF、GVYFASTEK、YLQPRTFLL、QPTESIVRF、CVADYSVLY、KCYGVSPTK、NYNYLYRLF、FQPTNGVGY、IPFAMQMAY、RLQSLQTYV、GTHWFVTQR、VYDPLQPEL、QYIKWPWYI和KWPWYIWLGF。在一实施方案中,诱导识别表位YLQPRTFLL的T细胞。在一实施方案中,诱导识别表位NYNYLYRLF的T细胞。在一实施方案中,诱导识别表位QYIKWPWYI的T细胞。在一实施方案中,诱导识别表位KCYGVSPTK的T细胞。在一实施方案中,诱导识别表位RLQSLQTYV的T细胞。在一些实施方案中,根据实现这种诱导T细胞的方案,给予本文描述的方法和药剂,例如,mRNA组合物。
在一些实施方案中,给予受试者之后,本文描述的方法和药剂,例如,mRNA组合物,诱导细胞介导的免疫应答(例如,CD4+和/或CD8+ T细胞应答),所述细胞介导的免疫应答在给药之后15周或更晚、16周或更晚、17周或更晚、18周或更晚、19周或更晚、20周或更晚、21周或更晚、22周或更晚、23周或更晚、24周或更晚或者25周或更晚可检测,例如,使用两个剂量的本文描述的RNA(其中第二剂量可以在给药第一剂量之后约21天给药)。在一些实施方案中,根据实现这种诱导细胞介导的免疫应答的方案,给药本文描述的方法和药剂,例如,mRNA组合物。
在一实施方案中,本文描述的针对冠状病毒疫苗接种,例如,使用本文描述的RNA,其可以以本文描述的量和方案给药,例如,以30μg/剂量的两个剂量给药,例如间隔21天给药,可以在一定时间段之后重复,例如,一旦观察到对冠状病毒感染的保护作用减弱,使用与用于第一次疫苗接种的相同或不同的疫苗。此特定时间段可以是至少6个月、1年、2年等。在一实施方案中,与用于第一次疫苗接种相同的RNA用于第二次或进一步的疫苗接种,但是,以较低剂量或较低频率给药。例如,第一次疫苗接种可以包括使用约30μg/剂量的剂量疫苗接种,其中在一实施方案中,给药至少两个这样的剂量例如,第二剂量可以在给药第一剂量之后约21天给药),并且第二次或进一步的疫苗接种可以包括使用少于约30μg/剂量的剂量疫苗接种,其中在一实施方案,仅给药一个这样的剂量。在一实施方案中,与用于第一次疫苗接种不同的RNA用于第二次或进一步的疫苗接种,例如,BNT162b2用于第一次疫苗接种,而BNT162B1或BNT162b3用于第二次或进一步的疫苗接种。
在一实施方案中,疫苗接种方案包括使用至少两个剂量的本文描述的RNA的第一疫苗接种,例如,两个剂量的本文描述的RNA(其中第二剂量可以在给药第一剂量之后约21天给药),以及使用单剂量或多剂量,例如两个剂量的本文描述的RNA的第二疫苗接种。在各种实施方案中,第二疫苗接种在给药第一疫苗接种之后,例如,在最初的两剂量方案之后,3-24个月、6-18个月、6-12个月或5-7个月给药。第二疫苗接种的每个剂量中使用的RNA的量可以与第一疫苗接种的每个剂量中使用的RNA的量相同或不同。在一实施方案中,第二疫苗接种的每个剂量中使用的RNA的量等于第一疫苗接种的每个剂量中使用的RNA的量。在一实施方案中,第二疫苗接种的每个剂量中使用的RNA的量和第一疫苗接种的每个剂量中使用的RNA的量是约30μg/剂量。在一实施方案中,与用于第一疫苗接种相同的RNA用于第二疫苗接种。在一实施方案中,用于第一疫苗接种和第二疫苗接种的RNA是BNT162b2。在一实施方案中,与用于第一疫苗接种不同的RNA用于第二疫苗接种。在一实施方案中,用于第一疫苗接种的RNA是BNT162b2,而用于第二疫苗接种的RNA是编码SARS-CoV-2变体毒株(例如,本文讨论的毒株)的SARS-CoV-2 S蛋白的RNA。在一实施方案中,用于第一疫苗接种的RNA是BNT162b2,而用于第二疫苗接种的RNA是编码在第二疫苗接种时流行或快速传播的SARS-CoV-2变体毒株的SARS-CoV-2 S蛋白的RNA。在一实施方案中,用于第一疫苗接种的RNA是BNT162b2,而用于第二疫苗接种的RNA是编码SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA,SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2S蛋白或其免疫原性变体的免疫原性片段包含本文描述的S蛋白变体如SARS-CoV-2 S蛋白变体,特别是天然存在的S蛋白变体的一个或多个突变。在一实施方案中,用于第一疫苗接种的RNA是BNT162b2,而用于第二疫苗接种的RNA是编码SARS-CoV-2S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段的RNA,SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段包含选自VOC-202012/01、501.V2、簇5和B.1.1.248的SARS-CoV-2变体的SARS-CoV-2 S蛋白的一个或多个突变,如所有突变。在一实施方案中,用于第一疫苗接种的RNA编码多肽,所述多肽包含在SEQ ID NO:1的位置986和987具有脯氨酸残基取代的氨基酸序列,而用于第二疫苗接种的RNA是编码多肽的RNA,所述多肽包含在SEQ ID NO:1的位置80具有丙氨酸取代,在位置215具有甘氨酸取代,在位置484具有赖氨酸取代,在位置501具有酪氨酸取代,在位置701具有缬氨酸取代,在位置18具有苯丙氨酸取代,在位置246具有异亮氨酸取代,在位置417具有天冬酰胺取代,在位置614具有甘氨酸取代,在位置242-244缺失以及在位置986和987具有脯氨酸取代的氨基酸序列。
在一实施方案中,疫苗接种方案包括第一疫苗接种,使用两个剂量的编码多肽的RNA,所述多肽包含在SEQ ID NO:1的位置986和987具有脯氨酸残基取代的氨基酸序列,间隔约21天给药;以及第二疫苗接种,使用单剂量或多剂量的编码多肽的RNA,所述多肽包含在SEQ ID NO:1的位置986和987具有脯氨酸残基取代的氨基酸序列,在给药第一疫苗接种之后,即,在初始两剂量方案之后,约6-12个月给药。在一实施方案中,每个RNA剂量包含30μg RNA。
在一实施方案中,疫苗接种方案包括第一疫苗接种,使用两个剂量的编码多肽的RNA,所述多肽包含在SEQ ID NO:1的位置986和987具有脯氨酸残基取代的氨基酸序列,间隔约21天给药;以及第二疫苗接种,使用单剂量或多剂量的编码多肽的RNA,所述多肽包含在SEQ ID NO:1的位置80具有丙氨酸取代,在位置215具有甘氨酸取代,在位置484具有赖氨酸取代,在位置501具有酪氨酸取代,在位置701具有缬氨酸取代,在位置18具有苯丙氨酸取代,在位置246具有异亮氨酸取代,在位置417具有天冬酰胺取代,在位置614具有甘氨酸取代,在位置242-244缺失以及在位置986和987具有脯氨酸取代的氨基酸序列,在给药第一疫苗接种之后,即,在初始两剂量方案之后,约6-12个月给药。在一实施方案中,每个RNA剂量包含30μg RNA。
在一实施方案中,第二疫苗接种导致免疫应答的加强。
在一实施方案中,将本文描述的RNA与其他疫苗共给药。在一些实施方案中,将本文描述的RNA组合物与流感疫苗共给药。在一些实施方案中,将本文提供的RNA组合物和其他可注射的疫苗在不同时间给药。在一些实施方案中,将本文提供的RNA组合物与其他可注射的疫苗同时给药。在一些这样的实施方案中,将本文提供的RNA组合物和至少一种另一可注射的疫苗在不同注射部位给药。在一些实施方案中,本文提供的RNA组合物不在同一注射器中与任何其他疫苗混合。在一些实施方案中,本文提供的RNA组合物不与其他冠状病毒疫苗组合作为针对冠状病毒(例如,SARS-CoV-2)的疫苗接种的一部分。
术语“疾病”是指影响个体身体的异常状况。疾病通常理解为与特定症状或体征有关的医学状况。疾病可以由源自外部来源的因素引起,如传染病,或者其可以由内部功能失调引起,如自身免疫性疾病。在人中,“疾病”通常更广泛地用来指引起患病个体的疼痛、功能障碍、窘迫、社会问题或死亡或者与个体接触的人的相似问题的任何状况。在这个更广泛的意义上,其有时包括损伤、残疾、病症、综合征、感染、分离的症状、偏差行为以及结构和功能的非典型变化,但是在其他上下文中和为了其他目的,这些可以认为是可区分的类别。疾病通常不仅在身体上,而且还在情感上影响个体,因为感染和患有许多疾病可以改变一个人的人生观和一个人的性格。
在本文中,术语“治疗”或“治疗性干预”涉及为了对抗疾病状况如疾病或病症的目的而对受试者的管理和护理。该术语旨在包括对受试者遭受的给定疾病状况的全范围治疗,如给药治疗有效的化合物以减轻症状或并发症,延迟疾病、病症或疾病状况的发展,减轻或缓解症状和并发症,和/或治愈或消除疾病、病症或疾病状况以及预防疾病状况,其中预防应理解为为了对抗疾病、疾病状况或病症的目的而对个体的管理和护理,并且包括给药活性化合物以预防症状或并发症的发生。
术语“治疗性治疗”涉及改善健康状态和/或延长(增加)个体寿命的任何治疗。所述治疗可以消除个体中的疾病,阻止或减缓个体中疾病的发展,抑制或减缓个体中疾病的发展,减少个体中症状的频率或严重程度,和/或减少目前患有或以前患有疾病的个体中的复发。
术语“预防性治疗”或“预防治疗”涉及意图防止疾病在个体中发生的任何治疗。术语“预防性治疗”或“预防治疗”在本文中可互换使用。
术语“个体”和“受试者”在本文中可互换使用。它们是指可以患有或易患疾病或病症但是可能有或可能没有疾病或病症的人或另一哺乳动物(例如小鼠、大鼠、兔、狗、猫、牛、猪、羊、马或灵长类)。在许多实施方案中,个体是人。除非另有说明,术语“个体”和“受试者”不表示特定年龄,因此涵盖成年人、老年人、儿童和新生儿。在一些实施方案中,术语“受试者”包括至少50岁、至少55岁、至少60岁、至少65岁、至少70岁或更老的人。在一些实施方案中,术语“受试者”包括年龄为至少65岁的人,如65-80岁、65-75岁或65-70岁。在本公开的实施方案中,“个体”或“受试者”是“患者”。
术语“患者”表示治疗的个体或受试者,特别是患病的个体或受试者。
在本公开的一实施方案中,目的是提供针对冠状病毒的免疫应答,以及预防或治疗冠状病毒感染。
可以将包含RNA的药物组合物给予受试者以在受试者中引发针对包含所述表位的抗原的免疫应答,其可以是治疗性的或者部分或完全保护性的,所述RNA编码包含表位的肽或蛋白。本领域技术人员会知道免疫疗法和疫苗接种的原理之一是基于以下事实:通过用抗原或表位免疫受试者产生对疾病的免疫保护性反应,其与待治疗的疾病在免疫学上相关。因此,本文描述的药物组合物可用于诱导或增强免疫应答。因此本文描述的药物组合物可用于涉及抗原或表位的疾病的预防性和/或治疗性治疗。
如本文所用,“免疫应答”是指对抗原或表达抗原的细胞的综合身体应答,并且是指细胞免疫应答和/或体液免疫应答。免疫系统分为更原始的先天免疫系统,以及脊椎动物的获得性或适应性免疫系统,各自包含体液和细胞组分。
“细胞介导的免疫”、“细胞免疫”、“细胞免疫应答”或相似术语表示包括针对特征是表达抗原的细胞,特别是特征是用MHC I类或MHC II类呈递抗原的细胞的细胞应答。细胞应答涉及免疫效应细胞,特别是称作T细胞或T淋巴细胞的细胞,其充当“助手”或“杀手”。辅助T细胞(也称作CD4+ T细胞)通过调节免疫应答发挥中心作用,而杀伤细胞(也称作细胞毒性T细胞、溶细胞性T细胞、CD8+ T细胞或CTL)杀死病变细胞如病毒感染的细胞,防止产生更多病变细胞。
免疫效应细胞包括对疫苗抗原有响应的任何细胞。这种响应性包括一种或多种免疫效应物功能的激活、分化、增殖、存活和/或指示。特别地,所述细胞包括具有溶解潜力的细胞,特别是淋巴样细胞,并且优选是T细胞,特别是细胞毒性淋巴细胞,优选选自细胞毒性T细胞、自然杀伤(NK)细胞和淋巴因子激活的杀伤(LAK)细胞。当激活时,这些细胞毒性淋巴细胞中的每种触发靶细胞的破坏。例如,细胞毒性T细胞通过以下方式中的一种或两种触发靶细胞的破坏。第一,当激活时,T细胞释放细胞毒素如穿孔蛋白、颗粒酶和颗粒溶素。穿孔蛋白和颗粒溶素在靶细胞中产生孔,而颗粒酶进入细胞并在细胞质中触发胱天蛋白酶级联,诱导细胞的凋亡(程序性细胞死亡)。第二,可以通过T细胞和靶细胞之间的Fas-Fas配体相互作用诱导凋亡。
在本发明的上下文中,术语“效应物功能”包括免疫系统的组分介导的任何功能,例如,其导致病原物质如病毒的中和和/或杀死病变细胞如病毒感染的细胞。在一实施方案中,本发明的上下文中的效应物功能是T细胞介导的效应物功能。这类功能在辅助T细胞(CD4+ T细胞)的情况下包括释放细胞因子和/或激活CD8+淋巴细胞(CTL)和/或B细胞,并且在CTL的情况下包括消除细胞,即,特征是表达抗原的细胞,例如,通过凋亡或穿孔蛋白介导的细胞裂解,产生细胞因子如IFN-γ和TNF-α,以及表达抗原的靶细胞的特异性细胞溶解性杀死。
在本发明的上下文中术语“免疫效应细胞”或“免疫反应细胞”涉及在免疫反应期间发挥效应物功能的细胞。在一实施方案中,“免疫效应细胞”能够结合抗原,如在MHC的情况下在细胞上呈递或在细胞表面上表达并介导免疫应答的抗原。例如,免疫效应细胞包含T细胞(细胞毒性T细胞、辅助T细胞、肿瘤浸润T细胞)、B细胞、自然杀伤细胞、嗜中性粒细胞、巨噬细胞和树突细胞。优选地,在本发明的上下文中,“免疫效应细胞”是T细胞,优选CD4+和/或CD8+ T细胞,最优选CD8+ T细胞。根据本发明,术语“免疫效应细胞”还包括用合适的刺激可以成熟为免疫细胞(如T细胞,特别是T辅助细胞,或溶细胞性T细胞)的细胞。免疫效应细胞包含CD34+造血干细胞、未成熟和成熟的T细胞以及未成熟和成熟的B细胞。当暴露于抗原时,T细胞前体分化为溶细胞性T细胞与免疫系统的克隆选择相似。
“淋巴样细胞”是能够产生免疫应答如细胞免疫应答的细胞,或者这种细胞的前体细胞,并且包括淋巴细胞,优选T淋巴细胞、原淋巴细胞(lymphoblast)和浆细胞。淋巴样细胞可以是如本文所述的免疫效应细胞。优选的淋巴样细胞是T细胞。
术语“T细胞”和“T淋巴细胞”在本文中可互换使用,并且包括T辅助细胞(CD4+ T细胞)和细胞毒性T细胞(CTL、CD8+ T细胞),其包含溶细胞性T细胞。术语“抗原特异性T细胞”或相似术语涉及识别T细胞靶向的抗原并优选发挥T细胞的效应物功能的T细胞。
T细胞属于称作淋巴细胞的一组白细胞,并且在细胞介导的免疫中起中心作用。它们可以通过它们细胞表面上存在称作T细胞受体(TCR)的特殊受体与其他淋巴细胞类型如B细胞和自然杀伤细胞区分。胸腺是负责T细胞成熟的主要器官。已发现T细胞的几个不同子集,各自具有不同功能。
T辅助细胞在免疫过程中辅助其他白细胞,包括B细胞成熟为浆细胞以及激活细胞毒性T细胞和巨噬细胞等。这些细胞也称作CD4+ T细胞,因为它们在表面上表达CD4糖蛋白。当通过抗原呈递细胞(APC)表面上表达的MHC II类分子用肽抗原呈递时,辅助T细胞活化。一旦活化,它们快速分裂并分泌调节或辅助主动免疫应答的称作细胞因子的小蛋白。
细胞毒性T细胞破坏病毒感染的细胞和肿瘤细胞,并且还涉及移植排斥。这些细胞也称作CD8+ T细胞,因为它们在表面上表达CD8糖蛋白。这些细胞通过结合与MHC I类相关的抗原来识别它们的靶标,其存在于身体的几乎每个细胞表面上。
大部分T细胞具有作为几个蛋白的复合物存在的T细胞受体(TCR)。T细胞的TCR能够与结合至主要组织相容性复合物(MHC)分子并呈递在靶细胞表面上的免疫原性肽(表位)相互作用。TCR的特异性结合触发T细胞内的信号级联,导致增殖并分化为成熟的效应T细胞。实际的T细胞受体包括两条不同的肽链,其产生自独立的T细胞受体α和β(TCRα和TCRβ)基因并称作α-和β-TCR链。γδT细胞(γδT细胞)代表在它们的表面上具有不同T细胞受体(TCR)的一小部分T细胞。但是,在γδT细胞中,TCR由一条γ-链和一条δ-链构成。这组T细胞比αβT细胞更不常见(总T细胞的2%)。
“体液免疫”或“体液免疫应答”是免疫的一方面,其由细胞外液中发现的大分子如分泌的抗体、补体蛋白和某些抗微生物肽介导。其与细胞介导的免疫形成对比。其涉及抗体的方面通常称作抗体介导的免疫。
体液免疫是指抗体产生及其伴随的辅助过程,包括:Th2激活和细胞因子产生、生发中心形成和同种型转换、亲和力成熟和记忆细胞生成。其还指抗体的效应物功能,包括病原体中和、经典补体激活以及吞噬作用的调理素促进和病原体消除。
在体液免疫应答中,首先B细胞在骨髓中成熟并获得B-细胞受体(BCR),所述B-细胞受体大量展示在细胞表面上。这些膜结合的蛋白复合物具有抗原检测特异性的抗体。每个B细胞具有结合抗原的独特抗体。成熟的B细胞从骨髓迁移至淋巴结或其他淋巴器官,在那里它们开始遇到病原体。当B细胞遇到抗原时,抗原结合至受体并通过胞吞作用吸收到B细胞内。抗原通过MHC-II蛋白加工并再次呈递在B细胞表面上。B细胞等待辅助T细胞(TH)结合至复合物。这种结合会激活TH细胞,然后其释放诱导B细胞快速分裂的细胞因子,产生数千个相同的B细胞克隆。这些子细胞成为浆细胞或记忆细胞。记忆B细胞在这里保持不活化;后来当这些记忆B细胞由于再感染而遇到相同抗原时,它们分裂并形成浆细胞。在另一方面,浆细胞产生大量抗体,所述抗体自由释放至循环系统中。这些抗体会遇到抗原并与它们结合。这会干扰宿主和外来细胞之间的化学相互作用,或者它们可以在它们的抗原位点之间形成桥,阻碍它们的正常功能,或者它们的存在会吸引巨噬细胞或杀伤细胞来攻击并吞噬它们。
术语“抗体”包括免疫球蛋白,其包含至少通过二硫键互相连接的两条重(H)链和两条轻(L)链。每条重链包含重链可变区(在本文中缩写为VH)和重链恒定区。每条轻链包含轻链可变区(在本文中缩写为VL)和轻链恒定区。VH和VL区可以进一步细分为高变性的区域,称作互补性决定区(CDR),散布于更保守的、称作框架区(FR)的区域。每个VH和VL包括3个CDR和4个FR,从氨基-末端至羧基-末端按照以下顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重链和轻链的可变区包含与抗原相互作用的结合结构域。抗体的恒定区可以介导免疫球蛋白结合至宿主组织或因子,包括免疫系统的各种细胞(例如,效应细胞)和经典补体系统的第一组分(Clq)。抗体与抗原结合,优选特异性地结合。
B细胞表达的抗体有时称作BCR(B细胞受体)或抗原受体。这类蛋白中包括的5个成员是IgA、IgG、IgM、IgD和IgE。IgA是存在于身体分泌物中的主要抗体,如唾液、泪液、乳汁、胃肠分泌物和呼吸道和泌尿生殖道的粘液分泌物。IgG是最常见的循环抗体。在大多数受试者中,IgM是初次免疫应答中产生的主要免疫球蛋白。它是凝集、补体结合和其他抗体应答中最有效的免疫球蛋白,并且在防御细菌和病毒中很重要。IgD是没有已知抗体功能的免疫球蛋白,但是可以充当抗原受体。IgE是一种免疫球蛋白,其通过在暴露于反应原时引起肥大细胞和嗜碱性粒细胞释放介质来介导立即超敏反应。
如本文所用,“抗体重链”是指在它们天然存在的构象中,抗体分子中存在的两种类型的多肽链中的较大者。
如本文所用,“抗体轻链”是指在它们天然存在的构象中,抗体分子中存在的两种类型的多肽链中的较小者,κ和λ轻链是指两种主要的抗体轻链同种型。
本公开考虑可以是保护性、防护性、预防性和/或治疗性的免疫应答。如本文所用,“诱导免疫应答”可以表示在诱导之前不存在针对特定抗原的免疫应答,或者其可以表示在诱导之前有针对特定抗原的基础水平的免疫应答,其在诱导之后增强。因此,“诱导免疫应答”包括“增强免疫应答”。
术语“免疫疗法”涉及通过诱导或增强免疫应答来治疗疾病或疾病状况。术语“免疫疗法”包括抗原免疫或抗原疫苗接种。
术语“免疫”或“疫苗接种”描述向个体给药抗原的过程,目的是例如出于治疗或预防原因诱导免疫应答。
术语“巨噬细胞”是指通过单核细胞的分化产生的吞噬细胞的亚组。被炎症、免疫细胞因子或微生物产物激活的巨噬细胞非特异性地吞噬并通过水解和氧化攻击杀死巨噬细胞内的外来病原体,导致病原体降解。来自降解蛋白的肽展示在巨噬细胞表面上,在这里它们可以被T细胞识别,并且它们可以直接与B细胞表面上的抗体相互作用,导致T和B细胞激活并进一步刺激免疫应答。巨噬细胞属于抗原呈递细胞的类别。在一实施方案中,巨噬细胞是脾巨噬细胞。
术语“树突细胞”(DC)是指吞噬细胞的另一亚型,其属于抗原呈递细胞的类别。在一实施方案中,树突细胞源自造血骨髓祖细胞。这些祖细胞最初转化为未成熟的树突细胞。这些未成熟的细胞的特征在于高吞噬活性和低T细胞激活潜力。未成熟的树突细胞不断采样周围环境中的病原体如病毒和细菌。一旦它们与可呈递的抗原接触,它们会激活为成熟的树突细胞并开始迁移至脾或淋巴结。未成熟的树突细胞吞噬病原体并将它们的蛋白降解为小片,并且在成熟时利用MHC分子将那些片段呈递在它们的细胞表面。同时,它们上调在T细胞激活中充当共受体的细胞表面受体如CD80、CD86和CD40,大大增强它们激活T细胞的能力。它们还上调趋化性受体CCR7,其诱导树突细胞通过血流到达脾或通过淋巴系统到达淋巴结。这里它们充当抗原呈递细胞,并且通过呈递抗原以及非抗原特异性共刺激信号来激活辅助T细胞和杀伤T细胞以及B细胞。因此,树突细胞可以主动诱导T细胞或B细胞相关的免疫应答。在一实施方案中,树突细胞是脾树突细胞。
术语“抗原呈递细胞”(APC)是能够在其细胞表面上(或在其细胞表面)展示、获得和/或呈递至少一种抗原或抗原片段的各种细胞中的细胞。抗原呈递细胞可以区分为专职抗原呈递细胞和非专职抗原呈递细胞。
术语“专职(professional)抗原呈递细胞”涉及组成性表达与幼稚T细胞相互作用所需的主要组织相容性复合物II类(MHC II类)分子的抗原呈递细胞。如果T细胞与抗原呈递细胞膜上的MHC II类分子复合物相互作用,则抗原呈递细胞产生共刺激分子,诱导T细胞的激活。专职抗原呈递细胞包括树突细胞和巨噬细胞。
术语“非专职(non-professional)抗原呈递细胞”涉及不组成性表达MHC II类分子,但是在受到某些细胞因子如干扰素-γ刺激时表达MHC II类分子的抗原呈递细胞。示例性非专职抗原呈递细胞包括成纤维细胞、胸腺上皮细胞、甲状腺上皮细胞、神经胶质细胞、胰β细胞或血管内皮细胞。
“抗原加工”是指抗原降解为加工产物,其是所述抗原的片段(例如,蛋白降解为肽),并且这些片段中的一个或多个与MHC分子关联(例如,通过结合)用于通过细胞呈递,如特定T细胞的抗原呈递细胞。
术语“涉及抗原的疾病”是指牵涉抗原的任何疾病,例如以抗原的存在为特征的疾病。涉及抗原的疾病可以是传染病。如上文提到的,抗原可以是疾病相关抗原,如病毒抗原。在一实施方案中,涉及抗原的疾病是涉及表达抗原的细胞的疾病,优选在细胞表面上表达抗原。
术语“传染病”是指可以从个体传播至个体或从生物体传播至生物体的任何疾病,并且是由微生物物质引起的(例如普通感冒)。传染病是本领域已知的,并且包括例如病毒性疾病、细菌性疾病或寄生虫性疾病,所述疾病分别是由病毒、细菌和寄生虫引起的。在这方面,传染病可以是例如肝炎、性传播疾病(例如衣原体病或淋病)、结核病、HIV/获得性免疫缺陷综合征(AIDS)、白喉、乙型肝炎、丙型肝炎、霍乱、严重急性呼吸综合征(SARS)、禽流感和流感。
包装和运输
本公开描述改进时间和/或温度敏感材料,特别是生物和药物材料的递送物流的方法、试剂盒、容器、容器系统和装置。本文描述的容器可以是用于运输和/或临时储存这类温度敏感材料的绝热容器。在一些实施方案中,所述容器和/或试剂盒可以具有包含温度敏感材料的单独的有效负载容器。所述容器可以配备集成电子设备,其能够测量、存储、监测、追踪和传达关于容器位置和容器内部环境的重要信息,如温度。
试剂盒和容器系统的大小可以设计为考虑与正在运输的特定材料相关的运输和储存物流可能涉及的各种限制。例如,考虑包括最大化运输容器(包括有效负载容器和托盘)的容量,同时仍然能够保持温度敏感材料的特定低温。进一步的考虑包括最大化运输容器内能够将材料保持在特定低温下的空间的量,以及最大化可以储存在例如仓库设施中的容器的量。此外,例如,本公开的托盘可以设计为最大化可以放置在这类托盘内的小瓶(或其他储存介质)的数量,同时保持在托盘中间部分的小瓶以及在托盘边缘的小瓶的足够低温。进一步的考虑包括最小化试剂盒和/或容器内将温度敏感材料保持在或低于特定低温所需的干冰(或其他冷却机制)的量。因此,在记住这些考虑的情况下,考虑和设计本公开的试剂盒、容器系统和方法。
在一些实施方案中,本文描述的温度敏感材料可以在受控温度的条件下运输和/或储存,例如,-70℃±10℃的温度条件,例如,利用干冰以保持期望温度。在一实施方案中,可以在受控温度的保温运输工具中运输材料。这类运输工具可以包含启用GPS的热传感器以追踪每次运输的位置和温度。所述材料可以通过用干冰重新填充来储存。
在一些实施方案中,本文提供的试剂盒可以包含实时监测记录装置,例如在一些实施方案中,其能够提供运输温度、运输时间和/或位置。容器可以是物流系统的一部分,包括实时监测容器或容器内的温度敏感材料的位置、内部温度和其他参数的方法。集成电子设备能够通过使用全球定位系统(GPS)和/或其他无线技术,如本地无线通信(Wi-Fi)、蓝牙、蜂窝网络或其他无线网络来广播关于容器的信息。
在一些实施方案中,关于容器的信息与基于云的数据存储或其他通信网络无线交换。这样的信息可以包括实时和/或历史位置和温度数据,可以在多个平台上以各种形式为用户处理这些数据。例如,来自容器的信息可以通过移动设备通过短消息服务(SMS)和/或多媒体消息服务(MMS)提供给用户。在其他实施方案中,可以通过基于云的数据库或生成的报告访问这些信息。本发明的实施方案可以在云计算环境中或用任何其他类型的已知或未来开发的计算环境来实现。
计算机系统/服务器可以与本文描述的方法和试剂盒组合使用,例如分布式云计算环境,其中由通过通信网络连接的远程处理设备执行任务。在分布式云计算环境中,程序模块可以位于本地或远程计算机系统存储介质中,包括内存存储设备。计算机系统/服务器计算机还可以与一个或多个外部设备如设备计算机通信。计算机系统/服务器计算机通常包括各种计算机系统可读介质。这种介质可以是计算机系统/服务器计算机可访问的任何可用介质,并且包括易失性和非易失性介质,以及可移动和不可移动介质。云计算允许对可配置计算资源(例如网络、网络宽带、服务器、处理、内存、存储、应用程序、虚拟机和服务)的共享池进行方便的按需网络访问,这些资源可以以最少的管理工作或与服务提供商的互动来快速提供和发布。
所述试剂盒和/或容器还可以在非运输期间将关于容器/试剂盒本身的信息(例如温度历史、位置信息)传达给本地用户或网络。
在一些实施方案中,如果材料的温度在期望范围之外,则向适当的当事人发送警报。在其他实施方案中,倒数计时器用于跟踪温度敏感材料已在运输中的时间,并且确保时间量不超过特定限制。
在其他实施方案中,有效负载容器配备有自己的传感器如温度传感器和近距离通信设备,能够通过移动设备应用程序、云托管应用程序或其他接收系统从有效负载容器向终端用户发送关于一系列参数的信息,包括但不限于温度、湿度、位置和时间。
运输的温度敏感材料可以是任何生物或药物产品,包括但不限于标本、疫苗、药物、药品、血液样品、细胞、干细胞、组织、工程组织产品、制造的细胞和基因疗法、器官或任何流体、骨骼或细胞或代谢副产物、中间体或衍生物。
在一些实施方案中,本文公开的容器(例如主容器、有效负载容器、干冰容器、托盘等)可以由合适的材料制成,所述材料满足将温度敏感材料保持在足够低的温度的要求,并且进一步满足运输空间、储存容量等的要求。可用于生产本公开的试剂盒和/或容器系统的材料可以包括诸如波形(corrugated)纸板、波形塑料或高密度塑料泡沫的材料。例如,可以使用波形半透明或白色聚丙烯(例如
Figure GDA0004051824180002161
或其等同物)。所述容器可以具有成型、模压或预切垫形式的泡沫塑料(Styrofoam)或弹性泡沫的内衬,以及至少一个预冷凝胶包,它是一种填充有凝胶的重塑料的密封袋装容器,在低温下冷冻并在容器中保持相对较低的温度。用来为试剂盒或容器系统提供隔热的其他方法和材料包括真空隔热板、膨胀或挤压聚苯乙烯或者聚氨酯泡沫。还可以使用其他方法和材料,如使用干冰,以将温度敏感材料保持在或低于适当温度。
容器中用于维持超低温的材料如干冰应当正确放置在隔热运输容器中,以便提供运输所需的正确温度和温度稳定性。相似地,有效负载容器(容纳正在运输的温度敏感材料的容器)应当正确放置在运输容器内。有效负载容器可以是可以安全地运输材料的任何形状。有效负载容器可以是较大的容器,优选包含包装材料以保护有效负载在运输期间免受机械振动、冲击或其他形式的应力。有效负载容器可以包含放置在有效负载容器内的较小容器,如小瓶、标本管、袋或注射器。在其他实施方案中,有效负载容器可以是容纳温度敏感材料的容器。
在一些实施方案中,隔热运输容器和/或有效负载容器包括一个或多个温度传感器。在使用温度传感器的实施方案中,它们可以接触、直接接触或靠近它们测量的任何东西,以便检测该物品或其环境的温度。如果包装中使用的隔热材料没有充分调节或冷冻,则这些传感器会提醒用户隔热材料预处理不当,停止材料的进一步包装和运输,直至纠正这类错误。
传感器优选至少部分嵌入或完全嵌入隔热运输容器的一个或多个壁中。这些传感器通过硬线或近场通信方法与远程通信设备进行通信,所述远程通信设备本身嵌入隔热运输容器的主体中。远程通信设备可以利用蜂窝通信或其他通信网络与用户进行通信。在一些实施方案中,将蜂窝调制解调器集成在通信设备中。在一些实施方案中,隔热材料中的传感器是RFID标签、温度传感器或磁铁。通信设备的一些实例包括但不限于蜂窝通信设备(例如—蜂窝电话、蜂窝调制解调器、码分多址系统、全球移动通信系统和频谱的其他蜂窝部分)、RF发射器、有源RFID设备、RFID标签、
Figure GDA0004051824180002174
发射器、
Figure GDA0004051824180002171
发射器、
Figure GDA0004051824180002172
发射器、Wi-Fi无线电、其他无线发射器或者其他近场通信信号或设备。
物流/跟踪系统可以包含完成运输空运单的能力,并且与适当的用户就特定运输容器的状态和位置进行通信。如果未正确遵循打包程序,导致内置传感器和/或开关的激活,物流/跟踪系统还可以阻止空运单的完成。物流/跟踪系统可以是基于云的、客户端应用程序,和/或移动应用程序。
在有效负载容器中具有通信设备的一些实施方案中,有效负载容器中的通信设备是近场通信设备,其提供信息,并且可以例如使用低功率通信与运输或储存容器或者智能手机设备进行通信,包括
Figure GDA0004051824180002173
Wi-Fi或其他形式的近场通信(NFC)。
在一些实施方案中,温度敏感材料可以在温度不超过特定阈值的条件下制备、储存、运输、表征和/或使用。可选地或额外地,在一些实施方案中,温度敏感材料可以在其制备、储存、运输、表征和/或使用的一些或全部过程中被保护免受光(例如,免受某些波长)的影响。
在一些实施方案中,本文所述的温度敏感材料可以在容器(如小瓶或注射器)中运输、储存和/或使用,例如,玻璃容器(如玻璃小瓶或注射器),在一些实施方案中,其可以是单剂量容器或多剂量容器(例如,可以将其排列或构造为容纳,和/或在一些实施方案中可以容纳单剂量或多剂量的用于给药的产品)。在一些实施方案中,可以将多剂量容器(如多剂量小瓶或注射器)排列或构造为容纳,和/或可以容纳2、3、4、5、6、7、8、9、10个或更多个剂量;在一些特定实施方案中,可以将其设计为容纳和/或可以容纳5个剂量。在一些实施方案中,可以将单剂量或多剂量容器(如单剂量或多剂量小瓶或注射器)排列或构造为容纳和/或可以容纳大于所示剂量数量的体积或量,例如,以便允许转移和/或给药中的一些损失。在一些实施方案中,可以将温度敏感材料在不含防腐剂的玻璃容器(例如,不含防腐剂的玻璃小瓶或注射器,例如,单剂量或多剂量不含防腐剂的玻璃小瓶或注射器)中运输、储存和/或使用。在一些实施方案中,可以将温度敏感材料在包含0.45mL冷冻液体(例如,包括5个剂量)的不含防腐剂的玻璃容器(例如,不含防腐剂的玻璃小瓶或注射器,例如,单剂量或多剂量不含防腐剂的玻璃小瓶或注射器)中运输、储存和/或使用。在一些实施方案中,可以将温度敏感材料和/或其中布置、运输、储存和/或使用温度敏感材料的容器(例如,小瓶或注射器)保持在低于室温的温度下,在4℃或低于4℃、在0℃或低于0℃、在-20℃或低于-20℃、在-60℃或低于-60℃、在-70℃或低于-70℃、在-80℃或低于-80℃、在-90℃或低于-90℃等。在一些实施方案中,可以将温度敏感材料和/或其中布置、运输、储存和/或使用温度敏感材料的容器(例如,小瓶或注射器)保持在-80℃和-60℃之间、或-90℃和-60℃之间、或-90℃和-50℃之间、或-80℃和-50℃之间的温度。在一些实施方案中,可以将温度敏感材料和/或其中布置温度敏感材料的容器(例如,小瓶或注射器)与热保护材料或容器和/或温度调节材料一起和/或在其环境中运输、储存和/或使用。例如,在一些实施方案中,可以将温度敏感材料和/或其中布置温度敏感材料的容器(例如,小瓶或注射器)与冰和/或干冰和/或与隔热材料一起运输、储存和/或使用。在一些特定实施方案中,将其中布置温度敏感材料的容器(例如,小瓶或注射器)放置在托盘或其他固定装置中,并且使其进一步与温度调节(例如,冰和/或干冰)材料和/或隔热材料接触(或以其他方式存在)。
在一些实施方案中,将其中布置提供的温度敏感材料的多个容器(例如,多个小瓶或注射器,如本文描述的单次使用或多次使用的小瓶或注射器)与温度调节(例如,冰和/或干冰)材料和/或隔热材料共定位(例如,在共同的托盘、架子、盒等中)和包装(或以其他方式存在)。举一个实例,在一些实施方案中,将其中布置温度敏感材料的多个容器(例如,多个小瓶或注射器,如本文描述的单次使用或多次使用的小瓶或注射器)放置在共同的托盘或架子中,并且将多个这样的托盘或架子叠在纸箱中,所述纸箱被保温(例如,隔热)运输工具中的温度调节材料(例如,干冰)包围。
在一些实施方案中,定期补充温度调节材料(例如,在到达现场的24小时内,和/或每2小时、4小时、6小时、8小时、10小时、12小时、14小时、16小时、18小时、20小时、22小时、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天等)。优选地,重新进入保温运输工具应当很少,并且期望每天不应当发生两次以上。在一些实施方案中,保温运输工具在打开后的5、4、3、2或1分钟或更短时间内重新关闭。在一些实施方案中,已在保温运输工具内储存一段时间的提供的温度敏感材料,任选地在特定温度范围内保持可用。例如,在一些实施方案中,如果包含温度敏感材料的本文所述的保温运输工具处于或保持(例如,储存)在约15℃-约25℃的温度范围内,则材料可以使用长达10天;即,在一些实施方案中,将保持在保温运输工具内的提供的温度敏感材料给药至受试者,所述保温运输工具在约15℃-约25℃的温度范围内不超过10天时间。可选地或额外地,在一些实施方案中,如果温度敏感材料处于或保持(例如,储存)在保温运输工具内,所述保温运输工具已保持(例如,储存)在约15℃-约25℃的温度范围内,则其可以使用长达10天;即,在一些实施方案中,将保持在保温运输工具内的提供的温度敏感材料给药至受试者,所述保温运输工具已保持在约15℃-约25℃的温度范围内不超过10天时间。在一些实施方案中,将提供的温度敏感材料以冷冻状态运输和/或储存。在一些实施方案中,将冷冻的温度敏感材料解冻。在一些实施方案中,如果保持(例如,储存)在室温或低于室温的温度下(例如,低于约30℃、25℃、20℃、15℃、10℃、8℃、4℃等),解冻的材料可以在解冻之后使用几天(例如,1、2、3、4、5或6天)。在一些实施方案中,解冻的温度敏感材料可以在约2℃-约8℃的温度下储存(例如,这样少的天数)之后使用;可选地或额外地,材料可以在室温下解冻之后的几个(例如,1、2、3、4、5或6个)小时内使用。因此,在一些实施方案中,将已解冻并保持在室温或低于室温(在一些实施方案中在约2℃和约8℃之间)的温度下保持不超过6、5、4、3、2或1天的提供的温度敏感材料给药至受试者。可选地或额外地,在一些实施方案中,将已解冻并在室温下保持不超过6、5、4、3、2或1小时的温度敏感材料给药至受试者。
在一些实施方案中,将提供的温度敏感材料以浓缩状态运输和/或储存。在一些实施方案中,将这样的浓缩组合物在给药之前稀释。在一些实施方案中,将稀释的组合物在稀释后约10、9、8、7、6、5、4、3、2或1小时的时间内给药;在一些实施方案中,这样的给药在稀释后6小时内。因此,在一些实施方案中,将温度敏感材料的稀释制品在稀释后6小时内给药至受试者(例如,如本文所述,在已保持在适当温度之后,例如,在低于室温的温度下,在4℃或低于4℃、在0℃或低于0℃、在-20℃或低于-20℃、在-60℃或低于-60℃、在-70℃或低于-70℃、在-80℃或低于-80℃等,并且通常在2℃或高于2℃,例如在约2℃和约8℃之间或者在约2℃和约25℃之间)。
在一些实施方案中,可以保护储存、运输或使用的温度敏感材料(例如,冷冻的组合物、液体浓缩的组合物、稀释的液体组合物等)免受光照。在一些实施方案中,可以采取一个或多个步骤以减少或最小化这类材料暴露于光(例如,可以将其放置在容器如小瓶或注射器内)。在一些实施方案中,避免暴露在直射的阳光和/或紫外光下。在一些实施方案中,稀释的溶液可以在正常的室内光线条件下操作和/或使用(例如,不采取特定步骤以最小化或减少暴露于室内光线)。应当理解,在操作(例如,稀释和/或给药)本文描述的材料期间,严格遵守无菌技术是可取的。
某些示例性实施方案:
1.一种针对SARS-CoV-2免疫的方法,所述方法包括以下步骤:
根据方案给药组合物,所述组合物包含脂质纳米颗粒包裹的mRNA,所述mRNA编码SARS-CoV-2编码的多肽的至少一个表位,建立所述方案以在7天内实现血清中针对表位的可检测的抗体滴度,所述方案包括给药至少一个剂量的所述组合物。
2.实施方案1的方法,其中所述方案包括给药至少两个剂量的所述组合物。
3.实施方案1的方法,其中所述方案由给药至少两个剂量的所述组合物组成。
4.实施方案2或实施方案3的方法,其中第一剂量是与一个或多个后续剂量不同的量。
5.实施方案1或实施方案4的方法,其中所述第一剂量在后续剂量之前的一段时间给药,所述时间段是至少1周、1个月、2个月、3个月、6个月、1年、2年、3年或更长时间。
6.实施方案1-6中任一项的方法,其中建立所述方案以当给予相关成年人群体时,具有60%以下的不良事件发生率。
7.实施方案6的方法,其中建立所述方案以不引发发生率为约75分之一(1in 75)以上的中等严重程度以上的局部注射部位反应。
8.实施方案1-7中任一项的方法,其中每个剂量为不超过60μg或更低,包括,例如,不超过50μg、不超过40μg、不超过30μg、不超过20μg、不超过10μg、不超过5μg、不超过2.5μg、不超过1μg。
9.实施方案1-8中任一项的方法,其中每个剂量是至少1μg或更高,包括,例如,至少2μg、至少5μg、至少10μg、至少20μg、至少30μg、至少40μg或更多。
10.一种包括向受试者给药组合物的方法,所述组合物包含脂质纳米颗粒包裹的mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中以有效量给药所述组合物以在受试者中诱导SARS-COV-2 S-蛋白特异性免疫应答,其中相对于参考组合物(例如,参考RNA疫苗或组合物),所述有效量足以以至少低2倍(包括,例如,至少3倍、至少4倍、至少5倍)的剂量在受试者中提供消除性(sterilizing)免疫力。
11.一种包括向受试者给药组合物的方法,所述组合物包含脂质纳米颗粒包裹的mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中以有效量给药所述组合物以在暴露于SARS-COV-2之后2天或更多天(包括,例如,3天、4天、5天、6天、7天、8天、9天或更多天),相对于对照,降低受试者中的病毒载量至少80%,其中所述对照是给药参考组合物(例如,参考RNA疫苗或组合物)的受试者中的病毒载量。
12.一种包括向受试者给药组合物的方法,所述组合物包含脂质纳米颗粒包裹的mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中以有效量给药所述组合物以在受试者中诱导SARS-COV-2 S-蛋白特异性免疫应答,其中相对于未疫苗接种的对照受试者,所述RNA疫苗的效力是至少80%。
13.实施方案10-12中任一项的方法,其中如在给药后1-72小时在受试者的血清中测量的,所述有效量足以产生可检测水平的SARS-COV-2 S蛋白或其片段。
14.实施方案10-12中任一项的方法,其中如在给药后1-72小时在受试者的血清中测量的,所述有效量足以产生通过针对SARS-COV-2 S蛋白的中和抗体产生的1,000-10,000中和滴度。
15.实施方案10-14中任一项的方法,其中相对于对照,受试者中产生的抗SARS-COV-2 S蛋白抗体滴度增加至少1log,其中所述对照是尚未给药针对SARS-COV-2的疫苗的受试者中产生的抗SARS-COV-2 S蛋白抗体滴度。
16.实施方案10-15中任一项的方法,其中相对于对照,受试者中产生的抗SARS-COV-2 S蛋白抗体滴度增加至少2倍,其中所述对照是尚未给药针对SARS-COV-2的疫苗的受试者中产生的抗SARS-COV-2 S蛋白抗体滴度。
17.实施方案1-16中任一项的方法,其中所述给药通过肌肉内注射进行。
18.一种免疫原性组合物,其包含脂质纳米颗粒包裹的RNA(例如,mRNA),所述RNA编码SARS-CoV-2编码的多肽的至少一个表位,建立所述疫苗组合物以在根据方案给予成年人受试者群体后7天内实现血清中针对所述表位的可检测的抗体滴度,所述方案包括给药至少一个剂量的所述疫苗组合物。
19.实施方案18的免疫原性组合物,其中所述RNA中至少80%的尿苷具有化学修饰。
20.实施方案18或19的免疫原性组合物,其中所述RNA中100%的尿苷具有化学修饰。
21.实施方案18-20中任一项的免疫原性组合物,其中5'末端帽是7mG(5')ppp(5')NlmpNp。
22.实施方案18-21中任一项的免疫原性组合物,其中所述组合物中的脂质纳米颗粒包含阳离子脂质、PEG修饰的脂质、固醇和非阳离子脂质。
23.实施方案18-22中任一项的免疫原性组合物,其中所述组合物中的脂质纳米颗粒包含摩尔比的约20-60%阳离子脂质、0.5-15% PEG修饰的脂质、25-55%固醇和5-25%非阳离子脂质。
24.实施方案22或23的免疫原性组合物,其中所述阳离子脂质是可电离的阳离子脂质,所述非阳离子脂质是中性脂质,并且所述固醇是胆固醇。
25.实施方案22或23中任一项的免疫原性组合物,其中所述阳离子脂质选自2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环(2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane,DLin-KC2-DMA)、二亚油基-甲基-4-二甲基氨基丁酸酯(dilinoleyl-methyl-4-dimethylaminobutyrate,DLin-MC3-DMA)和二((Z)-壬-2-烯-1-基)9-((4-(二甲基氨基)丁酰基)氧基)十七烷二酸酯(di((Z)-non-2-en-1-yl)9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate)。
26.实施方案18-25中任一项的免疫原性组合物,其中所述RNA包含5'末端帽和化学修饰,并且所述RNA配制或待配制为脂质纳米颗粒。
27.实施方案18-26中任一项的免疫原性组合物,其中SARS-CoV-2 S蛋白、其免疫原性变体或者所述SARS-CoV-2 S蛋白或其免疫原性变体的免疫原性片段连接至信号肽。
28.实施方案27的免疫原性组合物,其中所述信号肽选自HuIgGk信号肽(METPAQLLFLLLLWLPDTTG);IgE重链ε(epsilon)-1信号肽(MDWTWILFLVAAATRVHS);日本脑炎PRM信号序列(MLGSNSGQRVVFTILLLLVAPAYS)和VSVg蛋白信号序列(MKCLLYLAFLFIGVNCA)。
29.一种通过体内激活T细胞在受试者中引发免疫应答的方法,所述方法包括向受试者给药组合物,所述组合物包含脂质纳米颗粒包裹的修饰的核苷mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,从而在体内激活T细胞以对抗受试者中的SARS-COV-2感染。
30.一种在受试者中引发针对SARS-COV-2的免疫应答的方法,所述方法包括向所述受试者给药组合物,所述组合物包含脂质纳米颗粒包裹的修饰的核苷mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中与包含相应的未修饰的mRNA的组合物相比,所述组合物引起增加的SARS-COV-2多肽或其片段的产生。
31.一种在受试者中引发针对SARS-COV-2的免疫应答的方法,所述方法包括向所述受试者给药组合物,所述组合物包含脂质纳米颗粒包裹的修饰的核苷mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中与包含相应的未修饰的mRNA的组合物相比,所述组合物引起增加的抗体滴度。
32.一种在受试者中引发针对SARS-COV-2的免疫应答的方法,所述方法包括向所述受试者给药至少一个剂量的组合物,所述组合物包含脂质纳米颗粒包裹的修饰的核苷mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中与给药所述组合物之前针对SARS-COV-2的抗体滴度相比,所述组合物在第一剂量之后至少7天引起受试者中增加的抗体滴度。
33.一种在受试者中引发针对SARS-COV-2的免疫应答的方法,所述方法包括向所述受试者给药至少一个剂量的组合物,所述组合物包含脂质纳米颗粒包裹的修饰的核苷mRNA,其中所述mRNA编码包含SARS-COV-2 S蛋白或其片段的氨基酸序列,其中与包含相应的未修饰的mRNA的组合物相比,所述组合物在第一剂量之后至少7天引起受试者中增加的抗体滴度。
34.实施方案29-33中任一项的方法,其中所述mRNA以90%或更高的纯度存在。
35.实施方案29-34中任一项的方法,其中所述组合物不进一步包含编码SARS-COV-2 S蛋白或其片段的未修饰的RNA。
36.实施方案29-35中任一项的方法,其中将所述组合物给药至少2次,第一次和第二次给药间隔至少7天。
37.实施方案29-36中任一项的方法,其中所述受试者有SARS-CoV-2感染的风险。
38.实施方案29-37中任一项的方法,其中所述受试者正在进行心血管疾病的治疗。
39.实施方案29-37中任一项的方法,其中所述受试者正在进行糖尿病的治疗。
40.实施方案29-37中任一项的方法,其中所述受试者正在进行慢性心肺疾病的治疗。
41.实施方案29-37中任一项的方法,其中所述受试者正在进行慢性肾疾病的治疗。
42.实施方案29-41中任一项的方法,其中所述免疫应答持续至少约30天。
43.实施方案29-42中任一项的方法,其中所述免疫应答持续至少约60天。
44.实施方案29-43中任一项的方法,其中所述免疫应答持续至少约180天。
45.实施方案29-44中任一项的方法,其中所述免疫应答包括病毒中和滴度。
46.实施方案29-45中任一项的方法,其中所述受试者至少18岁。
47.实施方案29-46中任一项的方法,其中所述剂量包含100μg或更少的mRNA。
48.实施方案29-47中任一项的方法,其中所述剂量包含少于100μg的mRNA,并且所述组合物引发的免疫应答大于由包含至少100μg的mRNA的组合物引发的免疫应答。
49.实施方案29-48中任一项的方法,其中所述剂量包含30μg的mRNA。
50.实施方案29-49中任一项的方法,其中所述免疫应答包含针对SARS-CoV-2的S蛋白的受体结合结构域的抗体。
51.实施方案29-50中任一项的方法,其中所述免疫应答包含结合RBD的IgG。
52.实施方案29-50中任一项的方法,其中所述SARS-CoV-2 S蛋白或其片段包含受体结合结构域。
53.一种试剂盒,其包含a)组合物,其包含脂质纳米颗粒包裹的mRNA;以及b)温度监测系统。
54.实施方案53的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述组合物的温度达到约-80℃以上的温度时,所述温度监测系统显示或警告。
55.实施方案53的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述组合物的温度达到约-60℃以上的温度时,所述温度监测系统显示或警告。
56.一种试剂盒,其包含a)组合物,其包含脂质纳米颗粒包裹的mRNA;以及b)光传感器。
57.实施方案56的试剂盒,其中所述光传感器包括光敏元件,所述光敏元件配置为对曝光反应,导致光敏元件的材料性质改变。
58.实施方案29-35中任一项的方法,其中将所述组合物给药至少2次,第一次和第二次给药间隔至少14天。
59.实施方案29-35中任一项的方法,其中将所述组合物给药至少2次,第一次和第二次给药间隔至少21天。
60.实施方案29-48中任一项的方法,其中所述剂量包含10μg的mRNA。
61.实施方案29-35中任一项的方法,其中将所述组合物给药至少2次,第一次和第二次给药间隔至少28天。
62.实施方案29-35中任一项的方法,其中所述mRNA编码氨基酸序列SEQ ID NO:3、SEQ ID NO:5和SEQ ID NO:7中的任一个。
63.一种免疫原性组合物,其包含有效量的信使核糖核酸(mRNA)多核苷酸以在给药至少一个剂量的所述免疫原性组合物的受试者中诱导免疫应答,所述信使核糖核酸(mRNA)多核苷酸包含编码多肽的开放阅读框,所述多肽包含SARs-CoV-2 S蛋白的受体结合部分,所述信使核糖核酸(mRNA)多核苷酸配制于包含阳离子脂质的至少一种脂质纳米颗粒中,其中分离的mRNA多核苷酸不是自我复制的RNA。
64.实施方案63的免疫原性组合物,其中所述脂质纳米颗粒进一步包含非阳离子脂质、固醇和PEG修饰的脂质中的任一种。
65.实施方案63的免疫原性组合物,其包含有效量的分离的信使核糖核酸(mRNA)多核苷酸以在给药至少一个剂量的所述免疫原性组合物的受试者中诱导免疫应答,所述信使核糖核酸(mRNA)多核苷酸包含编码多肽的开放阅读框,所述多肽包含SARs-CoV-2 S蛋白的受体结合部分;所述信使核糖核酸(mRNA)多核苷酸配制于包含摩尔比的20-60%可电离的阳离子脂质、5-25%非阳离子脂质、25-55%固醇和0.5-15% PEG修饰的脂质的至少一种脂质纳米颗粒中,其中分离的mRNA多核苷酸不是自我复制的RNA。
66.实施方案63的免疫原性组合物,其中所述多肽不含完整的S蛋白。
67.实施方案63的免疫原性组合物,其中所述多肽包含SARs-CoV-2 S蛋白的受体结合结构域(RBD)。
68.实施方案63的免疫原性组合物,其中所述多肽包含SEQ ID NO:5。
69.实施方案63的免疫原性组合物,其中所述多肽包含SEQ ID NO:29或31。
70.实施方案63的免疫原性组合物,其中所述多肽包含SEQ ID NO:3。
71.实施方案63的免疫原性组合物,其中所述多肽包含SEQ ID NO:7。
72.实施方案63-71中任一项的免疫原性组合物,其中所述分离的mRNA多核苷酸进一步包含5'末端帽,7mG(5′)ppp(5′)NlmpNp。
73.实施方案63-72中任一项的免疫原性组合物,其中所述开放阅读框中至少80%的尿嘧啶具有选自N1-甲基-假尿苷或N1-乙基-假尿苷的化学修饰。
74.实施方案63-73中任一项的免疫原性组合物,其中所述化学修饰在尿嘧啶的5-位。
75.实施方案63-74中任一项的免疫原性组合物,其中相对于未疫苗接种的受试者,所述免疫原性组合物在疫苗接种的受试者中的效力在单剂量的免疫原性组合物之后是至少60%。
76.实施方案75的免疫原性组合物,其中相对于未疫苗接种的受试者,所述免疫原性组合物在疫苗接种的受试者中的效力在单剂量的免疫原性组合物之后是至少70%。
77.实施方案75的免疫原性组合物,其中相对于未疫苗接种的受试者,所述免疫原性组合物在疫苗接种的受试者中的效力在单剂量的免疫原性组合物之后是至少80%。
78.实施方案75的免疫原性组合物,其中相对于未疫苗接种的受试者,所述免疫原性组合物在疫苗接种的受试者中的效力在单剂量的免疫原性组合物之后是至少90%。
79.实施方案63-78中任一项的免疫原性组合物,其中如在给药后1-72小时在用至少一个剂量的所述免疫原性组合物疫苗接种的受试者的血清中测量的,所述有效量足以产生可检测水平的包含SARS-CoV-2 S蛋白的受体结合部分的多肽。
80.实施方案63-79中任一项的免疫原性组合物,其中如在给药后1-72小时在用至少一个剂量的所述免疫原性组合物疫苗接种的受试者的血清中测量的,所述有效量足以产生通过针对包含SARS-COV-2 S蛋白的受体结合部分的抗原多肽的中和抗体产生的1,000-10,000中和滴度。
81.实施方案80的免疫原性组合物,其中产生所述1,000-10,000中和滴度而不存在SARS-CoV-2相关疾病的抗体依赖性增强(ADE)。
82.实施方案63-81中任一项的免疫原性组合物,其中所述有效量不诱导所述免疫原性组合物相关的增强型呼吸道疾病(ERD)。
83.实施方案63-82中任一项的免疫原性组合物,其中与感染SARS-CoV-2病毒之后未疫苗接种的受试者的肺中SARS-CoV-2病毒RNA的量相比,所述有效量减少感染SARS-CoV-2病毒之后受试者肺中SARS-CoV-2病毒RNA的量。
84.实施方案63-82中任一项的免疫原性组合物,其中与感染SARS-CoV-2病毒之后3天受试者肺中SARS-CoV-2病毒RNA的量相比,所述有效量减少感染SARS-CoV-2病毒之后至少3天受试者肺中SARS-CoV-2病毒RNA的量。
85.实施方案63-82中任一项的免疫原性组合物,其中与感染SARS-CoV-2病毒之后未疫苗接种的受试者的鼻拭子样品中SARS-CoV-2病毒RNA的量相比,所述有效量减少感染SARS-CoV-2病毒之后受试者的鼻拭子样品中SARS-CoV-2病毒RNA的量。
86.实施方案63-82中任一项的免疫原性组合物,其中与感染SARS-CoV-2病毒之后1天受试者的鼻拭子样品中SARS-CoV-2病毒RNA的量相比,所述有效量不增加感染SARS-CoV-2病毒之后3天受试者的鼻拭子样品中SARS-CoV-2病毒RNA的量。
87.实施方案63-87中任一项的免疫原性组合物,其中在用至少一个剂量的所述免疫原性组合物疫苗接种的受试者中产生的抗SARS-CoV-2抗体滴度相对于对照增加至少1log,其中所述对照是在未给药针对SARS-CoV-2的免疫原性组合物的受试者中产生的抗SARS-CoV-2抗体滴度。
88.实施方案63-87中任一项的免疫原性组合物,其中在用至少一个剂量的所述免疫原性组合物疫苗接种的受试者中产生的抗SARS-CoV-2抗体滴度相对于对照增加至少2倍,其中所述对照是在未给药针对SARS-CoV-2的免疫原性组合物的受试者中产生的抗SARS-CoV-2抗体滴度。
89.实施方案63-88中任一项的免疫原性组合物,其中所述有效量是2μg-100μg的总剂量。
90.实施方案89的免疫原性组合物,其中所述有效量是100μg的总剂量。
91.实施方案89的免疫原性组合物,其中所述有效量是20μg-50μg的总剂量。
92.实施方案89的免疫原性组合物,其中所述有效量是10μg-30μg的总剂量。
93.实施方案89的免疫原性组合物,其中所述有效量是10μg的总剂量。
94.实施方案89的免疫原性组合物,其中所述有效量是20μg的总剂量。
95.实施方案89的免疫原性组合物,其中所述有效量是30μg的总剂量。
96.实施方案63-95中任一项的免疫原性组合物,其中将所述组合物配制于单剂量小瓶中。
97.实施方案63-95中任一项的免疫原性组合物,其中将所述组合物配制于多剂量小瓶中。
98.实施方案63-97中任一项的免疫原性组合物,其中向受试者肌肉内给药有效量的所述免疫原性组合物在受试者中诱导中和抗体滴度。
99.实施方案98的免疫原性组合物,其中相对于未疫苗接种的对照受试者的中和抗体滴度或者相对于用减毒活病毒疫苗、灭活病毒疫苗或蛋白亚单位病毒疫苗接种的受试者的中和抗体滴度,所述中和抗体滴度足以减少B细胞的病毒感染至少50%。
100.实施方案98或99的免疫原性组合物,其中在3个以下剂量的所述免疫原性组合物之后,在受试者中诱导所述中和抗体滴度。
101.实施方案98-100中任一项的免疫原性组合物,其中相对于未疫苗接种的对照受试者的中和抗体滴度,所述中和抗体滴度和/或T细胞免疫应答足以降低无症状病毒感染率。
102.实施方案98-101中任一项的免疫原性组合物,其中所述中和抗体滴度和/或T细胞免疫应答足以防止受试者中的病毒潜伏。
103.实施方案98-102中任一项的免疫原性组合物,其中所述中和抗体滴度足以阻断病毒与受试者的上皮细胞和/或B细胞融合。
104.实施方案63-103中任一项的免疫原性组合物,其中向受试者肌肉内给药有效量的所述免疫原性组合物在受试者中诱导T细胞免疫应答。
105.实施方案104的免疫原性组合物,其中所述T细胞免疫应答包括CD4+ T细胞免疫应答和/或CD8+ T细胞免疫应答。
106.实施方案63-105中任一项的免疫原性组合物,其中所述编码的多肽呈递在受试者的细胞表面上。
107.一种方法,其包括向受试者给药实施方案63-106中任一项的免疫原性组合物,其中将所述免疫原性组合物以有效量给予受试者以在受试者中诱导免疫应答。
108.实施方案107的方法,其中针对与SEQ ID NO:5相比在RBD中具有突变的SARs-CoV-2病毒诱导免疫应答。
109.实施方案107的方法,其中针对与SEQ ID NO:1相比在刺突蛋白中具有突变的SARs-CoV-2病毒诱导免疫应答。
110.实施方案108或109的方法,其中针对与SEQ ID NO:1相比在RBD中具有以下突变中任一个的SARs-CoV-2病毒诱导免疫应答:Q321L、V341I、A348T、N354D、S359N、V367F、K378R、R408I、Q409E、A435S、N439K、K458R、I472V、G476S、S477N、V483A、Y508H和H519P。
111.实施方案109的方法,其中针对与SEQ ID NO:1相比在刺突蛋白中具有D614G突变的SARs-CoV-2病毒诱导免疫应答。
112.实施方案107的方法,其中将所述免疫原性组合物每年给予受试者。
113.一种RNA,任选地由(聚)阳离子聚合物、polyplex、蛋白或肽复合,所述RNA:(a)包含编码多肽的开放阅读框,所述多肽包含SARS-CoV-2 S蛋白的受体结合部分;并且(b)适合所述多肽的细胞内表达。
114.实施方案113的RNA,其中所述多肽不包含完整的S蛋白。
115.实施方案113或114的RNA,其中所述RNA进一步包含5'末端帽,7mG(5′)ppp(5′)NlmpNp。
116.实施方案113-115中任一项的RNA,其中所述开放阅读框中至少80%的尿嘧啶具有选自N1-甲基-假尿苷或N1-乙基-假尿苷的化学修饰。
117.实施方案113-116中任一项的RNA,其中所述化学修饰在尿嘧啶的5-位。
118.实施方案113-117中任一项的RNA,用于在人中诱导免疫应答或对人进行疫苗接种。
119.用于实施方案118的RNA,其中所述人包括已知已暴露于SARS-CoV-2的人。
120.用于实施方案118的RNA,其中所述人包括已知已感染SARS-CoV-2的人。
121.用于实施方案118的RNA,其中所述人包括未知已暴露于SARS-CoV-2的人。
122.实施方案113-117中任一项的RNA用于对人疫苗接种的用途。
123.实施方案122的用途,其中所述人包括已知已暴露于SARS-CoV-2的人。
124.实施方案122的用途,其中所述人包括已知已感染SARS-CoV-2的人。
125.实施方案122的用途,其中所述人包括未知已暴露于SARS-CoV-2的人。
126.一种单剂量制剂,其包含实施方案63-106中任一项的免疫原性组合物。
127.一种多剂量制剂,其包含一个小瓶中的实施方案63-106中任一项的免疫原性组合物。
128.实施方案126的制剂,其包含至少2个剂量/小瓶。
129.实施方案126的制剂,其包含总计2-12个剂量/小瓶。
130.实施方案126-129中任一项的制剂,其中每个剂量的体积相等。
131.实施方案126-130中任一项的制剂,其中每个制剂在小瓶中包含1-3mL的总体积。
132.实施方案126-131中任一项的制剂,其中所述免疫原性组合物是冷冻的。
133.一种预充式(pre-filled)疫苗递送装置,其包含实施方案63-106中任一项的免疫原性组合物。
134.根据本公开的一方面,提供一种试剂盒,其包括:a)主容器;b)有效负载容器;c)用于放置在所述有效负载容器内的至少一个托盘,其中所述至少一个托盘包含温度敏感材料;以及d)干冰容器;其中所述至少一个托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,H为约38至约46mm。
135.实施方案134的试剂盒,其中所述有效负载容器的尺寸为约229mm x 229mm x229mm。
136.实施方案134的试剂盒,其中所述试剂盒能够将所述托盘内材料的温度保持在-50℃或更低至少10天。
137.实施方案136的试剂盒,其中所述试剂盒能够将所述托盘内材料的温度保持在-70℃或更低至少10天。
138.实施方案136的试剂盒,其中所述试剂盒能够将所述托盘内材料的温度保持在-80℃至少10天。
139.实施方案134的试剂盒,其进一步包括温度监测系统。
140.实施方案139的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述材料的温度达到约-80℃以上的温度时,所述温度监测系统显示或警告。
141.实施方案134的试剂盒,其中所述有效负载容器放置在所述主容器的底部,此外其中所述干冰容器放置在所述有效负载容器的顶部。
142.实施方案141的试剂盒,其中所述至少一个托盘放置在所述有效负载容器内。
143.实施方案142的试剂盒,其中所述有效负载容器内有1、2、3、4或5个托盘。
144.实施方案134的试剂盒,其中所述温度敏感材料包含在至少一个玻璃小瓶内,并且其中所述至少一个玻璃小瓶放置在所述托盘内。
145.实施方案144的试剂盒,其中所述至少一个玻璃小瓶是多剂量小瓶。
146.实施方案144的试剂盒,其中每个托盘包含至少25个小瓶。
147.实施方案146的试剂盒,其中每个托盘包含至少50个小瓶。
148.实施方案147的试剂盒,其中每个托盘包含至少75个小瓶。
149.实施方案148的试剂盒,其中每个托盘包含至少125个小瓶。
150.实施方案149的试剂盒,其中每个托盘包含至少150个小瓶。
151.实施方案150的试剂盒,其中每个托盘包含至少195个小瓶。
152.一种容器系统,其包括:a)主容器;b)有效负载容器;c)用于放置在所述有效负载容器内的至少一个托盘,其中所述至少一个托盘包含温度敏感材料;以及d)干冰容器;其中所述至少一个托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,H为约38至约46mm。
153.实施方案152的容器系统,其中所述有效负载容器的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,H为约228至约233mm。
154.实施方案153的容器系统,其中所述有效负载容器的尺寸为约229mm x 229mmx 229mm。
155.实施方案152的容器系统,其中所述系统能够将所述托盘内材料的温度保持在-50℃或更低至少10天。
156.实施方案155的容器系统,其中所述系统能够将所述托盘内材料的温度保持在-70℃或更低至少10天。
157.实施方案156的容器系统,其中所述系统能够将所述托盘内材料的温度保持在-80℃或更低至少10天。
158.实施方案152的容器系统,其中所述有效负载容器放置在所述主容器的底部,此外其中所述干冰容器放置在所述有效负载容器的顶部。
159.实施方案158的容器系统,其中所述至少一个托盘放置在所述有效负载容器内。
160.实施方案159的容器系统,其中所述有效负载容器内有1、2、3、4或5个托盘。
161.实施方案160的容器系统,其中所述温度敏感材料包含在至少一个玻璃小瓶内,并且其中所述至少一个玻璃小瓶放置在所述托盘内。
162.实施方案161的容器系统,其中所述至少一个玻璃小瓶是多剂量小瓶。
163.实施方案162的容器系统,其中每个托盘包含至少25个小瓶。
164.实施方案163的容器系统,其中每个托盘包含至少195个小瓶。
165.一种运输温度敏感材料的方法,包括以下步骤:a)将所述材料放置在实施方案134的试剂盒或实施方案152的容器系统中;以及b)将所述试剂盒或容器系统运输至预定目的地。
166.实施方案165的方法,其中在整个运输过程中连续监测所述有效负载容器内的温度。
167.实施方案166的方法,其中所述运输是在陆地、空中和/或水上进行的。
168.实施方案166的方法,其中所述运输通过陆地车辆、飞机和/或船进行。
169.实施方案165的方法,其中在整个运输过程中将所述有效负载容器内的温度保持在-70℃或更低。
170.实施方案169的方法,其中在整个运输过程中将所述有效负载容器内的温度保持在-80℃或更低。
171.实施方案165的方法,其中每个托盘中有至少150个小瓶。
172.实施方案171的方法,其中每个托盘中有195个小瓶。
173.实施方案172的方法,其中所述有效负载容器内有至少5个托盘。
174.实施方案165的方法,其中通过使用全球定位系统(GPS)定期监测所述试剂盒或容器系统的位置。
175.一种尺寸为约229mm x 229mm x 229mm的有效负载容器,其中在所述有效负载容器内放置至少5个托盘,并且其中每个托盘包含至少100瓶温度敏感材料。
176.实施方案175的有效负载容器,其中每个托盘包含至少150瓶温度敏感材料。
177.实施方案176的有效负载容器,其中每个托盘包含195瓶温度敏感材料。
178.一种用于承载温度敏感材料的托盘,其中所述托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,H为约38至约46mm。
179.实施方案178的托盘,其中至少150个小瓶放置在所述托盘内。
180.实施方案179的托盘,其中195个小瓶放置在所述托盘内。
本文参考的文件和研究的引用并不意图承认任何前述内容是相关的现有技术。关于这些文件内容的所有陈述都是基于申请人可获得的信息,并且不构成对这些文件内容正确性的任何承认。
提出以下描述以使本领域普通技术人员能够制备和使用各种实施方案。特定设备、技术和应用的描述仅作为实例提供。对本文描述的实例的各种修改对于本领域技术人员会显而易见,并且在不背离各种实施方案的精神和范围的情况下,本文中定义的一般原理可以应用于其他实例和应用。因此,各种实施方案不是为了限制本文描述和示出的实例,而是与符合权利要求的范围一致。
实施例
实施例1:使用流感血凝素(HA)作为模式抗原的体内免疫原性
通过使用流感HA作为模式抗原,进行广泛的免疫原性和攻毒研究,对要用于本文所述的冠状病毒疫苗的RNA平台的效力进行了测试。这些研究探究了通过抗原特异性酶联免疫吸附测定(ELISA)测试和应用病毒中和(VNT)测定的功能研究确定的抗体应答的诱导。一项研究使用编码流感HA的modRNA-LNP疫苗评估LNP制剂的效力。在第0和28天,对小鼠IM注射1μg LNP配制的流感HA modRNA。在第14、28和49天,采集血液样品并测试免疫原性。分析显示高抗体免疫应答,导致血清中非常高的抗原特异性IgG滴度以及高的病毒中和活性(图3)。此外,modRNA疫苗诱导了强Th1 CD4和CD8 T细胞应答(图4)。
实施例2:冠状病毒疫苗候选物的免疫原性研究
在BALB/c小鼠中进行初步药效学研究来测试下表所示的疫苗候选物的免疫原性。
表2:疫苗候选物
疫苗 mRNA类型 疫苗编码的抗原
BNT162a1 uRNA SARS-CoV-2刺突蛋白(S蛋白)的RBD(受体结合结构域)
BNT162b1 modRNA SARS-CoV-2刺突蛋白(S蛋白)的RBD(受体结合结构域)
BNT162b2 modRNA SARS-CoV-2刺突蛋白(S蛋白)的修饰形式
BNT162c1 saRNA SARS-CoV-2刺突蛋白(S蛋白)的RBD(受体结合结构域)
因此,可以看出,平行评价了多种形式的实施方案。这种描述的方法和系统取得了显著和有效的成功,使得能够在提供抗原(例如,SARS-CoV-2 S1蛋白和/或其RBD)序列(如本文所述,相关序列信息(例如,GenBank:MN908947.3)在2020年1月可获得)的几个月内开发有效的临床候选物。
在研究中,将每8只雌性BALB/c小鼠的四组用三种不同剂量的动物试验材料或缓冲液(对照组;参见表3)免疫一次。虽然临床试验材料会用盐水稀释,但动物试验材料稀释在含有300mM蔗糖的PBS中。由于这是材料本身的储存缓冲液,测试项目对于会在计划的临床试验中使用的疫苗是有代表性的。使用20μL的剂量体积IM进行免疫。
表3:研究设计
Figure GDA0004051824180002271
在第7、14、21和28天采集免疫的动物的血液,并通过ELISA和基于假病毒的中和测定(pVNT)分析抗体免疫应答。
通过ELISA检测针对重组S1亚基或RBD的SARS-CoV-2-S特异性抗体应答。简言之,将高蛋白结合的96孔板(MaxiSorp ELISA板,VWR International GmbH,Cat.No.7341284)在100μL的包被缓冲液(50mM碳酸钠-碳酸氢钠缓冲液,pH 9.6)中每孔用100ng重组S1亚基(Sino Biological Inc.,Cat.No.40591-V08H)或RBD(Sino Biological Inc.,Cat.No.40592-V02H)于4℃下包被过夜。将板用300μL/孔的补充有0.01%Tween 20(CarlRoth GmbH&Co.KG,Cat.No.9127.1)的1x磷酸盐缓冲盐水(PBS,VWR International GmbH,Cat.No.0780-10L)洗涤三次,并在微孔板振荡器上用250μL/孔的1x酪蛋白封闭缓冲液(Sigma-Aldrich GmbH,Cat No.B6429-500ml)于37℃下封闭1小时。再次将板用300μL/孔的补充有0.01%Tween 20的1x PBS洗涤三次,并在微孔板振荡器上用稀释在1x酪蛋白封闭缓冲液中的小鼠血清样品于37℃下孵育1小时。将板用300μL/孔的补充有0.01%Tween 20的1x PBS洗涤三次,随后在微孔板振荡器上用过氧化物酶缀合的山羊抗小鼠二抗(JacksonImmunoResearch Ltd.,Cat.No.115-036-071;以1∶7500稀释在1x酪蛋白封闭缓冲液中)于37℃下孵育45分钟。将板用300μL/孔的补充有0.01%Tween 20的1x PBS洗涤三次,并添加100μL/孔的TMB底物(Biotrend Chemiekalien GmbH,Cat.No.4380A)。将板于室温下孵育8分钟,并通过添加100μL的25%硫酸(VWR International GmbH,Cat.No.1007161000)终止反应。在酶标仪上读取板,并通过减去620nm的参考吸光度来校正450nm记录的吸光度。
通过pVNT检测对疫苗候选物的功能性抗体应答。pVNT使用复制缺陷型水疱性口炎病毒(VSV),其缺乏VSV包膜糖蛋白G的遗传信息,但含有绿色荧光蛋白(GFP)的开放阅读框。根据公开的方案(Hoffmann et al.,Cell,2020;PMID 32142651)产生VSV/SARS-CoV-2假病毒。该假型病毒带有介导细胞进入的SARS-CoV-2 S蛋白。因此,可以通过结合SARS-CoV-2 S的中和抗体使假病毒失活。可以通过体外方法分析这种失活。
简言之,在150μL/孔的补充有10%胎牛血清(FBS,Sigma-Aldrich GmbH,Cat.No.F7524)的DMEM(Thermo Fisher Scientific,Cat.No.61965059)中将每孔4x104Vero 76细胞(
Figure GDA0004051824180002281
CRL-1587TM)接种在96孔板(Greiner Bio-One GmbH,Cat.No.655160)中。将细胞于37℃和7.5%CO2下孵育4-6小时。同时,在两倍稀释步骤中将小鼠血清样品在DMEM/10%FBS中稀释1∶6至1∶768。将稀释的血清样品与等体积的滴定并预稀释的VSV/SARSCoV-2假病毒上清液组合,这导致1∶12至1∶1536的血清稀释。将该假病毒/血清稀释混合物在微孔板振荡器上以750rpm于RT下孵育5分钟,于RT不搅动孵育额外的5分钟。将50μL/孔的假病毒/血清稀释混合物添加到接种的Vero-76细胞中,每孔应用的假病毒体积对应200个感染单位(IU)。在一式两份的孔中测试血清样品的每种稀释。将细胞于37℃和7.5%CO2下孵育16-24小时。将在小鼠血清不存在的情况下用假病毒孵育的Vero 76细胞用作阳性对照。将未用假病毒孵育的Vero 76细胞用作阴性对照。孵育后,将细胞培养板从培养箱中移出,放置在IncuCyte活细胞分析系统(Essen Bioscience)中,并在分析前孵育30分钟。使用4×物镜进行明视野和GFP荧光的全孔扫描。为了计算中和滴度,将每孔感染的GFP阳性细胞数目与假病毒阳性对照进行比较。假病毒阳性对照的平均值乘以0.5表示50%假病毒中和(pVN50)。平均值为这个截断值以下的血清样品分别表现出>50%的病毒中和活性。
BNT162a1(RBL063.3)的免疫原性研究
为了研究编码BNT162a1的LNP配制的uRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过重点关注于抗体免疫应答来研究RNA疫苗的免疫原性。
第一次免疫后7、14、21和28天(d)的ELISA数据显示针对S1蛋白和受体结合结构域的早期、剂量依赖的免疫激活(图5)。
BNT162b1(RBP020.3)的免疫原性研究
为了研究编码BNT162b1的LNP配制的modRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过重点关注于抗体免疫应答来研究RNA疫苗的免疫原性。
第一次免疫后7、14、21和28天的ELISA数据显示针对S1蛋白和受体结合结构域的早期、剂量依赖的免疫激活(图6)。免疫后14、21和28天获得的血清显示高SARS-CoV-2假病毒中和,尤其用1或5μg BNT162b1免疫的小鼠的血清,并且与IgG抗体滴度的强增加相关(图7)。
BNT162c1(RBS004.3)的免疫原性研究
为了研究编码BNT162c1的LNP配制的saRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过重点关注于抗体免疫应答来研究RNA疫苗的免疫原性。
第一次免疫后7、14和21天的ELISA数据显示针对S1蛋白和受体结合结构域的早期、剂量依赖的免疫激活(图8)。免疫后14和21天获得的血清显示剂量依赖的SARS-CoV-2假病毒中和活性(图9)。
LNP配制的编码病毒S蛋白-V8(SEQ ID NO:7、8)的uRNA(RBL063.1)的免疫原性研究
为了研究编码病毒S蛋白-V8的LNP配制的uRNA疫苗(RBL063.1)的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过重点关注于抗体免疫应答来研究RNA疫苗的免疫原性。
第一次免疫后7、14、21和28天可用的ELISA数据显示针对S1蛋白和受体结合结构域的早期、剂量依赖的免疫激活(图10)。免疫后14、21和28天获得的血清显示剂量依赖的SARS-CoV-2假病毒中和活性(图11)。
BNT162b2(RBP020.1)的免疫原性研究
为了研究疫苗BNT162b2(RBP020.1)的效力,研究了构建体的免疫原性。为此,在BALB/c小鼠中进行剂量滴定研究,其中重点关注于抗体免疫应答来分析免疫应答。
第一次免疫后7、14和21天可用的ELISA数据显示针对S1蛋白和受体结合结构域的早期、剂量依赖的免疫激活(图12)。免疫后14和21天获得的血清显示剂量依赖的SARS-CoV-2假病毒中和活性(图13)。
LNP配制的编码病毒S蛋白-V9(SEQ ID NO:7、9)的saRNA(RBS004.2)的免疫原性研究
为了研究编码V9的LNP配制的saRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过重点关注于抗体免疫应答来研究RNA疫苗的免疫原性。
第一次免疫后7、14和21天可用的ELISA数据显示针对S1蛋白和受体结合结构域的早期、剂量依赖的免疫激活(图14)。免疫后14和21天获得的血清显示剂量依赖的SARS-CoV-2假病毒中和活性(图15)。
以上数据证明在所有测试的平台(包括疫苗BNT162a1、BNT162b1、BNT162b2和BNT162c1)中针对具有三聚结构域(“V5”)的RBD和突变的全长S蛋白(“V8”/”V9”)的体内免疫应答。已经在很早的时间点通过ELISA(即,在免疫后第7天)观察到抗体免疫应答。重要的是,诱导的抗体能够有效地体外中和SARS-COV-2假病毒感染。此外,当使用modRNA平台(BNT162b1、BNT162b2)以及saRNA平台(BNT162c1)时,用0.2μg/小鼠的极低免疫剂量诱导的抗体应答表明疫苗候选物的高效力。
在小鼠中,与相同RNA平台编码的BNT162b1相比,BNT162b2诱导更高的抗原特异性滴度。如所预期的,小鼠中针对抗原的免疫原性在RNA平台之间不同。在小鼠中,基于抗原特异性抗体诱导的最具免疫原性的平台是modRNA,然后是saRNA。uRNA平台诱导最低的抗原特异性抗体滴度。
实施例3:制剂的选择
通常开发LNP递送系统以在体内局部给药后有效和安全地将治疗性核酸递送到各种细胞类型的胞质(cytosol)中。早期制剂工作是用几种有前途的LNP制剂和编码萤光素酶的替代物RNA进行的。实验的目的是关联不同的可电离的阳离子脂质对体内通过LNP进行RNA递送的效力的影响。在RNA包封效率、表观pKa、LNP大小和多分散性方面比较了制剂。
在筛选的阳离子脂质中,ALC-0315在粒径、均质性和RNA包封效率表现出合适的物理特性。
基于此,提交了ALC-0315/DSPC/CHOL/ALC-0159原型(prototype)用于体内筛选。示于图16的结果总结了使用萤光素酶(Luc)RNA对两个独立的试验(pilot)批次进行的体内测试。结果证明ALC-0315原型与内部基准(ALC-0218)相比改善的效力。基于这些研究,ALC-0315被鉴定为高效阳离子脂质,并被提出用于进一步的产品开发研究。
上述制剂筛选程序涉及静脉内给药,导致主要递送至肝。LNP摄取入肝细胞的机制由内源载脂蛋白结合至LNP随后受体介导的内吞作用(例如,通过低密度脂蛋白受体)驱动。为了研究肌肉内给药是否涉及相同的机制,在存在或不存在重组人ApoE3的情况下,向ApoE敲除小鼠静脉内(0.3mg/kg)和肌肉内(0.2mg/kg)注射包含ALC-0315的含Luc RNA的LNP。作为对照,野生型C57Bl/6小鼠也通过不同给药途径处理。给药前,将RNA-LNP与重组人ApoE3(1mg包封的mRNA使用1mg ApoE3)于室温(RT)下预孵育1小时。在给药后4、24、72和96小时监测Luc表达(图17)。
当对小鼠静脉内给药时,在野生型C57Bl/6小鼠中检测到Luc表达。在ApoE敲除小鼠中,Luc表达显著减少,然而当与外源ApoE预孵育时,Luc的表达恢复到与野生型小鼠相似的表达水平(图18)。
使用小鼠模型的体内Luc表达实验显示,如同静脉内给药,在肌肉内给药的情况下,相似的机制参与RNA-LNP的摄取,并且这不仅对于肝细胞是这样,而且对于给药部位的局部细胞也是如此。
最终ALC-0315/DSPC/CHOL/ALC-0159的肌肉内给药后的体内实验,证实生物分布、免疫原性(疫苗活性)和耐受性方面的最小问题(drainage)。
实施例4:冠状病毒疫苗候选物的免疫原性研究
使用IFN-γELISpotPLUS试剂盒(Mabtech,Cat.No.3321-4APT-2)通过ELISpot测定,检测对疫苗候选物的功能性细胞免疫应答。简言之,在疫苗接种后第28天处死后,从动物除去脾。使用注射器的柱塞和70μM细胞过滤器(Greiner Bio-One GmbH,Cat.No.542070)将脾机械分离。用过量体积的DPBS(Thermo Fisher Scientific,Cat.No.14190-094)洗涤脾细胞,随后于RT下以300×g离心6分钟并丢弃上清液。然后将红细胞于RT下用红细胞裂解缓冲液(154mM NH4Cl,10mM KHCO3,0.1mM EDTA)裂解5分钟。用过量体积的DPBS终止反应。在另一个洗涤步骤后,将细胞重悬在补充有10%FBS、1%MEM非必需氨基酸溶液(Gibco,Cat.No.11140-035)、1%丙酮酸钠(Gibco,Cat.No.11360-039)、0.5%青毒素/链毒素(Gibco,Cat.No.15140-122)的RPMI 1640培养基(Gibco,Cat.no.61870-010)中,再次通过70μm细胞网并计数。根据制造商的说明书,使用CD8a或CD4
Figure GDA0004051824180002301
MicroBeads (MiltenyiBiotec,Cat.No.130-117-044和130-117-043)从脾细胞细胞悬浮液中分离CD8+或CD4+ T细胞。平行地,用PBS洗涤96孔ELISpot板,并用培养基(补充有10%FBS、1%MEM非必需氨基酸溶液、1%丙酮酸钠、0.5%青霉素/链霉素基质的RPMI 1640培养基)于37℃下封闭至少30分钟。随后通过在IFN-γELISpot测定中添加50μL肽溶液(无关的对照肽AH1(2μg/mL;序列:SPSYVYHQF)、PepMixTM SARS-CoV-2 S-RBD(0.025μg/mL每肽;JPT,定制的)或PepMixTMSARS-CoV-2刺突糖蛋白(0.1μg/mL每肽;JPT,Cat.No.PM-WCPV-S-2)和50μL自体骨髓来源的树突细胞再次刺激100μL培养基中的1×105CD8+或CD4+ T细胞。每个条件均一试两份进行测试。将板在具有5%CO2的37℃加湿培养箱中孵育过夜,大约18小时(h)后,将细胞从板去除。根据制造商的方案检测IFN-γ斑点。在层流下将板干燥2-3小时后,使用ELISpot酶标仪(plate reader)(
Figure GDA0004051824180002311
S6 Core Analyzer,CTL)计数并分析每孔的斑点数。
除了ELISpot测定,还进行Luminex分析来了解检测到的T细胞应答的TH1或TH2性质。将在补充有10%FBS、1%MEM非必需氨基酸溶液、1%丙酮酸钠、0.5%青霉素/链霉素基质的100μL RPMI 1640培养基中的5×105脾细胞转移到96孔平底细胞培养板。添加100μL无关的对照肽AH1(2μg/mL;序列:SPSYVYHQF),或PepMixTM SARS-CoV-2刺突糖蛋白(0.1μg/mL每肽;JPT,Cat.No.PM-WCPV-S-2)。将板孵育48小时,并收获其后的上清液用于细胞因子分析(profiling)。根据制造商的说明书,使用基于珠的TH1/TH2 ProcartaPlex免疫测定(Thermo Fisher Scientifc,Cat.No.EPX110-20820-901)确定再刺激的脾细胞上清液中的细胞因子浓度。荧光使用Bioplex200系统(Biorad)测量,并用ProcartaPlex Analyst 1.0软件(Thermo Fisher Scientific)分析。测量了以下分析物:IFN-γ;IL-12p70;IL-13;IL-1β(beta);IL-2;IL-4;IL-5;IL-6;TNFα(alpha);GM-CSF;IL-18。
对于免疫表型分析,进行了流式细胞术分析。简言之,将来自50μL新鲜抽取的红细胞用ACK裂解缓冲液(Gibco)裂解,并在流式缓冲液中(补充有2%FCS、2mM EDTA(两者都来自Sigma)和0.01%叠氮化钠(Morphisto)的DPBS(Gibco))中,在Fc封闭液(两者都来自BDBioscience)的存在下,将细胞用可固定的活力染料(eBioscience)和抗CXCR5(大鼠IgG2a)抗体于室温下染色20分钟。在流式缓冲液中用抗大鼠IgG2a生物素于2-8℃下染色20分钟后,将细胞用稀释在流式缓冲液中的Brilliant Stain Buffer Plus(BD Bioscience)中的针对CD3、CD4、CD8α、CD38、CD44、PD-1、ICOS、CD62L、CXCR5、CD19的抗体和链霉亲和素于2-8℃下细胞外染色20分钟。将细胞用2%RotiHistofx(Roth)于室温下固定15分钟。将细胞重悬在Perm缓冲液(FoxP3/Transcription Factor Staining Buffer Set,eBioscience)中并于2-8℃下孵育过夜。将透性化的细胞用Fc封闭液(block)于2-8℃下细胞内处理10分钟,并用T-bet和GATA(BD Bioscience)抗体于2-8℃下染色30分钟。将细胞重悬在流式缓冲液中并在BD Symphony A3流式细胞仪(BD Bioscience)上采集并用FlowJo 10.6.2分析。
对于引流淋巴结中的小鼠B细胞亚型分型,用Fc封闭液处理2.5x105淋巴结细胞15分钟,并用在Brilliant Stain Buffer(BD Bioscience)中的针对CD19、CD45R/B220、IgD、CD138、IgM、CD38、CD95/FAS、IgG1、IgG2a、CD73、GR-1、F4/80、CD4、CD8的抗体于2-8℃下细胞外染色20分钟。将细胞用2%RotiHistofx固定并于2-8℃下孵育过夜。
BNT162b1(RBP020.3)的免疫原性研究
为了研究LNP配制的编码BNT162b1的modRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过关注于细胞免疫应答来研究RNA疫苗的免疫原性。
用S蛋白或RBD特异性肽池(pool)刺激后,而非用无关的肽AH1刺激后,CD4+和CD8+T细胞都在IFN-γELISpot测定中表现出IFN-γ应答(图22)。在Luminex分析中,通过指示TH1驱动的免疫应答的分析物确认肽刺激后细胞因子的产生(图23)。
免疫后7天血液的免疫表型分析(图24)显示循环滤泡辅助性T细胞(Tfh)和激活的T细胞的显著增加。在免疫后第12天,解剖来自免疫的BALB/c小鼠的引流淋巴结,并进行B细胞亚群分析(图25)。在淋巴结中发现B细胞的显著增加,伴随可检测数目的浆细胞、类别转换的B细胞以及IgG1或IgG2a阳性的生发中心B细胞。在血液和引流淋巴结中都证实了适应性免疫应答的激活和成熟。
LNP配制的编码病毒P2-S蛋白V8的modRNA(RBP020.1)的免疫原性研究
为了研究LNP配制的编码RBP020.1的modRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过关注于细胞免疫应答来研究RNA疫苗的免疫原性。
用S蛋白特异性肽池刺激后,而非用无关的肽AH1刺激后,CD4+和CD8+ T细胞都在IFN-γELISpot测定中表现出IFN-γ应答(图26)。在Luminex分析中,通过指示TH1驱动的免疫应答的分析物确认肽刺激后细胞因子的产生(图27)。
LNP配制的编码病毒P2-S蛋白V9的saRNA(RBS004.2)的免疫原性研究
为了研究LNP配制的编码RBS004.2的saRNA疫苗的效力,如表3所示,将BALB/c小鼠IM免疫一次。通过关注于细胞免疫应答来研究RNA的免疫原性。
用S蛋白特异性肽池刺激后,而非用无关的肽AH1刺激后,CD4+和CD8+ T细胞都在IFN-γELISpot测定中表现出IFN-γ应答(图28)。在Luminex分析中,通过指示TH1驱动的免疫应答的分析物确认肽刺激后细胞因子的产生(图29)。
BNT162b3变体BNT162b3c和BNT162b3d的免疫原性研究
为了了解基于跨膜锚定的RBD的疫苗抗原(示意图在图30中;BNT162b3c(1)和BNT162b3d(2))的潜在效力,将BALB/c小鼠用4μg LNP-C12配制的mRNA或用作为对照的缓冲液IM免疫一次。将非临床的LNP-C12配制的mRNA用作BNT162b3变体BNT162b3c和BNT162b3d的替代物。通过关注于抗体免疫应答来研究RNA疫苗的免疫原性。
第一次免疫后6、14和21天的ELISA数据显示针对S1蛋白和受体结合结构域的早期的、剂量依赖的免疫激活(图31)。免疫后6、14和21天获得的血清显示高SARS-CoV-2假病毒中和,与IgG抗体滴度的增加相关(图32)。
实施例5:在非人灵长类(NHP)中的冠状病毒疫苗候选物的免疫原性研究
在第0和21天,用30或100μg的BNT162b1或者用缓冲液IM免疫每组六只的恒河猴。到第一剂量后的14天,结合重组S1的抗体很容易检测到,并且到第28天结合S1的抗体的水平超过测定的定量上限(10,000U/mL)。为了比较,分析了症状发作后获得的62份人COVID-19康复期血清的结合S1的抗体。两个NHP组的所有时间点显著超过人COVID-19康复期血清的平均值422U/mL(图33a)。到单次免疫后14天,用BNT162b1的任何剂量水平免疫的恒河猴的血清的VNT几何平均滴度(GMT)是可检测到的,并且到第28天达到768(30μg剂量水平)或1,714(100μg)的几何平均值(图33b)。在第35天(加强后14天),中和GMT为282(30μg)和975(100μg)(图33b)。在第42天,对用S肽混合物(mix)刺激的血液样品的CD4+ T细胞的流式细胞术分析显示TH1细胞因子IFNγ、IL-2和TNFα的显著分泌。此外,IL-21分泌显著增加。已知IL-21在B细胞激活、扩增和浆细胞产生以及Tfh的产生中起关键作用。相比之下,没有检测到显著量的TH2细胞因子IL-4(图33c)。总之并且与在小鼠中获得的结果一致,BNT162b1诱导高抗体免疫,具有早期的亲和成熟伴随TH1偏向的免疫应答。
总之,我们证明,编码三聚体SARS-CoV-2 S蛋白受体结合结构域的甲基-核苷m1Ψ-修饰的mRNA在非人灵长类中起保护作用(protective)。
实施例6:在18-55岁的健康成年人中的1/2期研究来描述COVID-19 RNA疫苗候选物(BNT162b1)的安全性、耐受性和免疫原性
我们报告来自在随机接受2个剂量的10μg、30μg或100μg BNT162b1的健康成年人中进行的安慰剂对照的、观察者盲法剂量递增试验的安全性、耐受性和免疫原性,BNT162b1为脂质纳米颗粒(LNP)配制的、核苷修饰的、编码三聚体SARS-CoV-2刺突糖蛋白RBD抗原的mRNA疫苗候选物。局部反应和全身性事件是剂量依赖的,总体上轻度至中度,并且是短暂的。结合RBD的IgG浓度和SARS-CoV-2中和滴度随剂量水平增加并在第二剂量后增加。几何平均中和滴度达到COVID-19康复期人血清组的1.8-2.8倍。
现在正进行临床测试的BNT162b1疫苗候选物包含核苷1-甲基-假尿苷修饰的RNA(modRNA)并编码中和抗体的关键靶标SARS-CoV-2刺突的受体结合结构域。通过添加源自T4次要纤维蛋白的“折叠子”三聚结构域来修饰由BNT162b1表达的RBD抗原以增强其免疫原性。这种RNA疫苗候选物正在德国和在美国的协调研究中进行平行测试。在此,我们展示在美国研究中获得的数据。
方法
研究设计和参与者:这个随机化的、安慰剂对照的、观察者盲法的1/2期试验在美国进行,以评估各种BNT162 mRNA疫苗候选物的递增剂量水平的安全性、耐受性和免疫原性。BNT162b1候选物的三个剂量水平(10、30或100μg)的评估在美国的两个地点进行。这项研究采用了前哨(sentinel)队列设计,在每个剂量水平回顾了前哨队列的数据后,进行了进展和剂量递增。登记了18-55岁的健康男性和未怀孕女性。关键排除标准包括已知感染有人免疫缺陷病毒、丙型肝炎病毒或乙型肝炎病毒的个体;免疫低下的个体和有自体免疫病史的个体;患严重COVID-19风险增加的个体;先前的COVID-19的临床或微生物学诊断;接受过旨在预防COVID-19的药物;先前接种过任何冠状病毒疫苗;以及研究疫苗接种前24小时内SARS-CoV-2 NAAT阳性鼻拭子。
最终方案和知情同意文件已获得参与这项研究的每个研究中心的机构审查委员会的批准,并且这项研究是按照所有国际协调会议(ICH)良好临床实践(GCP)指南和赫尔辛基宣言的伦理原则进行的。在进行任何针对研究的活动之前,需要签署并注明日期的知情同意书。
终点:本研究的主要终点包括:疫苗接种后7天内报告提示的(prompted)局部反应、全身性事件以及使用退烧药和/或止痛药,上次剂量后1个月内报告AE,和疫苗接种后6个月内报告SAE的参与者的比例,以及疫苗接种后1周具有临床实验室异常以及在基线与剂量1后1和7天之间,和在剂量2与剂量2后7天之间的实验室评估中等级变化的前哨队列参与者的比例。次要终点包括:SARS-CoV-2中和几何平均滴度(GMT);剂量1后7和21天以及剂量2后7和14天的结合SARS-CoV-2 S1的IgG和结合RBD的IgG几何平均浓度(GMC);几何平均值倍数增加(GMFR),从基线≥4倍增加以及SARS-CoV-2血清中和GMT与SARS-CoV-2-抗原结合抗体GMC在每个时间点的几何平均比例(GMR)。
程序:使用基于网络的交互式响应技术系统,将研究参与者随机分配到疫苗组中,每组包括15名参与者(12名活性(active)疫苗受者和3名安慰剂受者)。参与者接受两个0.5mL剂量的BNT162b1或安慰剂,通过肌肉内注射到三角肌中进行给药。
BNT162b1包含良好制造工艺(GMP)级mRNA药物物质,其编码三聚体SARS-CoV-2刺突糖蛋白RBD抗原。用脂质将mRNA配制为mRNA-LNP药物产物。将疫苗以用于IM注射的缓冲液体溶液供应,并保存于-80℃。安慰剂是用于注射的无菌盐溶液(0.9%氯化钠注射液,剂量为0.5mL)。
所有参与者的安全性评估包括针对即刻AE的疫苗接种后4小时观察(对于每个前哨组的前5名参与者)以及30分钟观察(对于其余参与者)。安全性评估还包括疫苗接种后在电子日记(e-日记)中自我报告达7天提示的局部反应(注射部位发红、肿胀和疼痛)、全身性事件(发烧、疲劳、头痛、寒战、呕吐、腹泻、肌肉疼痛和关节疼痛),以及使用退烧药和/或止痛药,在疫苗接种后1个月内报告无提示的AE,以及上次疫苗接种后6个月内报告SAE。在筛选时、剂量1后1和7天,以及剂量2后7天进行血液学和化学评估。
为所有前哨队列参与者指定了安全停止规则。内部审查委员会(IRC)和外部数据监查委员会(EDMC)都审查了所有安全数据。
免疫原性测试:在每项研究疫苗接种前、剂量1后7和21天,以及剂量2后7、14天、1个月和6个月,收集50mL血液用于免疫原性评估(SARS-CoV-2血清中和测定、SARS-CoV-2 S1特异性IgG直接Luminex免疫测定、SARS-CoV-2 RBD特异性IgG直接Luminex免疫测定和非疫苗抗原(NVA)Ig直接Luminex免疫测定)。
SARS-CoV-2中和测定使用先前描述的SARS-CoV-2毒株(USA_WA1/2020),其已通过反向遗传学进行拯救,并通过在病毒基因组的开放阅读框7中插入mNeonGreen(mNG)基因进行了改造。这种报告病毒与野生型病毒产生相似的噬斑形态和难以区别的生长曲线。在接种Vero E6细胞单层前,将热失活血清的系列稀释液与报告病毒于37℃下孵育1小时。接种后16-24小时之间,通过加入Hoechst 33342溶液,通过荧光检测感染的灶(foci)并用Cytation 7 Cell Imaging Multi-Mode Reader计数。
统计分析:用于本研究的前哨队列的样本量并非基于统计假设检验。通过对每个疫苗组的局部反应、全身性事件、异常血液学和化学实验室参数以及AE和SAE的描述性总结统计评价主要安全性目标。使用3级(tier)方法来总结AE。描述性地总结在各时间点的次要免疫原性目标。
结果
在2020年5月4日与2020年6月19日之间,筛选了76名受试者,并且将45参与者随机化并疫苗接种。在第0和21天,每个剂量水平(10μg、30μg或100μg)12名参与者接种BNT162b1,9名参与者接受安慰剂(图34)。研究群体由健康男性和未怀孕女性参与者构成,年龄18-55岁,平均年龄35.4岁(最小19岁,最大54岁)。总体而言,51.1%的参与者是男性,48.9%是女性。大多数参与者为白人(82.2%)和非西班牙裔/非拉丁裔(93.3%)。
安全性和耐受性
在任一疫苗接种后7天内,注射部位疼痛是最频繁的局部反应,剂量1后,10μg中58.3%(7/12)与30μg和100μg BNT162b1组中100.0%(各自12/12),以及安慰剂受者的22.2%(2/9)报告,剂量2后在10μg和30μg剂量水平分别有83.3%和100.0%的BNT162b1受者报告。除了一例100μg BNT162b1的剂量1后严重疼痛的报告外,所有局部反应的严重程度都为轻度或中度。
在BNT162b1和安慰剂受者中,疫苗接种后7天内报告的最常见的全身性事件都是轻度到中度的疲劳和头痛。全身性事件随剂量水平增加,并且在第二剂量后(10μg和30μg组)在更多数目的受试者中有报告。剂量1后,100μg组中50.0%(6/12)的BNT162b1受者和10μg和30μg组中各自8.3%(1/12)的参与者报告了≥38.0℃的发烧。剂量2后,10μg组中8.3%(1/12)的参与者和30μg组中75.0%(9/12)的参与者报告≥38.0℃的发烧。没有报告4级全身性事件或发烧(图35和36)。大多数局部反应和全身性事件在疫苗接种后第2天前达到峰值,并到第7天消退。基于反应原性谱,接受初始100μg剂量的参与者没有接受第二疫苗接种。
50.0%(6/12)的接受10μg或30μg BNT162b1的参与者,58.3%(7/12)的接受100μgBNT162b1的参与者,和11.1%(1/9)的安慰剂受者报告了不良事件。两名参与者报告了严重AE,一名在30μg剂量水平(疫苗接种后2天3级发热)和一名在100μg剂量水平(疫苗接种后1天睡眠障碍)。25%(3/12)至50%(6/12)的BNT162b1受者和11.1%(1/6)的接受安慰剂的那些报告了相关的AE。没有报告严重不良事件。
在任一BNT162b1疫苗接种后,大多数受试者的常规临床实验室值或实验室异常未观察到1级或更高的变化。最明显的变化是在8.3%(1/12)、45.5%(5/11)和50.0%(6/12)的分别接受10μg、30μg或100μg BNT162b1的参与者中淋巴细胞计数减少。在10μg(8.3%)和30μg(9.1%)剂量水平各有一名参与者以及在100μg剂量水平(33.3%)有4名参与者有3级淋巴细胞减少。这些血液学变化,在剂量1后1-3天抽取的血液中注意到,在疫苗接种后6-8天回到正常。疫苗接种后实验室值的变化均与临床发现无关。此外,在10μg或30μgBNT162b1的第二剂量后6-9天注意到2级中性粒细胞减少(neutropenia),各自1名参加者。这两名受试者的中性粒细胞计数未重复,然而在研究中继续跟踪他们,并且迄今尚无不良事件或中性粒细胞减少的临床表现的报告。
免疫原性
在基线以及BNT162b1的第一剂量后7和21天和第二剂量后7天(第28天)抽取的血清中评估了结合RBD的IgG浓度和SARS-CoV-2中和滴度(图37a)。与一组COVID-19康复期人血清的602单位/mL相比,到第一剂量后21天(对于所有三个剂量水平),结合RBD的IgG的几何平均浓度(GMC)是534-1,778单位/mL。到第二剂量后7天(对于10μg和30μg剂量水平),结合RBD的IgG GMC增加到4,813-30,207单位/mL。因为接受第一剂量的100μg BNT162b1的参与者没有接受第二剂量,无法评估没有第二剂量的抗体应答的进展,并且在这个给药组的参与者中,超过第一剂量后21天后,结合RBD的抗体浓度没有进一步增加。在接受10μg和30μg剂量水平的BNT162b1的参与者中,高度升高的结合RBD的抗体浓度持续到第35天(第二剂量后两周)。
剂量1后21天观察到SARS-CoV-2中和几何平均滴度(GMT)适度增加(图37b)。与COVID-19康复期血清组的94相比,在参与者接受第二10μg或30μg剂量后7天,实现明显更高的血清中和GMT,达到168-267。
讨论
基于RNA的疫苗候选物BNT162b1安全且耐受良好。所有剂量水平均显示出与先前关于基于mRNA的疫苗所观察到的耐受性和安全性谱(profile)一致。剂量1和剂量2后在18-55岁成年人中观察到明显的剂量水平应答。第二剂量后反应原性通常较高,但症状在出现后几天内消退。根据在100μg剂量水平第一剂量的耐受性谱,随机分配到100μg组的参与者没有接受第二次疫苗接种。疫苗接种后几天内观察到短暂的淋巴细胞减少(1-3级);然而,所有参与者中的淋巴细胞计数在6-8天内回到基线。这些实验室异常与临床发现无关。疫苗接种后的淋巴细胞减少(lymphopenia)最有可能用淋巴细胞向组织中的瞬时迁移来解释。
接种BNT162b1后观察到稳健的免疫原性。结合RBD的IgG浓度在第21天检测到,并且在第21天给予加强剂量后7天明显增加。在第一剂量后,接种疫苗的参与者(10μg剂量水平)中结合RBD的IgG GMC与在一组来自COVID-19康复期人的38份血清中观察到的相似,所述血清在症状发作后20-40天和无症状康复期开始后至少14天获得。从30μg和100μg剂量水平队列中抽取的血清中,GMC明显高于康复期血清组。在使用10μg或30μg BNT162b1加强疫苗接种后(剂量2),结合RBD的IgG GMC是康复期血清组GMC的8.0倍至50倍。
接种疫苗的参与者的血清还在SARS-CoV-2中和测定中进行了测试。在第21天,所有剂量水平的中和滴度都是可测量的。在第28天(加强剂量后7天),观察到明显的SARS-CoV-2中和滴度。10μg和30μg加强疫苗接种(剂量2)后的病毒中和GMT分别是康复期血清组的中和GMT的1.8倍和2.8倍。由于没有对100μg剂量水平队列进行加强,没有第二次疫苗接种后免疫原性的相应数据。
这些关于BNT162b1疫苗候选物的临床发现非常令人鼓舞,并提供有力的证据来支持加速开发和面对风险制造(at-risk manufacturing),以使尽快提供预防COVID-19的预防性疫苗的机会最大化。
实施例7:COVID-19RNA疫苗引发的并发抗体和T细胞以及细胞因子应答
在这个实施例中,我们展示来自在18-55岁健康成年人的非随机开放标签I/II期试验的BNT162b1疫苗接种后抗体和T细胞应答的表征。间隔21天给药的两个剂量的1μg、10μg、30μg和50μg BNT162b1引起伴随的(concomitant)抗体和稳健的CD4+和CD8+ T细胞应答。所有受试者显示出强抗体应答,IgG浓度显著高于在COVID-19康复期人血清中所观察到。第43天,与一组COVID-19康复期人血清相比,SARS-CoV-2血清中和几何平均滴度在0.7倍(1μg)至3.3倍(50μg)范围内,并且针对多种(diverse)SARS-CoV-2刺突变体具有广泛活性。干扰素(IFN)γ是一种具有抗病毒特性的免疫刺激细胞因子,由高频的RBD抗原特异性CD8+ T和许多CD4+ T细胞产生。在RBD刺激的免疫细胞中检测到强化TH1免疫细胞谱的IL-12p70。BNT162b1 mRNA疫苗的稳健的RBD特异性抗体、T细胞和有利的细胞因子应答提示针对COVID-19的多种有益保护机制的潜力。
材料和方法
临床试验设计
研究BNT162-01(NCT04380701-德国试验)是一项正在进行的、首次人体、I/II期、开放标签剂量探索临床试验,来评估各种肌肉内给药递增剂量水平的BNT162 mRNA疫苗候选物的安全性、耐受性和免疫原性。18-55岁(修正为增加56-85岁)的健康男性和未怀孕女性合格。关键排除标准包括先前对COVID-19的临床或微生物学诊断;接受预防COVID-19的药物;先前接种任何冠状病毒疫苗;在筛选访视时SARS-CoV-2IgM和/或IgG的血清型检测阳性;以及研究疫苗接种前24小时内SARS-CoV-2NAAT阳性鼻拭子;患严重COVID-19风险增加;免疫力低下的个体,已知感染有HIV、丙型肝炎病毒或乙型肝炎病毒以及有自身免疫病史。研究的主要终点是安全性和免疫原性。
在此处报告的研究部分中,在德国的一个地点评估了BNT162b1候选物的五个剂量水平(1μg、10μg、30μg、50μg或60μg),在剂量递增和递减设计中每个剂量水平12名健康志愿者。在每个剂量递增队列中进行前哨给药。该队列的进展和剂量递增需要安全审查委员会对数据进行审查。受试者在第1天接受BNT162b1初免剂量,在第22±2天接受加强剂量。在第1(初免前)、第8间1(初免后)、第22±2(加强前)、第29±3和第43±4(加强后)天获得用于抗体测定的血清。在第1(初免前)和第29±3(加强后)天获得用于T细胞研究的PBMC。由于撤销同意书和私人原因,10μg的一名受试者和50μg剂量队列的一名受试者在加强免疫前离开了研究。
展示的数据仅包含BNT162b1免疫的队列,并且基于对提取日期为2020年7月13日的数据的初步分析,关注于在各时间点描述性地总结的疫苗诱导的免疫原性(次要终点)的分析。免疫原性分析包括所有具有可用数据的参与者。
试验是按照赫尔辛基宣言和良好临床实践指南在德国进行的,并得到了独立伦理委员会(Ethik-Kommission of the
Figure GDA0004051824180002361
Baden-Wüirttemberg,Stuttgart,Germany)和主管当局(Paul-Ehrlich Institute,Langen,Germany)的批准。所有受试者均提供书面知情同意书。
RNA的制备
BNT162b1包含良好制造工艺(GMP)级mRNA药物物质,其编码三聚体SARS-CoV-2刺突糖蛋白RBD抗原。在代替了尿苷-5’-三磷酸(UTP)的1-甲基假尿苷-5’-三磷酸(m1YTP;Thermo Fisher Scientific)的存在下,通过体外转录从DNA模板产生RNA。使用三核苷酸cap1类似物(trinucleotide cap1 analogue)((m2 7,3’-O)GPPP(m2’-O)ApG;TriLink)进行共转录加帽。编码抗原的RNA含有增加在人树突细胞中的RNA稳定性和翻译效率的序列元件(Holtkamp,S.et al.,Blood 108,4009-4017(2006);Orlandini von Niessen,A.G.etal.,Mol.Ther.27,824-836(2019))。用脂质配制mRNA来获得RNA-LNP药物产品。将疫苗以用于IM注射的缓冲液体溶液运输和供应,并保存于-80℃。
蛋白和肽
将重叠11个氨基酸并且覆盖BNT162b1编码的SARS-CoV-2 RBD的全长序列的15-元(mer)肽的池用于PBMC的离体刺激,以进行流式细胞术、IFNγELISpot和细胞因子分析。将CEF(CMV、EBV、流感病毒;HLA I类表位肽池)和CEFT(CMV、EBV、流感病毒、破伤风类毒素;HLAII类表位肽池)(都来自JPT Peptide Technologies)用作一般的T细胞反应性的对照。
人康复期血清和PBMC组
PCR确诊后至少14天,并且当受试者无症状时,从18-83岁的受试者抽取人SARS-CoV-2感染/COVID-19康复期血清(n=38)。血清供体有症状感染(n=35)或已住院(n=1)。血清从Sanguine Biosciences(Sherman Oaks,CA)、MT Group(Van Nuys,CA)和PfizerOccupational Health and Wellness(Pearl River,NY)获得。在PCR确诊后45-59天当受试者无症状时,从41-79岁的受试者收集人SARS-CoV-2感染/COVID-19康复期PBMC样品(n=6)。PBMC供体无症状/轻度感染(n=4;临床评分1和2)或已住院(n=2;临床评分4和5)。血液样品从法兰克福(Frankfurt)大学医院(德国)获得。
细胞培养和原代细胞分离
Vero细胞(ATCC CCL-81)和Vero E6细胞(ATCC CRL-1586)培养在补充有10%胎牛血清(FBS)(Sigma-Aldrich)的具有GlutaMAXTM(Gibco)的Dulbecco’s modified Eagle’s培养基(DMEM)中。接收后,在扩增和冷冻保存前,对细胞系进行支原体污染测试。通过Ficoll-Hypaque(Amersham Biosciences)密度梯度离心分离外周血单个核细胞(PBMC)并在后续分析前冷冻保存。
RBD结合IgG抗体测定
将含有C末端AvitagTM(Acro Biosystems)的重组SARS-CoV-2 RBD结合至链霉亲和素包被的Luminex微球。将热灭活的受试者血清以1∶500、1∶5,000和1∶50,000稀释。在摇动的同时于2-8℃下过夜孵育后,在含有0.05%Tween-20的溶液中洗涤板。在摇动的同时,于室温下添加荧光标记的第二山羊抗人多克隆抗体(Jackson Labs)达90分钟,然后再次用含有0.05%Tween-20的溶液洗涤板。使用Luminex读数器(reader)将数据捕捉为中值荧光强度(MFI),并使用参考标准曲线转换为U/mL抗体浓度,任意指定的100U/mL浓度,并考虑血清稀释因子。使用三种稀释来增加任何样品的至少一种结果落入标准曲线可用范围内的概率。测定结果以U/mL的IgG报告。最终测定结果表示为在测定范围内产生有效测定结果的所有样品稀释度的几何平均浓度。
SARS-CoV-2中和测定
中和测定使用先前描述的SARS-CoV-2毒株(USA_WA1/2020),其已通过反向遗传学进行拯救,并通过在病毒基因组的开放阅读框7中插入mNeonGreen(mNG)基因进行了改造(Xie,X.et al.,Cell Host Microbe27,841-848.e3(2020))。这种报告病毒与野生型病毒产生相似的噬斑形态和难以区别的生长曲线。如之前描述的,使病毒主储存液(2x107PFU/mL)生长在Vero E6细胞中(Xie,X.et al.,Cell Host Microbe 27,841-848.e3(2020))。在接种在96孔板中的Vero CCL81细胞单层前(目标为每孔有8,000-15,000细胞),将热灭活的血清的系列稀释液与报告病毒(对于0.5的最终感染复数(MOI),2x104PFU每孔,以产生大约10-30%的Vero单层感染率)于37℃下孵育1小时,使得对感染的细胞进行精确定量。通过核染色(Hoechst 33342)计数每孔的总细胞数,并在接种后16-24小时用具有Gen5 ImagePrime版本3.09的Cytation 7 Cell Imaging Multi-Mode Reader(Biotek)检测感染有病毒的荧光灶。在GraphPad Prism版本8.4.2中,通过在每个系列血清稀释度生成中和百分比的4参数(4PL)逻辑拟合来计算滴度。50%中和滴度(VNT50)报告为产生荧光病毒灶的50%减少的稀释度的插值倒数(interpolated reciprocal)。
VSV-SARS-CoV-2刺突变体假病毒中和测定
如先前描述的进行VSV-SARS-CoV-2-S假颗粒的产生和中和测定(Baum,A.et al.,Science,eabd0831(2020).doi:10.1126/science.abd0831)。简言之,合成人密码子优化的SARS-CoV-2刺突(GenBank:MN908947.3)(Genscript)并克隆入表达质粒。从GISAID核苷酸数据库(https://www.gisaid.org)(上次访问2020年8月24日)下载SARS-CoV-2的完整基因组序列。整理序列,并使用定制管道,跨高质量基因组序列评估编码刺突的基因的遗传多样性。使用定点突变将氨基酸取代克隆到刺突表达质粒中。接种HEK293T细胞(ATCC CRL-3216)(培养基:补充有10%热灭活的胎牛血清(FBS;Life Technologies)和青霉素/链霉素/L-谷氨酰胺(Life Technologies)的DMEM高葡萄糖(Life Technologies)),并在第二天依照制造商的方案使用Lipofectamine LTX(Life Technologies)进行刺突表达质粒转染。转染后24小时,于37℃下,用稀释在Opti-MEM(Life Technologies)中的VSVΔG:mNeon/VSV-G病毒以1的感染复数感染细胞。将细胞于37℃下孵育1小时,洗涤以去除残留的输入病毒并覆盖感染培养基(补充有0.7%低IgG BSA(Sigma)、丙酮酸钠(Life Technologies)和0.5%庆大霉素(Life Technologies)的DMEM高葡萄糖)。24小时后,于37℃下,收集含有VSV-SARS-CoV-2-S假颗粒的上清液,在3000xg下离心5分钟来澄清,并保存于-80℃直至进一步使用。
对于假病毒中和测定,将Vero细胞(ATCC CCL-81)在培养基中接种在96孔板中,并使其达到大约85%的融合度,然后用于测定中(24小时后)。从1:40稀释度开始,将血清以1:2系列稀释在感染培养基中。将VSV-SARS-CoV-2-S假颗粒以1:1稀释在感染培养基中,用于测定中约1000的荧光灶单位(ffu)计数。将血清稀释液与假颗粒以1:1于室温下混合30分钟,然后加入Vero细胞并于37℃下孵育24小时。移除上清液并用PBS(Gibco)代替,并使用具有MiniMax成像细胞仪的SpectraMax i3读板器(plate reader)(Molecular Devices)为荧光灶定量。在GraphPad Prism版本8.4.2中,通过在每个系列血清稀释度生成中和百分比的4参数(4PL)逻辑拟合来计算中和滴度。50%假病毒中和滴度(VNT50)报告为产生荧光病毒灶的50%减少的稀释度的插值倒数。
IFNγELISpot
使用耗尽CD4+并富集CD8+ T细胞(CD8+效应物)或者耗尽CD8+并富集CD4+ T细胞(CD4+效应物)的PBMC,离体进行IFNγELISpot分析(未进一步体外培养来扩增)。一式两份并使用阳性对照(抗CD3单克隆抗体CD3-2(1:1,000;Mabtech))进行测试。用PBS洗涤经IFNγ特异性抗体(ELISpotPro kit,Mabtech)预包被的Multiscreen滤板(Merck Millipore),并用含有2%人血清白蛋白(CSL-Behring)的X-VIVO 15培养基(Lonza)封闭1-5小时。每孔,用代表疫苗编码的RBD重叠的肽池刺激3.3x 105效应细胞16-20小时。用直接与碱性磷酸酶缀合的二抗、随后与BCIP/NBT底物(ELISpotPro kit,Mabtech)孵育来使结合的IFNγ可视化。用AID Classic Robot ELISPOT Reader扫描板并通过ImmunoCapture V6.3(CellularTechnology Limited)或AID ELISPOT 7.0软件(AID Autoimmun Diagnostika)分析。斑点计数展示为每个复孔的平均值。根据Moodie等人(Moodie,Z.,et al.,J.Immunol.Methods315,121–32(2006);Moodie,Z.et al.,Cancer Immunol.Immunother.59,1489–501(2010)),基于两个统计测试(无分配重采样(distribution-free resampling)),使用内部ELISpot数据分析工具(EDA),将用肽刺激的T细胞应答与作为阴性对照的仅与培养基孵育的效应物比较,以在提供敏感性的同时保持对假阳性的控制。
为了解决反映在响应于抗CD3抗体刺激的斑点的数目上的样品质量的变化,采用归一化方法来实现个体之间斑点计数/应答强度的直接比较。使用包括噪音分量(未公布)的Bayesian模型以对数线性方式为这种依赖性建模。为了稳健的归一化,每个归一化从该模型中采样1000次并将取得的中值作为归一化的斑点计数值。模型的似然:logλE=αlogλP+logβj+σε,其中λE是样品的归一化的斑点计数,α是在所有阳性对照λP中共有的稳定因子(正态分布),βj是样品j的特定分量(正态分布),并且σε是噪音分量,其中σ是Cauchy分布的,而ε是Student’s-t分布的。βj确保每个样品都视为不同批次处理。
流式细胞术
通过细胞内细胞因子染色鉴定产生细胞因子的T细胞。在GolgiPlug(BD)的存在下,将融化并在补充有2μg/mL DNAseI(Roche)的OpTmizer培养基中静息4小时的PBMC用代表疫苗编码的SARS-CoV-2 RBD(2μg/mL/肽;JPT Peptide Technologies)的肽池于37℃下重刺激18小时。对照用含有DMSO的培养基处理。在流式缓冲液((DPBS(Gibco),补充有2%FCS(Biochrom)、2mM EDTA(Sigma-Aldrich)中,于4℃下对细胞进行活力和表面标志物的染色达20分钟。然后,根据制造商的说明书,使用Cytofix/Cytoperm试剂盒(BD Biosciences)固定和透化样品。细胞内染色在Perm/Wash缓冲液中于4℃下进行30分钟。在FACS VERSE仪器(BD Biosciences)上获取样品,并用FlowJo软件版本10.5.3(FlowJo LLC,BDBiosciences)分析。通过减去含有DMSO的培养基获得的值来校正RBD特异性细胞因子产生的背景。负值设置为0。通过计算IFNγ、IL-2或IL-4阳性的所有CD4+ T细胞的部分的总数来计算图42b中细胞因子产生,将这个总数设置为100%,并计算其中产生特定细胞因子的每个子集的分数。
细胞因子分析(profiling)
用SARS-CoV-2 RBD肽池(2μg/mL终浓度每肽)重刺激人PBMC 48小时。用含有DMSO的培养基刺激作为阴性对照。根据制造商的说明书,使用基于珠的、11-plex TH1/TH2人ProcartaPlex免疫测定(Thermo Fisher Scientific)确定上清液中的TNF、IL-1β和IL-12p70的浓度。荧光用Bioplex200系统(Bio-Rad)测量并用ProcartaPlex Analyst 1.0软件(Thermo Fisher Scientific)分析。通过减去含有DMSO的培养基获得的值来校正RBD特异性细胞因子产生的背景。负值设置为0。
结果
研究设计和分析设置
在2020年4月23日和2020年5月22日之间,60名受试者接种了BNT162b1。每1μg、10μg、30μg和50μg剂量水平有12名参与者在第1天接受第一剂量,并在第22天加强,并且12名参与者仅在第1天接受60μg初免剂量(图43)。研究群体由健康男性和未怀孕女性构成,平均年龄41岁(19-55岁),性别分布均等。大多数参与者是白人(96.7%),一名非裔美国人和一名亚裔受试者(各1.7%)。初步数据分析关注于免疫原性(表4)。
表4.受试者部署和分析设置
Figure GDA0004051824180002391
抗体分析:值表示针对其进行了病毒中和测定的受试者的数目。括号中的值表示针对其进行了RBD结合IgG抗体测定的受试者的数目。
T细胞分析:值表示针对其进行了IFNγELISpot的受试者的数目。括号中的值表示针对其进行了流式细胞术的的受试者的数目。
N/A:样品尚不可用。
简言之,没有观察到严重不良事件(SAE)、意外的毒性和由于相关AE的退出。大多数报告的征求的(solicited)AE是疫苗反应原性的迹象和症状,通常在免疫后首24小时内发作,例如全身性和注射部位反应,疼痛和敏感的主要症状(图44)。症状大多数为轻度或中度的程度,偶尔有严重(3级)AE,例如发烧、寒战、头痛、肌肉和关节疼痛以及注射部位反应。所有AE自动消退,大多数在发作后24小时内,并且可以通过简单的措施进行管理(例如对乙酰氨基酚)。基于第一剂量报告的反应原性,接受初始60μg剂量的参与者没有接受第二60μg剂量。
BNT162b1疫苗接种后常规临床实验室值未发生相关变化,但是在接种疫苗的受试者中观察到剂量依赖性方式的炎症标志物C-反应蛋白(CRP)的短暂增加和血液淋巴细胞计数的暂时减少(图45)。基于我们先前对RNA疫苗的临床经验,后者可能归因于固有免疫刺激相关的淋巴细胞的瞬时再分布(Kamphuis,E.,et al.,Blood 108,3253-61(2006))。
疫苗诱导的抗体应答
在基线、BNT162b1初免剂量后7和21天(第8和22天)以及加强剂量后7和21天(第29和43天)评估结合RBD的IgG浓度和SARS-CoV-2中和滴度,除了60μg队列,其仅接受初免(图39)。
所有受试者,包括接受1μg剂量的显示出强的、剂量依赖的疫苗诱导的抗体应答。初免剂量(对于1-50μg的四个剂量水平)后21天,结合RBD的IgG的几何平均浓度(GMC)是剂量依赖性的,约为265-1,672U/mL(图39)。加强剂量后7天(第29天),用1-50μg BNT162b1治疗的受试者中结合RBD的IgG GMC剂量依赖地强烈增加至约2,015-25,006U/mL。与在PCR确诊后至少14天,从38名SARS-CoV-2感染康复期患者(18-83岁)抽取的一组血清中测量到的约602U/mL相比,在第43天(加强后21天),接种BNT162b1的个体中结合RBD的抗体GMC为约3,920-22,700U/mL。在仅使用初免剂量的60μg剂量队列中,到第29天,结合RBD的IgG GMC为约1,058U/mL,表明第二剂量对于加强抗体滴度的必要性。
初免剂量后21天,SARS-CoV-2中和抗体几何平均滴度(GMT)以剂量依赖性方式适度(modestly)增加(图40a)。与康复期血清组的约94相比,加强剂量后7天,实现明显更高的血清中和GMT,达到约36(1μg剂量水平),约158(10μg剂量水平),约308(30μg剂量水平)和约578(50μg剂量水平)。在第43天(加强后21天),取决于剂量水平,中和抗体GMT进一步增加至约62(1μg剂量),相对稳定在约126(10μg剂量),或轻微减少至约157(30μg剂量),和309(50μg剂量)。中和抗体GMT与结合RBD的IgG GMC强烈相关(图40b)。总之,中和抗体滴度很大程度上在先前报道的使用BNT162b1的美国研究的范围内。
此外,到第二剂量后7天,接种疫苗的受试者的血清表现出整个(across)组17个SARS-CoV-2刺突变体的广泛中和活性,所述刺突变体在公众可用的SARS-CoV-2序列中鉴定,包括16个RBD突变体(Baum,A.et al.,Science,eabd0831(2020).doi:10.1126/science.abd0831)和主导刺突变体D614G(Baum,A.et al.,Science,eabd0831(2020).doi:10.1126/science.abd0831)(图40c)。
疫苗诱导的T细胞应答
在初免疫苗接种前(第1天)和在初免后第29天(加强疫苗接种后7天),用来自跨1μg至50μg剂量队列的36名受试者的PBMC,使用直接离体IFNγELISPOT来表征BNT162b1免疫的受试者中的CD4+和CD8+ T细胞应答(图41)。在这个测定中,将CD4+或CD8+ T细胞效应物用代表疫苗编码的RBD全长序列的重叠肽刺激过夜。
在36名受试者中,34名(94.4%,包括用≥10μg BNT162b1治疗的所有受试者)发动(mounted)RBD特异性CD4+ T细胞应答。个体之间的程度(magnitude)变化,最强的CD4 T细胞应答是在相同受试者中针对一组巨细胞病毒(CMV)、Epstein Barr病毒(EBV)、流感病毒和破伤风类毒素衍生的免疫优势(dominant)肽观察到的记忆应答的10倍以上(图41a-c)。在基线,CD4+ T细胞应答不可检测,除了一名受试者具有少量预存RBD反应性CD4+ T细胞,在疫苗接种后其显著增加(在50μg剂量队列中,归一化的平均斑点计数为63-1,519)。RBD特异性CD4+ T细胞应答的强度与结合RBD的IgG和SARS-CoV-2中和抗体滴度都正相关(图41d,图46a),符合分子内帮助(intramolecular help)的概念(Sette,A.et al.,Immunity 28,847-58(2008))。缺乏CD4+应答的两名受试者的VNT50滴度都不可检测(图41d)。
疫苗诱导的CD8+ T细胞应答,大多数受试者发动了一些强应答(29/36,80.6%)(图41a),并且与在相同受试者中针对CMV、EBV、流感病毒和破伤风类毒素的记忆应答相当(图41b、c)。RBD特异性CD8+ T细胞应答的强度与疫苗诱导的CD4+ T细胞应答正相关,但是与SARS-CoV-2中和抗体滴度非显著相关(图46b、c)。
值得注意的是,虽然在1μg BNT162b1的免疫原性率较低(6/8应答的受试者),在一些受试者中疫苗诱导的CD4+和CD8+ T细胞的程度几乎与50μg BNT162b1的一样高(图41a)。为了评估RBD特异性T细胞的功能性和极化,通过在疫苗接种前和后的18名BNT162b1免疫的受试者的PBMC中用IFNγ、IL-2和IL-4特异性抗体进行细胞内染色(ICS)来确定响应疫苗抗原刺激而分泌的细胞因子。RBD特异性CD4+ T细胞分泌IFNγ、IL-2或两者,但不分泌IL-4(图42a-c)。类似地,一部分RBD特异性IFNγ+CD8+ T细胞也分泌IL-2。
通过BNT162b1疫苗接种获得的总循环T细胞中RBD特异性T细胞的平均分数明显高于在从COVID-19恢复的六名受试者中观察到的。RBD特异性IFNγ+CD8+ T细胞的频数(frequency)达到总外周血CD8+ T细胞的几个百分数(图42c)。对来自5名接种疫苗的受试者的子群的PBMC的上清液的分析显示促炎性细胞因子TNF、IL-1β和IL-12p70的关联(cognate)释放,所述PBMC用重叠RBD肽离体刺激(图42d)。
总之,这些发现表明BNT162b1在几乎所有受试者中诱导功能性和促炎症的CD4+/CD8+ T细胞应答,具有TH1极化的辅助(helper)应答。
讨论
我们观察到并发的中和抗体的产生、病毒特异性CD4+和CD8+ T细胞的活化和免疫调节细胞因子的稳健释放,例如IFNγ,其代表反击病毒入侵的协同免疫应答(综述请见Vabret,N.et al.,Immunity 52,910–941(2020))。IFNγ代表用于几种抗病毒应答的关键的细胞因子。确实,据显示具有与受损的IFNγ活性相关的IFNγ基因多态性的患者表现出对SARS的易感性5倍增加(Chong,W.P.et al.,BMC Infect.Dis.6,82(2006))。此外,IFNγ与I型干扰素协调作用来抑制SARS-CoV-2的复制(Sainz,B.,et al.,Virology329,11–7(2004))。IFNγ从CD8+ T细胞的稳健产生表明具有抗病毒和免疫扩大(immune-augmenting)性质的有利免疫应答。
重要的是,检测到IFNγ、IL-2和IL-12p70而非IL-4表明有利的TH1谱,并且不存在潜在的有害的TH2免疫应答。如SARS-CoV-1幸存者中提示的,CD4+和CD8+ T细胞可能赋予针对冠状病毒的长期免疫力,其中CD8+ T细胞免疫性持续6-11年(Vabret,N.et al.,Immunity 52,910–941(2020);Ng,O.-W.et al.,Vaccine 34,2008–14(2016))。
一些无症状病毒暴露的例子与没有血清转换的细胞免疫应答相关联,表明即使在中和抗体不存在的情况下,SARS-Cov-2特异性T细胞可能与疾病控制有关(Gallais,F.etal.(2020).doi:medRxiv:10.1101/2020.06.21.20132449)。几乎所有接种疫苗的志愿者发动了用离体ELISpot测定检测到的RBD特异性T细胞应答,所述测定在没有事先扩增T细胞下进行,仅捕获高强度(magnitude)T细胞应答。尽管T细胞应答的强度在受试者之间变化较大,我们没有在剂量范围1μg至50μg中观察到明显的T细胞应答强度的剂量依赖,表明T细胞的刺激和稳健扩增可能在最低的mRNA编码的免疫原水平下完成。
研究证实结合RBD的IgG和中和应答的剂量依赖性,重现我们先前在美国试验中关于10和30μg剂量水平的发现,并显示通过在50μg的初免/加强方案进一步增加中和抗体滴度。
值得注意的观察是,在低至1μg的剂量水平的两次BNT162b1注射,能够诱导结合RBD的IgG水平比在康复期血清中观察到的那些以及至第43天还在增加的血清中和抗体滴度更高。考虑到尚不知道保护性中和抗体滴度的程度,并且鉴于我们在1μg队列中一些受试者中观察到的明显的T细胞应答,意味着相当一部分个体可以受益于这个最低的测试剂量水平。
可以认为,纯RBD导向的免疫容易通过在这个小结构域中的单个氨基酸变化而发生病毒逃逸。然而,对17种假型病毒的中和减轻这种潜在的担忧,其中16种使用在流传的毒株中发现的具有不同RBD变体的刺突进入细胞,并且其中一种使用主导刺突变体D614G。
实施例8:来自COVID-19疫苗BNT1621阶段的安全性和免疫原性数据的总结
这个实施例为BNT162b1和BNT162b2疫苗候选物提供额外的安全性和免疫原性数据。这些安全性和耐受性数据,以及免疫球蛋白G(IgG)结合和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)中和滴度数据来自这些疫苗候选物的1阶段美国研究中的美国参与者。
对于BNT162b1,观察到以下情况:
对于10μg至30μg剂量水平,反应原性(特别是全身性事件)在18-55岁和65-85岁参与者中随剂量水平增加而增加。与剂量1相比,反应原性(特别是全身性事件)在剂量2后增加。
对于BNT162b2,观察到以下情况:
对于任意年龄组,在反应原性中剂量水平和剂量数目依赖的增加为最小至轻度(modest)。基于所有可用数据,关于BNT162b2(并且特别是SEQ ID NO:20)观察到的反应原性谱相当有利。
本文展示的免疫原性数据,关注于剂量2后的SARS-CoV-2中和应答,使得做出以下结论:
对于BNT162b1,在第28天(剂量2后7天):
与65-85岁组相比,18-55岁成年人中用10μg和30μg剂量免疫后(其中两个年龄组中的数据都可用)引发的中和抗体应答更高。在65-85岁组,20μg和30μg剂量后的中和抗体应答相似,虽然在20μg剂量水平数值更高。
对于BNT162b2(特别是,SEQ ID NO:20),在第28天(剂量2后7天):
与65-85岁组相比,在18-55岁组中,20μg剂量后的中和抗体应答(其中两个年龄组中的数据都可用)更高。在18-55岁组中,与10μg剂量水平相比,接受20μg后的中和抗体应答更高。图56中的S1 IgG结合抗体数据,以及跨剂量水平比较剂量1后的应答,在30μg剂量水平最高,提示中和抗体水平对于剂量2后30μg剂量水平可能更高,因为结合抗体的水平与中和抗体水平非常相关。在65-85岁组,20μg和30μg剂量后的中和抗体应答在30μg剂量水平更高。
数据总体上显示BNT162b1和BNT162b2在剂量2后的中和抗体应答相似。
BNT162b1的安全性和耐受性
18-55岁年龄组
这个年龄组所有剂量水平从剂量2后的安全性数据都可用,除了20μg,其目前从剂量2后有部分数据可用(以及100μg,其中在内部审查委员会(IRC)的建议下没有给药第二剂量)。局部反应示于图48。全身性事件示于图49。
BNT162b1的免疫原性
65-85岁年龄组
这个年龄组所有剂量水平从剂量2后的免疫原性数据都可用。结合RBD的IgG几何平均浓度(GMC)示于图50。SARS-CoV-2中和几何平均滴度(GMT)示于图51。
BNT162b2的安全性和耐受性
18-55岁年龄组
这个年龄组所有剂量水平从剂量2后的安全性数据都可用。局部反应示于图52。全身性事件示于图53。
65-85岁年龄组
这个年龄组所有剂量水平从剂量2后的安全性数据都可用,然而,10μg剂量水平的数据仅是部分。局部反应示于图54。全身性事件示于图55。
BNT162b2的免疫原性
18-55岁年龄组
这个年龄组30μg剂量水平从剂量1后,以及10μg和20μg剂量水平从剂量2后的免疫原性数据可用。结合S1的IgG GMC示于图56。SARS-CoV-2中和GMT示于图57。
65-85岁年龄组
这个年龄组20μg和30μg剂量水平从剂量2后的免疫原性数据可用。结合S1的IgGGMC示于图58。SARS-CoV-2中和GMT示于图59。
结论
BNT162b1和BNT162b2(并且特别是SEQ ID NO:20)的局部耐受性谱以及2个候选物的免疫应答数据相似。BNT162b2(特别是SEQ ID NO:20)可以显示有利的全身性反应原性谱(尤其65-85岁组中)。当选择BNT162b2(特别是SEQ ID NO:20)的剂量水平时,65-85岁组中的SARS-CoV-2中和抗体应答水平可以对于使患严重疾病的风险最高的这个年龄组中的中和抗体应答最大化有重要影响。比较这项研究中20μg和30μg年长成年人队列中的中和抗体水平,30μg剂量水平显示比20μg队列更高的中和抗体水平(图59)。与GMT为94的人康复期血清组(HCS)的中和抗体水平相比,在30μg剂量水平的GMT是HCS的GMT的1.6倍;在20μg剂量水平的GMT是HCS的GMT的0.9倍。因此,两者都显示至少与人康复期血清组相当的中和抗体滴度。PCR确诊后至少14天,并且当参与者无症状时,从18-83岁的参与者中抽取38份人SARS-CoV-2感染/COVID-19康复期血清。血清供体主要为有症状感染(35/38)的,并且一名已住院。血清从Sanguine Biosciences(Sherman Oaks,CA)、MT Group(Van Nuys,CA)和PfizerOccupational Health and Wellness(Pearl River,NY)获得。此外,年长(图58,剂量2后)和年轻(图56,剂量1后)成年人队列中的S1-IgG抗体结合浓度也偏向选择30μg剂量水平。使用BNT162b2在德国试验中正在产生的初步的人T细胞数据证实对RNA平台预期的稳健CD4+和CD8+。考虑到这些,提议在30μg剂量水平使用BNT162b2(特别是SEQ ID NO:20)进行2b/3期,因为这个剂量和构建体提供有利的反应原性谱和稳健的免疫应答的最佳组合,有可能在年轻和年长成年人中提供针对COVID-19的保护。
实施例9:COVID-19疫苗BNT162的免疫学
为了支持进入18-85岁成年人的2/3期,本文提供非临床和临床数据,总结在小鼠中BNT162b2免疫后,以及参与BNT162试验的人中的T细胞应答。提供以下免疫原性数据:
1.初步并且未审核的小鼠免疫原性数据:IFNγELISpot(图60),细胞内细胞因子染色和BNT162b2免疫后产生的细胞因子的Luminex定量。
2.来自德国试验(BNT162-01):18-55岁参与者中,第一剂量前和剂量2后7天BNT162b2在10μg剂量水平的IFNγ ELISpot(图61、图62、图63)。
小鼠中对BNT162b2的T细胞应答
在第0天,通过肌肉内(IM)注射,用0.2μg、1μg或5μg BNT162b2(特别是SEQ ID NO:20)每只动物的剂量免疫四组八只雌性BALB/c小鼠,或者仅用缓冲液(对照组)。在第12和28天,采集脾用于脾细胞分离以及使用IFNγ ELISpot测定进行的T细胞应答分析。进行Luminex测定和细胞内细胞因子染色(ICS)来评估细胞因子应答。在免疫后第12和28天,大部分的CD4+和CD8+ T细胞表型的脾细胞从BNT162b2免疫的小鼠分离,当用全长S肽混合物离体再刺激,在ELISpot和流式细胞术测定中产生强抗原特异性IFNγ和IL-2应答(图60a和b)。在第28天收集并用全长S肽池刺激的脾细胞产生高水平的TH1细胞因子IL-2和IFNγ,在多重免疫测定中具有相应最低水平的TH2细胞因子IL-4、IL-5和IL-13(图60c)。
来自德国研究的BNT162b2在人中的T细胞应答
为了评估用BNT162b2(特别是SEQ ID NO:20)免疫人引发的T细胞表型,在从德国研究中的参与者获得的外周血单个核细胞(PBMC)上进行IFNγ ELISpot。
IFNγ ELISpot
使用在剂量1前和第29天(剂量2后7天)从受试者获得的耗尽CD4或CD8的PBMC确定疫苗引发的T细胞应答。在第1和22天,针对用10μg BNT162b2(特别是SEQ ID NO:20)免疫的5名受试者产生IFNγ ELISpot数据。疫苗接种后刺突特异性的离体CD4+和CD8+ T细胞应答分别在5/5(100%)的受试者中检测到。在疫苗接种前的样品中,所有应答都极低或不可检测。应答被认为是疫苗诱导的(图61、图62、图63)。
通过S肽池1(刺突的N末端部分,其包括受体结合结构域[RBD])和S肽池2(刺突的C末端部分)刺激的BNT162b2疫苗引发的、抗原特异性的CD8+和CD4+ T细胞应答相当于或高于相同受试者中针对CMV、EBV、流感病毒和破伤风类毒素的记忆应答(图63)。
结论
这些关于BNT162b2疫苗候选物的数据证实之前在用modRNA(核苷修饰的)平台免疫的临床前模型和人中获得的结果。数据表明modRNA引发明显的Th1型CD4+和CD8+ T细胞应答。
实施例10:三聚体SARS-CoV-2受体结合结构域RNA疫苗在非人灵长类中具有高度免疫原性和保护性
在此,我们报道BNT162b1疫苗候选物的设计和非临床进展。我们证明,核苷修饰的编码结构稳定的、三聚化SARS-CoV-2的受体结合结构域(RBD)的mRNA,包封在脂质纳米颗粒(LNP)中,用于在小鼠中进行有效的肌肉内递送,引发强的抗体和TH1主导的细胞免疫应答。用单剂量的BNT162b1免疫小鼠引发了明显的剂量水平依赖的假病毒中和滴度的增加,以及强的IFNγ阳性的CD4+和CD8+ T细胞应答。用BNT162b1初免-加强疫苗接种恒河猴引发了可信的(authentic)SARS-CoV-2中和几何平均滴度,是SARS-CoV-2康复期人血清组的2.6-6.0倍。SARS-CoV-2感染攻击后,免疫的恒河猴在鼻和肺中不存在病毒RNA或比未免疫的对照恒河猴病毒RNA的存在更短暂。
材料和方法
伦理声明
所有小鼠研究均在BioNTech SE进行,并且方案获得地方当局(地方福利委员会)的批准,根据FELASA的建议进行,并符合《德国动物福利法(German Animal Welfare Act)》和指令2010/63/EU(Directive 2010/63/EU)。仅选择健康状况无可非议的动物用于测试程序。
用于非人灵长类(NHP)研究的免疫在University of Louisiana at Lafayette-New Iberia Research CenterNIRC)进行,其已获得实验室动物护理评估与认证协会(Association for Assessment and Accreditation of Laboratory Animal Care,AAALAC,Animal Assurance#:000452)的认可。这项工作符合USDA Animal Welfare Actand Regulations以及NIH关于微生物和生物医学实验室中涉及重组DNA分子和生物安全研究的指南。对这些动物执行的所有程序均符合法规和既定指南,并由国际动物护理和使用委员会或通过伦理审查程序审查和批准。用于NHP研究的感染性SARS-CoV-2攻击在西南国家灵长类研究中心(Southwest National Primate Research Center)进行。畜牧业(Animal husbandry)遵循国际AAALAC建议的标准和NIH关于实验室动物护理和使用指南(Care of Use of Laboratory Animals)。这项研究获得Texas Biomedical ResearchInstitute Animal Care and Use Committee的批准。
蛋白和肽试剂
纯化的与小鼠IgG1恒定区融合的重组SARS-CoV-2 RBD用作蛋白印迹的靶标,而用人Fc标签标记的重组SARS-CoV-2 RBD(两者都来自Sino Biological)用于ELISA中以检测SARS-CoV-2 S特异性IgG。具有组氨酸标签的纯化的重组RBD(Sino Biological)用于表面等离子共振(SPR)光谱。S蛋白的重叠的15-元肽池用于ELISpot、细胞因子分析和细胞内细胞因子染色。肽对照(SPSYVYHQF,衍生自gp70 AH-1(Slansky,J.E.et al.,Immunity 13,529-538,2000))用作ELISpot测定的对照。所有肽从JPT Peptide Technologies获得。
人康复期血清
PCR确诊后至少14天,并且当参与者无症状时,从18-83岁的供体抽取人COVID-19康复期血清(n=38)。血清供体为有症状感染(35/38)或已住院(1/38)。血清从SanguineBiosciences(Sherman Oaks,CA)、MT Group(Van Nuys,CA)和Pfizer OccupationalHealth and Wellness(Pearl River,NY)获得。
细胞培养
人胚胎肾(HEK)293T/17和Vero-76细胞(两者都来自ATCC)培养在补充有10%胎牛血清(Sigma-Aldrich)的具有GlutaMAXTM(Gibco)的Dulbecco’s modified Eagle’s培养基(DMEM)中。接收后,在扩增和冷冻保存前,对细胞系进行支原体污染测试。Vero E6和VeroCCL81(两者都来自ATCC)细胞培养在含有2%HyClone胎牛血清和100U/mL青霉素/链霉素(Gibco)的DMEM(Gibco)中。Expi293FTM细胞生长在Expi293TM培养基中并且使用ExpiFectamineTM293(全部来自Thermo Fisher Scientific)瞬时转染。
体外转录的RNA的制造
为了产生用于RNA合成的模板,将编码融合蛋白的DNA片段克隆到起始质粒载体中,该载体具有改善的RNA稳定性和翻译效率的骨架序列元件(Orlandini von Niessen,A.G.et al.,Mol Ther 27,824-836;2019;Holtkamp,S.et al.,Blood 108,4009-4017,2006),所述融合蛋白包括信号肽(SP,氨基酸1-16),SARS-CoV-2 S RBD(GenBank:MN908947)和T4次要纤维蛋白三聚化基序(“折叠子”)。非编码骨架元件包括从T7启动子至5’和3’UTR加poly(A)尾(100个核苷酸)的区域,被接头(A30LA70,10个核苷酸)中断。将DNA纯化、分光光度法定量并在三核苷酸cap1类似物((m2 7,3’-O)GPPP(m2’-O)ApG;TriLink)和代替了尿苷-5’-三磷酸(UTP)的N1-甲基假尿苷-5’-三磷酸(m1ΨTP;Thermo FisherScientific)的存在下,通过T7 RNA聚合酶体外转录(Grudzien-Nogalska,E.et al.,Methods in molecular biology(Clifton,N.J.)969,55-72,2013)。使用磁性颗粒纯化RNA(Berensmeier,S.,Appl.Microbiol.Biotechnol.73,495-504,2006),通过微流控毛细管电泳(Agilent Fragment Analyser)评估完整性并确定浓度、pH、克分子渗透压浓度(osmolality)、内毒素水平和生物负载(bioburden)。
RNA的脂质纳米颗粒制剂
使用可电离的阳离子脂质的乙醇脂质混合物将纯化的RNA配制成LNP,并通过渗滤转移至水性缓冲液系统,以产生与先前所述相似的LNP组合物(Maier,M.A.et al.,Molecular therapy:the journal of the American Society of Gene Therapy 21,1570-1578,2013)。BNT162b1以0.5mg/mL的浓度保存在-70℃。
mRNA转染
通过孵育18小时,用转染试剂混合的BNT162b1 RNA或BNT162b1转染HEK293T/17细胞。根据制造商的说明书(RiboJuice,Merck Millipore),将非LNP配制的mRNA(1μg用于蛋白印迹和流式细胞术,2.5μg用于免疫荧光)稀释在Opti-MEM培养基(Thermo FisherScientific)中并与转染试剂混合。
蛋白印迹分析
通过10%Mini-Protean TGX预制聚丙烯酰胺凝胶(Bio-Rad)的变性SDS-PAGE和蛋白印迹分析转染BNT162b1 RNA的HEK293T/17细胞的裂解物。使用半干转移系统(Trans-Blot Turbo Transfer System,Bio-Rad)转移至硝酸纤维膜(Carl Roth)。用SARS-CoV S的重组S1片段(SinoBiological)引发的兔多克隆一抗和辣根过氧化物酶缀合的抗兔二抗(Sigma Aldrich)检测印迹的蛋白。用SuperSignal West Femto化学发光底物(ThermoFisher Scientific)使印记显色并用具有Image Lab软件版本5.0的Bio-Rad ChemiDoc系统成像。
免疫荧光
在4%多聚甲醛(PFA)中固定转染的HEK293T/17细胞,并在磷酸盐缓冲盐水(PBS)/0.2%Triton X-100中透性化。封闭自由的结合位点,并且使细胞与识别S1亚基(SinoBiological)的兔多克隆抗体和抗兔IgG二抗(Jackson ImmunoResearch)或标记的伴刀豆凝集素A(Concanavalin A)(Invitrogen)孵育。DNA用Hoechst(Life Technologies)染色。用Leica SP8共聚焦显微镜获取图像。
流式细胞术
用可固定的活力染料(eBioscience)染色转染的HEK293T/17细胞。固定(FixationBuffer,Biolegend)后,将细胞透性化(Perm Buffer,eBioscience)并用单克隆SARS-CoV-2刺突S1抗体(SinoBiological)染色。在FACSCanto II流式细胞仪(BD Biosciences)上使用BD FACSDiva软件版本8.0.1获取细胞,并通过FlowJo软件版本10.6.2(FlowJo LLC,BDBiosciences)分析。
对于外周血中的小鼠T细胞分析,裂解(ACK lysing buffer,Gibco)来自50μL新鲜抽取的血液的红细胞,在Fc封闭液存在下,在流式缓冲液(DPBS[Gibco]补充有2%FCS,2mMEDTA[两者都来自Sigma]和0.01%叠氮化钠[Morphisto])中用可固定的活力染料(eBioscience)和一抗染色细胞。在流式缓冲液中用生物素偶联的二抗染色后,用稀释在流式缓冲液中的直接标记的抗体和Brilliant Stain Buffer Plus(BD Bioscience)中的链霉亲和素对细胞表面标志物进行细胞外染色。用2%RotiHistofix(Carl Roth)固定细胞,然后透性化(Perm缓冲液,FoxP3/转录因子染色缓冲液组,eBioscience)过夜。用Fc封闭液细胞内处理透性化的细胞,并在Perm缓冲液中用针对转录因子的抗体染色。
对于淋巴样组织中的小鼠T细胞分析,用直接标记的抗体对1×106淋巴结细胞和4×106脾细胞进行活力和细胞外抗原染色。用2%RotiHistofix冲洗细胞,然后固定(Fix/Perm缓冲液,FoxP3/转录因子染色缓冲液组,eBioscience)过夜。细胞内染色方法按照上述血T细胞的染色进行。对于淋巴样组织中的小鼠B细胞亚型分析,用Fc封闭液处理2.5×105淋巴结细胞和1×106脾细胞,按照上述血T细胞的染色对细胞进行活力和细胞外抗原染色,然后用2%RotiHistofix固定过夜。对于小鼠T细胞中的细胞内细胞因子染色,在GolgiStop和GolgiPlug(both BD Bioscience)存在的条件下,用每肽终浓度为0.2μg/mL的全长S肽混合物对1×106淋巴结和4×106脾细胞离体再刺激5小时。按照上述淋巴样T细胞染色对细胞进行活力和细胞外抗原染色。用2%RotiHistofix固定细胞,然后透性化过夜。按照上述血T细胞染色方法进行细胞内染色。
在分别使用BD FACSDiva软件版本9.1或者8.0.1.1的BD Symphony A3或者BDCelesta(B细胞亚型)流式细胞仪(BD Bioscience)上获取小鼠细胞,并用FlowJo 10.6(FlowJo LLC,BD Biosciences)进行分析。
蛋白的表达和纯化
为了表达BNT162b1编码的RBD-折叠子用于生化和结构分析,将与RNA编码序列相应的DNA克隆到pMCG1309载体中。产生了编码具有C末端His-10和Avi标签的人ACE2氨基酸1-615的质粒,用于在Expi293F细胞中瞬时表达ACE2肽酶结构域(ACE2 PD)。通过在Expi293F细胞中共表达两个质粒产生ACE2/B0AT1复合物,其中一个质粒编码ACE2氨基酸1-17随后是血凝素标签、Strep II标签和ACE2氨基酸18-805,另一个包含甲硫氨酸随后是FLAG标签和人B0AT1的氨基酸2-634。
使用Nickel Excel树脂(GE Healthcare)随后在PBS中的Superdex200 10/30色谱柱(GE Healthcare)上的凝胶过滤色谱,从条件细胞培养基中分离分泌的ACE2 PD。采用AminoLink Plus树脂(Thermo Fisher Scientific)使每1mL 4%琼脂糖珠与大约5mg纯化的ACE2 PD通过胺偶联共价连接。通过用ACE2 PD交联的琼脂糖进行亲和捕获,从条件培养基中纯化RBD-三聚体,并用3M MgCl2从树脂中洗脱。透析后,在具有10%甘油的HEPES缓冲盐水(HBS)中,使用Superdex200 10/300色谱柱通过凝胶过滤进行蛋白的浓缩和纯化。基于先前所述的方法(Yan,R.et al.,Science(New York,N.Y.)367,1444-1448,2020)纯化ACE2/B0AT1复合物。为了形成ACE2/B0AT1/RBD-三聚体复合物,将ACE2/B0AT1等分试样与稀释在ACE2/B0AT1尺寸排阻色谱缓冲液(25mM Tris pH 8.0,150mM NaCl,0.02%glycodiosgenin)中的纯化RBD-折叠子混合,RBD-三聚体与ACE2前体的摩尔比为3:1。在4℃孵育30分钟后,在Superose 6 Increase 10/300GL柱上对样品进行浓缩和分离。将包含复合物的峰部分合并并浓缩。
表面等离子体共振光谱
于25℃,使用Biacore T200设备(Cytiva)用HBS-EP运行缓冲液(BR100669,Cytiva)确定鼠RBD特异性血清IgG的结合动力学。CM5传感器芯片矩阵上的羧基被1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)的混合物活化,形成用于与胺基反应的活性酯。将抗小鼠Fc抗体(Jackson ImmunoResearch)稀释在10mM乙酸钠缓冲液pH 5中(30μg/mL),用于共价偶联至~10,000响应单位(RU)的固定水平。用乙醇胺使传感器表面的游离N-羟基琥珀酰亚胺酯失活。
将小鼠血清以1:50稀释在HBS-EP缓冲液中,并以10μL/min应用到活性流通池(lowcell)中30秒,以被固定的抗体捕获,而参考流通池则用缓冲液处理。使用多循环动力学方法在1.5625至50nM的浓度范围内对捕获的鼠IgG抗体与RBD-His(Sino Biological Inc.)之间的结合进行分析。180秒的缔结期之后是以40μL/min的恒定流速进行的持续600秒的解离期,以及最终的再生步骤。使用全局动力学拟合模型(1∶1 Langmuir,Biacore T200Evaluation Software Version 3.1,Cytiva)计算结合动力学。
生物层干涉术
于25℃,在包含10mM HEPES pH 7.5,150mM NaCl和1mM EDTA的缓冲液中,在OctetRED384(FortéBio)上通过生物层干涉技术测量RBD-折叠子对ACE2-PD的结合。将带有Avi标签的人ACE2 PD固定在链霉亲和素包被的传感器上。针对一系列浓度的RBD-三聚体,收集结合数据,缔结期10分钟,解离期15分钟。使用Octet数据分析软件v10.0(FortéBio),将数据减去参考值并拟合到R2值大于0.96的1∶1结合模型,以确定结合的动力学和亲和力。相互作用的解离速率(kd)低于仪器的测量极限,并且使用假定的解离速率kd 1×10-6s-1估算结合亲和力(KD)。
负染色样品的电子显微术
将4μL纯化的RBD-三聚体蛋白应用于辉光放电(glow-discharged)的铜载网上,该网格覆盖有Formvar和无定形碳(Ted Pella)。根据制造商的方法,使用Nano-W有机钨酸盐(organotungstate)染色剂(Nanoprobes)进行染色,并使用以200kV运行的FEI TF-20显微镜对样品成像,放大倍数为62,000x,散焦为-2.5μm。使用CTFFIND-4.1在RELION中对显微图进行对比度传递函数(CTF)校正(Rohou,A.&Grigorieff,N.,Journal of structuralbiology 192,216-221,2015)。用一小组手动选取的数据生成2D参考以进行自动选取。将所得的颗粒集在RELION 3.0.6中进行2D分类(Zivanov,J.et al.,eLife 7;10.7554/eLife.42166(2018)。
冷冻电子显微术
将4μL 6mg/mL纯化的ACE2/B0AT1/RBD-三聚体复合物应用于金制QuantifoilR1.2/1.3 200目载网中,采用Pelco Easiglow在稀薄气体(residual air)中以20mA辉光放电30秒。将样品用Vitrobot Mark IV以-3的力印记5秒钟,然后浸入由液氮冷却的液体乙烷中。在配备有Gatan K2 Summit直接电子探测器、以300keV运行的Titan Krios的单个栅格上,以超分辨率模式总共采集了7,455张显微图,放大倍数为165,000x,在样本水平放大的像素大小为
Figure GDA0004051824180002481
将总电子量
Figure GDA0004051824180002482
分成40帧,以6秒曝光
Figure GDA0004051824180002483
在-1.2至-3.4μm的散焦范围收集数据。在Warp中进行初始运动校正(Tegunov,D.&Cramer,P.,Naturemethods 16,1146-1152,2019),期间将超分辨率数据分箱以生成
Figure GDA0004051824180002484
的像素尺寸。将校正的显微图导入到RELION 3.1-beta(Zivanov,J.et al.,eLife 7;10.7554/eLife.42166(2018)),使用CTFFIND-4.1估算CTF(Rohou,A.&Grigorieff,N.,Journal of structuralbiology 192,216-221,2015)。使用在RELION中实现的LaPlacian-of-Gaussian颗粒选取算法选取颗粒,并以450像素的框大小进行提取。通过2D分类获得的参考用于基于参考的第二轮自动选取,产生了715,356个颗粒的数据集。用2D和3D分类、掩模尺寸为280nm滤除颗粒异质性,以滤出每个RBD-三聚体中非ACE2结合的RBD拷贝,产生了一组87,487个颗粒,以C2对称性优化到
Figure GDA0004051824180002485
从颗粒中减去胶束和B0AT1密度后进行优化,产生
Figure GDA0004051824180002486
的改进图。将PDB ID 6M17的原子模型(Yan,R.et al.,Science(New York,N.Y.)367,1444-1448,2020)刚体拟合到
Figure GDA0004051824180002487
密度,然后在Phenix中使用实际空间优化(real-space refinement)(Adams,P.D.et al.,Acta crystallographica.Section D,Biological crystallography66,213-221,2010),交替在Coot中进行手动构建(Emsley,P.et al.,Actacrystallographica.Section D,Biological crystallography 66,486-501,2010)以灵活地拟合到密度。使用SerialEM软件版本3.8.0beta操作显微镜进行图像获取(Mastronarde,D.N.,Journal of structural biology 152,36-51,2005)。使用Octet Data Acquisition软件版本10.0.0.87收集生物层干涉数据,并用ForteBio Data Analysis软件版本10.0进行处理。
免疫
小鼠。将雌性BALB/c小鼠(Janvier;8-12周)随机分组。将BNT162b1稀释在PBS,300mM蔗糖或盐水(0.9%NaCl)中,并在异氟烷麻醉下以20μL的体积IM注射到腓肠肌中。
恒河猴(猕猴)。在第0天和第21天,将雄性恒河猴(2-4岁)随机分配接受通过IM注射左股四头肌给药的0.5mL体积的BNT162b1或生理盐水安慰剂对照。遵循NIRC动物护理和使用委员会批准的动物协议2017-8725-023采集血清和PBMC。在采血和免疫期间,用盐酸氯胺酮(10mg/kg,IM)麻醉动物,并紧密监测镇静作用。
恒河猴的SARS-CoV-2攻击
SARS-CoV-2接种液从先前在Texas Biomedical Research Institute(SanAntonio,Texas)制备的2.1×106PFU/mL的储备液获得,分装到一次性使用的小瓶中,并储存在-70℃。工作病毒储备液从在Vero E6细胞中传代两次的SARS-CoV-2 USA-WA1/2020分离株(从BEI Resources购买的第4代种子原液;NR-52281)产生。通过深度测序确认该病毒为SARS-CoV-2,与公开的序列相同(GenBank登录号为MN985325.1)。
将BNT162b1免疫的(n=6)和年龄匹配的盐水对照免疫(n=6)的雄性恒河猴(对照组)用1×106噬斑形成单位的SARS-CoV-2 USA-WA1/2020分离株进行攻击,如之前所述在鼻内(IN,0.2mL)和气管内(IT,0.2mL)途径之间平均分配(Singh,D.K.et al.,SARS-CoV-2infection leads to acute infection with dynamic cellular and inflammatoryflux in the lung that varies across nonhuman primate species,2020)。在第二次免疫后41-48天进行攻击。未免疫的年龄和性别均匹配的动物(n=3)单独的前哨组仅接受补充有10%FCS IN(0.2mL)和IT(0.2mL)的DMEM。攻击前大约两周,将动物转移到西南国家灵长类动物研究中心(SNPRC;San Antonio,TX)的动物生物安全等级3(ABSL-3)设施中。由委员会认证的兽医临床医生定期监测动物的直肠体温,体重和体检。如所述(Singh,D.K.etal.,SARS-CoV-2infection leads to acute infection with dynamic cellular andinflammatory flux in the lung that varies across nonhuman primate species,2020)在替来他明唑拉西泮(tiletamine zolazepam)(Telazol)麻醉下采集样本。在接种后第0、1、3和6天从猕猴采集鼻拭子以评估病毒滴度。在攻击前一周以及接种后第3天和第6天,通过滴注20mL盐水四次进行支气管肺泡灌洗(BAL)。将洗液合并,等分并冷冻储存在-70℃。
定量逆转录聚合酶链式反应
为了检测和定量SARS-CoV-2,如先前所述从鼻拭子和BAL样本中提取病毒RNA(Mehra,S.et al.,The Journal of infectious diseases 207,1115-1127,2013;Gautam,U.S.et al.,Proceedings of the National Academy of Sciences of the UnitedStates of America 115,E62-E71;2018;Joosten,S.A.et al.,PLoS pathogens 6,e1000782,2010)并如先前所述进行RT-qPCR检测(Singh,D.K.et al.,SARS-CoV-2infection leads to acute infection with dynamic cellular and inflammatoryflux in the lung that varies across nonhuman primate species,2020)。简言之,将10μg酵母tRNA和1×103PFU MS2噬菌体(大肠杆菌噬菌体MS2,ATCC)添加到每个解冻的样品中,并用NucleoMag Pathogen试剂盒(Macherey-Nagel)提取RNA。在QuantStudio 3仪器(Applied Biosystems)上用CDC开发的2019-nCoV_N1测定对提取的RNA进行SARS-CoV-2RT-qPCR。阳性的临界值(检测极限,LOD)设置为每反应10个基因当量(GE)(800GE/mL)。样品一式两份进行检测。经过反复测量,在第6天,对照组的一个BAL样本和BNT162b1免疫组的第1天的一个鼻拭子在LLOD的每一侧都有病毒RNA水平。这些样本归类为不确定,并从图表和分析中排除。
组织的准备
小鼠。在异氟烷麻醉下从眼眶后静脉丛或面静脉处采集外周血。将血以16.000x g离心5分钟后,立即将血清用于下游测定或储存在-20℃。在PBS中通过用3mL注射器的柱塞(BD Biosciences)在70μm细胞过滤器(BD Falcon)的表面上将组织捣碎,制备脾单细胞悬浮液。低渗裂解去除红细胞。合并胭、腹股沟和髂淋巴结,切成小块,用胶原酶D(1mg/mL;Roche)消化,并通过细胞过滤器。
恒河猴(猕猴)。遵循NIRC动物护理和使用委员会(Institutional Animal Careand Use Committee)批准的动物协议2017-8725-023采集血清和PBMC。
结合RBD的IgG抗体测定
对于小鼠血清,在碳酸钠缓冲液中用重组RBD(100ng/100μL)包被MaxiSorp板(Thermo Fisher Scientific),并使用HRP缀合的二抗和TMB底物(Biotrend)检测结合的IgG。用BioTek Epoch读取器和Gen5软件版本3.0.9进行数据收集。对于浓度分析,将特定样品的信号与同种型对照的标准曲线相关联。对于恒河猴和人血清,将含有C末端AvitagTM(Acro Biosystems)的重组SARS-CoV-2 RBD与链霉亲和素包被的Luminex微球结合。用荧光标记的山羊抗人多克隆二抗(Jackson ImmunoResearch)检测血清中存在的结合的恒河猴或人抗RBD抗体。使用Bioplex200系统(Bio-Rad)将数据捕捉为中值荧光强度(MFI),并使用参考标准曲线转换为U/mL抗体浓度,所述参考标准曲线由5份合并的人COVID-19康复期血清样品组成(PCR诊断>14天获得),稀释在贫乏抗体的人血清中,任意指定100U/mL的浓度,并考虑血清稀释因子。
VSV-SARS-CoV-2刺突变体假病毒中和
根据发表的假型包装(pseudotyping)方法(Berger Rentsch,M.&Zimmer,G.,PLoSONE 6,e25858,2011;Lester,S.et al.,Access Microbiology 1,20290,2019),将复制缺陷型重组水疱性口炎病毒(VSV)载体与SARS-CoV-2 S蛋白假型包装,所述载体编码GFP而不是VSV-G(VSVΔG-GFP)。简言之,用VSVΔG-GFP载体接种经转染以表达C末端细胞质19个氨基酸截短的SARS-CoV-2 S(SARS-CoV-2-S-CΔ19)的HEK293T/17单层细胞。于37℃孵育1小时后,移除接种液,用PBS洗涤细胞,然后添加补充有抗VSV-G抗体(克隆8G5F11,KerafastInc.)的培养基以中和残留的输入病毒。接种后20小时,收获含有VSV/SARS-CoV-2假病毒的培养基,0.2μm过滤并储存在-80℃。
将Vero-76细胞接种在96孔板中。制备小鼠血清样品的系列稀释液,并于室温与VSV/SARS-CoV-2假病毒悬浮液(4.8×103感染单位[IU]/mL)预孵育10分钟,然后将混合液转移至Vero-76细胞。将接种的Vero-76细胞于37℃孵育20小时。将板置于IncuCyte活细胞分析系统(Sartorius)中,并在分析前孵育30分钟(IncuCyte 2019B Rev2软件)。使用4x物镜进行明场和GFP荧光的全孔扫描。将50%假病毒中和滴度(pVNT50)报告为与无血清假病毒阳性对照的平均值相比,造成每孔GFP阳性的感染细胞数目减少50%的第一个血清稀释度的倒数。每份血清样品稀释液均一式两份进行测试。
人康复期血清和恒河猴血清的SARS-CoV-2中和
SARS-CoV-2中和测定使用先前描述的SARS-CoV-2毒株(USA_WA1/2020),其已通过反向遗传学进行拯救,并通过在病毒组的开放阅读框7中插入mNeonGreen(mNG)基因进行了改造(Xie,X.et al.,Cell host&microbe 27,841-848.e3,2020)。这种报告病毒与野生型病毒产生相似的噬斑形态和难以区别的生长曲线。如先前描述的(Lester,S.et al.,Access Microbiology 1,20290,2019),使病毒主要储备液生长在Vero E6细胞中。当测试人康复期血清样本时,荧光中和测定产生与常规噬斑减少中和测定相当的结果。在接种96孔板中的Vero CCL81细胞单层之前(目标为每孔8,000-15,000个细胞),将热灭活的血清的系列稀释液与报告病毒(2x104PFU每孔,以产生大约10-30%的Vero CCL81单层感染率)于37℃孵育1小时,以允许对感染的细胞进行精确定量。通过核染色(Hoechst 33342)计数每孔的总细胞数,并在接种后16-24小时用具有Gen5 Image Prime版本3.09的Cytation 7Cell Imaging Multi-Mode Reader (Biotek)检测感染有病毒的荧光灶。在GraphPadPrism版本8.4.2中,通过在每个系列血清稀释度生成中和百分比的4参数(4PL)逻辑拟合来计算滴度。50%中和滴度(VNT50)报告为产生荧光病毒灶的50%减少的稀释度的插值倒数。
IFNγ ELISpot.
根据制造商的说明书(Mabtech),使用小鼠IFNγ ELISpotPLUS试剂盒进行ELISpot测定。用全长S肽混合物(0.1μg/mL终浓度每肽,JPT)或对照(gp70-AH1[SPSYVYHQF](Slansky,J.E.et al.,Immunity 13,529-538,2000),JPT,4μg/mL;伴刀豆凝集素A(ConA),Sigma,2μg/mL)重新刺激总共5×105个离体脾细胞。加入链霉亲和素-ALP和BCIP/NBT-plus底物,并使用ELISpot酶标仪对斑点进行计数(
Figure GDA0004051824180002501
S6 Core Analyzer,CTL)。使用ImmunoCapture Image Aquision软件V7.0和ImmunoSpot 7.0.17.0 Professional评估斑点数目。对于T细胞亚型分型,根据制造商的说明书,使用MACS MicroBeads(CD8a[Ly-2],Miltenyi Biotec)从脾细胞悬浮液中分离CD8+ T细胞。流穿物(flow-through)用作CD4+ T细胞的来源。随后用同基因骨髓来源的树突细胞重新刺激CD8+或CD4+ T细胞,该树突细胞载有全长S肽混合物(0.1μg/mL终浓度每肽)或作为对照的培养基。用流式细胞术确定分离的T细胞子集的纯度,以计算每1×105个CD8+或CD4+ T细胞的斑点数目。
细胞因子分析
用全长S肽混合物(0.2μg/mL终浓度每肽)或者仅培养基重新刺激小鼠脾细胞48小时。根据制造商的说明书,使用基于珠的11-plex TH1/TH2小鼠ProcartaPlex多重免疫测定(Thermo Fisher Scientific)确定上清液中IFNγ、IL-2、IL-4和IL-5的浓度。使用Bioplex200系统(Bio-Rad)测量荧光,并用ProcartaPlex Analyst 1.0软件(ThermoFisher Scientific)进行分析。
统计和可重复性
没有使用统计方法来提前确定组和样本大小(n)。所有实验都进行了一次。使用
Figure GDA0004051824180002502
9.4的PROC GENMOD,通过对二项式响应(攻击后检测不到病毒RNA为成功,攻击后可测量到病毒RNA为失败)以logit link进行关于处理和日长作用的分类分析,确定关于RT-qPCR分析报告的P值。分析包含来自攻击后天(对于BAL,第3天和第6天;对于鼻拭子,第1天、第3天和第6天)的样品。不确定的结果从分析中排除。所有其余分析均用GraphPad Prism 8.4进行。
结果
我们设计了名为BNT162b1的SARS-CoV-2疫苗,其包括LNP包裹的N1-甲基-假尿苷(m1Ψ)核苷修饰的mRNA,该mRNA编码在其C末端与T4次要纤维蛋白的天然三聚结构域(折叠子)融合的RBD(Meier,S.et al.,Journal of molecular biology 344,1051–1069,2004)(图64a)。SARS-CoV-2 S信号肽(SP)可使ER转运和分泌三聚体RBD。RNA的m1Ψ修饰抑制先天免疫感应,并与优化的非编码序列元件一起增加体内RNA的翻译(Orlandini von Niessen,A.G.et al.,Mol Ther 27,824–836,2019;Karikó,K.et al.,Molecular therapy:thejournal of the American Society of Gene Therapy 16,1833–1840,2008)。
由T7聚合酶从质粒DNA模板体外转录的BNT162b1 RNA具有单个尖锐的微流控毛细管电泳峰谱,与计算的1262个核苷酸的长度一致,表明了其纯度和完整性(数据未显示)。BNT162b1 RNA转染的HEK293T/17细胞裂解物的蛋白印迹分析表明,RBD从RNA表达,其表观分子量与计算的分子量29.46kDa一致(数据未显示)。通过流式细胞术和免疫荧光显微镜术分别证实了转染的细胞中蛋白的表达和分泌途径上的内质网的定位(数据未显示)。
为了进行结构表征,利用对应BNT162b1 RNA编码序列的DNA序列在Expi293F细胞中表达三聚RBD,并通过固定在琼脂糖珠上的ACE2肽酶结构域亲和捕获进行纯化。三聚RBD以高亲和力(5pM KD)结合至人ACE2肽酶结构域(PD),大约为报告的单体RBD的5.09nM KD的1000倍,并且与多聚体结合的亲合效应(avidity effect)一致(数据未显示)。RBD-折叠子的三聚体结合价(valency)及其柔性通过负染色样本的电子显微镜术(EM)进行了可视化,从而揭示了一系列构象(图64b)。虽然RBD-折叠子的柔性阻止进行高分辨率的直接结构分析,但是当该复合物处于先前报道的闭合构象时(Yan,R.et al.,Science(New York,N.Y.)367,1444–1448,2020),RBD结构域可以通过结合至ACE2和B0AT1中性氨基酸转运蛋白(ACE2为分子伴侣)的复合物而被固定。通过冷冻电镜术(cryoEM)对RBD-折叠子/ACE2/B0AT1三元复合物的大小和对称性进行了图像重建,并且将复合物中RBD结构域的结构确定为
Figure GDA0004051824180002511
分辨率(图64c)。为每个结合的三聚体解析了一份RBD拷贝。解析的RBD和ACE2胞外结构域之间的结合界面与先前报道的结构相吻合,并显示出良好的一致性(He,Y.et al.,Biochemicaland Biophysical Research Communications 324,773–781,2004;Yi,C.et al.,Cellular&molecular immunology;10.1038/s41423-020-0458-z,2020)。与ACE2的高亲和力结合以及良好解析的与ACE2复合的结构表明,重组RBD-折叠子确实呈现了许多SARS-CoV-2中和抗体靶向的ACE2结合位点(Brouwer,P.J.M.et al.,Science(New York,N.Y.);10.1126/science.abc5902(2020);Zost,S.J.et al.,Nature medicine;10.1038/s41591-020-0998-x(2020))。
分别用0.2、1或5μg BNT162b1或仅缓冲液进行了单次肌肉内(IM)免疫后,在BALB/c小鼠中进行一系列实验表征了BNT162b1引发的B细胞和T细胞免疫应答。在所有剂量水平,RBD特异性血清IgG均以剂量依赖性方式迅速发展,并在第21天左右达到稳定(对于5μg剂量水平为1.63±0.13mg/mL;图65a)。疫苗诱导的IgG具有高RBD结合亲和力(几何平均KD48.0pM),高结合速率(on-rate)(几何平均kon 1.72x106/Ms)和低解离速率(off-rate)(几何平均Koff 8.27x10-5/s;图65b)。利用基于水疱性口炎病毒(VSV)的SARS-CoV-2假病毒中和测定测量小鼠血清中的SARS-CoV-2中和活性。免疫后,对于0.2、1和5μg的剂量水平,50%假病毒中和滴度(pVNT50)平均值在第28天分别稳定增加至102、192和1056(图65c)。
免疫后第12天和28天,从BNT162b1免疫的小鼠中分离出高比例的CD4+和CD8+ T细胞表型的脾细胞,当用全长S肽混合物离体重新刺激时,在ELISpot测定中显示了强的抗原特异性IFNγ应答(图65d)。在流式细胞因子释放分析中,全长S肽刺激的大量脾细胞以及CD4+和CD8+子集在第12天也显示出高的IFNγ产生和显著的IL-2应答,但IL-4应答要低得多,表明了TH1表型应答(图65e)。在多重免疫测定中,TH1表型持续存在,在第28天采集总脾细胞并用全长S肽池刺激而产生了高水平的IL-2和IFNγ,但TH2细胞因子IL-4和IL-5的量不可检测(图65f)。
在用BNT162b1或缓冲液免疫小鼠后第12天获得的引流淋巴结(dLN)和脾中,在接受BNT162b1的小鼠的样品中观察到B细胞(包括浆细胞,类别转换的IgG1阳性和IgG2a阳性B细胞以及生发中心B细胞)数量多得多(数据未显示)。在免疫后7天获得的血液中,循环B细胞数量比缓冲液免疫的小鼠中少,很可能是由于B细胞归巢至淋巴区室(数据未显示)。BNT162b1免疫的小鼠的dLN也显示出T细胞计数的增多,特别是滤泡辅助性T(TFH)细胞的数量,包括具有ICOS上调的子集,已知其在生发中心的形成中起着至关重要的作用(Hutloff,A.,Oncotarget 6,21785–21786,2015)(数据未显示)。在脾和血液中也检测到BNT162b1诱导的TFH细胞增多(数据未显示)。总体而言,这些数据表明BNT162b1同时诱发强劲的SARS-CoV-2 S特异性中和抗体滴度和TH1驱动的T细胞应答。肌肉内给药的BNT162b1看起来已作为免疫驯化的(immune-educated)的位点递送至dLN,以进行有效的疫苗引发(priming),从而淋巴细胞从血液迁移到淋巴组织以参与疫苗应答。
接下来在2至4岁的雄性恒河猴中测试了BNT162b1的免疫原性。在第0天和第21天,用30或100μg BNT162b1或作对照的生理盐水IM免疫每组六只的组。在单次免疫后第14天,可以容易检测到结合RBD的IgG,并且到第21天(给予加强剂量时)水平进一步增加(图66a)。第二次免疫后7天(第28天),结合RBD的IgG几何平均浓度(GMC)为20,962单位(U)/mL(30μg剂量水平)和48,575U/mL(100μg剂量水平)。用于比较,一组38份SARS-CoV-2康复期人血清的结合RBD的IgG GMC为602U/mL,明显低于一个剂量或两个剂量后免疫的恒河猴的GMC。通过真实(authentic)的SARS-CoV-2中和测定,50%中和滴度(VNT50)在单次免疫后第14天在恒河猴血清中可检测到(Muruato,A.E.et al.,bioRxiv:the preprint server forbiology;10.1101/2020.05.21.109546,2020),并且在加强后7天几何平均滴度(GMT)达到768(30μg剂量水平)或1714(100μg剂量水平)(第28天,图66b)。稳健的247(30μg剂量水平)以及564(100μg剂量水平)的中和GMT持续到至少第42天(最新的检测时间点)。用于比较,人康复期血清组的50%中和GMT为93.6。
在第二次免疫后41-48天,将接受过两次100μg BNT162b1免疫或缓冲液对照免疫的恒河猴组(n=6)用1×106噬斑形成单位的SARS-CoV-2(毒株USA-WA1/2020)进行攻击,如前所述,在鼻内和气管内途径之间平均分配(Singh,D.K.et al.SARS-CoV-2infectionleads to acute infection with dynamic cellular and inflammatory flux in thelung that varies across nonhuman primate species,2020)。用细胞培养基对三只未免疫的、年龄匹配的雄性恒河猴(前哨)进行模拟攻击。攻击时,SARS-CoV-2中和滴度在BNT162b1免疫的动物中为208-1,185,而在对照免疫和前哨组的动物中不可检测。
通过定量逆转录聚合酶链式反应(RT-qPCR)测量支气管肺泡灌洗液(BAL)和鼻拭子样品中的SARS-CoV-2 RNA。在感染攻击之前获得的所有BAL和鼻拭子样品以及从前哨动物获得所有样品均缺乏可检测的SARS-CoV-2 RNA(图67)。SARS-CoV-2攻击后三天,在5/6对照免疫的动物和2/6BNT162b1免疫的动物的BAL液中检测到病毒RNA(图67a)。至攻击后6天,所有六只BNT162b1免疫的恒河猴的肺中病毒RNA不可检测;在对照免疫的恒河猴中,三只的BAL液中病毒RNA水平高,两只已清除,一只RT-qPCR结果不确定。尸检时(攻击后7-23天),任何动物的BAL液中病毒RNA均不可检测。SARS-CoV-2攻击后,在每个时间点均在对照免疫组的鼻拭子中检测到病毒RNA:攻击后第1天两只动物,攻击后第3天和第6天三只动物(图67b),尸检时有两只动物(未显示)。在BNT162b1免疫的动物中,所有鼻拭子在第1天均为阴性或不确定,在第3天和尸检时均为阴性;在第6天,来自两只动物的拭子为阳性,表明与未免疫的恒河猴相比,检测到病毒RNA是一个更为短暂的过程。在BNT162b1免疫的动物和对照免疫的动物之间,具有可检测的病毒RNA的动物比例的差异具有统计显著性(BAL为p=0.0037,鼻拭子为0.0212)。经攻击的动物均未表现出重大疾病的临床或放射学迹象,表明2-4岁的雄性恒河猴攻击模型主要是SARS-CoV-2的感染模型,而不是COVID-19疾病模型。
讨论
我们证明BNT162b1,其为编码三聚体RBD抗原的LNP配制的m1Ψ核苷修饰的mRNA,在小鼠和恒河猴中具有高度免疫原性,并限制用感染性SARS-CoV-2攻击的恒河猴中的感染。RBD-折叠子编码序列指导柔性三聚体蛋白的表达,该蛋白以高亲和力结合ACE2并具有结构完整的ACE2受体结合位点。一个关键发现是在小鼠中,单次亚微克(sub-microgram)免疫快速诱导高中和抗体滴度,其在最近报道的SARS-CoV-2疫苗候选物的范围内或以上(vanDoremalen,N.et al.,bioRxiv:the preprint server for biology;10.1101/2020.05.13.093195(2020);Corbett,K.S.et al.,bioRxiv:the preprint server forbiology;10.1101/2020.06.11.145920(2020))。均倾向TH1-偏向的强CD4+和更强的CD8+ T细胞应答以及TFH的产生可能暗示疫苗候选物诱导的强大保护能力(Pardi,N.et al.,TheJournal ofExperimental Medicine 215,1571-1588,2018)。TFH在生发中心的增殖对于产生适应性B细胞应答是必不可少的。在人中,疫苗接种后在循环(circulation)中出现的TFH与高频率的抗原特异性抗体相关(Farooq,F.et al.,Scientific reports 6,27944,2016)。用BNT162b1免疫触发了B细胞和TFH细胞从血液到发生抗原呈递的淋巴组织的重分布。
另一个重要发现是在恒河猴中,两个剂量的编码三聚体SARS-CoV-2 S RBD-折叠子的m1Ψ核苷修饰的mRNA引发的SARS-CoV-2中和GMT是SARS-CoV-2康复期人血清组GMT的8.2-18.2倍。非人灵长类中的结果证实了疫苗在急性SARS-CoV-2感染的临床前模型中具有防止SARS-CoV-2攻击的保护的高的效力和能力。
实施例11:编码融合前稳定SARS-CoV-2 S的RNA疫苗在小鼠和非人灵长类中具有高免疫原性
在此,我们报告用BNT162b2疫苗免疫的恒河猴的SARS-CoV-2感染攻击。
材料和方法
体外转录的RNA的制备
为了生成用于RNA合成的模板,将编码全长SARS-CoV-2 S蛋白(GenBank:MN908947)(其中具有K986P和V987P的氨基酸变换)的DNA片段克隆到起始质粒载体中,该载体具有改善的RNA稳定性和翻译效率的骨架序列元件(Orlandini von Niessen,A.G.etal.,Mol Ther 27,824-836,2019;Holtkamp,S.et al.,Blood 108,4009-4017,2006)。非编码骨架元件包括从T7启动子至5′及3′UTR加poly(A)尾(100个核苷酸)的区域,被接头(A30LA70,10个核苷酸)中断。将DNA纯化、分光光度法定量并在三核苷酸cap1类似物((m2 7 ,3’-O)GPPP(m2’-O)ApG;TriLink)和代替了尿苷-5′-三磷酸(UTP)的N1-甲基假尿苷-5’-三磷酸(m1ΨTP;Thermo Fisher Scientific)的存在下,通过T7 RNA聚合酶体体外转录(Grudzien-Nogalska,E.et al.,Methods in molecular biology(Clifton,N.J.)969,55-72,2013)。使用磁性颗粒纯化RNA(Berensmeier,S.,Appl.Microbiol.Biotechnol.73,495-504,2006),通过微流控毛细管电泳(Agilent Fragment Analyser)评估完整性,并确定浓度、pH、克分子渗透压浓度、内毒素水平和生物负载。
RNA的脂质纳米颗粒制剂
使用可电离的阳离子脂质的乙醇脂质混合物将纯化的RNA配制成LNP,并通过渗滤转移至水性缓冲液系统,以产生与先前所述相似的LNP组合物(Maier,M.A.et al.,Molecular therapy:the journal of the American Society of Gene Therapy21,1570-1578,2013)。BNT162b2以0.5mg/mL的浓度储存在-70℃。
免疫
在第0天和第21天,雄性恒河猴(2-4岁)被随机分配接受通过IM注射左股四头肌给药的0.5mL体积的BNT162b2或生理盐水安慰剂对照。遵循NIRC动物护理和使用委员会批准的动物协议2017-8725-023采集血清和PBM℃。在采血和免疫期间,用盐酸氯胺酮(10mg/kg,IM)麻醉动物,并紧密监测镇静作用。
恒河猴的SARS-CoV-2攻击
SARS-CoV-2接种液从先前在Texas Biomedical Research Institute(SanAntonio,Texas)制备的2.1×106PFU/mL的储备液获得,分装到一次性使用的小瓶中,并储存在-70℃。工作病毒储备液从在Vero E6细胞中传代两次的SARS-CoV-2 USA-WA1/2020分离株(从BEI Resources购买的第4代种子原液;NR-52281)产生。通过深度测序确认该病毒为SARS-CoV-2,与公开的序列相同(GenBank登录号为MN985325.1)。
将BNT162b1免疫的(n=6)和年龄匹配的生理盐水对照免疫(n=6)的雄性恒河猴(对照组)用1×106噬斑形成单位的SARS-CoV-2 USA-WA1/2020分离株进行攻击,如之前所述在鼻内(IN,0.2mL)和气管内(IT,0.2mL)途径之间平均分配(Singh,D.K.et al.,SARS-CoV-2infection leads to acute infection with dynamic cellular andinflammatory flux in the lung that varies across nonhuman primate species,2020)。在第二次免疫后41-48天进行攻击。未免疫的年龄和性别均匹配的动物(n=3)的单独的前哨组仅接受补充有10%FCS IN(0.2mL)和IT(0.2mL)的DMEM。攻击前大约两周,将动物转移到西南国家灵长类动物研究中心(SNPRC;San Antonio,TX)的动物生物安全等级3(ABSL-3)设施中。由委员会认证的兽医临床医生定期监测动物的直肠体温,体重和体检。如所述(Singh,D.K.et al.,SARS-CoV-2 infection leads to acute infection withdynamic cellular and inflammatory flux in the lung that varies acrossnonhuman primate species,2020)在替来他明唑拉西泮(tiletamine zolazepam)(Telazol)麻醉下采集样本。在接种后第0、1、3和6天从恒河猴采集鼻拭子以评估病毒滴度。在攻击前一周以及接种后第3天和第6天,通过滴注20mL盐水四次进行支气管肺泡灌洗(BAL)。将洗液合并收集,等分并冷冻储存在-70℃。
定量逆转录聚合酶链式反应
基本上如实施例10所述,在NHP中检测和定量SARS-CoV-2。
结果
结果表明,单剂量后,COVID-19 mRNA疫苗BNT162b2的免疫原性引发IgG应答,其被第二剂量增强。这些也显示出剂量应答。在30μg BNT162,将中和几何平均滴度与SARS CoV-2人患者的康复期血浆中观察到的相比,发现剂量后7天高~8倍,较高剂量的100μg后7天,产生更高的超出~18倍,并在最后一次免疫后五周保持是这个基准的3.3倍。在猴子中,应答也表征为IFN-γ和IL-2的Th1占优势,但是没有IL-4应答。在猴子中也观察到了CD4和CD8阳性细胞应答。这种细胞免疫应答的特征在于强烈的Th1偏向的CD4+ T细胞应答,同时存在干扰素-γ(IFN-γ)+CD8+ T细胞应答。
在第二次免疫后41-48天,将接受过两次100μg BNT162b2免疫或缓冲液对照免疫的恒河猴组(n=6)用1×106噬斑形成单位的SARS-CoV-2(毒株USA-WA1/2020)进行攻击,如先前所述,在鼻内和气管内途径之间平均分配(Singh,D.K.et al.SARS-CoV-2 infectionleads to acute infection with dynamic cellular and inflammatory flux in thelung that varies across nonhuman primate species,2020)。用细胞培养基对三只未免疫的、年龄匹配的雄性恒河猴(前哨)进行模拟攻击。攻击时,SARS-CoV-2中和滴度在BNT162b2免疫的动物组中为204-938,而在对照免疫和前哨组的动物中不可检测。
通过定量逆转录聚合酶链式反应(RT-qPCR)测量支气管肺泡灌洗液(BAL)和鼻拭子样品中测定SARS-CoV-2 RNA。在感染攻击之前获得的所有BAL和鼻拭子样品以及从前哨动物获得的所有样品均缺乏可检测的SARS-CoV-2 RNA(图68)。SARS-CoV-2攻击三天后,在5/6对照免疫的动物和2/6BNT162b2免疫的动物的BAL液中检测到病毒RNA(图68)。至攻击后6天,所有六只BNT162b2免疫的恒河猴的肺中病毒RNA不可检测;在对照免疫的恒河猴中,三只的BAL液中病毒RNA水平高,两只已清除,一只RT-qPCR结果不确定。SARS-CoV-2攻击后,在每个时间点均在对照免疫组的鼻拭子中检测到病毒RNA:攻击后第1天两只动物,攻击后第3天和第6天三只动物(图68)。在BNT162b2免疫的动物中,所有鼻拭子在第3天和第6天均为阴性。
在肺组织中,增加的计算机断层扫描得分表明对照猴子有肺部疾病的迹象,第10天的得分低于第3天的得分暗示恢复;相反,给予COVID-19 mRNA疫苗BNT162b2的猴子得分较低。肺组织的显微镜分析表明,对照免疫和BNT162b2免疫的猴子之间的肺部炎症相似,没有呼吸道疾病加剧的证据。
讨论
非人灵长类中的结果证实了BNT162b2(编码在融合前构象中捕获的S抗原的LNP配制的m1Ψ核苷修饰的mRNA)在急性SARS-CoV-2感染的临床前模型中具有防止SARS-CoV-2攻击的保护的效力(potency)和能力。
实施例12:储存、运输和剂量准备
这个实施例示出用于注射的多剂量小瓶BNT162b2浓缩物的储存、运输和剂量准备。
如图69所示,在初级包装阶段,使用2ml1型玻璃无防腐剂多剂量小瓶(MDV),其中MDV具有0.45ml冷冻液体药品,每瓶有5个剂量。在二级包装阶段,单个托盘容纳195个小瓶,例如每托盘975个剂量。托盘(白盒)的尺寸为229X229X40mm。在三级包装阶段,将至少1个托盘(975个剂量)(或最多5个托盘(最多4875个剂量))叠在装载箱中。装载箱浸没在23Kg的干冰颗粒中(10mm-16mm颗粒)。保温运输工具(thermal shipper)的尺寸如下:内部尺寸:245mm X 245mm X 241mm;外部尺寸:400mm X 400mm X 560mm。保温运输工具的总重量为~35Kg。
市场上有不同大小的超低温(ULT)冷冻机。图70是小容量存储(约90升;约30K剂量(左))和大容量存储(约500升;约200K剂量(右))的实例。如果在15℃至25℃的温度不开封存放,保温运输工具可保持ULT(例如-90℃至-60℃)长达10天,并且可以通过不断地重新填充干冰至容器顶部而进一步延长存储的时间段。一旦收到并打开后,应在24小时内将盒子再补充干冰(23Kg干冰粒(10mm-至16mm)。每5天要给保温运输工具重新冷冻。建议保温运输工具每天打开不超过两次。保温运输工具应在打开后1分钟(或更少)内关闭。疫苗可在2℃至8℃保存长达2天,或解冻后在室温不超过2小时。稀释后供使用的时间段为6小时。
图71示出BNT162b25剂量小瓶的示例性剂量准备,该小瓶包含冷冻的不含防腐剂的浓缩溶液,给药前必须将其解冻和稀释。准备步骤如下:
从冷冻保存的箱中取出供注射的BNT162b2浓缩液的5剂量小瓶,并在室温(例如,高至25℃)解冻大约30分钟。在一些实施方案中,可以将这种BNT162b2多剂量小瓶解冻并储存在冰箱(例如,2℃-8℃)中,例如,长达5天。在室温解冻的小瓶必须在2小时内稀释或转移到冰箱中。未稀释的小瓶可以在冰箱中储存长达48小时。不要重新冷冻已解冻过的小瓶。储存期间,尽量减少室内光线下的暴露,并避免暴露在直射阳光和紫外线下。解冻的小瓶可以在室内光照条件下处理。
解冻后和使用前,确保小瓶平衡至室温,并轻柔地颠倒10次进行混合。不要摇晃。
使用无菌技术,用一次性消毒棉签清洁小瓶塞,然后通过向小瓶添加1.8mL的0.9%氯化钠注射液(USP)来稀释融化的BNT162b2小瓶。建议使用21号(gauge)针头或较窄的针头。然而,本领域技术人员会理解,在一些实施方案中,可以使用更宽的针头。例如,在一些实施方案中,可以使用针头20、19、18、17、16、15或更宽的针头。
添加稀释剂时,可能会感受到小瓶中的压力。在从小瓶中取出针头之前,通过将1.8mL空气抽入空的稀释剂注射器来确保小瓶中的压力平衡。
轻柔地将稀释后的小瓶颠倒10次以混合。不要摇晃。
在BNT162b2小瓶标签上的适当位置记录稀释的日期和时间。稀释后的有效期为6小时。稀释的多剂量小瓶储存2℃至25℃之间。不要冷冻。如果冷冻,则丢弃。
使用无菌技术,用一次性消毒棉签清洁小瓶塞,用带有适于肌肉内注射的针头的新型无菌定量注射器抽取0.3mL稀释后的剂量溶液。应当在针头仍在小瓶中时对注射器进行调整以去除气泡,以免损失剂量溶液。建议尽可能使用同一根针头吸取和给药。如果需要使用第二根针头进行给药,在移除第一根针头之前向后方拉注射器柱塞,直到少量空气进入注射器,以避免在更换针头时损失剂量溶液。灌注(priming)给药针头时要小心,以防止剂量损失。
对于每一额外的剂量,使用新的无菌注射器和针头,并确保在每次抽取之前使用抗菌剂清洁小瓶塞。准备好的注射器应立即使用。如果不能立即给药,则必须在小瓶最初稀释后的6小时内给药。给药前,确保注射器中的最终注射体积为0.3mL。
实施例13:针对COVID-19的疫苗候选物在3期研究的首次中期分析中获得成功
迄今为止,BNT162b2的3期临床试验已招募了43,000多名参与者,截至2020年11月8日,其中近39,000名已接受了第二剂量的疫苗候选物。大约42%的全球参与者和30%的美国参与者具有种族(例如,包括白人、黑人或非洲裔美国人、美洲印第安人或阿拉斯加原住民、亚洲人、夏威夷原住民或其他太平洋岛民、多种族)和民族(例如,包括西班牙裔/拉丁裔(Latino)和非西班牙裔/非拉丁裔)的多样背景。该临床试验正在继续招募,预计总共累积到164例确诊COVID-19病例时进行最终分析。
疫苗候选物BNT162b2在3期研究的首次中期分析中取得成功。在首次中期效力分析中,发现疫苗候选物在没有先前SARS-CoV-2感染证据的参与者中预防COVID-19的有效性为90%以上。分析评估了试验参与者中的94例确诊COVID-19病例。没有发现严重的安全隐患。
2020年11月4日前收集的来自3期COVID-19疫苗试验的一组结果提供了BNT162b2能够预防COVID-19的证据。疫苗接种的个体和接受安慰剂的个体之间的病例划分表明,在第二剂量后7天,疫苗的有效率为90%以上。特别是,早期的结果分析显示,接受间隔三周的两次疫苗注射的个体出现症状性COVID-19的病例比接受安慰剂的个体少90%以上。这证实了在由2个剂量安排组成的疫苗接种开始后28天实现保护。
初步的这类数据包括下表:
表5.疫苗效力-从剂量2后7天首次发生COVID-19-剂量2后7天之前无感染证据的受试者-可评估效力群体(7天)-中期分析1
Figure GDA0004051824180002561
缩写:N结合=SARS-CoV-2核蛋白(nucleoprotein)结合;NAAT=核酸扩增测试;SARS-CoV-2=严重急性呼吸综合征冠状病毒2;VE=疫苗效力。
注:分析包括受试者,其没有既往sARs-Cov-2感染的血清学或病毒学证据(接受最后剂量后7天之前)(即,访视1时N结合抗体[血清]为阴性,在访视1和访视2时通过NAAT[鼻拭子]未检测到SARS-Cov-2),并且在剂量2后7天之前在任何非计划的访视时NAAT为阴性。
注:分析包括剂量2后7天未确诊的受试者的数据,以全面显示报告的所有数据和/或有助于总监视时间的计算,但可能会随额外的随访而变化。
a.N=指定组中的受试者数。
b.n1=符合终点定义的受试者数。
c.1000人-年的特定终点的总监视时间,每个终点风险组内的所有受试者。COvID-19病例积累的时间段从剂量2后7天到监视期结束。
d.n7=处于终点风险的受试者数。
e.使用对监视时间调整的β-二项式模型计算vE的可信区间。
f.使用对监视时间调整的β-二项式模型计算后验概率(Pr)。在中期分析中,该概率必须至少为995%,以得出疫苗有效的结论。
表6.剂量1后发生的严重COVID-19-剂量1所有可用的效力群体-中期分析1
Figure GDA0004051824180002571
注:分析包括剂量2后7天未确诊的受试者的数据,以全面显示报告的所有数据和/或有助于总监视时间的计算,但可能会随额外的随访而变化。
a.N=指定组中的受试者数。
b.n=符合终点定义的受试者数。
实施例14:效力和免疫原性评价
效力结果
在方案和SAP后累积到至少62例病例后进行首次中期分析,证明了,在没有既往SARS-CoV-2感染证据的参与者中,BNT162b2针对COVID-19的疫苗效力。本节展示的主要效力结果来自该中期分析。
此中期分析仅分析和呈现BNT162b2对第一主要效力终点的疫苗效力(基于中心实验室或当地确定的NAAT参与者中的COVID-19发生率,所述参与者在接受第二剂量后7天之前没有既往SARS-CoV-2感染的血清学或病毒学证据)。
第一主要效力终点
在可评估效力群体所包含的参与者中,有32,279名参与者(BNT162b2组中16,061名,安慰剂组中16,218名)在第二剂量后达(through)7天没有SARS-CoV-2感染证据。BNT162b2组中有4例COVID-19病例,相比于安慰剂组中报告的90例COVID-19病例。这些数据提供了BNT162b2的估算疫苗效力为95.5%。>99.99%的后验(posterior)概率满足预先指定的>99.5%的中期分析成功标准(表7)。疫苗效力的95%可信区间为88.8%-98.4%,表明根据当前观察到的数据,真实VE处于此区间的概率为95%。另外,请注意,真实VE>86.0%的后验概率为99.5%,VE>88.8%的后验概率为97.5%。
Figure GDA0004051824180002572
Figure GDA0004051824180002581
基于所有可用的效力群体,BNT162b2对相同主要效力终点的疫苗效力为95.7%,BNT162b2组和安慰剂组中分别有4例和93例。
在剂量2可评估效力群体中,按年龄组、国家、民族、性别或种族的亚组,未观察到VE的临床意义差异,VE估计范围为91.2%-100.0%(表8)。
Figure GDA0004051824180002582
Figure GDA0004051824180002591
严重COVID-19病例
截至2020年11月4日首次中期分析的数据截止日期,3期共有7名参与者报告了严重的COVID-19病例,均为安慰剂组。在剂量1和剂量2之间报告了这些病例中的5例,在剂量2后不到7天的时间里没有报告,并且在剂量2后至少7天报告了2例。
Figure GDA0004051824180002592
效力结论
第一主要效力目标满足成功标准。在剂量2后达7天没有感染证据的参与者中,BNT162b2疫苗效力达到95.5%,双侧(2-sided)95%可信区间为88.8%-98.4%,并且在可用数据条件下,真实疫苗效力大于30%的后验概率为>99.99%。
截至中期分析的截止日期,在安慰剂组中观察到全部7例严重COVID-19病例(剂量1之后)。
免疫原性结果
1期
这份1期中期临床研究报告(CSR)呈现了10μg、20μg和30μg剂量水平的BNT162b1和BNT162b2疫苗候选物的剂量2后达1个月,以及100μg剂量水平(仅年轻组)的BNT162b1的剂量1后达7周的两个成年人年龄组的免疫原性结果。
仅分析和呈现了10μg和30μg的BNT162b1的年轻组(18-55岁)中剂量1时间点后7天的结果。
SARS-CoV-2中和滴度-1期
GMT
总体而言,对于两个年龄组的BNT162b1和BNT162b2受者,SARS-CoV-2 50%中和GMT在到剂量1后第21天适度增加,并且在剂量2后7天明显增加。一般而言,在大多数时间点,对于BNT162b1和BNT162b2受者,年长组的GMT比年轻组的GMT要低。
BNT162b1
在年轻组中,SARS-CoV-2 50%中和GMT在到剂量1后第21天适度增加,并且在BNT162b1的剂量2后7天(第28天)显著增加,其中与10μg和20μg剂量组相比,30μg剂量组中观察到的GMT更高(图72)。所有剂量组的GMT在剂量2后14天(第35天)增加,并且尽管GMT在剂量2后1个月(第52天)下降,但第52天的GMT仍保持明显高于剂量1后较早时间点的GMT。
在1000μg剂量组中,BNT162b1的剂量1后第21天,SARS-CoV-2 50%中和GMT适度增加,而到第52天时降至接近基线值。
在年长组中观察到大体上相似的趋势,其中与10μg剂量组相比,BNT162b1的20μg和30μg剂量组中观察到更高的GMT(图73)。
对于SARS-CoV-290%中和GMT,也观察到了类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
年轻和年长组给予BNT162b1后的SARS-CoV-2 50%和90%中和滴度的RCDC表明,大多数参与者在到BNT162b1的剂量2后7天有响应。
BNT162b2
在年轻组中,SARS-CoV-2 50%中和GMT到BNT162b2的剂量1后第21天增加,并在剂量2后7天(第28天)明显增加,其中与10μg剂量组相比,在20μg和30μg剂量组中观察到更高的GMT(图74)。GMT在BNT162b2的剂量2后14天(第35天)和剂量2后1个月(第52天)下降,但是GMT仍保持显著高于剂量1后较早时间点的GMT。
在年长组中观察到大体类似的趋势,其中与20μg和10μg剂量组相比,在30μg剂量组中观察到更高的GMT(图75)。剂量2后7天,SARS-CoV-2 50%中和GMT增加,并且在10μg和20μg剂量组中相似,在30μg剂量组中更高。剂量2后1个月,GMT保持显著高于剂量1后较早时间点的GMT。在年长组中,SARS-CoV-2 50%中和GMT通常低于年轻组中的GMT。
对于SARS-CoV-2 90%中和GMT,也观察到了类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
年轻和年长组中的SARS-CoV-2 50%和90%中和滴度的RCDC表明,大多数参与者在到BNT162b2的剂量2后7天有响应。
GMFR
总体而言,对于BNT162b1和BNT162b2受者,并且在两个年龄组中,从疫苗接种前至剂量2后7天(第28天)的SARS-CoV-2 50%中和滴度的GMFR明显高于剂量1后各自的GMFR。对于BNT162b1和BNT162b2受者,年长组中的GMFR通常低于年轻组的GMFR。
BNT162b1
对于所有剂量组,在年轻组中,与BNT162b1剂量1后较早时间点的GMFR相比,从疫苗接种前至BNT162b1剂量2后7天(第28天)的SARS-CoV-2 50%中和滴度的GMFR明显高,并且30μg剂量组的GMFR最高。剂量2后1个月,GMFR保持高于剂量1后较早时间点的GMFR。
在100μg剂量组中,到BNT162b1剂量1后第52天,SARS-CoV-2 50%中和滴度的GMFR没有明显增加。
对于20μg和30μg剂量组,在年长组中,与BNT162b1剂量1后较早时间点的GMFR相比,从疫苗接种前至BNT162b1剂量2后7天(第28天)的SARS-CoV-2 50%中和滴度的GMFR明显高,并且20μg剂量组中的GMFR最高。与剂量1后较早时间点的GMFR相比,BNT162b1剂量2后1个月(第52天)的GMFR在20μg和30μg剂量组中保持高水平。
在年轻和年长组中,对于SARS-CoV-2 90%中和滴度的GMFR,也观察到了类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
BNT162b2
对于所有剂量组,在年轻组中,与BNT162b2的剂量1后较早时间点的GMFR相比,从疫苗接种前至BNT162b2剂量2后7天(第28天)的SARS-CoV-2 50%中和滴度的GMFR明显高,并且20μg和30μg剂量组中的GMFR相似且最高。与BNT162b2剂量1后21天的GMFR相比,到BNT162b2的剂量2后1个月的GMFR保持高水平。
对于所有剂量组,在年长组中,与BNT162b2剂量1后较早时间点的GMFR相比,从疫苗接种前至BNT162b2的剂量2后7天(第28天)的SARS-CoV-2 50%中和滴度的GMFR明显高,并且30μg剂量组中的GMFR最高。与BNT162b2剂量1后21天的GMFR相比,到BNT162b2的剂量2后1个月的GMFR保持高水平。
在年轻和年长组中,对于SARS-CoV-2 90%中和滴度的GMFR,也观察到了类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
实现≥4倍升高的参与者人数(%)
总体而言,对于BNT162b1和BNT162b2受者,并且在两个年龄组中,从疫苗接种前至剂量2后7天,大多数参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高(rise),除了10μg BNT162b1剂量组的年长参与者。
BNT162b1
在年轻组中,从疫苗接种前至BNT162b1的剂量1后21天,10μg剂量组中没有参与者,并且20μg和30μg剂量组中≤3名参与者实现了≥4倍的SARS-CoV-2 50%中和滴度的升高。从疫苗接种前至BNT162b1的剂量2后7天以及1个月,10μg、20μg和30μg剂量组中的大多数或全部参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。
在年长组中,从疫苗接种前至BNT162b1的剂量1后21天,只有30μg剂量组中的1名参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。从疫苗接种前至BNT162b1的剂量2后7天以及1个月,10μg组中≤2名参与者以及20μg和30μg剂量组中的9-11名参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
BNT162b2
在年轻组中,从疫苗接种前至BNT162b2的剂量1后21天,10μg剂量组中的2名(18.2%)参与者、20μg剂量组中的3名(25.0%)参与者、30μg剂量组中没有参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。从疫苗接种前至BNT162b2的剂量2后7天,所有参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高,其在BNT162b2剂量2后至1个月得以保持。
在年长组中,从疫苗接种前至BNT162b2的剂量1后21天,任何剂量组中没有参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。从疫苗接种前至BNT162b2的剂量2后7天,10μg、20μg和30μg剂量组中分别有10名(83.3%)、9名(81.8%)和10名(90.9%)参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。从疫苗接种前至BNT162b2的剂量2后1个月,10μg、20μg和30μg剂量组中分别有9名(75.0%)、6名(54.5%)和11名(100.0%)参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
SARS-CoV-2抗原特异性结合抗体水平-1期
疫苗候选物BNT162b1编码SARS-CoV-2的RBD。本节介绍该候选物在每个剂量水平和年龄组的RBD结合IgG应答。还评估编码SARS-CoV-2的P2 S的候选物BNT62b2的RBD结合IgG水平。
疫苗候选物BNT162b2编码SARS-CoV-2的P2 S。本节介绍该候选物的每个剂量水平和年龄组的S1结合IgG应答。还评估编码SARS-CoV-2的RBD的候选物BNT62b1的S1结合IgG水平。
GMC
总体而言,对于BNT162b1和BNT162b2受者,并且在两个年龄组中,到剂量1后第21天,RBD和S1结合GMC明显增加,并在剂量2后7天进一步增加。至第52天保持应答。年长组中的GMC一般地低于年轻组中的GMC,除了20μg BNT162b1剂量组的第28天的RBD和S1结合IgG水平。
BNT162b1
在年轻组中,RBD结合GMC在到BNT162b1的剂量1后第21天明显增加,并且在BNT162b1的剂量2后7天(第28天)进一步增加,与10μg和20μg剂量组相比,30μg剂量组中观察到的GMC更高(图76)。在剂量2后1个月(第52天),GMC保持显著高于剂量1后较早时间点的GMC。
在100μg BNT162b1组中,RBD结合GMC在BNT162b1后到21天明显增加,并且至第52天保持比第7天更高的GMC。
在年长组中,RBD结合GMC在到BNT162b1的剂量1后第21天明显增加,并且在BNT162b1的剂量2后7天(第28天)进一步增加,与10μg组相比,20μg和30μg剂量组中观察到的GMC更高(图77)。在剂量2后1个月(第52天),GMC保持显著高于剂量1后较早时间点的GMC。
在年轻组(图78)和年长组(图79)中,以及在100μg BNT162b1组中,BNT162b1的S1结合IgG GMC的结果类似于RBD结合IgG GMC观察到的结果。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
RBD和S1结合IgG水平的RCDC表明,大多数参与者在到BNT162b1的剂量1后21天有应答。
BNT162b2
在年轻组中,S1结合GMC在到BNT162b2剂量1后第21天明显增加,并且在BNT162b2剂量2后7天(第28天)明显增加,与10μg组相比,20μg和30μg剂量组中观察到的GMC更高(图80)。剂量2后1个月(第52天),GMC保持明显高于剂量1后较早时间点的GMC。
在年长组中观察到类似的趋势,与10μg和20μg剂量组相比,30μg剂量组中观察到的S1结合GMC更高(图81)。
BNT162b2的RBD结合IgG GMC结果类似于年轻(图82)和年长组(图83)中观察到的S1结合IgG GMC结果。
年轻组和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体中观察到的结果相似。
BNT162b2后RBD和S1结合IgG水平的RCDC表明,大多数参与者在到BNT162b2剂量1后21天有应答。
GMFR
总体而言,对于BNT162b1和BNT162b2受者,并且在两个年龄组中,从疫苗接种前至剂量1后21天,RBD结合IgG水平的GMFR和S1结合IgG水平的GMFR明显高,从疫苗接种前至剂量2后7天,观察到更高的GMFR。
BNT162b1
对于10μg、20μg和30μg剂量组,在年轻组和年长组中,从疫苗接种前至BNT162b1剂量1后第21天(剂量2之前),RBD结合IgG水平的GMFR明显高,从疫苗接种前至BNT162b1剂量2后7天(第28天)观察到更高的GMFR。对于两个年龄组,与剂量1后较早时间点相比,从疫苗接种前至剂量2后1个月,10μg、20μg和30μgBNT162b1组中的GMFR保持明显高。
在100μg BNT162b1组中,RBD结合IgG水平的GMFR从疫苗接种前至BNT162b1接种后21天明显高,并且至第52天保持高于第7天的GMFR。
对于BNT162b1的S1结合IgG水平的GMFR观察到类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
BNT162b2
对于10μg、20μg和30μg剂量组,在年轻和年长组中,从疫苗接种前至BNT162b2的剂量1后第21天(剂量2之前),S1结合IgG水平的GMFR明显高,从疫苗接种前至BNT162b2的剂量2后7天(第28天)观察到更高的GMFR。对于两个年龄组,与剂量1后较早时间点相比,从疫苗接种前至剂量2后1个月,所有BNT162b2组保持明显高的GMFR。
关于BNT162b2,对于RBD结合IgG水平的GMFR,观察到类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
实现≥4倍升高的参与者人数(%)
总体而言,对于BNT162b1和BNT162b2受者,并且在两个年龄组中,所有参与者从疫苗接种前至剂量2后7天,实现≥4倍的S1和RBD结合IgG水平的升高,除了年轻的20μgBNT162b1组中的1名参与者。
BNT162b1
在年轻组中,从疫苗接种前至BNT162b1的剂量1后21天,所有剂量组的所有参与者(除了20μg剂量组中的1名)实现≥4倍的RBD结合IgG水平的升高。从疫苗接种前至剂量2后14天(第35天),20μg剂量组中所有参与者实现≥4倍的RBD结合IgG水平的升高。
在年长组中,从疫苗接种前至BNT162b1的剂量1后21天,20μg和30μg剂量组中的所有参与者以及10μg剂量组中的8名(72.7%)参与者实现≥4倍的RBD结合IgG水平的升高。从疫苗接种前到剂量2后7天(第28天),10μg剂量组中的所有参与者实现≥4倍的RBD结合IgG水平的升高。
关于BNT162b1,对于实现≥4倍的S1结合IgG水平的升高的参与者,一般地观察到类似的趋势。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
BNT162b2
在年轻组中,从疫苗接种前至BNT162b2的剂量1后21天,每个剂量组中的所有参与者实现≥4倍的S1结合IgG水平的升高。
在年长组中,从疫苗接种前至BNT162b2的剂量1后21天,10μg和30μg剂量组中的所有参与者以及20μg剂量组中的11名(91.7%)参与者实现≥4倍的S1结合IgG水平的升高。从疫苗接种前至剂量2后7天(第28天),20μg剂量组中的所有参与者实现≥4倍的S1结合IgG水平的升高。
关于BNT162b2,对于实现≥4倍的RBD结合IgG水平的升高的参与者,一般地观察到类似的趋势。
所有可用的免疫原性群体的结果与年轻和年长组中可评估的免疫原性群体观察到的结果相似。
SARS-CoV-2中和滴度比SARS-CoV-2抗原特异性结合抗体水平的GMR
总体而言,对于BNT162b1和BNT162b2受者,SARS-CoV-2 50%中和滴度比RBD或S1结合IgG水平的GMR显示相对于中和滴度的更稳健的RBD或S1结合水平,这在每个年龄组中都相似。
BNT162b1
10μg、20μg或30μg的剂量1后21天,SARS-CoV-2 50%中和滴度比RBD结合IgG水平的GMR在年轻组中为≤0.035,在年长组中为≤0.183。剂量2后14天,年轻组中的GMR为≤0.032,年长组中的GMR为≤0.018。
对于100μg剂量组,剂量1后21天的GMR为0.018,剂量1后35天的GMR为0.014。
BNT162b1后,在年轻和年长组中,SARS-CoV-2 50%中和滴度比S1结合IgG水平的GMR与SARS-CoV-2 50%中和滴度比RBD结合IgG水平的GMR相似。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
BNT162b2
剂量1后21天,SARS-CoV-2 50%中和滴度比S1结合IgG水平的GMR在年轻组中为≤0.035,在年长组中为≤0.124。剂量2后14天,年轻组中的GMR为≤0.040,年长组中的GMR为≤0.037。
年轻和年长组中所有可用的免疫原性群体的结果与可评估的免疫原性群体观察到的结果相似。
评估BNT162b1和BNT162b2的GMR
在剂量1后21天的年轻组中,SARS-CoV-2 50%中和滴度比RBD结合IgG水平的GMR在BNT162b1后为≤0.035,在BNT162b2后为≤0.054。剂量2后14天,BNT162b1后的GMR为≤0.032,BNT162b2后的GMR为≤0.046。
在剂量1后21天的年长组中,SARS-CoV-2 50%中和滴度比RBD结合IgG水平的GMR在BNT162b1后为≤0.183,在BNT162b2后为≤0.196。剂量2后14天,BNT162b1后的GMR为≤0.018,BNT162b2后的GMR为≤0.043。
在剂量1后21天的年轻组中,SARS-CoV-2 50%中和滴度比S1结合IgG水平的GMR在BNT162b1后为≤0.061,在BNT162b2后为≤0.035。剂量2后14天,BNT162b1后的GMR为≤0.035,BNT162b2后的GMR为≤0.040。
在剂量1后21天的年长组中,SARS-CoV-2 50%中和滴度比S1结合IgG水平的GMR在BNT162b1后为≤0.328,在BNT162b2后为≤0.124。剂量2后14天,BNT162b1后的GMR为≤0.022,BNT162b2后的GMR为≤0.037。
评估BNT162b1和BNT162b2的免疫原性结果的1期总结
一般来说,第一剂量后,在年轻组和年长组中观察到适度的中和免疫应答。在年轻和年长组中,于全部剂量水平下,BNT162b1或BNT162b2的第二剂量后7天,观察到稳健得多的免疫应答。最终时间点测试的抗体水平仍显著高于基线水平。
在年轻组中:
剂量2后7天,对于20μg和30μg剂量组中的SARS-CoV-2 50%中和GMT,BNT162b2受者高于BNT162b1受者。两种受者在10μg剂量组中的GMT相似。对于BNT162b1和BNT162b2受者,剂量2后1个月(第52天),GMT保持显著高于剂量1后较早时间点的GMT。
从疫苗接种前至剂量2后7天,对于BNT162b1和BNT162b2受者,在30μg剂量水平下,SARS-CoV-2 50%中和滴度的GMFR明显高。
从疫苗接种前至剂量2后7天,在30μg剂量水平下,接受BNT162b1或BNT162b2的所有参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。
在年长组中:
剂量2后7天,对于30μg剂量组中的SARS-CoV-2 50%中和GMT,BNT162b2受者高于BNT162b1受者。剂量2后1个月(第52天),在30μg剂量组中,BNT162b1和BNT162b2受者的SARS-CoV-2 50%中和GMT相似。
从疫苗接种前至剂量2后7天,在30μg剂量水平下,BNT162b1和BNT162b2受者的SARS-CoV-2 50%中和滴度的GMFR明显高。
从疫苗接种前至剂量2后7天,在30μg剂量水平下,大多数接受BNT162b1或BNT162b2的参与者实现≥4倍的SARS-CoV-2 50%中和滴度的升高。
免疫原性的1期结论
剂量2后7天,在年轻和年长成年人中,基于GMT、GMFR、实现≥4倍的中和滴度的升高的参与者的比例和RCDC,BNT162b1和BNT162b2均引发稳健的SARS-CoV-2中和抗体应答。中和抗体应答至第52天得以保持,并且在候选物的相应的年龄和剂量组中相似。
剂量2后7天,基于GMT、GMFR和实现≥4倍的IgG-抗原特异性结合的升高的参与者的比例,BNT162b1和BNT162b2均引起抗原结合IgG水平的显著上升。应答至第52天得以保持。
在100μg剂量组中,到BNT162b1的剂量1后3周,SARS-CoV-2中和抗体应答适度增加,但到剂量1后7周,中和抗体应答恢复与基线相似的水平。
这些数据支持2-剂量疫苗接种系列的需求。
2期
免疫原性是研究2期部分的探索性终点。
3期
免疫原性是(12-15岁,与16-25岁相比)研究3期部分的次要和探索性终点。
实施例15:安全性评价
在这份中期CSR中,1期的所有参与者和2/3期的最初6610名参与者(包括2期的360名参与者)使用电子日记来报告局部反应和全身性事件。2/3期中共有1125名参与者被鉴定为基线SARS-CoV-2阳性,定义为在剂量1当天具有N-结合抗体测试阳性结果或核酸扩增测试(NAAT)阳性结果;其中,545名接受BNT162b2,580名接受安慰剂。
1期
截至数据截止日期(2020年8月24日)可获得安全性数据,并在相对于剂量1或剂量2的各个时间点进行汇总。呈现了10μg、20μg和30μg剂量水平的疫苗候选物BNT162b1和BNT162b2的剂量2后多达1个月(或数据截止日期),两个成年人年龄组的1期安全性结果。基于数据截止日期,展示100μg剂量水平的BNT162b1在年轻组中剂量1后达三周或至剂量2前的安全性结果。请注意,按照IRC的决定,接受100μg BNT162b1的18-55岁的参与者没有接受第二剂量的100μg BNT162b2。
局部反应-1期
总体而言,对于BNT162b1和BNT162b2受者,并且在两个年龄组中,注射部位疼痛都是最频繁的局部反应。在BNT162b2组和BNT162b1组中,发红和肿胀的发生频率较低。在BNT162b1和BNT162b2组中,与年轻组相比,年长组中的局部反应频率较低,并且存在随着剂量增加局部反应频率更高的趋势。
BNT162b1
在年轻组中,BNT162b1的剂量1后7天内,注射部位疼痛是最频繁报告的局部反应。随着剂量水平从10μg增加到30μg,观察到注射部位疼痛的频率增加(58.3%至100.0%,分别有7和12名参与者),而安慰剂组中没有(图84)。30μg剂量组中有2名(16.7%)参与者报告了发红,20μg剂量组中的3名(25.0%)参与者和30μg剂量组中的2名(16.7%)参与者报告了肿胀。在100μg剂量组中,报告了注射部位疼痛(12名[100.0%]参与者)、肿胀(5名[41.7%]参与者)和发红(4名[33.3%]参与者),并且1名[8.3%]参与者有严重的注射部位疼痛(注意:按照IRC的决定,剂量2后来以10μg剂量水平给予参与者)。
在年轻组中,BNT162b1的剂量2后7天内,注射部位疼痛仍然是最频繁报告的局部反应,30μg剂量组达12名(100.0%)参与者,与安慰剂组(2名[22.2%]参与者)相比,然而在30μg剂量组中,具有发红(2名[16.7%]参与者)和肿胀(3名[25.0%]参与者)的参与者比例最高(图84)。安慰剂组中没有报告发红或肿胀。
在年长组中,BNT162b1的剂量1后7天内,注射部位疼痛是20μg和30μg剂量组(各有11名[91.7%]参与者)中最频繁报告的局部反应,与安慰剂组相比(1名[11.1%]参与者)(图85)。没有报告发红,并且肿胀的频率(2名[16.7%]参与者)在30μg组中最高。安慰剂组中没有报告发红或肿胀。
在年长组中,BNT162b1的剂量2后7天内,注射部位疼痛是20μg和30μg剂量组(各有9名[75.0%]参与者)中最频繁报告的局部反应。肿胀的频率(3名[25.0%]参与者)在30μg最高,20μg和30μg剂量组(各有1名[8.3%]参与者)报告了发红。安慰剂组中没有报告发红或肿胀。
在两个年龄组中,第一剂量和第二剂量后,大多数局部反应的严重程度为轻度或中度,并且没有报告4级局部反应。
总体而言,对于BNT162b1受者,并且在两个年龄组中,注射部位疼痛是最频繁的局部反应(58.3%-100.0%),而发红(0%-16.7%)和肿胀(0%-25.0%)发生的频率较低。值得注意的是,与年轻组相比,年长组中的局部反应频率更低,并且存在随着剂量增加局部反应频率更高的趋势。
在年轻组中,10μg-30μg剂量的任一剂量BNT162b1后以及100μg BNT162b1的剂量1后,注射部位疼痛的中位发作日为第1.0天(疫苗接种日)。在所有剂量组中,发红和肿胀的中位发作日在第1.0-第3.0天之间。
在年长组中,所有剂量组的BNT162b1的剂量1后以及20μg和30μg剂量组的剂量2后,注射部位疼痛的中位发作日为第1.0天(疫苗接种日)(剂量2后,10μg剂量组的中位发作日为第1.5天)。除剂量2后第4天(20μg剂量组)和第5天(30μg剂量组)各1名参与者的发红外,所有剂量组中报告的发红或肿胀的所有其他局部反应的中位发作日均在第1.0至第3.0天之间。
在所有剂量水平下,年轻组和年长组中的局部反应消退,中位持续时间在1.0-4.0天之间。
BNT162b2
在年轻组中,剂量1后7天内,注射部位疼痛是最频繁报告的局部反应,其在30μg剂量组中最多(11名[91.7%]参与者)(图86)。30μg的剂量1后,一名[8.3%]参与者具有严重的注射部位疼痛。大多数参与者没有报告肿胀和发红。剂量2后,注射部位疼痛仍然是20μg和30μg剂量组(83.3%,各10名参与者)中最频繁报告的局部反应,与安慰剂组(2名[22.2%]参与者)相比。在包括安慰剂组的任何剂量组中,没有参与者报告发红和肿胀。
在年长组中,BNT162b2的剂量1后7天内,所有剂量组都报告了注射部位疼痛,并且30μg剂量组中最多(75.0%,9名参与者),而所有组中都没有报告发红和肿胀(图87)。安慰剂组中没有报告局部反应。剂量2后,30μg剂量组中报告了注射部位疼痛(8名[66.7%]参与者),与安慰剂组(9名[11.1%]参与者)相比;接受BNT162b2或安慰剂的参与者均没有报告发红和肿胀。
第一剂量和第二剂量后,并且在两个年龄组中,大多数局部反应的严重程度为轻度或中度,并且没有报告4级局部反应。
总体而言,对于BNT162b2受者,并且在两个年龄组中,注射部位疼痛是最频繁的局部反应(33.3%-91.7%),而发红(0%-8.3%)和肿胀(0%-16.7%)较少见。与年轻组相比,年长组中的局部反应频率更低,并且存在随着剂量增加局部反应频率更高的趋势。
在年轻组中,任何剂量水平的任一剂量BNT162b2后,局部反应发生的中位发作日在第1.0天(疫苗接种日)至第2.0天之间。在年长组中,任何剂量水平的任一剂量BNT162b2后,局部反应发生的中位发作日在第1.0(疫苗接种日)到第2.0天之间。在所有剂量水平下,年轻组和年长组中的局部反应通常消退,中位持续时间在1.0-2.0天之间。
全身性事件-1期
总体而言,剂量1后7天内,在年轻和年长BNT162b1组以及年长BNT162b2组中,疲劳通常是最频繁报告的全身性事件;而头痛和疲劳在年轻BNT162b2剂量组中最频繁报告。总体而言,剂量2后7天内,在年轻和年长BNT162b1组中,头痛是最频繁报告的全身性事件,而在年轻和年长BNT162b2组中,疲劳是最频繁报告的全身性事件。剂量2后,寒战的报告频率通常更高,而且,BNT162b1组中的频率比BNT162b2组高。剂量2后,发烧在年轻BNT162b1组中比年长BNT162b2组报告得更频繁。对于BNT162b1和BNT162b2受者,在第一剂量和第二剂量后,并且在两个年龄组中,大多数全身性事件的严重程度为轻度或中度,并且没有报告4级全身性事件。
BNT162b1
在年轻组中,疲劳是BNT162b1剂量1后7天内最频繁报告的全身性事件,在10μg、20μg和30μg剂量组中,分别有4名(33.3%)、8名(66.7%)和6名(50.0%)参与者报告,与安慰剂组(2名[22.2%]参与者)相比(图88)。30μg剂量组中报告了头痛(6名[50.0%]参与者)和寒战(7名[58.3%]参与者),在30μg的每个组中有≤1名(8.1%)参与者报告了发烧。在安慰剂组中,报告了头痛(1名[11.1%]参与者),没有报告发烧或寒战。与30μg剂量组相比,100μg剂量组的报告频率更高:疲劳(10名[83.3%]参与者)、头痛(9名[75.0%]参与者)、寒战(10名[83.3%]参与者)和发烧(6名[50.0%]参与者)。
BNT162b1的剂量2后7天内,在年轻组中,头痛是最频繁报告的全身性事件,30μg剂量组中的所有12名(100.0%)参与者都有报告,安慰剂组没有,而30μg剂量组中有10名(83.3%参与者)和8名(66.7%)参与者分别报告了疲劳和寒战。在20μg和30μg剂量组中分别有17%和75%的参与者报告了发烧。在安慰剂组中,2名(22.2%)参与者报告了疲劳,没有人报告发烧和寒战。
在年长组中,疲劳是BNT162b1的剂量1后7天内最频繁报告的全身性事件,在20μg和30μg剂量组中,分别有7名(58.3%)参与者和6名(50.0%)的参与者报告了疲劳(图89),与安慰剂组中的4名(44.4%)参与者相比。在30μg剂量组中,报告了头痛(6名[50.0%]参与者)和寒战(2名[16.7%]参与者),而发烧仅在30μg剂量组中(3名[25.0%]参与者)报告。在安慰剂组中报告了寒战(2名[22.2%]参与者),而没有人报告头痛或发烧。各有一名参与者报告了严重的肌肉疼痛(20μg剂量组)和严重的疲劳(30μg剂量组)(前者是与带状疱疹发作有关的疼痛)。
在年长组中,BNT162b1的剂量2后7天内,头痛是20μg和30μg剂量组(各9名[75%]参与者)中最频繁报告的全身性事件,与安慰剂组相比(1名[11.1%]参与者)。在20μg和30μg剂量组中,分别有7名(58.3%)和4名(33.3%)参与者报告了寒战。20μg剂量组有6名(50.0%)参与者和30μg剂量组有4名(33.3%)参与者报告了发烧,其中有1名参与者发烧>38.9℃-40.0℃。在安慰剂组中,报告了疲劳(2名[22.2%]参与者),没有人报告发烧和寒战。
第一剂量和第二剂量后,在两个年龄组中,大多数全身性事件的严重程度为轻度或中度,并且没有报告4级全身性事件。每个剂量后,与年轻组相比,年长组中提示的全身性事件程度较轻并且频率较低。
剂量1后,100μg剂量组的全身性事件频率最高和/或严重程度最高。在两个年龄组中,解热/止痛药物的使用也随着剂量水平和剂量次数的增加而增加。由于这些原因,IRC决定年轻组的参与者不应再接受100μg BNT162b1的第二剂量。
在年轻组中,10μg-30μg剂量的任一剂量BNT162b1之后,以及100μg BNT162b1的剂量1之后,大多数全身性事件的中位发作日在第1.0至2.0天之间。大多数全身性事件通常消退,中位持续时间在1.0至2.0天之间。对于疲劳,剂量1后,10μg剂量组中中位持续时间为4.0天,与30μg剂量组的2.0天相比。
在年长组中,任何剂量组的任一剂量BNT162b1后,大多数全身性事件的中位发作日在第1.0至第3.5天之间。大多数全身性事件通常消退,中位持续时间在1.0至3.0天之间。
BNT162b2
在年轻组中,头痛(4名[33.3%]至6名[50.0%]参与者)和疲劳(3名[25.0%]至5名[41.7%]参与者)是BNT162b2剂量1后7天内最频繁报告的全身性事件,与安慰剂组(各3名[33.3%]参与者)相比(图90)。发烧(2名[16.7%]参与者)和寒战(4名[33.3%]参与者)仅在30μg剂量组中报告。剂量1后第7天,30μg剂量组中有偏头痛史的一名参与者报告了严重的偏头痛。
在年轻组中,BNT162b2的剂量2后7天内,疲劳是20μg和30μg剂量组中最频繁报告的全身性事件(分别有7名[58.3%]和9名[75.0%]参与者),与安慰剂组(5名[55.6%]参与者)相比。30μg剂量组中报告了头痛(8名[66.7%]参与者)、寒战(7名[58.3%]参与者)、肌肉疼痛(7名[58.3%]参与者)和发烧(2名[16.7%]参与者)。在这些事件中,安慰剂组中报告了疲劳(5名[55.6%]参与者)、头痛(1名[11.1%]参与者)和寒战(1名[11.1%]参与者),但没有人报告肌肉疼痛。
在年长组中,BNT162b2的剂量1后7天内,在20μg和30μg剂量组中(分别有4名[33.3%]参与者和3名[25.0%]参与者)最频繁报告的全身性事件是疲劳,与安慰剂组(2名[22.2%]参与者)相比(图91)。头痛(3名[25.0%]参与者)、寒战(2名[16.7%]参与者)和肌肉疼痛(1名[8.3%]参与者)在20μg剂量组中最多。在这些事件中,安慰剂组中仅报告了头痛(1名[11.1%]参与者)和肌肉疼痛(2名[22.2%]参与者)。没有报告发烧。
在年长组中,BNT162b2的剂量2后7天内,疲劳仍然是20μg和30μg剂量组中最频繁报告的全身性事件(分别有6名[50.0%]和5名[41.7%]参与者),与安慰剂组(1名[11.1%]参与者)相比。20μg和30μg剂量组(分别有4名[33.3%]和3名[25.0%]参与者)报告了头痛,而30μg剂量组中报告了肌肉疼痛和寒战(分别有3名[25.0%]和2名[16.7%]参与者)。30μg剂量组中报告了发烧(1名[8.3%]参与者)。在这些事件中,安慰剂组中报告了头痛和肌肉疼痛(各1名[11.1%]参与者)。
第一剂量和第二剂量后,在两个年龄组中,大多数全身性事件的严重程度为轻度或中度,并且没有报告4级全身性事件。
在年轻组中,任何剂量的任一剂量BNT162b2后,大多数全身性事件的中位发作日在第1.0至第4.0天之间。大多数全身性事件通常消退,中位持续时间在1.0至2.5天之间。
在年长组中,任何剂量水平的任一剂量BNT162b2后,任何全身性事件的中位发作日均在第1.5天至第2.0天之间,除了10μg剂量组的剂量1后的全身性事件,其中位发作日为第5.5天。大多数全身性事件通常消退,中位持续时间在1.0至3.0天之间。
不良事件(AE)-1期
不良事件的总结-1期
对于每种疫苗候选物的所有剂量水平和年龄组,该总结包括了从剂量1至数据截止日期2020年8月24日的所有AE,但BNT162b1 100μg组除外,其中对从剂量1到剂量2之前的AE进行了汇总。
总体而言,剂量1后,与年轻(41.7%-50.0%)和年长(25.0%-58.3%)BNT162b1组以及年轻BNT162b2组(33.3%-41.7%)相比,年长BNT162b2组(8.3%-25.0%)中报告了至少1起AE的参与者数更少。
BNT162b1
在年轻组中,BNT162b1的剂量1后,至多30μg的剂量组有5名(41.7%)至6名(50%)参与者报告了至少1起AE,而安慰剂组中有2名(22.2%)参与者。相关的AE(related AE)随着BNT162b1剂量水平的增加而增加(25.0%-50.0%);30μg剂量组中有6名(50%)参与者报告了至少1起相关AE。30μg剂量组中有1名(8.3%)参与者报告了严重的AE(发热)。
在100μg剂量组中,BNT162b1的剂量1之后至剂量2之前,有8名(66.7%)参与者报告了至少1起AE,与安慰剂组中的1名(33.3%)参与者相比。6名(50.0%)参与者有至少1起相关AE,1名(8.3%)参与者报告了严重的AE(睡眠障碍)。
在年长组中,BNT162b1的剂量1后,3名(25.0%)参与者(30μg剂量组)和7名(58.3%)参与者(10μg和20μg剂量组)各自报告了至少1起AE,与安慰剂组中的4名(44.4%)参与者相比。2名(16.7%)至4名(33.3%)参与者报告了至少1起相关AE,在20μg剂量组中频率最高。20μg(带状疱疹)和30μg(疲劳)剂量组中各有1名参与者报告了严重的AE。
任何年龄组均没有报告SAE、导致退出的AE或死亡。
BNT162b2
在年轻组中,BNT162b2的剂量1后,4名(33.3%)至5名(41.7%)参与者报告了至少1起AE,与安慰剂组中的2名(22.2%)参与者相比。2名(16.7%)至4名(33.3%)参与者报告了至少1起相关AE,在20μg剂量组中频率最高。30μg剂量组中有1名参与者报告了严重的AE(偏头痛)。
在年长组中,BNT162b2的剂量1后,1名(8.3%)至3名(25.0%)参与者报告了至少1起AE,与安慰剂组中的2名(22.2%)参与者相比。只有1名参与者(8.3%)报告了至少1起相关AE(20μg剂量组)。30μg剂量组(肌肉痉挛)和安慰剂组(神经根病(radiculopathy))中各有1名参与者报告了严重的AE。
任何年龄组均没有报告SAE、导致退出的AE或死亡。
不良事件的分析-1期
按系统器官类别(System Organ Class,SOC)和首选语(preferred term,PT)的不良事件-1期
本节汇总了按SOC和PT的AE,包括了所有组的从剂量1至剂量2后1个月的AE,但BNT162b1 100μg组除外,其中汇总了从剂量1至剂量1后3周或者从剂量1至剂量2之前的AE。
在年长BNT162b1组和年轻BNT162b2组中,全身性疾病及给药部位各种反应是最常报告的SOC。最常报告的SOC是年轻BNT162b1组的胃肠道疾病和年长BNT162b2组的神经系统疾病。通常,大多数的PT由每个剂量组中≤2名参与者报告。
BNT162b1
在年轻组中,从BNT162b1的剂量1至剂量2后1个月,胃肠道疾病(每个剂量组有2名[16.7%]参与者)是至多30μg的BNT162b1组中最频繁报告的SOC。仅在20μg剂量组中,感觉异常(paraesthesia)(3名[25.0%])是最频繁的按PT的AE。所有其他AE由每个剂量组中≤2名参与者报告,包括安慰剂组中的。
在100μg剂量组中,从BNT162b1的剂量1至剂量1后3周,精神疾病是最频繁报告的SOC(3名[25.0%]参与者),而睡眠障碍(3名[25%]参与者)是最常见的按PT的AE。所有其他AE由≤2名参与者/剂量组报告,包括安慰剂组中的。
在年长组中,从BNT162b1的剂量1至剂量2后1个月,全身性疾病及给药部位各种反应是BNT162b1组中最频繁报告的SOC,共有6名参与者报告:10μg剂量组有1名(8.3%)参与者,20μg剂量组有2名(16.7%)参与者和30μg剂量组有3名(25.0%)参与者。每剂量组中不超过1名参与者报告了按PT的任何AE。
BNT162b2
在年轻组中,全身性疾病及给药部位各种反应是最频繁报告的SOC。这些事件包括注射部位疼痛和注射部位红斑。每剂量组中不超过1名参与者报告按PT的任何AE。
在年长组中,神经系统疾病是最频繁报告的SOC,30μg剂量组(坐骨神经痛)和安慰剂组(神经根病)中分别有1名参与者报告。每剂量组中不超过1名参与者报告按PT的任何AE。
相关不良事件-1期
总体而言,对于年轻和年长BNT162b1组以及年轻BNT162b2组,全身性疾病及给药部位各种反应是最频繁报告的SOC。在年长BNT162b2组中,1名(8.3%)参与者报告了恶心,这是唯一的相关AE。
BNT162b1
在年轻组中,全身性疾病及给药部位各种反应是最频繁报告的SOC(注射部位疼痛、发热、寒战、疲劳和注射部位肿胀)。30μg剂量组中各有两名(16.7%)参与者报告了心动过速和发热的相关AE。所有其他相关AE由≤2名参与者/剂量组报告。
在100μg BNT 162b1组中,精神疾病(psychiatric disorder)是最频繁报告的SOC。3名(25.0%)参与者报告了睡眠障碍为精神疾病。所有其他相关AE由每个剂量组的≤2名参与者报告的。
在年长组中,全身性疾病及给药部位各种反应是最频繁报告的SOC(疲劳、注射部位於斑、注射部位疼痛和周围肿胀)。每剂量组中不超过1名的参与者报告了按PT的AE。
BNT162b2
在年轻组中,全身性疾病及给药部位各种反应是最频繁报告的SOC(注射部位疼痛和注射部位红斑)。每个剂量组中不超过1名参与者报告按PT的任何相关AE,包括安慰剂组中的。
在年长组中,仅在20μg剂量组中有1名(8.3%)参与者报告了恶心的相关AE。
即时不良事件-1期
BNT162b1
在年轻组中,20μg BNT162b1的剂量1后,1名参与者报告了感觉异常这一即时AE。在100μg剂量组中,没有参与者在剂量1后报告即时AE。
在年长组中,10μg BNT162b1的剂量1后,1名参与者报告了眼部感觉异常的即时AE。
BNT162b1的剂量2后,任一年龄组中均没有参与者报告任何即时AE。
BNT162b2
在年轻组中,BNT162b2的剂量1后,3名参与者报告了即时AE:注射部位红斑(erythema)(10μg剂量组),味觉丧失(ageusia)(20μg剂量组)和注射部位疼痛(30μg剂量组)。BNT162b2的剂量2后,1名参与者报告了味觉障碍(taste disorder)的即时AE(20μg剂量组)。
在年长组中,任一剂量BNT162b2后,没有参与者报告任何即时AE。
严重不良事件-1期
BNT162b1
在年轻组中,剂量2(30μg剂量组)后2天,1名参与者报告了发热(pyrexia)(102.4°F)的严重AE,剂量1后1天(100μg剂量组),1名参与者报告了睡眠障碍的严重AE。这两起AE均被研究者确定与研究干预相关。
在年长组中,2名参与者报告了严重AE:剂量1后2天发生的带状疱疹(20μg剂量组,被认为与BNT162b1无关),剂量2后1天疲劳(30μg剂量组,被认为与BNT162b1相关)。
BNT162b2
在年轻组中,1名有偏头痛史的参与者在剂量1后7天报告了严重的偏头痛(30μg剂量组,被认为与BNT162b2无关)。在年长组中,2名参与者报告了严重AE:剂量2后2天的肌肉痉挛(30μg剂量组,被认为与BNT162b2无关),以及剂量1(安慰剂)后3天的神经根病,被认为与研究干预无关。
死亡、严重不良事件、安全性相关的参与者退出以及其他重大不良事件-1期死亡-1期
在这份中期CSR中,截至数据截止日期2020年8月24日,没有1期参与者死亡。
严重不良事件-1期
在这份中期CSR覆盖的时间段期间,1期参与者中没有报告任何SAE。
安全性相关的参与者退出-1期
在这份中期CSR中,截至数据截止日期2020年8月24日,没有1期参与者因任何AE而退出。
其他重大不良事件1期
对于本研究的1期,没有定义特别关注的的AE。
其他安全性评价-1期
严重COVID-19疾病-1期
截至数据截止日期2020年8月24日,1期参与者中没有报告COVID-19病例。
怀孕-1期
截至数据截止日期2020年8月24日,1期参与者中没有报告怀孕。
死亡、严重不良事件、安全性相关的参与者退出以及其他重大不良事件的分析和讨论-1期
在这份中期CSR覆盖的时间段期间,任一年龄组均没有报告SAE、导致退出的AE或死亡。
临床实验室评价-1期
总体而言,在年轻及年长BNT162b1和BNT162b2组中,剂量1后1至3天,发生了淋巴细胞短暂减少(<0.8×LLN),其在剂量1后6-8天恢复正常。大部分变化是淋巴细胞计数从正常或1级到1、2或3级减少,其在剂量1后6-8天恢复正常,并且在所有年龄和剂量组中都有观察到。还观察到中性粒细胞从正常到1级(年轻BNT162b1组)或2级(年长BNT162b2组)减少的变化,但较少见。
总体而言,报告的其他临床化学异常或实验室结果变化较少见。与BNT162b1受者相比,BNT162b2受者的淋巴细胞计数减少的发生率更低。这些实验室异常与临床发现无关。
BNT162b1
在年轻组中,在10μg、20μg或30μg BNT162b1的剂量1后1-3天,分别在1名(8.3%)、4名(33.3%)和6名(54.5%)参与者中观察到淋巴细胞短暂减少(<0.8×LLN)的实验室异常,其在剂量1后6-8天恢复正常。在10μg和30μg剂量组的各1名参与者中观察到淋巴细胞计数从正常到3级减少的变化,而20μg剂量组有2名(16.7%)。剂量1后6-8天,未观察到淋巴细胞计数的3级减少。剂量1后,在安慰剂组中1名(11.1%)参与者中观察到从正常到2级中性粒细胞减少的变化,其在剂量1后19-23天未再被观察到。剂量2后6-8天,在10μg剂量组(1级到2级)和30μg剂量组(正常到2级)的各1名参与者中观察到中性粒细胞减少的变化。剂量2后大约1个月,二者在非计划的访视时均转为1级。
在100μg BNT162b1组中,剂量1后1-3天,在9名(75.0%)参与者中观察到淋巴细胞短暂减少(<0.8×LLN)的实验室异常,其在剂量1后6-8天恢复正常。剂量1后1-3天,在4名(33.3%)参与者中观察到淋巴细胞计数从正常到3级减少的变化,其在剂量1后6-8天恢复正常。剂量1后6-8天,在3名(25.0%)参与者中观察到淋巴细胞计数从正常到1级减少的变化,其在剂量1后19-23天恢复正常。
在年长组中,10μg、20μg或30μg BNT162b1的剂量1后1-3天,分别在1名(8.3%)、3名(25.0%)和2名(16.7%)参与者中观察到淋巴细胞短暂减少(<0.8×LLN)的实验室异常,其在剂量1后6-8天恢复正常。BNT162b1的剂量1后1-3天,在30μg和10μg剂量组的各1名(8.3%)参与者中观察到淋巴细胞计数从正常到3级或4级减少的变化,二者在剂量1后6-8天都恢复正常。
总体而言,报告的其他临床化学异常或实验室结果变化较少见。这些异常均与临床发现无关。
BNT162b2
在年轻组中,BNT162b2的剂量1后1-3天,在20μg和30μg剂量组的各1名(8.3%)参与者中观察到淋巴细胞短暂减少(<0.8×LLN)的实验室异常,其在剂量1后6-8天恢复正常。BNT162b2的剂量1后1-3天,分别在10μg、20μg和30μg剂量组的3名(25.0%)、2名(16.7%)和4名(33.3%)参与者中观察到淋巴细胞计数从正常到1级减少的变化,在20μg和30μg剂量组的各1名(8.3%)参与者中观察到淋巴细胞计数从正常到2级减少的变化。剂量1后6-8天,未观察到淋巴细胞计数的2级或3级减少。
在年长组中,所有剂量水平的BNT162b2的剂量1后1-3天,在1名(8.3%)参与者中观察到淋巴细胞短暂减少(<0.8×LLN)的实验室异常,其在剂量1后6-8天恢复正常。剂量1后,在各1名(8.3%)参与者中观察到淋巴细胞计数从正常到3级(10μg剂量组)和从1级到3级(30μg剂量组)减少的变化。剂量1后1-3天,在20μg剂量组的2名(16.7%)参与者中观察到从正常到2级中性粒细胞减少的变化,到剂量1后6-8天未观察到转向2级的变化。剂量1后6-8天,在10μg剂量组的1名(8.3%)参与者中观察到从从正常到2级中性粒细胞减少的变化。到剂量1后19-23天,在任何剂量组中,均未观察到转向2级中性粒细胞减少的变化。
总体而言,报告的其他临床化学异常或实验室结果变化较少见。与BNT162b1受者相比,BNT162b2受者的淋巴细胞计数减少的发生率更低。这些实验室异常与临床发现无关。
体检结果-1期
总体而言,在两个年龄组中,BNT162b2后的体检发现的异常比BNT162b1后少。通常在剂量1后1-3天时观察到异常,并且大多数是肢体、肌肉骨骼系统或皮肤异常。
BNT162b1
在年轻组中,基线体检期间未发现异常。总体而言,随机分组后,在10μg、20μg或30μg BNT162b1的剂量1后1-3天(9名[20.0%]参与者)以及剂量2后6-8天(7名[15.6%]参与者)观察到大多数异常。在30μg剂量组中,剂量1后1-3天,最多6名(50.0%)参与者具有异常,并且大多数是肢体异常。
在100μg剂量组中,只有1名(8.3%)参与者具有基线时的异常。从剂量1至剂量1后3周,9名(75.0%)参与者在BNT162b1后1-3天具有异常,并且大多数是肢体异常。
在年长组中,基线体检期间发现5名(11.1%)参与者具有异常,任意剂量组有≤2名。总体而言,随机分组后,在BNT162b1的剂量1后1-3天观察到大多数异常(15名[33.3%]参与者)。剂量1后1-3天,20μg和30μg剂量组中分别有6名(50.0%)和4名(33.3%)参与者具有异常,并且大多数异常涉及肌肉骨骼系统或肢体。
从体检中没有得出临床上重要的发现。
BNT162b2
在年轻组中,基线体检期间发现5名(11.1%)参与者具有异常,任意剂量组有≤2名。总体而言,随机分组后,在10μg、20μg或30μg BNT162b2的剂量1后1-3天(5名[11.1%]参与者)以及剂量2后6-8天(4名[8.9%]参与者)观察到大多数异常,并且大多数是肢体或皮肤异常。
在年长组中,基线体检期间发现30μg剂量组中1名(8.3%)参与者具有异常。随机分组后,任何访视窗口期间的体检中在总体上任何剂量组中有≤2名参与者具有异常。
从基线体检中没有得出临床上重要的发现。
评价BNT162b1和BNT162b2的安全性结果的1期总结
总体而言,反应原性事件耐受性良好并且短暂(中位持续时间为1.0-4.0天)。所有参与者都返回接受第二剂量。所有反应原性事件导致的AE消退,无后遗症。
对于两个年龄组中的局部反应,BNT162b1受者报告了注射部位疼痛(58.3%-100.0%)、发红(0%-16.7%)和肿胀(0%-25.0%),比BNT162b2受者更频繁:注射部位疼痛(33.3%-91.7%)、发红(0%-8.3%)和肿胀(0%-16.7%)。通常,观察到局部反应随着剂量水平的增加而更频繁。
与年轻组相比,年长组中的局部反应频率较低。注射部位疼痛(其为最频繁报告的局部反应)在30μg BNT162b1(对于剂量1和剂量2,分别为91.7%和75.0%)和30μgBNT162b2(对于剂量1和剂量2,分别为75.0%和66.7%)后的年长组中的频率低于30μgBNT162b1(对于剂量1和剂量2,均为100%)和30μg BNT162b2(对于剂量1和剂量2,分别为91.7%和83.3%)后的年轻组。
与年长组中的BNT162b1受者相比,年长组中的BNT162b2受者报告的局部反应的频率较低。年长30μg BNT162b2组在剂量1(75.0%)和剂量2(66.7%)后的注射部位疼痛频率比年长30μg BNT162b1组在剂量1(91.7%)和剂量2(75.0%)后的低。
在两个年龄组中,对于至多30μg的BNT162b1受者,剂量1或剂量2后的常见全身性事件包括疲劳(16.7%-83.3%)、头痛(25.0%-100%)、寒战(8.3%-66.7%)、发烧(0%-75.0%)和肌肉疼痛(8.3%-75.0%),而至多30μg的BNT162b2受者相较之下不太频繁:疲劳(8.3%-75.0%)、头痛(0%-66.7%)、寒战(0%-58.3%)、发烧(0%-16.7%)和肌肉疼痛(0%-58.3%)。通常,观察到全身性事件随着剂量水平的增加而更频繁。
与年轻组相比,年长组的全身性事件频率较低。30μg BNT162b1(对于剂量1和剂量2,分别为50.0%和66.7%)和30μg BNT162b2(对于剂量1和剂量2,分别为25.0%和41.7%)后的年长组中疲劳的频率比30μg BNT162b1(对于剂量1和剂量2,分别为50.0%和83.3%)和30μg BNT162b2(对于剂量1和剂量2,分别为41.7%和75.0%)后的年轻组中低。
与年长组中的BNT162b1受者相比,年长组中的BNT162b2受者报告的全身性事件的频率较低。年长30μg BNT162b2组(对于剂量1和剂量2,分别为25.0%和41.7%)中疲劳的频率比年长30μg BNT162b1组(对于剂量1和剂量2,分别为50.0%和66.7%)中的低。
大多数AE的严重程度为轻度或中度。大多数相关AE与电子日记中报告的征求的反应原性事件相似。报告的严重AE很少,并且被认为与研究干预无关。
没有因为AE的SAE、死亡或停药。
在所有年龄和剂量组中,剂量1后1-3天,观察到淋巴细胞短暂减少,其在剂量1后6-8天消退。
从体检中没有得出临床上重要的发现。
与BNT162b1相比,BNT162b2表明有利的反应原性和安全性谱,有助于选择BNT162b2用于2/3期开发。
1期安全性结论
BNT162b1和BNT162b2的所有测试的剂量(10μg、20μg和30μg),都是安全的且耐受性良好,但100μg BNT162b1除外(由于其反应原性谱,在第一剂量后已终止(discontinued))。
剂量2后的反应原性通常比剂量1后的高。
与BNT162b1相比,BNT162b2的局部和全身反应原性的频率通常较低,尤其是在第二剂量后。
BNT162b1和BNT162b2的每个剂量后,年长成年人中的反应原性事件比年轻成年人中的较轻微且频率较低。大多数反应原性事件的严重程度为轻度或中度。
大多数AE为轻度或中度。没有SAE或因为AE的终止。
总体而言,与接受BNT162b1的参与者相比,接受BNT162b2的参与者经历的AE较少,而BNT162b2年长组中经历AE的参与者数最少。BNT162b2后,在年长组中很少观察到严重的AE,并且都被认为与研究干预无关。
临床实验室评价显示,剂量1后,在所有年龄和剂量组中观察到淋巴细胞短暂减少,其在几天内消退,这与其他任何临床后遗症均不相关,并且被认为无临床相关性。
选择30μg BNT162b2进入本研究的2/3期部分,因为该剂量和构建体提供有利的反应原性谱和稳健的免疫应答的最佳组合。
2期
截至数据截止日期(2020年9月2日)的安全性数据可用,并且汇总到2期中360名参与者的数据截止日期。2期中的所有参与者均使用电子日记来报告局部反应和全身性事件。
局部反应-2期
BNT162b2的第一剂量和第二剂量后,在两个年龄组中,大多数局部反应的严重程度为轻度或中度,并且没有报告4级(可能危及生命的)局部反应。
在BNT162b2组中,年轻组(图92)报告注射部位疼痛比年长组(图93)更频繁,并且BNT162b2的剂量1后与剂量2后相比的频率在年轻组(分别为85.2%和80.2%)和年长组(分别为70.7%和72.5%)中相似。在安慰剂组中,剂量1和剂量2后,年轻组和年长组中报告注射部位疼痛的频率相似(7.8%-10.2%)。
在BNT162b2组中,剂量1后的年轻组和年长组中的发红和肿胀相似。剂量2后,年长组中(分别为7.7%和12.1%)的发红和肿胀的频率略高于年轻组(分别为3.5%和3.5%)。在安慰剂组中,年长组中仅有1名参与者在剂量1后报告了发红,但没有报告肿胀。
BNT162b2组(年长组)中有1名参与者在剂量1后报告了严重的注射部位疼痛,而年轻组中有1名参与者在剂量2后报告了严重的注射部位疼痛。BNT162b2组(年长组)中有1名参与者在剂量2后报告了严重的发红。
总体而言,在所有年龄组中,注射部位疼痛是最频繁报告的局部反应,在剂量2后没有增加,并且在剂量1和剂量2后发红和肿胀的频率通常相似。
在所有年龄组中,BNT162b2组的任一剂量后的局部反应的中位发作日均在第1.0(第1.0天为疫苗接种日)到第3.0天之间,并且在年轻组和年长组中范围通常相似。在所有年龄组中,BNT162b2的任一剂量后,局部反应在1.0-3.0天的中位持续时间后消退,这在年轻组和年长组中通常相似。
全身性事件-2期
在BNT162b2组中,与年长组(图95)相比,年轻组(图94)中的全身性事件报告更频繁并且严重程度更高,并且频率和严重程度随剂量次数的增加而增加(剂量1vs剂量2)。呕吐和腹泻是例外,呕吐不常见且在两个年龄组中相似,并且每个剂量后呕吐和腹泻相似。在年轻的和年长BNT162b2组中(剂量1vs剂量2),全身性事件的频率如下所示:
疲劳:年轻组(50.0%vs 59.3%),相比于年长组(35.9%vs 52.7%)
头痛:年轻组(31.8%vs 51.2%),相比于年长组(27.2%vs 36.3%)
肌肉疼痛:年轻组(23.9%vs 45.3%),相比于年长组(14.1%vs 28.6%)
寒战:年轻组(9.1%vs40.7%),相比于年长组(7.6%vs20.9%)
关节疼痛:年轻组(9.1%vs17.4%),相比于年长组(4.3%vs16.5%)
发烧:年轻组(3.4%vs 17.4%),相比于年长组(0.0%vs 11.0%)
呕吐:在两个年龄组中并且在任何剂量后相似。
腹泻:在年长组中报告较少,并且在任何剂量后相似。
对于两个年龄组和剂量,安慰剂组中报告全身性事件的频率通常低于BNT162b2组,但有一些例外。在年轻组中,在安慰剂组和BNT162b2组中,剂量1后报告发烧、头痛、寒战、呕吐和腹泻以及剂量2后报告呕吐的频率相似(图94)。在年长组中,在安慰剂组和BNT162b2组中,剂量1后报告呕吐、腹泻、肌肉疼痛和关节疼痛以及剂量2后报告呕吐和腹泻的频率相似(图95)。
在两个剂量后,使用解热/止痛药物的频率在年长组中稍低,但总体上,在两个年龄组中,剂量2后与剂量1后相比增加。使用解热/止痛药物的频率在安慰剂组中与BNT162b2组相比较低。
第一剂量和第二剂量后,在两个年龄组中,大多数全身性事件的严重程度为轻度或中度,并且没有报告4级(可能危及生命的)全身性事件。在所有年龄组中,总体上仅在BNT162b2的剂量2后报告了严重的全身性事件,包括发烧(1.1%)、疲劳(4.0%)、头痛(2.8%)、寒战(2.3%)和肌肉疼痛(1.7%)。
在所有年龄组中,BNT162b2的两个剂量后全身性事件的中位发作日在第2.0天-3.0天之间(第1.0天是疫苗接种日),并且范围在年轻组和年长组中相似。在所有年龄组中,任一剂量后该组的全身性事件消退,中位持续时间为1天,这在年轻组和年长组中相似。剂量1后发生的全身性事件的持续时间与剂量2后发生的相比没有明显差异。
不良事件-2期
不良事件的总结-2期
BNT162b2组中报告至少1起AE的参与者数与安慰剂组相似,而在年轻组和年长组的2个疫苗组中,通常也相似(分别为表10和表11)。
BNT162b2年轻组中有2名参与者报告了两起严重事件:肌痛(myalgia)(AE)和胃腺癌(SAE)。胃腺癌的SAE发生在接受剂量1后23天。这两起事件均被研究者评价为与研究干预无关。
从剂量2后7天到数据截止日期(2020年9月2日),没有其他参与者报告任何AE。
Figure GDA0004051824180002761
Figure GDA0004051824180002762
Figure GDA0004051824180002771
不良事件的分析-2期
按系统器官类别和首选语的相关不良事件-2期
表12呈现了从剂量1至剂量2后7天报告至少1次按SOC和PT的AE的参与者数。
从剂量1至剂量2后7天,BNT162b2组中报告至少1起AE的参与者数与安慰剂组相似。
在年轻组中,BNT162b2组和安慰剂组分别有8名(9.1%)和10名(11.1%)参与者报告了至少1起AE。在年长组中,BNT162b2组和安慰剂组分别有4名(4.3%)和8名(8.9%)参与者报告了至少1起AE。
总体而言,至剂量2后7天,报告的大多数AE是在胃肠道疾病(BNT162b2组有3[1.7%],安慰剂组有2[1.1%])、全身性疾病及给药部位各种反应(BNT162b2组有3[1.7%],安慰剂组有7[3.9%]]以及肌肉骨骼和结缔组织疾病(BNT162b2组有3[1.7%],安慰剂组有1[0.6%])的SOC中。
最频繁报告的按PT的AE是年轻BNT162b2组中的注射部位疼痛(3[3.4%]),其全部在局部反应的报告期间在剂量1的疫苗接种日发生。2起事件在3天内消退,1起事件11天后消退。每个疫苗组中≤2名参与者报告了按PT所有其他的AE。
年长BNT162b2组中的1名参与者在左上臂三角肌区域有挫伤性AE,其被研究者评价为与研究干预相关。
Figure GDA0004051824180002772
Figure GDA0004051824180002781
按系统器官类别和首选语的相关不良事件-2期
从剂量1至剂量2后7天,被研究者评价为与研究干预相关的AE的参与者数的频率较低,并在BNT162b2组和安慰剂组中相似。在BNT162b2组中,年轻组和年长组中有相似比例的参与者报告了相关AE。大多数研究者评价的相关AE是在全身性疾病及给药部位各种反应的SOC中的反应原性事件,与安慰剂组相比,BNT162b2组中总体上有相似比例的参与者报告了这些AE,其中注射部位疼痛是最频繁报告的PT且仅在BNT162b2年轻组中发生。
即时不良事件-2期
BNT162b2 30μg或安慰剂的任一剂量后,没有任何即时AE。
严重的或危及生命的不良事件-2期
两名参与者(均在BNT162b2年轻组中)报告了肌痛(AE)和胃腺癌(SAE)严重事件。报告肌痛的参与者患有肩胛肌疼痛,其始于剂量2后2天,并且在数据截止时仍在持续。这两起事件均被研究者评价为与研究干预无关。
死亡、严重不良事件、安全性相关的参与者退出以及其他重大不良事件-2期死亡-2期
在这份中期CSR中,截至数据截止日期2020年9月2日,没有2期参与者死亡。
严重不良事件-2期
1名参与者在剂量1至剂量2后7天具有SAE(表13)。在年轻BNT162b2组中的1名参与者在剂量1后23天具有胃腺癌的SAE,其被研究者评价为与研究干预无关(表13)。该SAE在数据截止时仍在持续,并且由于SAE,该参与者退出了研究。
从剂量2后7天到数据截止日期(2020年9月2日),没有其他参与者报告任何SAE。
Figure GDA0004051824180002791
安全性相关的参与者退出-2期
BNT162b2年轻组中报告了胃腺癌SAE的参与者,在BNT162b2的剂量1后第23天退出了研究。
安全性相关的参与者退出的叙述-2期
提供截至数据截止日期(2020年9月2日)因SAE退出研究的2期参与者的叙述。
其他重大不良事件-2期
没有为本研究的2期定义特别关注的AE;但是,在整个研究过程中都对目标医疗事件进行了监控。
死亡、严重不良事件、安全性相关的参与者退出以及其他重大不良事件的分析和讨论-2期
截至数据截止日期2020年9月2日,年轻组(BNT162b2组)中的1名参与者因胃腺癌SAE而退出研究,其被研究者评价为与研究干预无关。
2期安全性结论
在所有年龄组中,每个剂量后局部反应的频率通常相似,并且剂量2后的全身性事件的频率和严重程度与剂量1后相比通常是增加的。局部和全身性反应原性事件耐受性良好并且短暂。
BNT162b2的每个剂量后,年长成年人中的反应原性事件比年轻成年人中观察到的较轻微且频率较低。大多数反应原性事件的严重程度为轻度或中度。没有报告4级事件。
参与者中的AE频率低,并且大多数AE的严重程度为轻度或中度。没有SAE或因为研究者评价为相关的AE的终止。
在360名参与者中评价的BNT162b2 30μg后的反应原性和AE谱与在1期中观察到的BNT162b2 30μg后的安全性谱一致。
至剂量2后7天,30μg BNT162b2是安全的且耐受性良好。
2/3期
在这份中期CSR中,截至安全性数据截止日期2020年10月6日,3期安全性结果包括36,855名年龄较大的青少年和成年人参与者(16-91岁)。AE总结包括报告的任何AE,无论参与者是否完成了剂量2后1个月时的访视。最初的6610名成年人参与者(18-85岁,其中包括2期中的360名参与者)使用电子日记报告局部反应和全身性事件,并且汇总了剂量2后至少1个月的安全性数据。
本研究的2/3期部分期间,如果观察到相同或更极端的不利严重病例分裂(split)的单侧概率为5%或更小,则将触发针对疫苗增强性疾病的理论关注的停止规则,考虑到疫苗和安慰剂受者的真实发生率相同,则如果该概率小于11%,应触发警戒标准。还应注意的是,每臂(arm)~18,000,本研究中检测到至少1起不良事件的概率大于83%。
局部反应-2/3期
在BNT162b2组中,年轻组(图96)中报告注射部位疼痛比年长组(图97)更频繁,并且,BNT162b2的剂量1后与剂量2后相比的频率在年轻组(分别为85.3%和79.5%)和年长组(分别为71.7%和66.6%)中相似。在安慰剂组中,剂量1和剂量2后的注射部位疼痛在年轻组中(分别为13.8%和11.9%)报告的频率稍高于年长组(分别为8.8%和7.7%)。
在BNT162b2组中,剂量1和剂量2后,年轻组和年长组中发红和肿胀的频率相似。BNT162b2的剂量1后与剂量2后相比发红的频率在年轻组(分别为4.3%和5.4%)和年长组(分别为4.5%和6.6%)中相似。BNT162b2的剂量1与剂量2后肿胀的频率在年轻组(分别为5.5%和5.9%)和年长组(分别为6.5%和7.0%)中相似。在安慰剂组中,剂量1和剂量2后,年轻(≤0.8%)和年长(≤1.3%)组中很少报告发红和肿胀。
总体而言,在所有年龄组中,剂量2后,注射部位疼痛并没有增加,并且剂量1和剂量2后发红和肿胀的频率通常相似。在BNT162b2组中,任何剂量后,严重的局部反应(≤0.8%)总体来说少有报告,但在年轻组中发生更频繁。第一剂量和第二剂量后,在两个年龄组中,大多数局部反应的严重程度为轻度或中度,并且没有报告4级局部反应。
亚组分析
根据国家、性别、种族或民族,没有观察到局部反应的临床意义差异。
在所有年龄组中,任何剂量后,BNT162b2组的局部反应的中位发作日均在第1.0-第3.0天之间(第1.0天是疫苗接种日),并且在年轻组和年长组中范围通常相似。在所有年龄组中,任何剂量后,这个组的局部反应消退,中位持续时间在1.0-2.0天之间,这在年轻组和年长组中相似。
全身性事件-2/3期
与年长组(图99)相比,年轻组(图98)中全身性事件的频率和严重程度通常增加,频率和严重程度随剂量数(剂量1vs剂量2)增加。呕吐和腹泻是例外,呕吐的报告在两个年龄组中相似且少见,并且每个剂量后的呕吐和腹泻相似。在年轻的和年长BNT162b2组中全身性事件的频率(剂量1vs剂量2)如下所示:
疲劳:年轻组(49.0%vs 61.6%),相比于年长组(34.3%vs 51.2%)
头痛:年轻组(42.9%vs 53.1%),相比于年长组(25.4%vs 39.5%)
肌肉疼痛:年轻组(22.0%vs.38.6%),相比于年长组(14.0%vs 28.5%)
寒战:年轻组(14.4%vs 36.5%),相比于年长组(6.2%vs.22.8%)
关节疼痛:年轻组(10.9%vs 22.4%),相比于年长组(8.3%vs 18.9%)
发烧:年轻组(3.7%vs.16.6%),相比于年长组(1.4%vs 11.5%)
呕吐:在两个年龄组中并且在任何剂量后相似
腹泻:在年长组中报告较少,每个剂量后相似。
对于两个年龄组和剂量,安慰剂组中报告全身性事件的频率通常低于BNT162b2组,但有一些例外。在年轻组中,发烧和关节疼痛(剂量1后)以及呕吐和腹泻(剂量1和剂量2后)的报告频率在安慰剂组和BNT162b2组中相似(图98)。在年长组中,发烧和关节疼痛(剂量1后)以及呕吐和腹泻(剂量1和剂量2后)的报告频率在安慰剂组和BNT162b2组中相似(图99)。
两个剂量后,年长组(20.1%-37.4%)中使用解热/止痛药物的频率略低于年轻组(28.1%-45.8%),以及在两个年龄组中,剂量2后药物使用与剂量1后相比增加。在安慰剂组中使用解热/止痛药物的频率低于BNT162b2组,并且在年轻和年长安慰剂组中,剂量1后和剂量2后相似(9.8%-13.7%)。
BNT162b2的剂量1后,所有年龄组的严重全身性事件的频率通常低于剂量2后的:发烧(0.1%vs 0.8%)、疲劳(0.8%vs 3.7%)、头痛(0.5%vs 1.9%)、寒战(0.2%vs1.7%)、肌肉疼痛(0.3%vs 1.6%)和关节疼痛(0.1%vs 0.6%)。腹泻和呕吐的频率通常相似。
在安慰剂组中,剂量1和剂量2后报告严重发烧的频率相似(0.1%)。仅在剂量2后第2天,年轻BNT162b2组中有1名参与者报告了发烧41.2℃,并且在报告期的所有其他天都没有发热。
第一剂量和第二剂量后,在两个年龄组中,大多数全身性事件的严重程度为轻度或中度,并且没有报告4级(可能危及生命的)全身性事件,除了在BNT162b2组中有1名参与者出现仅1天的发烧(41.2℃)。
亚组分析
根据国家、性别、种族或民族,没有观察到全身性事件的临床意义差异。
在所有年龄组中,BNT162b2的任何剂量后,大多数全身性事件的中位发作日为第2.0天(第1.0天是疫苗接种日),并且在年轻组和年长组中范围通常相似。在所有年龄组中,所有全身性事件消退,中位持续时间是1.0天,这在年轻组和年长组中通常相似。
不良事件-2/3期
在这份中期CSR中,最初的6610名成年人参与者(包括2期中的360名参与者)汇总了剂量2后至少1个月的安全性数据。截至截止日期(2020年10月6日)所有36,855名参与者的AE总结包括了报告的任何AE,无论参与者是否完成了剂量2后1个月时的访视。截至数据截止日期,有一小部分参与者(≤0.7%)有至少1个未编码术语(uncoded term)。
不良事件的总结-2/3期
最初的6610名参与者-2/3期
表14示出从剂量1至剂量2后1个月报告了至少1起AE的最初6610名参与者的总结。
BNT162b2组中报告至少1起AE的参与者数与安慰剂组相比相似。在两组中,严重AE、SAE和导致退出的AE的报告率分别为≤1.1%、0.5%和0.2%。
在年轻组和年长组中,从剂量1至剂量2后1个月,BNT162b2组和相应的安慰剂组中报告至少1起AE的参与者数相似。在年轻组和年长组中,相关AE、严重AE、SAE和导致退出的AE的报告率(rate)也与相应的安慰剂组相似。
从剂量1至数据截止日期,BNT162b2组和安慰剂组中报告至少1起AE的最初的6610名参与者与剂量2后1个月相应组别中的相似(表14)。从剂量2后1个月至数据截止日期,另有4名年轻组中的参与者(BNT162b2组中有3名,安慰剂组中有1名)和另有10名年长组中的参与者(BNT162b2组中有3名,安慰剂组中有7名)报告了至少1起AE。任何组中没有报告其他相关AE、严重AE、SAE或导致退出的AE。
Figure GDA0004051824180002821
所有参与者-2/3期
从剂量1至数据截止日期,BNT162b2组中报告了至少1起AE的总体参与者数比安慰剂组的多。在两组中,严重AE、SAE和导致退出的AE的报告率分别是≤0.8%、0.3%和0.1%。BNT162b2组中有6名参与者和安慰剂组中有4名参与者报告了由于相关AE而终止。
3名3期参与者死亡:BNT162b2组中1名参与者和安慰剂组中2名参与者。BNT162b2组中死亡的参与者经历了动脉硬化的SAE,其被研究者评价为与研究干预无关。
在年轻组中,BNT162b2组和安慰剂组中报告了至少1起AE的参与者数分别为1920(18.1%)和880(8.3%)。在年长组中,BNT162b2组和安慰剂组中报告了至少1起AE的参与者数分别为1166(14.9%)和582(7.4%)。
不良事件的分析-2/3期
按系统器官类别和首选语的不良事件-2/3期
最初的6610名参与者-2/3期
此项目中没有鉴定到1级(tier)AE。
从剂量1至剂量2后1个月,没有报告2级AE(定义为任意疫苗组[PT水平]的事件率≥1.0%)。
至剂量2后1个月报告的大多数AE总体上为反应原性以及在全身性疾病及给药部位各种反应(BNT162b2组有81[2.4%],安慰剂组有57[1.7%])、肌肉骨骼和结缔组织疾病(BNT162b2组有81[2.4%],安慰剂组有56[1.7%])、感染和侵染(BNT162b2组有56[1.7%],安慰剂组有48[1.5%])以及胃肠道疾病(BNT162b2组有54[1.6%],安慰剂组有41[1.2%])的SOC中(表15)。在年轻BNT162b2组中,这些SOC中的AE率是:全身性疾病及给药部位各种反应(54[3.0%])、肌肉骨骼和结缔组织疾病(53[3.0%])、感染和侵染(31[1.7%])以及胃肠道疾病(32[1.8%])。在年长BNT162b2组中,这些SOC中的AE率是:全身性疾病及给药部位各种反应(27[1.8%])、肌肉骨骼和结缔组织疾病(28[1.8%])、感染和侵染(25[1.6%])以及胃肠道疾病(22[1.4%])。
在BNT162b2组中,最频繁报告的按PT的AE是注射部位疼痛(30[0.9%])、头痛(30[0.9%])和疲劳(27[0.8%])(表15),并且在这段期间(从剂量1至剂量2后1个月),大多数这些AE在电子日记的1周报告期内报告。这些PT的大多数报告于年轻组中:头痛(21[1.2%])和疲劳(17[1.0%])。注射部位疼痛的报告频率在年轻组(16[0.9%])和年长组(14[0.9%])中相似。
在BNT162b2组中,有10名(0.3%)参与者报告了淋巴结病AE:年轻组中有6名,年长组中有4名,而安慰剂组没有;1名(0.1%)是男性,9名(0.5%)是女性。淋巴结病的AE发生在手臂和颈部区域(腋窝、左腋窝、左锁骨旁、左锁骨上、双侧宫颈或未指定的淋巴结)。疫苗接种后2至4天内报告了大多数淋巴结病事件(疫苗接种后8天报告了2起事件)。其中5起事件持续≤4天,3起事件持续12-16天,并且2起事件在数据截止时仍在持续。
在年轻组中,剂量1后13天,各有1名参与者(BNT162b2组)报告了血管性水肿AE(两只眼睛)和超敏反应(过敏发作[在本报告时无其他信息],与研究干预无关),并且有1名参与者(安慰剂组)报告了药物超敏反应(口服青霉素反应)AE。这些实践都被研究者评价为与研究干预无关。年轻BNT162b2组中有3名参与者报告了阑尾炎,而年长安慰剂组有1名参与者患有穿孔性阑尾炎;这些都被研究者评价为与研究干预无关。
Figure GDA0004051824180002831
Figure GDA0004051824180002841
Figure GDA0004051824180002851
Figure GDA0004051824180002861
Figure GDA0004051824180002871
Figure GDA0004051824180002881
Figure GDA0004051824180002891
Figure GDA0004051824180002901
Figure GDA0004051824180002911
Figure GDA0004051824180002921
所有参与者-2/3期
截至数据截止日期,对于所有36,855名参与者,BNT162b2组中的共121名(0.7%)参与者和安慰剂组中的共51名(0.3%)参与者有至少1个未编码术语。结果,根据SOC和PT汇总的其他AE表中也存在未编码的术语。
从剂量1至数据截止日期,与安慰剂组(1462[7.9%])相比,BNT162b2组中报告至少1起AE的总体参与者数更多(3086[16.8%])。从剂量1至数据截止日期,所有参与者报告的大多数AE是反应原性和在全身性疾病及给药部位各种反应(BNT162b2组有1941[10.5%],安慰剂组有438[2.4%])、肌肉骨骼和结缔组织疾病(BNT162b2组有742[4.0%],安慰剂组有227[1.2%])以及神经系统疾病(BNT162b2组有567[3.1%],安慰剂组有251[1.4%])的SOC中。
在BNT162b2组中,最频繁报告的按PT的AE是注射部位疼痛(1222[6.6%])、发热(504[2.7%])、疲劳(481[2.6%])、头痛(470[2.6%])、寒战(458[2.5%])和肌痛(454起[2.5%])。这些PT的大多数报告于年轻组中:注射部位疼痛(787[7.4%])、发热(351[3.3%])、疲劳(309[2.9%])、头痛(303[2.9%])、寒战(316[3.0%])和肌痛(304[2.9%])。
除了最初的6610名参与者之外,与反应原性相关的事件不再使用电子日记来报告,而是报告为AE。因此,进行了事后(post hoc)分析,以评价在从剂量1至数据截止日期的总体参与者中观察到的AE失衡,其在从剂量1至剂量2后1个月的最初的6610名参与者中没有被观察到,是否归因于反应原性事件。分析检查了每个剂量后7天内报告的AE,其代表了反应原性报告期。该时间段被选择的原因是在全身性疾病及给药部位各种反应、肌肉骨骼和结缔组织疾病以及神经系统疾病的SOC中报告了许多AE,其中包含与反应原性事件一致的AE,并且如果它们在这个时间段内发生而不是在每个剂量后最多一个月发生时,可以仅归因于反应原性。
从剂量1至剂量1后7天(数据截止日期),BNT162b2组中有1494名(8.1%)参与者报告了至少1起AE,其占截至数据截止日期报告了至少1起AE的3086名[16.8%]参与者总数的大约一半。在安慰剂组中,从剂量1至剂量1后7天,有555名(3.0%)参与者报告了至少1起AE,而截至数据截止日期报告至少1起AE的总数为1462名(7.9%)参与者。
从剂量2至剂量2后7天(数据截止日期),BNT162b2组中有1165名(6.3%)参与者报告了至少1起AE,其占截至数据截止日期报告了至少1起AE的3086名[16.8%]参与者总数的大约38%。从剂量2至剂量2后7天,安慰剂组中报告AE的参与者数比BNT162b2组的少。在安慰剂组中,从剂量2至剂量2后7天,268名(1.5%)参与者报告了至少1起AE,而截至数据截止日期报告至少1起AE的总数为1462名(7.9%)参与者。
从剂量1至剂量1后7天,报告了在全身性疾病及给药部位各种反应的SOC中的AE(BNT162b2组有1127[6.1%],安慰剂组有251[1.4%]),其占截至数据截止日期报告至少1起在此SOC中的AE的参与者总数的一半以上(BNT162b2组有1941[10.5%],安慰剂组有438[2.4%])。肌肉骨骼和结缔组织疾病(BNT162b2组有252[1.4%],安慰剂组有76[0.4%])以及神经系统疾病(BNT162b2组有220[1.2%],安慰剂组有115[0.6%])也经常被报告,其占报告这些SOC中的AE的参与者总数的较小比例。
在BNT162b2组中,从剂量1至剂量1后7天,最频繁报告的按PT的AE是注射部位疼痛(881[4.8%])、疲劳(231[1.3%])、头痛(181[1.0%])、肌痛(147[0.8%])、发热(110[0.6%])和寒战(100[0.5%])。这些PT的大多数报告于年轻组中:注射部位疼痛(566[5.3%])、疲劳(153[1.4%])、头痛(118[1.1%])、肌痛(99[0.9%])、发热(82[0.8%])和寒战(75[0.7%])。从剂量1至剂量1后7天,报告的注射部位疼痛(881[4.8%])占报告此PT的AE的参与者总数的大比例(1222[6.6%])。
从剂量2至剂量2后7天,报告了在全身性疾病及给药部位各种反应(BNT162b2组有828[4.5%],安慰剂组有93[0.5%])、肌肉骨骼和结缔组织疾病(BNT162b2组有377[2.0%],安慰剂组有38[0.2%])以及神经系统疾病(BNT162b2组有294[1.6%],安慰剂组有40[0.2%])的SOC中的AE。从剂量2至剂量2后7天,报告的肌肉骨骼和结缔组织疾病和神经系统疾病占这些SOC中报告至少1起AE的参与者总数的至少一半。
在BNT162b2组中,从剂量2至剂量2后7天,最频繁报告的按PT的AE是发热(375[2.0%])、寒战(327[1.8%])、注射部位疼痛(313[1.7%])、肌痛(282[1.5%])、头痛(258[1.4%])和疲劳(227[1.2%])。这些PT的大多数报告于年轻组中:发热(251[2.4%])、寒战(216[2.0%])、肌痛(185[1.7%])、注射部位疼痛(183[1.7%])、头痛(154[1.5%])和疲劳(134[1.3%])。从剂量2至剂量2后7天,报告的大多数这些PT的AE占报告这些PT的AE的参与者总数的至少一半:发热(504[2.7%])、寒战(458[2.5%])、肌痛(454[2.5%])、头痛(470[2.6%])和疲劳(481[2.6%])。
总体而言,从剂量1至剂量1后7天,以及从剂量2至剂量2后7天,报告的AE很大程度上归因于反应原性事件。对于BNT162b2组比安慰剂组总体上观察到的AE率更高,这个观察结果提供了合理的解释。
从剂量1至数据截止日期,BNT162b2组共有44名(0.2%)参与者报告了淋巴结病的AE,包括最初的6610名参与者中的报告(10名[0.3%])。截至数据截止日期,BNT162b2组中34名其他参与者和安慰剂组中4名其他参与者报告了淋巴结病的AE。在BNT162b2组中,年轻组中34名(0.3%)参与者和年长组中10名(0.1%)参与者报告了淋巴结病,而安慰剂组有4名(0.0%)(年轻组的3名和年长组的1名)。淋巴结病主要发生在手臂和颈部区域,大多数事件报告在左腋窝淋巴结。大多数淋巴结病事件发生在剂量2后,剂量1或剂量2后≤3天,严重程度为1级或2级,至数据截止日期48起事件中的32起已消退。在年轻BNT162b2组的1名参与者中,1级淋巴结病(右腋窝淋巴结肿大)为即时AE,发生于剂量1后并在数据截止日期时一直持续。
在年轻组中,BNT162b2组(SAE)和安慰剂组中各有1名参与者报告了疑似COVID-19的AE。
在BNT162b2组中,6名参与者报告了经评价与研究干预相关的免疫反应(疫苗反应或全身疫苗反应[截至此报告时当前尚无其他信息])。除安慰剂组的1名参与者的药物超敏反应外,BNT162b2组中有3名参与者也报告了药物超敏反应。BNT162b2组中有1名参与者的药物超敏反应(过敏反应)被评估为是相关的,而BNT162b2组中有2名参与者的药物超敏反应(对安乃近(dipyrone)的药物过敏或过敏反应)被认为与研究干预无关。
BNT162b2组中有19名(0.1%)参与者(年轻组有14名,年长组有5名)报告了至少1例疫苗并发症(大多数是反应原性事件的描述),安慰剂组中没有。所有这些被评价为与研究干预相关并且包括:疫苗接种后肌痛、发烧、身体酸痛、头痛、寒战、恶心、不良反应、关节痛(arthralgia)、疲劳、酸痛(ache)、肌肉酸痛、乏力(malaise)和左肩酸痛(sore leftshoulder)。大多数事件是1级,始于疫苗接种的3天内,持续1-3天。
在最初的6610名参与者中,除了4名患有阑尾炎的参与者(包括安慰剂组中1名患穿孔性阑尾炎的参与者)外,对于从剂量1至数据截止日期的所有参与者,BNT162b2组中另有3名参与者报告了阑尾炎(包括1名穿孔性阑尾炎的参与者)。因此,BNT162b2组中共有6名参与者报告了阑尾炎(包括1例穿孔性阑尾炎),其中,年轻组中有4名和年长组中有2名,安慰剂组(年长组)中有1名参与者报告了阑尾炎(有穿孔)。所有事件均为严重或危及生命的,但是都被评价为与研究干预无关。
按系统器官类别和首选语的不良事件-2/3期
最初的6610名参与者-2/3期
从剂量1至剂量2后1个月,BNT162b2组中有135名(4.1%)参与者报告了至少1起被研究者评价为相关的AE,安慰剂组中有68名(2.1%)参与者报告了至少1起相关的AE。大多数相关的AE是反应原性事件并且在全身性疾病及给药部位各种反应(general disordersand administration site conditions)的SOC中(BNT162b2组中有69[2.1%],安慰剂组中有40[1.2%])。
10名参与者中有8名报告的淋巴结病的AE被研究者评价为与研究干预相关。
所有参与者-2/3期
从剂量1至数据截止日期,BNT162b2组中有2303名参与者(12.5%)和安慰剂组中有593名(3.2%)参与者报告了至少1起被研究者评价为相关的AE,包括最初的6610名参与者的相关的AE。大多数相关的AE是反应原性事件并且在全身性疾病及给药部位各种反应的SOC中(BNT162b2组中有1869[10.1%],安慰剂组中有365[2.0%])。
BNT162b2组中的44名参与者中的30名和安慰剂组中的4名参与者中的2名报告的淋巴结病的AE被研究者评价为与研究干预相关。
在BNT162b2组中,根据在此报告时当前可用的所有信息:
6名参与者报告了被评价为与研究干预相关的免疫反应(疫苗反应或全身性疫苗反应)。在大多数参与者中,免疫反应发生在剂量2后1或2天,持续了2或3天(1名参与者在数据截止日期时正在恢复),严重程度为1级或2级。在1名参与者中,免疫反应(全身性疫苗反应)发生在剂量1后2天(等级1)并持续了2天,以及发生在剂量2后1天(等级3)并持续了4天。
1名参与者报告了药物超敏反应(过敏反应)、荨麻疹(过敏反应)和头痛的AE,均为2级,并被研究者评价后与研究干预相关。药物超敏反应和荨麻疹的AE均发生在剂量1后1天内,并在同一天消退。头痛的AE发生在疫苗接种后第二天,并持续了4天。
即时不良事件-2/3期
最初的6610名参与者-2/3期
剂量1后,≤0.3%的参与者报告了即时AE。大多数即时AE在全身性疾病及给药部位各种反应的SOC中,并且是与注射部位反应(注射部位疼痛、注射部位红斑和注射部位肿胀)相关的事件。
剂量2后,各组中有0.1%的参与者报告了即时AE。大多数即时AE在全身性疾病及给药部位各种反应的SOC中,并且是与注射部位反应(注射部位疼痛、注射部位感觉过敏(hyperaesthesia)和注射部位瘙痒)相关的事件。
BNT162b2的任一剂量后,没有参与者报告对疫苗的即时过敏反应。
所有参与者-2/3期
剂量1后,各组中有0.3%的参与者报告了即时AE。大多数即时AE在全身性疾病及给药部位各种反应的SOC中,并且大多数事件与注射部位反应相关,注射部位疼痛最频繁报告(BNT162b2组中有40名[0.2%]参与者,安慰剂组中有27名(0.1%)参与者)。1名参与者在剂量1后发生淋巴结病的即时AE。所有其他即时AE各由BNT162b2组中的≤3名参与者报告。
剂量2后,各组中有0.1%的参与者报告了即时AE。大部分即时AE在全身性疾病及给药部位各种反应的SOC中,并且大多数事件是注射部位反应,注射部位疼痛最频繁报告(BNT162b2组中有10名[0.1%]参与者,安慰剂组中有7名[0.0%]参与者)。所有其他即时AE各由≤2名参与者报告。
BNT162b2的任一剂量后,没有参与者报告对疫苗的即时过敏反应。
严重的或危及生命的不良事件-2/3期
最初的6610名参与者-2/3期
从剂量1至剂量2后1个月,严重AE由BNT162b2组中的35名(1.1%)参与者和安慰剂组中的19名(0.6%)报告。
从剂量1至剂量2后1个月,BNT162b2组中有4名(0.1%)参与者和安慰剂组中有7名(0.2%)参与者具有至少1起危及生命的AE。这些事件都被研究者评价为与研究干预无关。
在BNT162b2组中:
2期的1名参与者具有严重的胃腺癌事件(SAE),这在之前的节中已进行了讨论。
2名参与者具有严重的阑尾炎事件:一起事件始于剂量1后9天,另一起事件始于剂量2后15天(SAE),其被研究者评价为与研究干预无关。
1名参与者在剂量1后7天具有阑尾炎和腹腔脓肿的2起危及生命的AE(均为SAE);这2起事件均被研究者评价为与研究干预无关。
1名参与者具有8起严重事件:贫血、充血性心力衰竭、腹腔粘连(abdominaladhesion)、败血症、低钾血症、精神状态改变、急性肾损伤和急性呼吸衰竭(所有都是SAE)。这些事件均被研究者评价为与研究干预无关。
所有参与者-2/3期
截至数据截止日期报告的严重AE,包括针对最初的6610名参与者讨论的那些,由BNT162b2组中的142名[0.8%]参与者和安慰剂组中的70名(0.4%)参与者报告。其他事件包括:
BNT162b2组中有2名参与者具有阑尾炎的严重事件:一起事件始于剂量1后17天,另一起事件始于剂量1后11天(SAE),其被研究者评价为与研究干预无关。
BNT162b2组中有1名参与者在剂量1后同一天具有穿孔性阑尾炎的严重事件(SAE),其被研究者评价为与研究干预无关。
从剂量1至数据截止日期,BNT162b2组中的9名参与者(0.0%)和安慰剂组中的12名参与者(0.1%)报告了至少1起危及生命的AE,包括针对最初的6610名参与者讨论的那些。这些事件均被研究者评价为与研究干预无关。
死亡、严重不良事件、安全性相关的参与者退出以及其他重大不良事件-2/3期死亡-2/3期
截至数据截止日期2020年10月6日,有3名3期参与者(BNT162b2组中有1名,安慰剂组中有2名)死亡。这些死亡都没发生在最初的6610名参与者中(表14),并且均被研究者评价为与研究干预无关。
年长BNT162b2组中有1名参与者在剂量1后4天经历了动脉硬化的4级SAE,并在剂量1后15天死亡。
年轻安慰剂组中有1名参与者在剂量1后8天经历了无法评价事件的4级SAE(未知来源[截至此报告时当前尚无其他信息]),并于同一天死亡。
年长安慰剂组中有1名参与者在剂量2后15天经历了出血性卒中的4级SAE,并在剂量2后35天死亡。
死亡的叙述
为截至数据截止日期(2020年10月6日)死亡的参与者提供了叙述。
严重不良事件-2/3期
最初的6610名参与者-2/3期
从剂量1至剂量2后1个月,报告了至少1起SAE的参与者数在BNT162组(18名[0.5%])和安慰剂组(17名[0.5%])中相似(表16)。这些SAE均被研究者评价为与研究干预无关。大多数按PT的SAE仅由1名参与者报告(3名参与者报告了阑尾炎的SAE)。
从剂量1至剂量2后1个月,报告了至少1起SAE的参与者数在年轻组和年长组中相似。
在BNT162b2组中:
2名参与者具有阑尾炎的SAE:一起事件始于剂量1后9天,另一起事件始于剂量2后15天。
剂量1后7天,1名参与者具有分别的阑尾炎和腹腔脓肿的SAE,这被认为是威胁生命的。两起事件均持续了17天。
剂量1后17天,1名参与者具有8起SAE:贫血、充血性心力衰竭、腹腔粘连、败血症、低钾血症、精神状态改变、急性肾损伤和急性呼吸衰竭(均严重)。腹腔粘连和急性呼吸衰竭的SAE分别持续了2天和14天。所有其他SAE持续了19天。
剂量2后9天,1名参与者因蜜蜂蜇伤而具有过敏反应的SAE,其被认为是危及生命的。该事件在同一天消退。
在安慰剂组中,1名参与者在剂量2后13天和15天分别具有穿孔性阑尾炎和腹膜炎的SAE(均严重)。这两起事件分别持续了4天和5天。
从剂量2后1个月至数据截止日期,最初的6610名参与者都没有报告其他SAE。
Figure GDA0004051824180002961
Figure GDA0004051824180002971
Figure GDA0004051824180002981
所有参与者-2/3期
从剂量1至数据截止日期,包括针对最初的6610名参与者所讨论的那些,报告了至少1起SAE的参与者数在BNT162b2组(63名[0.3%])和安慰剂组(49名[0.3%])中相似(表17)。其他事件包括:
在BNT162b2组中,年轻组中有2名参与者的各自SAE被研究者评价为与研究干预有关:
剂量1后13天,1名参与者报告了淋巴结病(右腋窝)的SAE,截至数据截止时尚未消退。参与者是48岁的女性,具有湿疹和局部使用克立硼罗(crisaborole)的相关病史,在其左三角肌给药BNT162b2疫苗,并且患有右腋窝疼痛和淋巴结病。她的右臂没有受伤,没有发烧,并且没有相似事件的病史。她的WBC正常,淋巴细胞计数正常,并且右腋窝超声显示4个增大的淋巴结(最大2.5×1.1×2.4cm)。进行了活检,并且报告为正常,没有淋巴瘤或其他癌症的标志物。计划进行3个月的肿瘤学随访(并可能重复超声检查)。
1名参与者在剂量2后具有与疫苗给药相关的肩部受伤的SAE(SIRVA,错误地给药到肩关节囊内或附近),其在数据截止时正在恢复。
从剂量1至数据截止日期,BNT162b2组中共有6名参与者报告了阑尾炎的SAE。这些阑尾炎的SAE中的三起发生在最初的6610名参与者中。以下描述了另外3起阑尾炎SAE,以及被评价为与BNT162b2组的研究干预无关的其他指定SAE:
2名参与者具有阑尾炎的SAE:1起事件始于剂量1后17天并持续了3天(年轻组),另一起事件始于剂量1后11天并持续了5天(年长组)。
在剂量1后的同一天,年长组中有1名参与者具有穿孔性阑尾炎的SAE,其在数据截止时正在消退。
在剂量2后的同一天,年轻组中有1名参与者具有疑似COVID-19的SAE,其持续了6天。鼻拭子结果为阴性。
Figure GDA0004051824180002982
Figure GDA0004051824180002991
Figure GDA0004051824180003001
Figure GDA0004051824180003011
严重不良事件的叙述-2/3期
提供关于3期参与者的叙述,这些参与者报告了被研究者评价为与研究干预相关的SAE,并且完成了从剂量2后1个月至数据截止日期(2020年10月6日)的访视。安全性相关的参与者退出-2/3期
最初的6610名参与者-2/3期
从剂量1至剂量2后1个月,BNT162b2组中的6名(0.2%)参与者和安慰剂组中的5名(0.2%)参与者因AE(表18)而退出,并且,从剂量2后1个月至数据截止日期,没有报告这些参与者的其他退出。
BNT162b2组中关注的退出:
2名参与者因被研究者评价为与研究干预相关的AE而退出。剂量1后8天,年轻组中有1名参与者具有肌痛的AE,其在数据截止时正在恢复。剂量1后2天,年长组中有1名参与者具有皮肤瘙痒的AE和心动过速的AE;这两起事件的持续时间均为1天,并且都严重。
3名参与者各自具有SAE,并退出了研究:年轻组(胃腺癌)和年长组(冠状动脉疾病和冠状动脉夹层)。
安慰剂组中关注的退出:
剂量1后2天,1名参与者(年轻组)因疫苗过敏的AE(研究干预)和红斑疹的AE而退出;两起AE均在18天后消退,并且被研究者评价为与研究干预相关。
年长组中的1名参与者具有被研究者评价为不相关的SAE(冠状动脉闭塞),并退出了研究。
剂量1后10天,年长组中的1名参与者因荨麻疹的AE而退出了研究。该事件在当天消退,并被研究者评价为与研究干预无关。
Figure GDA0004051824180003021
Figure GDA0004051824180003031
所有参与者-2/3期
从剂量1至数据截止日期,BNT162b2组中有18名(0.1%)参与者和安慰剂组中有14名(0.1%)参与者因AE退出了研究。除了针对最初的6610名参与者讨论的退出外,其他退出包括:
剂量1后13天,年轻BNT162b2组中有1名参与者具有被研究者评价为与研究干预有关的淋巴结病(右腋窝)的SAE并退出,其在截至数据截止时尚未消退。
年轻组中有3名参与者(1名BNT162b2和2名安慰剂)在剂量1后怀孕并退出。
剂量1后39天,年轻安慰剂组中有1名参与者的怀孕测试结果呈阳性(怀孕期间的暴露)并退出。
安全性相关的参与者退出的叙述-2/3期
提供至数据截止日期(2020年10月6日)关于具有导致从研究退出的任何AE的2/3期参与者的叙述。
其他重大不良事件-2/3期
没有为本研究的2/3期定义特别关注的AE;但是,在整个研究过程中都对目标医疗事件进行了监控。
其他安全性评价-2/3期
严重的COVID-19疾病-2/3期
在截止日期2020年11月4日的效力中期分析时,所有7例严重的COVID-19病例在安慰剂组中报告。
怀孕-2/3期
截至数据截止日期2020年10月6日,有5名3期参与者报告了怀孕:BNT162b2组中的1名参与者和安慰剂组中的4名参与者。安慰剂组中有1名参与者发生了不完全自发性流产(incomplete spontaneous abortion)。
提供怀孕的叙述。
死亡、严重不良事件、安全性相关的参与者退出以及其他重大不良事件的分析和讨论-2/3期
截至数据截止日期2020年10月6日,BNT162b2组(63[0.3%])和安慰剂组(49[0.3%])中的SAE数量相似。BNT162b2组中有2名参与者报告了被研究者评价为与研究干预相关的SAE。
BNT162b2组(18名[0.1%])和安慰剂组(14名[0.1%])中很少有参与者因AE退出。
有3起死亡(BNT162b2组中有1起,安慰剂组中有2起);这些死亡都被研究者评价为与研究干预无关。
2/3期安全性结论
在所有年龄组中,每个剂量后局部反应的频率通常相似,并且与剂量1后相比,剂量2后全身性事件的频率和严重程度通常增加。局部和全身反应原性事件耐受性良好且短暂(中位持续时间为1.0-2.0天)。
BNT162b2的每个剂量后,年长成年人中的反应原性事件比在年轻成年人中观察到的通常较轻微且频率较低。大多数反应原性事件的严重程度为轻度或中度。没有报告4级事件,除了BNT162b2组中1名参与者的发烧,其始于剂量2后1天并持续了1天。
在6610名参与者中评价的BNT162b2 30μg后的反应原性和AE谱与在1期和2期中BNT162b2 30μg后观察到的安全性谱一致。
BNT162b2组中有16.8%的参与者报告了AE,并且大多数AE的严重程度为轻度或中度。在数据截止日期时,与安慰剂组(7.9%)相比,BNT162b2组中具有AE的参与者数更多,分析后归因于每个剂量后7天内报告为反应原性事件的AE。
在数据截止日期时,BNT162b2组中有2起相关的SAE(与疫苗接种相关的淋巴结病和肩部受伤(SIRVA,错误地给药到肩关节囊内或附近),以及因相关的AE的6起终止。BNT162b2组中的1起死亡(动脉硬化)和安慰剂组中的2起死亡被评价为与研究干预无关。
总体而言,按照剂量给药方案,在剂量2后达1个月进行测量时,30μg BNT162b2耐受性良好。
实施例16:COVID-19疫苗3期研究的结论,达到所有主要效力终点
开展了进行中的3期研究的最终效力分析之后,基于mRNA的COVID-19疫苗BNT162b2达到了研究的所有主要效力终点。对数据的分析表明,在先前没有感染SARS-CoV-2的参与者(第一主要目标)以及先前有和没有感染SARS-CoV-2的参与者(第二主要目标)中的疫苗有效率为95%(p<0.0001),每种情况从第一剂量后28天、第二剂量后7天进行测量。第一主要目标分析基于170例COVID-19,其中在安慰剂组中观察到162例COVID-19,而在BNT162b2组中观察到8例COVID-19。效力在年龄、性别、种族和民族人口统计学上是一致的。在65岁以上的成年人中观察到的效力超过94%。
试验中观察到10例严重的COVID-19病例,其中9例发生在安慰剂组,1例发生在BNT162b2疫苗接种组。没有报告与疫苗相关的严重安全性问题。对来自最终分析的非盲反应原性数据(由2/3期研究中的至少8,000名18岁及以上参与者的随机子集组成)的回顾表明,疫苗耐受性良好,大多数征求的不良事件在疫苗接种后不久消退。第一剂量或第二剂量后,频率大于或等于2%的唯一3级(严重)征求的不良事件是剂量2后的3.8%的疲劳和2.0%的头痛。与先前的分享的结果一致,在疫苗接种后,年长的成年人倾向于报告较少且较轻微的征求的不良事件。SARS-CoV-2阳性参与者的局部反应原性谱与总体反应原性子集一致;类似地,将AE数据与“所有受试者”的进行比较,没有迹象表明基线阳性参与者中的安全性谱较差。确实,没有迹象表明基线阳性参与者中的安全性谱较差;因此,无论COVID-19病史或SARS-CoV-2血清学状态如何,都可以使用BNT162b2。
此外,已达到美国食品和药物管理局(FDA)对于紧急使用授权(EUA)所要求的安全性里程碑。
这项达到最终效力分析标志的首次全球试验的结果表明,在第一次30μg剂量后,可以很快实现针对COVID-19的高的保护率,突出了BNT162提供早期保护的潜力。总结:
·初步效力分析表明,从第一剂量后28天开始,BNT162b2针对COVID-19的有效率为95%;在170例确诊的COVID-19病例中进行了评价,安慰剂组中观察到162例,疫苗组中有8例
·效力在年龄、性别、种族和民族人口统计学上是一致的;在65岁以上成年人中观察到的效力94%以上
·已达到美国食品和药物管理局(FDA)对于紧急使用授权(EUA)所要求的安全性数据里程碑
·数据表明疫苗在所有群体中均耐受性良好,超过43,000名参与者参加;没有观察到严重的安全性问题;频率超过2%的唯一3级不良事件是疲劳(3.8%)和头痛(2.0%)。
实施例17:剂量1后所有确诊COVID-19病例
在关于可评估效力群体的第一主要终点分析中没有捕捉到一些确诊COVID-19病例,因为它们发生在剂量2后不到7天,或者因为它们发生在从可评估效力群体中排除的或者在疫苗接种方案之前或期间具有感染证据的参与者中。
表19中考虑了剂量1后任意时间发作的COVID-19的所有报告,其提供剂量1所有可用效力(改良意向性治疗(modified intention-to-treat))群体中所有参与者病例的总结,不管是疫苗接种方案之前或期间的感染证据。这些参与者中,与安慰剂组中的275例相比,BNT162b2组中有50例COVID-19发生在剂量1后(表19)。值得注意的是,在BNT162b2组中,大多数病例发生在剂量2前。针对剂量1后发生的确诊COVID-19估计的VE为82%(双侧95%CI:75.6%,86.9%),针对剂量1后但剂量2前发生的确诊COVID-19的估计的VE为52.4%(双侧95%CI:29.5%,68.4%)。
Figure GDA0004051824180003051
图100中可以很容易看出发生早期保护,其显示基于剂量1所有可用的效力(改良意向性治疗)群体,所有疫苗接种的参与者中,剂量1后首次发生COVID-19的累积发生率。对于BNT162b2和安慰剂,疾病发作看起来相互追踪(track together),直至剂量1后大约14天,曲线在这个点偏离,病例在安慰剂组中稳步累积,而在BNT162b2组中几乎保持平坦。
在安慰剂和疫苗受者中,至剂量1后14天,COVID-19病例的累积发生率随时间开始偏离,5天的估计的中值孵育期后大约9天,这表明免疫(immunization)的部分保护性功效的早期出现。在剂量1和剂量2的间隔中,观察到的疫苗效力为52%,并且剂量2后的前7天中,其为91%,达到对于剂量2后至少7天发作的COVID-19的全部效力。
实施例18:次要效力结果-最终分析
对于剂量2后14天内发生COVID-19的疫苗效力-最终分析
疫苗接种之前没有感染证据的参与者
对于这个效力终点,在剂量2后14天之前的任意疾病访视(illness visit)时具有阳性或未知NAAT结果的参与者,没有包括在效力评估内。
疫苗接种方案之前和期间没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少14天发生的确诊COVID-19的VE为94.2%,BNT162b2和安慰剂组中分别有8和139例。真实VE大于30%的后验概率为>99.99%,满足为这个终点预先指定的成功标准>98.6%。疫苗效力的95%可信区间为88.7%-97.2%,表明真实VE为至少88.7%,考虑可用数据的概率为97.5%。
疫苗接种之前有或没有感染证据的参与者
疫苗接种方案之前和期间有或没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少14天发生的确诊COVID-19的VE为94.4%,BNT162b2和安慰剂组分别有8和144例。真实VE大于30%的后验概率为>99.99%,满足为这个终点预先指定的成功标准>98.6%。疫苗效力的95%可信区间为89.1%-97.3%,表明真实VE为至少89.1%,考虑所有可用数据的概率为97.5%。
对于严重COVID-19病例的疫苗效力-最终分析
针对严重COVID-19的效力(剂量2后≥7天)
疫苗接种方案之前和期间没有感染证据的参与者
对于这个效力终点,效力评估中没有包括剂量2后7天之前的在任意疾病访视(illness visit)时具有阳性或未知的NAAT结果的参与者。
疫苗接种方案之前和期间没有严重SARS-CoV-2感染证据的参与者中,针对剂量2后至少7天发生的严重COVID-19的估计的VE为66.4%,BNT162b2和安慰剂组中分别有1和3例。真实疫苗效力大于30%的后验概率为74.29%,不满足为这个终点预先指定的成功标准>98.6%,这是由于在该研究中剂量2后观察到的严重病例数目较少。
疫苗接种方案之前和期间有和没有感染证据的参与者
剂量2后7天前有或没有严重SARS-CoV-2感染证据的参与者中,针对剂量2后至少7天发生的严重COVID-19的VE为66.3%,BNT162b2和安慰剂组分别有1和3例。真实疫苗效力大于30%的后验概率为74.19%。
剂量1后确诊的所有严重COVID-19病例-所有可用群体
在所有可用效力群体的参与者中,与安慰剂组中的9例相比,BNT162b2组中在剂量1后发生1例COVID-19。针对剂量1后发生的严重COVID-19的估计的VE为88.9%(双侧95%CI:20.1%,99.7%),针对剂量2后至少7天发生的严重COVID-19的估计的VE为75.0%。
针对严重COVID-19的效力(剂量2后≥14天)
疫苗接种方案之前和期间没有感染证据的参与者(14天)-严重
疫苗接种方案之前和期间没有严重SARS-CoV-2感染证据的参与者中,针对剂量2后至少14天发生的严重COVID-19的估计的VE为66.4%,BNT162b2和安慰剂组中分别有1和3例。真实疫苗效力大于30%的后验概率为74.32%。
疫苗接种方案之前和期间有或没有感染证据的参与者(14天)-严重
疫苗接种期之前和期间有或没有严重SARS-CoV-2感染证据的参与者中,针对剂量2后至少14天发生的严重COVID-19的VE为66.3%,BNT162b2和安慰剂组中分别有1和3例。真实疫苗效力大于30%的后验概率为74.18%。
按照CDC定义,对于COVID-19病例的疫苗效力-最终分析
基于CDC定义的症状,针对COVID-19的效力(剂量2后≥7天)
疫苗接种方案之前和期间没有感染证据的参与者-CDC定义的-7天
疫苗接种方案之前和期间没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少7天发生的CDC定义的COVID-19的VE为95.1%(双侧95%CI:90.2%,97.9%),BNT162b2和安慰剂组中分别有8和165例。
疫苗接种方案之前和期间有和没有感染证据的参与者-CDC定义的-7天
疫苗接种方案之前和期间有和没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少7天发生的CDC定义的COVID-19的VE为94.7%(双侧95%CI:89.8%-97.6%),BNT162b2和安慰剂组中分别有9和172例。
针对基于CDC定义的COVID-19症状的效力(剂量2后≥14天)
疫苗接种方案之前和期间没有以及有或没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少14天发生的CDC定义的COVID-19的VE与剂量2后至少7天发生的相似。
实施例19:效力结论-最终分析
在最终效力分析中,疫苗接种方案之前和期间没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少7天发生的确诊COVID-19的VE为95.0%,与安慰剂组中的162名COVID-19病例相比,BNT162b2组中有8例COVID-19病例。疫苗效力的95%可信区间为90.3%-97.6%。对于第二主要终点,疫苗接种方案之前和期间有和没有SARS-CoV-2感染证据的参与者中,针对剂量2后至少7天发生的确诊COVID-19的VE为94.6%,BNT162b2和安慰剂组中分别有9例和169例。真实VE大于30%的后验概率>99.99%,满足为这个终点预先指定的成功标准>98.6%。疫苗效力的95%可信区间为89.9%-97.3%,表明真实VE为至少89.9%,考虑所有可用数据的概率为97.5%。
关于第一主要效力终点观察到的VE在所有年龄、性别、种族/民族和国家亚组中非常高,因为在所有亚组中VE>93%,除了“所有其他”种族组(89.3%VE)和巴西(87.7%VE)。
剂量1后总计发生10例严重COVID-19,与安慰剂组中的9例相比,BNT162b2组中有1例。
所有参与者(不管是疫苗接种方案之前或期间的感染证据)中,与安慰剂组中的275例相比,BNT162b2组中在剂量1后发生50例COVID-19,表明针对剂量1后发生确诊COVID-19的估计的VE为82%(95%CI:75.6%,86.9%)。
从累积发生率曲线可以很容易地看出发生早期保护,其显示,对于BNT162b2和安慰剂,直至剂量1后大约14天,疾病发作轨迹相关联(track conjointly),曲线在这个点偏离,病例在安慰剂组中稳步累积,而在BNT162b2后几乎保持平坦。
总之,最终效力结果显示30μg的BNT162b2在没有先前SARS-CoV-2感染证据的参与者中提供针对COVID-19的保护,包括跨人口学的亚组,主要在安慰剂组中观察到严重病例。
以下表20和21示出评估的人口学群体的详情。
Figure GDA0004051824180003071
Figure GDA0004051824180003081
Figure GDA0004051824180003082
Figure GDA0004051824180003091
实施例20:青少年群体对用BNT162b2免疫的应答的一些观察结果
在实施例13-19所述的临床试验中,在青少年群体中观察到了以下情况。
青少年中的局部反应
12-15岁的青少年(N=100;BNT162b2组中49名,安慰剂组中51名)提供反应原性亚组的初步数据,并且分别进行分析。在这个年龄组中,注射部位的疼痛是BNT162b2组中最频繁提示的局部反应,剂量1后,与安慰剂组的17.6%相比,71.4%的参与者有报告。剂量2后,BNT162b2组和安慰剂组中疼痛的发生率降低(降至58.7%vs 8.7%)。BNT162b2组中,剂量1后1名参与者以及剂量2后2名参与者报告了发红,而在安慰剂组中任何剂量后都没有报告。BNT162b2组中剂量1后2名参与者以及剂量2后3名参与者报告了肿胀,而安慰剂组中剂量1后1名参与者报告了肿胀,剂量2后没有报告。大部分局部反应的严重程度为轻度至中度。报告了两例严重反应,都在BNT162b2组中:在注射部位的严重发红和严重疼痛。
青少年中的全身性反应
12-15岁的青少年(N=100;BNT162b2组中49名,安慰剂组中51名)提供反应原性亚组的初步数据,并且分别进行分析。大部分全身性事件(除了呕吐和腹泻,这在所有组的发生率低)在BNT162b2组中报告的发生率比安慰剂组中更高。但是,剂量1后与剂量2后相比,没有发生率或严重性增加的明显趋势。在这个年龄组中,与剂量2相比,剂量1后最频繁的提示的的全身性事件(剂量1vs剂量2)为:
·疲劳:BNT162b2(49.0%vs 50.0%),相比安慰剂(25.5%vs 6.5%)
·头痛:BNT162b2(42.9%vs 45.7%),相比安慰剂(35.3%vs 21.7%)
·肌肉疼痛:BNT162b2(22.4%vs 30.4%),相比安慰剂(13.7%vs 4.3%)
·寒战:BNT162b2(30.6%vs 28.3%),相比安慰剂(7.8%vs 8.7%)
·关节疼痛:BNT162b2(12.2%vs 17.4%),相比安慰剂(9.8%vs 6.5%)
·发烧:BNT162b2(14.3%vs 19.6%),相比安慰剂(0%vs 0%)
·呕吐:两个组中报告的频率相似,并且在每个剂量后相似
·腹泻:两个组中报告的频率相似,并且在每个剂量后相似。
青少年中的大部分全身性事件的严重程度为轻度至中度。两个组中的严重事件频率较低,在任何剂量后不多于1或2名参与者中发生。
青少年组中解热/止疼药物的使用,剂量2后与剂量1相比少量增加(30.6%vs41.3%),并且高于安慰剂组中的使用(9.8%vs 13%)。
总之,如在年长年龄组中观察到的(例如,大于16岁,如16-85岁),反应原性主要是轻度至中度的,并且对12-15岁的青少年剂量给药后短暂存在,并且不良事件谱并不提示任何严重安全性问题。
以下实施例21-24进一步证实,用本文所述的mRNA组合物(包括,例如BNT162b1和BNT162b2),根据本文所述的各种剂量给药方案(例如,包括诸如20μg、10μg、3μg等在内的30μg以下的一个或多个剂量的给药剂量方案),能够实现中和抗体应答和/或细胞介导的免疫应答。此外,实施例21-24中提供的数据进一步证实,用一个或多个3μg或以上的剂量,给药某些本文所述的mRNA组合物(包括,例如BNT162b1和BNT162b2),诱导了针对SARS-CoV-2的免疫应答(例如,如本文所述)。
本领域技术人员阅读本公开后会理解,其证实了,给药本文所述的各种mRNA组合物能够诱导免疫应答,包括针对SARS-CoV-2的中和抗体;其还证实了,某些这样的组合物(即,其诱导中和抗体和/或诱导细胞介导的免疫应答,如T细胞应答)能够诱导保护性免疫应答,其减少SARS-CoV-2感染和/或COVID19疾病在生物体中的发生率,特别是包括灵长类生物体(其中它们已经诱导了这样的中和抗体和/或细胞介导的免疫应答),并且还包括人。在一些实施方案中,其还证实,某些这样的组合物(例如,本文所述)不明显诱导疫苗介导的疾病增强,例如,如第一剂量后观察到的严重COVID-19的10个病例中仅一个所证实的。确实,本公开表明,这样的组合物能够有效地对人进行疫苗接种(参见,例如实施例13-19中所示的临床试验结果),例如,针对严重COVID-19疾病。
实施例21:功能性抗体应答的免疫原性研究
在实施例7所述的临床试验中,在BNT162b1或BNT162b2免疫后,在健康的年轻成年人(18-55岁)和年长成年人(56-85岁)中观察到以下情况。在年轻成年人中,间隔21天给药两个剂量的1μg、3μg、10μg、20μg或30μg。在年长成年人中,间隔21天给药两个剂量的20μg。对于剂量组1μg和3μg,直到给药初始剂量后第50天确定年轻成年人队列的功能性抗体数据,对于剂量组10、20和30μg,直到给药初始剂量后第85天确定年轻成年人队列的功能性抗体数据。对于剂量给药BNT162b2的年长成年人,数据直到给药初始剂量后第29天可用。
剂量给药BNT162b1后,年龄在18-55岁的参与者的病毒中和抗体GMT(中和GMT)以及95%置信区间,参见图40。
剂量给药BNT162b2后,年龄在18-55岁的年轻参与者以及年龄在56-85岁的年长参与者的病毒中和抗体GMT(中和GMT)以及95%置信区间,参见图101(50%中和滴度)。
功能性抗体滴度数据从基线的几何平均倍数增加(GMFI)示于图102(BNT162b1)和图103(BNT162b2)。
剂量给药BNT162b1的参与者表现出强的、剂量依赖的抗体应答。在第22天,剂量1后的21天,对于1、10、30和50μg剂量组,病毒中和抗体GMT以剂量依赖的方式增加。在第29天(剂量2后7天),中和GMT表现出强的、剂量水平依赖性的加强应答。在单一的60μg剂量组中,中和GMT保持较低水平,表明需要加强剂量来增加功能性抗体滴度。
在第43天(BNT162b1的剂量2后21天),中和GMT降低(除了1μg剂量水平)。在第43天,病毒中和GMT为COVID-19HCS组的0.7倍(1μg)至3.6倍(50μg)。
COVID-19HCS组包括来自年龄为18-85岁的个体确诊后至少14天(d),并且在个体无症状时获得的38份人COVID-19HCS血清。血清供体主要为有症状感染(35/38)并且1名已经住院。血清从Sanguine Biosciences(Sherman Oaks,CA)、MT Group(Van Nuys,CA)和Pfizer Occupational Health and Wellness(Pearl River,NY)获得。
剂量给药BNT162b2的参与者表现出BNT162b2诱导的强抗体应答。剂量1后21天(第22天)检测到病毒中和GMT,并且到剂量2后7天(第29天),在用≥3μg的BNT162b2免疫的年轻参与者(年龄为18-55岁)以及用20μg的BNT162b2免疫的年长参与者(年龄为56-85岁)中明显增加。在第29天,年轻成年人和年长成年人的20μg剂量水平队列之间的病毒中和GMT相当。1μg BNT162b2的最低治疗剂量在年龄为18-55岁的参与者中引起最小的中和应答。
在第43天(BNT162b2的剂量2后21天),对于3、20和30μg剂量水平,年轻成年人队列中的病毒中和GMT下降。然后,对于年轻成年人剂量组10、20和30μg,中和GMT在第29天和第43天之间,中和GMT保持稳定直至第85天(剂量2后63天),并且是COVID-19HCS组的1.3倍至1.9倍。
该上下文中的血清转换定义为,与基线相比,抗体GMT的最小4倍增加。具有血清转换的参与者的频率示于图104(BNT162b1)和图105(BNT162b2)。
剂量给药剂量1的≥30μg BNT162b1或BNT162b2的所有参与者到剂量2后7天或21天(第29天或第43天)发生血清转换。剂量给药30μg BNT162b2的所有参与者随后直至第85天都保持血清阳性。
实施例22:结合抗体浓度的免疫原性研究
在实施例7所述的临床试验中,在BNT162b1或BNT162b2疫苗接种后,在健康的年轻成年人(18-55岁)和年长成年人(56-85岁)中观察到以下情况。剂量给药BNT162b1的年龄为18-55岁的年轻参与者,在第1天(所有剂量水平)和第22天(所有剂量水平,除了60μg)(n=12/组)剂量给药1、10、30、50或60μg,结合抗体浓度数据直到第43天可用。
剂量给药BNT162b2的参与者,对于在第1天和第22天剂量给药1、3、10、20或30μg的年龄为18-55岁的年轻参与者以及剂量给药20μg的年龄为56-85岁的年长参与者(n=12/组),数据可用。对于年轻参与者剂量组,剂量组1μg和3μg的结合抗体浓度数据直到第50天可用,并且剂量组10、20和30μg的结合抗体浓度的数据直到第85天可用。对于剂量给药BNT162b2的年长参与者,数据直到第29天可用。
剂量给药BNT162b1和BNT162b2后,结合抗体浓度从基线的倍数增加分别示于图106和图107。
剂量1后第21天(第22天),剂量给药BNT162b1的参与者表现出针对SARS-CoV-2刺突(S)蛋白S1亚基的强的、剂量依赖的抗体应答。剂量2后7天(第29天),结合S1的免疫球蛋白(IgG)GMC表现出强的、剂量依赖的加强应答。在60μg剂量组,其仅剂量给药一次,结合S1的IgG GMC保持较低水平,表明需要加强剂量来增加抗体浓度。
在BNT162b1的剂量2后21天(第43天),结合S1的IgG GMC下降(除了1μg剂量组),但是对于所有测试的剂量,明显在COVID-19HSC组的结合S1的IgG GMC之上。
在剂量1后21天(第22天),剂量给药BNT162b2的参与者表现出强BNT162b2诱导的结合S1的IgG应答,体现为剂量依赖的应答仅在1μg和10μg剂量水平之间。到剂量2后7天(第29天),结合S1的IgG GMC表现出明显的加强应答。第29天,在20μg剂量水平下,结合S1的IgGGMC在年轻参与者和年长参与者之间相当。
在第85天(剂量2后63天,10-30μg剂量水平),在所有的剂量水平队列,抗体水平随时间降低,但是S1-结合抗体GMC充分高于COVID-19 HCS组中所观察到的(图107)。
对于S1-结合抗体应答,几乎所有的BNT162b1和BNT162b2免疫的参与者,在早达剂量1后21天(第22天)发生血清转换。剂量给药BNT162b1后具有血清转换的参与者的频率示于图108,BNT162b2则示于图109。利用仅RBD结构域作为靶抗原,发现了类似的情况。
实施例23:示例性细胞介导的免疫应答:SARS-CoV-2特异性CD4+和CD8+ T细胞应答
在实施例7所述的临床试验中,在BNT162b1或BNT162b2疫苗接种后,在健康的年轻成年人(18-55岁)和年长成年人(56-85岁)中观察到以下情况。CD4+和CD8+ T细胞应答数据从97名接受BNT162b1的研究参与者以及76名接受BNT162b2的参与者可得,在接受BNT162b1的研究参与者中,70名年轻参与者的剂量水平为1、3、10、20、30、50或60μg(注意:在60μg剂量组中并未给予剂量2),并且27名年长参与者的剂量水平为10、20或30μg,接受BNT162b2的参与者的剂量水平为1、3、10、20或30μg(47名年轻参与者)或者10、20或30μg(年长参与者)。
BNT162b1在大部分给予剂量1和剂量2(88名中的86名[97.7%])中诱导强RBD特异性CD4+ T细胞应答,包括所有的年长参与者(27名中的27名[100%]);在61名年轻参与者中的47名(77.0%)和27名年长参与者中的21名(77.7%)中诱导CD8+应答。相比之下,T细胞应答较少检测到,并在60μg剂量组中的仅接受剂量1的9名年轻参与者中的程度更低,表明加强剂量的重要性。
BNT162b2在所有剂量给药的年轻或年长参与者(76中的76[100%])中诱导强SARS-CoV-2 S蛋白特异性CD4+ T细胞应答;在45/47(95.7%)的年轻参与者和24/29(82.8%)的年长参与者中诱导CD8+ T细胞应答。虽然年长参与者中CD8+免疫原性率略低,但是BNT162b2诱导的应答的程度与接受30μg BNT162b2的年轻参与者中诱导的相当。这些T细胞应答针对抗原的不同部分,包括非RBD序列,表明BNT162b2在所有的年龄组中诱导多表位应答。
剂量给药BNT162b1或BNT162b2两次在BNT162b1的两个年龄组中以及所有剂量水平下导致T细胞应答的发生率和程度明显增加。虽然BNT162b2诱导的CD4+ T细胞应答的程度在不同的剂量水平中也类似,但是CD8+ T细胞应答的程度在30μg剂量水平下最高。具有最强CD4+ T细胞应答的参与者中的记忆应答是在相同参与者中观察到的针对巨细胞病毒、爱泼斯坦-巴尔二氏(Epstein Barr)病毒、流感病毒和破伤风类毒素的免疫优势肽的记忆应答的10倍以上。相同的参与者还具有强CD8+ T细胞应答,其与针对上文所述病毒抗原的记忆应答相当。
疫苗接种后,在97.5%的参与者中观察到BNT162b1从头(de novo)诱导的,在100%的参与者中观察到BNT162b2从头诱导的,RBD和S蛋白特异性CD4+ T细胞应答。疫苗接种后,在95.5%的参与者中观察到BNT162b1从头诱导的,在96.6%的参与者中观察到BNT162b2从头诱导的,RBD和S蛋白特异性CD8+ T细胞应答。
实施例24:示例性的细胞介导的免疫应答:功能性和促炎性CD4+/CD8+ T细胞应答
在实施例7中描述的临床试验中,在疫苗接种BNT162b1或BNT162b2的健康年轻成年人(18-55岁)和年长成年人(56-85岁)中观察到以下情况。使用细胞内细胞因子染色(ICS)证实了针对SARS-CoV-2 S蛋白或RBD蛋白的T细胞的从头诱导。如实施例7中对于BNT162b1所述,用BNT162b2也观察到如下所述的类似的细胞介导的免疫应答。
例如,BNT162b1和BNT162b2都稳健地诱导针对SARS-CoV-2 S蛋白或RBD的产生IFNγ的CD4+和CD8+ T细胞。对BNT162b1和BNT162b2均未观察到明显的剂量依赖性。在年长参与者中剂量给药BNT162b1或BNT162b2后引发的细胞因子应答与年轻参与者的应答模式和强度几乎相同。
BNT162b1和BNT162在几乎所有参与者中诱导了多功能和促炎性CD4+/CD8+ T细胞应答。检测到干扰素(IFN)γ、白介素(IL)-2,但没有检测到IL-4,表明有利的Th1谱,并且没有潜在的有害的Th2免疫应答。
关于BNT162b2,分析了从基线(剂量1之前)和BNT162b2的剂量1后29±3天收集的研究参与者的血液中分离的外周血单个核细胞(PBMC)部分。这包括总共74位研究参与者的数据:
·每个剂量组的年龄在18-55岁的年轻参与者:1μg(n=8),3μg(n=9),10μg(n=10),20μg(n=9),30μg(n=10)。
·每个剂量组的年龄在56-85岁的年长参与者:10μg(n=11),20μg(n=8),30μg(n=9)。
疫苗诱导的SARS-CoV-2 S特异性T细胞的功能性和极化通过细胞因子IFN-γ(gamma)、IL-2和IL-4响应分别代表疫苗编码的RBD全长序列和野生型SARS CoV-2蛋白的重叠肽刺激的细胞内积累来评估。作为对照,使用18名经病毒学确诊的COVID-19康复期患者的PMBC。
在分析的两个年龄组中,两个剂量的BNT162b2(剂量范围1-30μg)诱导了疫苗特异性T细胞应答(图110和111)。SARS-CoV-2 S蛋白特异性T细胞应答的测试用两个不同的肽池进行,包含S蛋白N末端区域的重叠肽(不等同于结构域)的S池1以及包含S蛋白的C末端区域的S池2。在74名剂量给药BNT162b2的参与者中分析的S特异性CD4+ T细胞应答的特征在于分泌IFN-γ或IL-2或两者的Th1细胞因子谱。
响应于S肽子池(sub-pool)刺激,几乎检测不到分泌Th2细胞因子IL-4的T细胞(平均分数:20和30μg成年人队列中抗原特异性循环CD4+ T细胞分别为0.01%和0.02%;分别用S蛋白子池1和子池2进行刺激)。在74名分析的参与者中的61名(成年人:46名参与者中的40名,年长成年人:28名参与者中的21名)中,S特异性CD8+ T细胞分泌IFNγ,也可检测到分泌IL-2的CD8+ T细胞。靶向S蛋白N末端结构域的S特异性IFNγ+CD8+ T细胞的分数在20和30μg年轻参与者剂量组中达到外周血CD8+ T细胞总数的1%,在30μg年长参与者剂量组中达到2.4%。在74名剂量给药的参与者中的17名中检测到针对S蛋白C末端区域的预先存在的CD8+ T细胞应答(范围:0.07%-5.59%产生IFNγ的CD8+ T细胞)。在17名参与者中的6名中,这些预先存在的应答在BNT162b2剂量给药后略有放大。
总体而言,S特异性CD4+和CD8+ T细胞的平均分数比在18名从COVID-19恢复的患者中观察到的明显更高(例如,30μg剂量给药的参与者的S蛋白池1IFNγ CD8+应答高12.5倍)。重要的是,对于临床目标的30μg剂量组,BNT162b2疫苗接种后,年长参与者中引发的细胞因子应答与年轻参与者的应答模式和强度几乎相同。
BNT162b2诱导的T细胞应答,尤其是对于CD8+ T细胞,不仅限于RBD,而且观察到S蛋白的非RBD区域的明显的强T细胞识别。
BNT162b2在几乎所有参与者中诱导多功能和促炎性CD4+/CD8+ T细胞应答。辅助应答的Th1极化的特征在于抗原特异性(野生型SARS CoV 2 S蛋白肽池)再刺激时稳健的IFNγ/IL-2产生以及仅产生少量的IL-4。
实施例25:BNT162b2诱导的某些T细胞应答
除了描述德国的试验(研究BNT162-01;NCT04380701)中观察到的通过BNT162b2免疫诱导的某些T细胞应答的实施例23和24,本实施例进一步证明在19-55岁的参与者中用1、10、20和30μg BNT162b2进行初免-加强疫苗接种的免疫原性,包括T细胞应答的详细表征,例如,首次鉴定了由本文所述的COVID-19疫苗诱导的CD8+ T细胞识别的表位。不希望受任何特定理论的约束,注意到在受试者中引起应答的表位的特性和/或对特定表位或表位组合的应答程度可以影响所给药的疫苗提供的免疫应答和/或免疫保护的一个或多个特征(例如,有效性和/或持续时间)。在一些实施方案中,给药方案可以涉及监测免疫应答的一个或多个特征的一个或多个步骤,包括,例如,识别一个或多个特定表位的应答(例如,T细胞和/或抗体)的存在和/或水平。在一些实施方案中,可以根据这种监测来确定后续剂量的需求、时机和/或程度。
如下文进一步描述的,本实施例部分地表明,当在频繁(frequent)的MHC等位基因上呈递时,若干BNT162b2诱导的CD8+ T细胞所识别的表位是用肽MHC多聚体鉴定的;并且CD8+ T细胞据证实具有早期分化的效应记忆表型,单特异性达到循环CD8+ T细胞的0.01-3%。不希望受任何特定理论的约束,注意到表现出“效应记忆”表型的细胞可以提供更长期的保护。
本实施例还记录了某些接受BNT162b2的参与者具有预先存在的T细胞应答。因此,这个实施例证实,本文所述的组合物,特别是BNT162b2,可以很好地用于受试者,其甚至已经暴露于一种或多种相关病毒,包括潜在的相同病毒-即SARS-CoV-2和/或暴露于其抗原,或与SARS-CoV-2刺突蛋白共有一个或多个表位的另一抗原。
疫苗诱导的T细胞应答的优势(prevalence)和程度
通过直接离体IFNγ酶联免疫吸附斑点(ELISpot)测定(图112和图113),分析了37名有足够外周血单个核细胞(PBMC)的BNT162b2免疫的参与者在疫苗接种前(第1天)和加强剂量后7天(第29天)的T细胞应答。本技术领域的普通技术人员会理解SARS-CoV-2 S蛋白包括信号肽(aa 1-13)、N末端S1蛋白酶片段(aa 14-685)和C末端S2蛋白酶片段(aa 686-1273);并且S1含有RBD(aa 319-541),其与宿主受体结合,并且S2介导病毒包膜和细胞膜之间的融合。为了解析(deconvolute)针对S蛋白的反应性,用代表SARS-CoV-2 S野生型序列不同部分的重叠肽刺激CD4+或CD8+ T细胞效应物过夜,即N末端池“S池1”(aa 1-643)和“RBD”(aa 1-16融合到S的aa 327-528),以及C末端“S池2”(aa 633-1273)。
用BNT162b2以任何所示剂量加强后7天,在所有37名参与者中可检测到稳健扩增的SARS-CoV-2 S特异性CD4+ T细胞(图112a,图113a)。在其中34名参与者中,与疫苗接种前的PBMC进行比较是可能的。这34名受试者中的30名(88.2%)对SARS-CoV-2的S池1和S池2都有从头(基线时不存在)CD4+ T细胞应答。一名参与者仅对池2有从头应答。其余3名参与者对S池1具有从头应答,以及少量的预先存在的S池2反应性CD4+ T细胞。在这3名参与者中的2名中,通过疫苗接种放大针对S池2的预先存在的应答(分别从疫苗接种前的91个和188个斑点/106个细胞至疫苗接种后的1391个和965个斑点),而在3名参与者中的1名中,针对S池2的预先存在的应答保持稳定(53对140个斑点/106个细胞)。这些数据证实,在94.1%(32/34)的参与者中,两个剂量的BNT162b2诱导多表位CD4+ T细胞应答(从头或放大),针对S的N末端和C末端部分,从而针对RBD外部的表位(图113b)。
尽管对于≥10μg的剂量水平,CD4+ T细胞应答的程度看起来并不依赖于剂量,但在个体之间有变化。在最强的响应者中,S特异性CD4+ T细胞应答是对常见病毒和回忆抗原(来自巨细胞病毒、爱泼斯坦-巴尔二氏(Epstein Barr)病毒、流感病毒和破伤风类毒素)的个体记忆应答的10倍以上(图112b,c)。
在37名接种疫苗的参与者中的34名(91.9%)中检测到疫苗诱导的S特异性CD8+ T细胞应答。大部分是强应答(图112a,图113a),与个体对巨细胞病毒(CMV)、爱泼斯坦-巴尔二氏(Epstein Barr)病毒(EBV)和流感病毒的记忆应答相当(图112b,c)。在33名参与者中诱导从头S特异性CD8+ T细胞应答,这些应答针对两个S池(22名参与者),或S池之一(10名参与者中的S池1,2名参与者中的S池2),表明包括非RBD S特异性T细胞在内的多表位应答占优势(图113b)。在7名参与者中,检测到对S池2的预先存在的CD8+ T细胞应答,其没有通过疫苗接种而进一步增强。这7名参与者中的6名具有同时的对S的池1的从头应答,其在强度上与没有对S池2的预先存在应答的个体中所观察到的没有显著差异(图113c)。值得注意的是,在具有可检测的CD8+ T细胞应答的34名参与者中,在没有预先存在的S池2特异性应答的参与者中观察到针对S池1的最强(高于第三四分位数)的应答。
S特异性CD4+ T细胞应答的程度与S1结合IgG正相关(图114a),并且,符合分子内帮助的概念(例如,对抗原中一个表位的CD4应答能够支持对同一抗原中表位的CD8应答的发展),并且符合S特异性CD8+ T细胞应答的强度(图114b)。S特异性CD8+ T细胞应答也与S1结合IgG正相关(图114c),表明体液和细胞适应性免疫的趋同发展。
疫苗诱导的T细胞应答的极化
为了评估S特异性T细胞的功能性和极化,通过在37名接受不同剂量的BNT162b2免疫的参与者的疫苗接种之前和之后的PBMC中的IFNγ、IL-2和IL-4特异性应答的细胞内染色(ICS)来确定响应S池1、S池2和RBD池的刺激而分泌的细胞因子。疫苗诱导的、S特异性CD4+ T细胞中有相当一部分分泌IFNγ、IL-2或两者,而分泌TH2细胞因子IL-4的T细胞几乎不可检测(图115a-c,图113d-e)。疫苗诱导的S特异性CD8+ T细胞响应于S池1和S池2刺激主要分泌IFNγ和较低水平的IL-2。特异于S池1的IFNγ+CD8+ T细胞的分数构成外周血CD8+ T细胞总数的高达约1%(图115d)。值得注意的是,在分析的参与者中,有几名(20μg剂量队列中n=3,30μg剂量队列中n=3)显示出预先存在的S池2特异性CD8+ T细胞应答,其在6名参与者中的5名在疫苗接种后没有进一步放大。在一名参与者(20μg剂量队列)中可检测到强的预先存在的S池2特异性IFNγ+CD4+ T细胞应答(图115c)。
在两个测定系统中,CD4+以及CD8+ T细胞应答包括完全SARS-CoV-2 S的肽池而产生的细胞因子超过对针对RBD肽池的应答,进一步证实BNT162b2引发的T细胞应答的多表位特征。在总循环T细胞中,BNT162b2诱导的S特异性IFNγ+或IL-2+ CD4+ 和CD8+ T细胞的平均分数高于在从COVID-19恢复的18名对照受试者(HCS)中检测到的(图115c,d)。
BNT162b2免疫后观察到CD8+ T细胞的表位特异性和表型
在三名参与者中,在表位水平上表征CD8+ T细胞应答,所述参与者用2剂量方案疫苗接种,其具有2个剂量(例如10μg/剂量或30μg/剂量),间隔为21天。
疫苗接种前和接种后,从参与者收集的外周血单个核细胞(PBMC)用个性化的肽/MHC多聚体染色混合物染色,用于流式细胞仪分析。23对(对于HLA-B*0702为4,对于HLA-A*2402为19)、14对(HLA-B*3501)和23对(对于HLA-B*4401为7,对于HLA-A*0201为16)多样的肽/MHC等位基因对分别用于参与者1、2和3,因此探测了选择的一组潜在的反应性,而不是广泛地捕获多表位T细胞应答。对于每个参与者,鉴定从头诱导的针对多个表位的CD8+ T细胞反应性,总共有8个不同的表位/MHC对分布在整个S蛋白的全长(图116a,c)。表位特异性T细胞应答的程度为外周CD8+ T细胞的0.01-3.09%,并且观察到对HLA-A*0201YLQPRTFLL(CD8+的3.09%多聚体+)、HLA-A*2402 QYIKWPWYI(CD8+的1.27%多聚体+)和HLA-B*3501QPTESIVRF(CD8+的0.17%多聚体+)的扩展最为深远。通过ELISpot和细胞内染色(ICS)确定,与这些个体中针对完全S蛋白的大部分(bulk)IFNγ+ CD8+ T细胞应答的比较表明,pMHC技术可能对评估细胞免疫应答的真实程度更为有用(图113f)。
鉴定的经历S抗原的pMHC多聚体+的CD8+ T细胞特异性的表型分析揭示早期分化的效应记忆表型,其特征在于CCR7和CD45RA的低表达以及共刺激分子CD28和CD27的高表达。CD8+ T细胞还表达与关联激活相关的标志物,例如CD38、HLA-DR和PD-1(图116b)。
讨论
适应性免疫系统的效应物在防御病毒感染中具有互补作用。虽然中和抗体是第一道防线,但CD8+细胞毒性T淋巴细胞(CTL)有助于从中和抗体难以接近的细胞内区室清除病毒。抗原特异性CD4+ T细胞具有免疫协调功能,包括为B细胞和CD8+ T细胞提供关联帮助,支持记忆的产生,以及间接(如通过IFNγ)或直接(针对表达MHC II类的靶细胞)细胞毒活性。
这一实施例表明,用BNT162b2进行疫苗接种诱导用SARS-CoV-2 S特异性中和抗体(如其他实施例中所述)、CD4+ T细胞、CD8+ T细胞和免疫调节细胞因子如IFNγ的协同免疫应答。
如通过离体ELISpot测定所检测的,所有疫苗接种BNT162b2的参与者都出现了从头S特异性CD4+ T细胞应答,并且几乎92%的参与者都出现了CD8+ T细胞应答。T细胞应答的程度因人而异,并且没有明显的剂量依赖性。即使使用最低剂量的1μg BNT162b2,大多数接种疫苗的参与者也表现出CD4+和CD8+ T细胞的稳健扩增。T细胞应答针对S蛋白的RBD、S1和S2区,表明对多个独立的MHC I和II表位的免疫识别。
BNT162b2诱导的CD4+ T细胞中表达IFNγ和IL-2,但仅表达低水平的IL-4,这表明了TH1的谱,并且没有潜在的有害的TH2免疫应答。
虽然针对S蛋白的S1亚基的所有CD8+ T细胞应答都是从头的,并且在基线时未检测到,但在几名个体中发现了针对S2亚基的预先存在的免疫应答。与S2片段相比,S1片段与相应的季节性冠状病毒序列的序列相似性更小;不希望受理论约束,认为这一发现表明可能已经检测到预先存在的交叉反应性CD8+ T细胞。
肽MHC(pMHC)多聚体技术使得能够鉴定疫苗诱导的CD8+ T细胞识别的S蛋白表位,并直接定量各自的表位特异性T细胞。每名参与者中累积的T细胞频率超过在ELISpot和ICS测定中测量的总体T细胞应答,表明这些测定低估了多表位应答的真实程度。本领域技术人员会认识到,与以肽池刺激,具有众多免疫原性表位竞争的功能性T细胞测定相比,已知单肽分析产生更高的T细胞频率。高比例的诱导的CD8+ T细胞是早期分化的效应记忆细胞。这种有利的表型具有快速应答的潜力,但产生IFNγ的能力有限,因此在功能性T细胞测定中不太可能被检测到。虽然被感染的个体针对其产生CD8+ T细胞的SARS-CoV-2 S中的表位已被鉴定并且为本领域中已知(参见,例如Shomuradova et al.,Immunity(2020)doi:10.1016/j.immuni.2020.11.004;和Peng et al.Nat.Immunol.21,1336-1345(2020)),本文提供的数据首次证明COVID-19疫苗诱导的T细胞识别的表位。值得注意的是,该研究中鉴定的免疫优势HLA-A*02:01限制性肽YLQPRTFLL先前已在康复期的COVID-19患者中进行了描述(同上)。
材料和方法
蛋白和肽
两个池的重叠11个氨基酸(aa)的15-元肽,共同覆盖野生型SARS-CoV-2 S的整个序列(S池1以aa 1-643为特征,S池2以aa 633-1273为特征),并且一个池覆盖SARS-CoV-2RBD,具有融合至其N末端的S的信号肽(aa 1-16),用于离体刺激PBMC,以用于流式细胞术和IFNγ ELISpot。CEF(CMV、EBV、流感病毒;人白细胞抗原[HLA]I类表位肽池)和CEFT(CMV、EBV、流感病毒、破伤风类毒素;HLA II类表位肽池)用作一般T细胞应答性的对照,并用来标定(benchmark)记忆T细胞应答的程度。所有肽均从JPT Peptide Technologies获得。
人康复期血清和PBMC组
PCR确诊后至少14天,并且当参与者无症状时,从18-83岁的供体抽取人SARS-CoV-2感染/COVID-19康复期血清(n=38)。供体的平均年龄为45岁。供体亚组的中和GMT如下:有症状感染90(n=35);无症状感染156(n=3);住院618(n=1)。血清是从SanguineBiosciences(Sherman Oaks,CA)、MT Group(Van Nuys,CA)和Pfizer OccupationalHealth and Wellness (Pearl River,NY)获得的。PCR确诊后30-62天,当供体无症状时,从22-79岁的供体收集人SARS-CoV-2感染/COVID-19康复期的PBMC样品(n=18)。PBMC供体无症状或轻度感染(n=16,临床评分1和2),或已住院(n=2,临床评分4和5)。血液样品从法兰克福大学医院获得。
原代细胞分离
通过Ficoll-PaqueTMPLUS(Cytiva)密度梯度离心分离PBMC,并在分析前冷冻保存。
IFNγ ELISpot
用耗尽CD4+并富集CD8+ T细胞(CD8+效应物)或者耗尽CD8+并富集CD4+ T细胞(CD4+效应物)的PBMC,离体进行IFNγ ELISpot分析(无需进一步体外培养来扩增)。一式两份进行测试,并使用阳性对照(抗CD3单克隆抗体CD3-2[1∶1,000;Mabtech])。用PBS洗涤经IFNγ特异性抗体(ELISpotPro kit,Mabtech)预包被的Multiscreen滤板(Merck Millipore),并用含有2%人血清白蛋白(CSL-Behring)的X-VIVO 15培养基(Lonza)封闭1-5小时。每孔,用代表SARS-CoV-2 S野生型序列不同部分的三个重叠肽池(N末端池S池1[aa1-643]和RBD[aa1-16融合到aa327-528],以及C末端S池2[aa633-1273])刺激3.3×105个效应细胞16-20小时。使用直接与碱性磷酸酶偶联的二抗,然后与5-溴-4-氯-3′-吲哚磷酸酯(BCIP)/硝基蓝四唑鎓(NBT)底物(ELISpotPro kit,Mabtech)一起孵育,来使结合的IFNγ可视化。使用AID Classic Robot ELISPOT Reader扫描板,并通过AID ELISPOT 7.0软件(AIDAutoimmun Diagnostika)进行分析。斑点计数展示为每个重复孔的平均值。使用内部ELISpot数据分析工具(EDA),基于两个统计测试(无分配重采样),将用肽刺激的T细胞应答与仅用培养基孵育的效应器作为阴性对照进行比较以提供灵敏度,同时保持对假阳性的控制。
为了解决反映在响应于抗CD3抗体刺激的斑点的数目上的样品质量的变化,采用归一化方法来实现个体之间斑点计数和应答强度的直接比较。使用包括噪音分量(未公布)的Bayesian模型以对数线性方式为这种依赖性建模。为了稳健的归一化,每个归一化从该模型中采样1000次并将取得的中值作为归一化的斑点计数值。模型的似然:logλE=αlogλP+logβj+σε,其中λE是样品的归一化的斑点计数,α是在所有阳性对照λP中共有的稳定因子(正态分布),βj是样品j的特定分量(正态分布),并且σε是噪音分量,其中σ是Cauchy分布的,而ε是Student’s-t分布的。βj确保每个样品都视为不同批次处理。
流式细胞术
通过细胞内细胞因子染色鉴定产生细胞因子的T细胞。在GolgiPlug(BD)的存在下,将融化并在补充有2μg/mL DNAseI(Roche)的OpTmizer培养基中静息4小时的PBMC用如ELISpot章节(2μg/mL/肽;JPT Peptide Technologies)所述的肽池中的SARS-CoV-2S的野生型序列的不同部分于37℃下重刺激18小时。对照用含DMSO的培养基处理。在流式缓冲液(DPBS[Gibco],补充有2%FCS[Biochrom]、2mM乙二胺四乙酸[EDTA;Sigma-Aldrich])中,于4℃下对细胞进行活力和表面标志物(CD3 BV421,1∶250;CD4 BV480,1:50;CD8 BB515,1∶100;均来自BD Biosciences)的染色达20分钟。之后,根据制造商的说明书(BDBiosciences),使用Cytofix/Cytoperm试剂盒对样品进行固定和透化。细胞内染色(CD3BV421,1∶250;CD4 BV480,1∶50;CD8 BB515,1∶100;IFNγPE-Cy7,1∶50[用于HCS];IFNγBB700,1∶250[用于参与者];IL-2PE,1∶10;IL-4 APC,1∶500;均来自BD Biosciences)在Perm/Wash缓冲液中于4℃下进行30分钟。在荧光激活细胞分选仪(FACS)VERSE instrument(BD Biosciences)上采集样品,并使用FlowJo软件版本10.6.2(FlowJo LLC,BDBiosciences)进行分析。通过减去用含二甲亚砜(DMSO)的培养基获得的值,来校正S-和RBD-特异性细胞因子的产生的背景。负值设置为零。通过计算IFNγ、IL-2或IL-4阳性的所有CD4+ T细胞的分数的总数来计算图116b中细胞因子产生,将这个总数设置为100%,并计算其中产生特定细胞因子的每个子集的分数。伪彩色坐标轴为log10刻度。
肽/MHC多聚体染色
为了选择MHC I类表位进行多聚体分析,将基于质谱的结合和呈递预测器(例如,如Abelin et al.,Immunity 46,315-326(2017);和Poran et al.,Genome Med.12,70(2020)中所述)应用于源自SARS-CoV-2的GenBank参考序列(登录号:NC_045512.2,https://www.ncbi.nlm.nih.gov/nuccore/NC_045512)的刺突糖蛋白的8-12个氨基酸长肽序列,并与欧洲群体中频率大于5%的18个MHC-I类等位基因配对。通过将阈值设置为结合百分比等级(≤1%)和呈递分数(≥10-2.2),并考虑合成纯度>90%的肽,可以鉴定排名最高的预测表位。使用easYmer技术(
Figure GDA0004051824180003181
kit,ImmuneAware Aps),将pMHC复合物再折叠,并根据制造商的说明书在基于珠的流式细胞术测定中验证复合物的形成。组合标记用于研究T细胞的抗原特异性,利用5种不同荧光标签的双色组合,使得能够检测每个样品多达10种不同的T细胞群体。对于四聚体化,加入链霉亲和素(SA)-荧光色素缀合物:SA BV421、SABV711、SA PE、SA PE-Cy7、SA APC(均来自BD Biosciences)。对于三名BNT162b2疫苗接种的参与者,个体化的pMHC多聚体染色混合物含有多达10个pMHC复合物,每个pMHC复合物由独特的双色组合编码。将PBMC(2x106)在室温下,用每种pMHC多聚体混合物,以BrilliantStaining Buffer Plus(BSB Plus[BD HorizonTM])中的4nM最终浓度,进行离体染色达20分钟。在补充有BSB Plus的流式缓冲液(DPBS[Gibco],具有2%FBS[Biochrom]、2mM EDTA[Sigma-Aldrich])中在4℃下进行表面和活力染色达30分钟(CD3 BUV395,1∶50;CD45RABUV563,1∶200;CD27 BUV737,1∶200;CD8 BV480,1∶200;CD279 BV650,1∶20;CD197 BV786,1∶15;CD4 BB515,1∶50;CD28 BB700,1∶100;CD38 PE-CF594,1∶600;HLA-DR APC-R700,1∶150;均来自BD Biosciences;DUMP通道:CD14 APC-eFluor780,1∶100;CD16 APC-eFluor780,1∶100;CD19 APC-eFluor780,1∶100;可固定性的活力染料eFluor780,1∶1667;均来自ThermoFisher Scientific)。将细胞在1x稳定固定剂(BD)中于4℃下固定15分钟,在FACSymphonyTM A3流式细胞仪(BD Biosciences)上采集,并用FlowJo软件版本10.6.2(FlowJo LLC,BD Biosciences)进行分析。当观察到仅用两种pMHC多聚体颜色标记的聚集群体时,CD8+ T细胞反应性被认为是阳性的。
实施例26:表明再次感染可能性的证据
主要终点在没有COVID-19疾病先前证据的个体中进行评估,并且在疫苗接种之前有感染证据的参与者中很少有确诊的COVID-19病例(尽管与疫苗组相比,安慰剂组发生的病例更多)。但是,如表22-23所示,可用数据虽然有限,但表明先前感染的个体可能有COVID-19的风险(即再次感染),并且可以从疫苗接种受益。
表22.疫苗效力-从剂量2后7天首次发生COVID-19,按测试状态-受试者在剂量2后7天之前有或没有感染证据-可评价效力(7天)群体
Figure GDA0004051824180003191
Figure GDA0004051824180003201
表23.疫苗效力-从剂量2后7天首次发生COVID-19,按测试状态-受试者在剂量2后7天之前有或没有感染证据-所有可用效力群体
Figure GDA0004051824180003202
Figure GDA0004051824180003211
实施例27:某些脂质赋形剂的药代动力学(PK)和吸收、分布、代谢和排泄(ADME)分析
本实施例描述了本文所述的疫苗组合物中使用的脂质的各种评估的特性(例如PK/ADME特征)。不希望受任何特定理论约束,需要指出的是,脂质组分的这些特性可能有助于所给药疫苗的相关特征(例如,分布、表达等),包括一般和/或在特定情况下(例如,按照特定方案和/或对特定群体给药时等)的效力。
吸收
在大鼠中静脉内(IV)团注(bolus injection)纳米颗粒制剂后,对ALC-0315和ALC-0319进行单剂量PK研究,以评估脂质赋形剂ALC-0315和ALC-0159的PK和代谢。这项研究使用含有替代物萤光素酶RNA的LNP(脂质组成与BNT162b2相同)来研究ALC-0159和ALC-0315的体内处置情况(disposition)。
在这项为期2周的研究中,血浆和肝中ALC-0159的浓度分别下降约8000倍和>250倍。对于ALC-0315,从血浆和肝清除分子的速度较慢,但血浆和肝的浓度在两周内分别下降约7000倍和4倍。总体而言,血浆和肝的表观终末t1/2在两种组织中相似,对于ALC-0159和ALC-0315分别为2-3天和6-8天。血浆中的表观终末t1/2可能代表各个脂质从它们作为LNP分布到的组织中重新分布回血浆中,在血浆中被清除。
代谢
在小鼠、大鼠、猴和人的血液、肝微粒体、S9组分和肝细胞中评估ALC-0315和ALC-0159的体外代谢。在PK研究中检查大鼠血浆、尿液、粪便和肝样品的体内代谢。在体外和体内,ALC-0315和ALC-0159的代谢看起来相对缓慢地发生。显然,ALC-0315和ALC-0159分别通过酯和酰胺官能团的水解代谢而代谢,并且在评估的所有物种中均观察到了这种水解代谢。
排泄
排泄研究看起来证实,50%的ALC-0159在粪便中没有变化地被清除,并且代谢在清除ALC-0315中起作用,因为在尿液或粪便中很少或没有检测到不变的物质。
来自大鼠PK研究的尿液、粪便和血浆的研究确定ALC-0315的一系列酯裂解产物。不希望受任何特定理论约束,认为这可能代表在体内作用于该分子的主要清除机制。在体外,ALC-0159通过酰胺官能团的水解代谢缓慢代谢。
实施例28:给药的疫苗组合物的分布分析
使用小鼠作为模型系统并评估萤光素酶表达作为替代报道分子,评估COVID-19mRNA疫苗BNT162b2的体内生物分布。在小鼠接受类似BNT162b2的LNP制剂中编码萤光素酶的RNA的IM注射后,在注射部位和较小程度上,并且更短暂地在肝中证实蛋白的表达。注射后6小时,在注射部位鉴定萤光素酶表达,并在第9天减少至接近基线水平。注射后6小时肝中也存在表达,注射后48小时未检测到。除肝外,所有评估的其他组织包含等于或小于剂量的1%。
实施例29:各种剂量给药方案的重复剂量毒性研究
在大鼠中进行符合GLP的重复剂量研究,以评估COVID-19 mRNA疫苗(包括BNT162b2)的免疫原性和毒性。
在某些研究中,向雄性和雌性Wistar Han大鼠给药本文所述的疫苗组合物;对基于各种RNA平台(例如BNT162b2)的组合物进行测试,以IM注射到后肢中,每隔一周一次,分别进行3次(第1、8和15天剂量给药)。测试不同的剂量(10、30和100μg);给予的较低剂量为20-70μl的单次注射,而给予的最高剂量(100μg)和对照为两次注射,每次100μl(每条后肢一次)。对照是磷酸缓冲盐水/300mM蔗糖,对应于疫苗产品的储存缓冲液。每组有18只雄性和18只雌性大鼠,分配作为主要研究的10只,恢复组5只,另外3只动物用于细胞因子分析。恢复期为最后一次剂量后3周。在研究的第17天,最后一次剂量后约48小时和3周恢复期后进行尸检。
没有观察到预计外的死亡。
剂量给药被认为耐受性好,没有表现出全身毒性的任何迹象;在剂量给药后数小时内,体温略有升高,并且在同一时期内体重有所减轻,但这些程度并不认为是不良的。
在肌肉内注射部位观察到局部炎症反应。注射部位的变化是水肿、红斑和硬结(induration),与第一剂量相比,第二和/或第三剂量后更严重和更频繁;然而,这些在随后的剂量给药前已消退,并在3周的恢复期结束时完全恢复。
注射部位的宏观发现包括硬结或增厚(thickening),偶尔伴有结痂(encrustation),几乎所有大鼠都有这种现象。在显微镜下,这与炎症和可变纤维化、水肿和肌纤维变性有关。注射部位的炎症伴随有循环白细胞和急性期蛋白(纤维蛋白原、α-2巨球蛋白和α-1酸性糖蛋白)升高。
偶尔会出现炎症,并扩散到注射部位附近的组织中。在剂量给药结束时,有明显的引流(髂(iliac))淋巴结扩大。这与生发中心的细胞型增多和引流(髂)淋巴结中的浆细胞增加有关,并且是对所给药的疫苗的预期免疫应答。
在显微镜下,脾扩大和脾重量增加也与造血增加相关,在骨髓中造血增加也明显。这些发现可能是继发于疫苗的免疫/炎症应答的结果。
恢复期结束时,注射部位正常,临床病理发现和宏观观察缓解,显微镜下有证据显示注射部位炎症得以恢复。
在剂量给药阶段后,存在门肝细胞的显微空泡。恢复期过后,这种观察消失。丙氨酸转氨酶(ALAT)没有升高。所有疫苗接种大鼠的γ-谷氨酰转移酶(GGT)有升高,但没有与胆汁淤积或肝胆损伤相一致的宏观或微观发现来解释γ-GT活性增加,在3周康复期结束时,这种情况已完全消退。空泡化可能与LNP中聚乙二醇化脂质的肝分布有关。血清细胞因子浓度未见变化。
没有对眼科和听觉评估的影响,也没有对外观或行为的影响;特别是步态正常,这意味着所观察到的变化不会影响大鼠的活动。血清细胞因子浓度未见疫苗相关变化。
免疫原性测试表明,COVID-19 mRNA疫苗(包括,例如BNT162b2,如BNT162b2v8)引发针对S1片段和受体结合结构域的对SARS CoV-2刺突蛋白的特异性IgG抗体应答。在假病毒中和测定中还观察到疫苗的中和抗体应答。
ELISA测定的结果示于图117和118(如图所示,从第17天或第10天),其中最上面的描记线(trace)是COVID-19 mRNA疫苗BNT162b2的描记线,其他描记线是本文所述的使用不同构建体的其他COVID-19 mRNA疫苗的描记线:第38天显示类似的结果(此处未显示)。如使用Vero 76细胞的VSV/SARS-CoV-2-S假病毒中和测试中所见,这些转化为中和活性(图119):第38天的结果相似(此处未显示)。在这项研究中测试的所有疫苗中,那些具有较高抗原特异性抗体滴度的疫苗也具有更明显的病毒中和作用。
COVID-19 mRNA疫苗(如BNT162b2)耐受性好,在注射部位和引流淋巴结产生炎性变化,在骨髓和脾中增加造血,并且临床病理变化与注射部位的免疫应答或炎症一致。
阅读本公开的本领域技术人员会理解,这一实施例中的发现可认为是如本文所述剂量给药各种mRNA构建体和/或脂质纳米颗粒预期的典型发现。
实施例30:三剂量方案的毒性和免疫原性研究
进行研究以评估在给予COVID-19 mRNA疫苗(例如BNT162b2)的大鼠中的毒性。这项研究符合良好实验室规范。
以IM注射,向雄性和雌性Wistar Han大鼠后肢给予BNT162b2,进行3次,每次间隔一周(第1、8、15天剂量给药)。在研究的第17天,最后一次剂量后约48小时以及3周恢复期后进行尸检。以0.5mg/ml提供COVID-19 mRNA疫苗BNT162b2,剂量体积为60μl,每剂量给予30μg。对照大鼠接受生理盐水。
在评估期间,剂量给药之前和期间以及恢复期间的各个时间点采血,并评估对疫苗组分的抗体应答。
所有给予COVID-19 mRNA疫苗(例如BNT162b2)的大鼠都存活到了预定的尸检时间:临床体征没有发现变化,体重也没有变化。第4天和第11天的食物摄入减少(对照的0.83倍),与对照相比,剂量给药后第1天(高达0.54℃)、第8天(高达0.98℃)和第15天(高达1.03℃)平均体温有上升。
在注射部位,第1天(最大轻微水肿和极轻微红斑)、第8天(最大中度水肿和极轻微红斑)和第15天(最大中度水肿和极轻微红斑)出现水肿和红斑,其完全消退,在第8天和第15天的剂量给药前没有发现。
血液学测试显示,白细胞较高(高达对照的2.95倍),主要涉及嗜中性粒细胞(高达对照的6.80倍)、单核细胞(高达对照的3.30倍)和大的未染色细胞LUC(高达对照的13.2倍),并且第4天和第17天嗜酸性粒细胞和嗜碱性粒细胞略高。与第4天相比,第17天的白细胞更高。在第4天,两种性别中的网织红细胞都有短暂减少(至对照的0.27倍),而仅在雌性中在第17天有较高的网织红细胞(高达对照的1.31倍)。在第4天和第17天,存在较低的红细胞量参数(至对照的0.90倍)。在第4天和第17天,有较低的A∶G比(达0.82倍)。与对照相比,在第17天观察到较高的纤维蛋白原(高达2.49倍),与急性期反应一致。急性期蛋白α-1-酸性糖蛋白(第17天高达39倍)和α-2巨球蛋白(第17天高达71倍)在第4天和第17天升高,雄性中浓度更高。尿液分析参数没有变化。
验尸后,疫苗接种大鼠的脾绝对重量和相对重量较高(雄性高达1.42倍,雌性高达1.62倍)。器官重量没有其他变化。宏观发现包括少数疫苗接种大鼠的引流淋巴结增大和注射部位苍白/深色坚实(firm)。剂量给药是耐受的,没有诱导任何全身毒性,所有变化与炎症应答和免疫激活一致:发现与通常与剂量给药脂质纳米颗粒包裹的mRNA疫苗有关的一致。
实施例31:生殖毒性
进行研究以评估在给予COVID-19 mRNA疫苗(包括BNT162b2)的雌性大鼠中的生殖毒性。雌性大鼠在交配开始前两次给予COVID-19 mRNA疫苗(例如BNT162b2),在妊娠期间两次给予人临床剂量(例如30μg RNA/剂量日)。在交配开始前21天和14天(分别为M-21和M-14),对F0雌性Wistar大鼠肌肉内(IM)给药COVID-19 mRNA疫苗,然后在妊娠日(GD)9日和GD20给药,共4个剂量。一个亚组在GD21终止,而另一个(窝)组在产后日(PND)21终止。SARS-CoV-2中和抗体滴度在大多数雌性交配前(M-14)、大多数雌性和妊娠末期的胎儿(GD21)以及大多数哺乳末期的后代(PND21)中有发现。每个剂量后,体重增加和食物消耗有短暂的减少。没有观察到对发情周期或生育指数的影响。尽管植入前(pre-implantation)损失增加(约2倍)(与对照相比),但在疫苗接种组中观察到的植入前的损失百分比在历史对照数据范围内(5.1%-11.5%)。在胎儿中(总共n=21个母/胎),腹裂、口/颌畸形、右侧主动脉弓和/或颈椎异常的发生率非常低。对于骨骼研究发现,暴露组的骶前椎弓(presacralvertebral arches)、多生腰肋骨(supernumerary lumbar rib)、多生腰短肋骨(supernumerary lumbar short rib)、尾椎骨数<5)与对照组水平相当。对产后幼崽没有不良影响的迹象(在PND21时终止)。
该研究表明,对生育和早期胚胎发生没有明显的不良影响。
实施例32:SARS-COV-2 BNT162b1 mRNA疫苗在中国年轻和年长成年人中的安全性和免疫原性:随机、安慰剂对照、观察者盲的I期研究
本实施例报告了在144名健康的中国参与者中测试BNT162b1的I期试验的初步结果。BNT162b1编码SARS-CoV-2刺突糖蛋白受体结合结构域(RBD),并且是本文所述的几种基于RNA的SARS-CoV-2疫苗候选物之一。
本实施例特别报告了观察到的安全性谱,其中发烧>39℃是唯一报告的3级不良事件。在中国年轻(18-59岁)和年长(65-85岁)成年人中,用10μg或30μg BNT162b1进行初免-加强疫苗接种诱导稳健的抗体和T细胞应答。两种剂量水平均在41天后诱导血清转换:10μg和30μg剂量组的年轻参与者中SARS-CoV-2血清中和抗体的几何平均滴度分别是恢复的COVID-19患者的康复期血清的1.9和2.1倍;在年长参与者中为0.7和1.3倍。接受BNT162b1的参与者中对RBD抗原攻击的干扰素-γT细胞应答明显高于安慰剂组。
在中国年轻和年长成年人中,增加的反应原性以及更有利的疫苗引发的病毒中和应答与30μg剂量的BNT162b1有关。
本实施例提供的BNT162b1的安全性和免疫原性数据,特别是关于健康的、年轻和年长的中国参与者的疫苗接种,表明,至少在初免-加强疫苗接种后的28天内,初免-加强疫苗接种10μg和30μg剂量水平的BNT162b1疫苗,在18-55岁的年轻成年人和65-85岁的年长成年人中都能诱导强体液和细胞免疫原性应答,在年轻和年长参与者中都能看到稳健的RBD特异性抗体和T细胞应答。这项研究中的某些发现进一步证实BNT162b1的耐受性谱,例如在美国和德国群体中也观察到。
方法
在中国江苏省泰州市(Taizhou)144名18-59岁的健康年轻成年人和65-85岁的年长成年人中进行随机、安慰剂对照、观察者盲的1期试验。符合条件的参与者随机化以接受两个剂量的10μg或30μg剂量的BNT162b1或者安慰剂,以肌肉内注射给药,间隔21天给药。研究参与者、研究者和实验室工作人员对处理给药(treatment administration)是盲的。主要的安全性终点是疫苗接种后14天内的注射部位的局部反应或全身性不良反应,以及接受加强疫苗接种后直至28天内发生的不良事件。在预定的时间点上,测量疫苗引发的病毒中和抗体以及抗原特异性结合抗体和细胞免疫应答的免疫原性终点。
结果
研究设计和分析设置
在中国江苏省泰州市疫苗临床研究中心共筛查296名年龄为18-55岁或65-85岁的成年人。144名符合条件的参与者同意参加试验,并且随机化为1∶1∶1以接受10μg或30μg的BNT162b1的间隔21天的初免和加强剂量,或者两个安慰剂剂量。初免剂量后,两名年龄在65-85岁的参与者退出加强剂量给药(一名为10μg,一名为30μg)。表24显示参与者的人口统计特征。在治疗组中,年轻参与者的平均年龄为37.9-42.0岁,年长参与者的平均年龄为68.5-70.7岁,治疗组之间的性别分布均等。治疗组之间参与者的病史或现有基础疾病相似,除了高血压,基线处年长参与者中有高血压。
观察到的安全性和耐受性数据
在完成剂量给药后的14天内,10μg BNT162b1剂量组的21名(88%)年轻参与者和30μg BNT162b1剂量组的24名(100%)年轻参与者报告了至少一种征求的不良反应,相比于安慰剂组的年轻参与者中的17%(表25A-25B)。反应原性是剂量水平依赖的,并且在30μgBNT162b1剂量组中最明显。报告的最常见的征求不良反应报告为注射部位疼痛、发烧、头痛、疲劳、乏力、关节疼痛、肌肉疼痛、寒战。不良事件是短暂的,用简单的标准护理管理,或自发地消退(resolve)。报告的大多数不良反应的严重程度为轻度或中度,并在BNT162b1的每个剂量后的第一个7天内消退。没有注射部位反应被分级为严重(3级)。所有与疫苗接种相关的3级全身性不良反应均为发烧,主要在年轻参与者中观察到。给药30μg初免BNT162b1剂量后,年长组中一名男性参与者经历偶发性3级发烧,伴有注射部位疼痛和瘙痒,并且选择性地退出加强疫苗给药。
在研究过程中,没有达到预先指定的试验停止规则。只有一名67岁的参与者报告了一起严重的不良事件(因车祸导致肱骨骨折,使参与者无法接受加强剂量),被认为与疫苗或研究程序无关。BNT162b1初免和加强剂量后,疫苗接种后的注射部位不良反应的总体频率相当。在年轻成年人中,一些全身性不良反应,如发烧、头痛、疲劳和乏力,在BNT162b1加强剂量后比初免剂量后更常见。与年轻参与者相比,年长参与者在BNT162b1加强剂量后没有出现反应原性增加的情况。
BNT162b1给药之前和之后,不同治疗组的参与者中没有报告血压和呼吸率变化。疫苗接种后24小时,在年轻和年长参与者中,尤其是30μg剂量组中,发现体温和脉搏率有短暂升高。与基线相比,实验室值最常见的异常是淋巴细胞和血小板计数的短暂减少以及C反应蛋白的增加。所有的实验室异常都是自限(self-limited)的,并在短时间内消退,没有临床表现。这些数据与在其他群体中报告的某些发现一致(例如,如本文其他地方所述)。
疫苗诱导的抗体应答
所有参与者在基线时(第1天,疫苗接种前)均为血清阴性,并在第8天、22天、29天和43天通过分析SARS-CoV-2中和抗体以及RBD和S1蛋白结合抗体来监测血清转换。将BNT162b1在疫苗接种的参与者中诱导的抗体应答与从28名COVID-19患者在PCR确诊后至少14天获得的一组人COVID-19康复期血清进行比较。最高中和滴度在第43天(即BNT162b1加强剂量后21天)观察到,这表明在第29天后,这组亚洲参与者的中和滴度呈持续上升趋势,与其他群体的报告相比,这组亚洲群体在第43天的年长参与者中的中和滴度看起来进一步增加,表明峰值滴度在该受试者群体中较早出现,随后减退。在第43天,10μg和30μgBNT162b1剂量水平在BNT162b1初免剂量后诱导显著的病毒中和抗体应答,其被BNT162b1的第二剂量加强,在10μg和30μg剂量组中,年轻参与者的几何平均滴度(GMT)分别为232.9(95%CI 151.3-358.5)和254.0(184.6-349.4),年长参与者的几何平均滴度(GMT)分别为80.0(49.2-130.2)和160.0(96.7-264.6)(图120)。10μg和30μg剂量组中年轻参与者的病毒中和应答是一组康复期血清的GMT的1.9和2.1倍(GMT,119.9;95%CI,70.4-203.9)。在年长参与者中,10μg和30μg剂量组的相应比率分别为0.7和1.3倍。所有年轻受者在第43天出现阳性血清转换,并且在年长受者中在第43天,10μg剂量的血清转换率为91%,30μg剂量的血清转换率为96%。接受30μg剂量的参与者看起来比接受10μg剂量的参与者有更高的病毒中和抗体应答。然而,与18-55岁的年轻参与者相比,65-85岁的年长参与者普遍表现出较慢的病毒中和应答和较低的峰值应答。
类似地,两个剂量的BNT162b1在初免-加强方案后都诱导参与者中的高水平S1-和RBD-结合IgG。疫苗接种后所有时间点疫苗受者的S1-和RBD-结合IgG水平与中和滴度高度相关,无论年龄和剂量组别,相关系数分别为0.85和0.79(P<0.0001)。
疫苗诱导的T细胞应答
用外周血单个核细胞(PBMC)通过直接离体IFNγ酶联免疫吸附斑点(ELISpot)测定,在初免疫苗接种前(第1天)、第29天(加强疫苗接种后7天)和第43天(加强疫苗接种后21天)对用BNT162b1免疫的个体中对疫苗诱导CD8+ T细胞应答进行表征。在第29天,针对Sp1肽池(覆盖RBD)的特异性IFN-γELISpot应答在接受BNT162b1的参与者中显著高于安慰剂组(图121)。18-55岁的年轻参与者中,接受10μg疫苗接种的平均斑点形成细胞为227.5(95%CI,146.5-308.5)/105个PBMC,接受30μg疫苗接种的平均斑点形成细胞为223.5(181.2-265.9)/105个PBMC。65-85岁的年长参与者中,两个剂量组的疫苗接种后,斑点形成细胞略低,平均为156.5(84.1-229.0)和171.9(113.4-230.3)。在第43天,接受初免-加强BNT162b1方案的年轻参与者,与第29天看到的相比,S1特异性IFN-γELISpot应答趋向于轻微下降;在这个时间点没有收集年长参与者的血液样品,因为该数据不可用。BNT162b1和安慰剂组之间没有观察到对Sp2肽池(其不包括BNT162b1编码的RBD的肽)的IFN-γELISpot应答的差异,并且在两个剂量组中观察到对CD8+ T细胞的少量非特异性应答。
讨论
本实施例描述的试验在中国与其他BNT162疫苗候选物在多个地区平行进行14。研究的一个重点是建立亚洲群体中mRNA疫苗的安全性和免疫原性的数据。本实施例报告了这种mRNA疫苗在中国群体中的安全性和免疫原性谱的首次评价,以及中国年轻和年长中国群体的安全性和免疫原性谱的首次评价。
这是基于修饰的RNA的SARS-CoV-2疫苗候选物BNT162b1的临床试验的初步报告,BNT162b1编码SARS-CoV-2 RBD,给药至健康的中国成年人群体。BNT162b1,与BNT162b2(编码S蛋白的modRNA,源自相同核苷修饰平台)一样,诱导强疫苗诱导的抗体应答和强T细胞应答。BNT162b1和BNT162b2候选物的临床安全性和免疫原性已在德国(年轻成年人;BNT162-01)和美国(年轻成年人和65-85岁的年长成年人;BNT162-02)的健康成年人群体中进行了评估。在年轻成年人组中,与德国研究(BNT162-01)相比,美国研究(BNT162-02)和本研究(BNT162-03)的7天内严重的局部反应原性AE较少。7天内的全身性反应原性AE在各研究中大致相似。与BNT162-01研究相比,BNT162-02和BNT162-03研究中剂量2后28天内的全身性AE(与相关性无关)略高。
在年长成年人组中,7天内严重局部反应原性AE在各研究中相似。与BNT162-01和BNT162-02研究相比,BNT162-03研究中7天内的全身性反应原性AE略低。与BNT162-02研究相比,BNT162-03研究中剂量2后28天内的全身性AE(与相关性无关)略高,然而严重AE较低。总之,BNT162-01、BNT162-02和BNT162-03研究在30μg下的BNT162b1安全性谱的对比分析表明了基本相当的谱,并且在全身性反应原性/年长群体中,亚洲群体中的安全性谱比非亚洲群体甚至更好。因此,在德国和美国进行的临床试验中7,8,15,此处报道的发现进一步补充和扩展BNT162b1和其他基于RNA的疫苗候选物的报道。
这项研究的基本原理是评估德国和中国群体之间的内在和外在差异是否对这种新型疫苗的耐受性或免疫应答产生任何影响。在局部和全身性反应7,15的严重反应原性方面,在我们的研究中观察到的疫苗候选物BNT162b1在健康的中国成年人中的安全性谱看起来比在其他群体中报告的更好。身体习性、内源抗体库(repertoire)可能有影响。BNT162b1的反应原性是剂量依赖的。与初免疫苗接种后相比,给药加强疫苗接种后观察到不良事件频率增加,尤其是在年轻参与者中。年长成年人的不良反应发生率低于年轻参与者。接受30μg剂量的年轻参与者中的17%以及年长参与者中的8%分别报告了3级发烧。几乎所有严重发烧反应都是短暂的和自限的。1名受试者因初免剂量给药后的反应而退出加强疫苗接种,有偶发性发烧或不耐寒,有或无体温记录,伴有注射部位疼痛、发痒和瘙痒,持续两周以上,使用丁酸氢化可的松(Hydrocortisone Butyrate)软膏后消退。BNT162b1的30μg剂量水平下的年轻受者中主要观察到作为药效学标志的淋巴细胞计数的短暂降低,这与先天性免疫刺激将淋巴细胞重新分布到淋巴样组织中相关16
两个剂量的疫苗候选物BNT162b1均有效地引发特异性体液和细胞免疫应答,第二次疫苗接种对年轻和年长成年人中的发现的抗体滴度有明显的加强作用。按照初免-加强方案以30μg剂量给药BNT162b1诱导针对SARS-CoV-2的病毒中和抗体的最佳免疫应答水平,其高于一组人康复期血清样品中的水平,无论年龄。中国参与者中的体液应答显示出独特的时间模式,并且在两个年龄组中在第43天达到峰值。尽管参与者人数不多,并且可能出现的测量方法学差异可能会影响观察到的结果,但此处报告的发现提示,对疫苗的应答可能存在群体差异。
由于疫苗候选物BNT162b1是编码RBD的三聚体形式的修饰RNA疫苗,因此在本实施例所报告的研究的疫苗受者对S1肽池(含有166种来自人SARS-CoV-2病毒的15-元S1肽)表现出显著的特异性T细胞应答,但对S2肽池并非如此。结果表明,BNT162b1引发的细胞应答是抗原特异性的。相比之下,疫苗候选物BNT162b2谱(spectrum)则不同于其他基于RNA的SARS-CoV-2疫苗,其诱导能够识别S1和S2肽池的T细胞应答15。但是,数据显示30μg剂量的BNT162b1具有高免疫原性,能够在健康的中国成年人中引发强体液和细胞介导的应答。
本领域技术人员会理解小的样本大小和18岁及以上的年龄限制可能限制在本实施例中观察到的结论的严密性。无论如何,鉴于本文所述的预防性RNA疫苗代表了一种新型的疫苗接种方法,安全性评估,包括在特定群体(例如,儿童和青少年群体)中的安全性评估特别有价值。同样,尽管本文所述的疫苗候选物引发的血清中和应答与人康复期血清组的比较提供有意义的疫苗评估,但尚未严格建立提供抗COVID-19保护所需的血清学免疫水平17。本领域技术人员还认识到,已在不同试验中使用的人康复期血清组在实验室之间尚未标准化,因此可能具有不同的患者特征分布和采集时间点,从而直接比较结果(例如,表征不同的疫苗候选物和/或相对于不同康复期血清表征疫苗候选物)可能不提供有用信息。
总之,本实施例中描述的结果证实了基于RNA的SARS-CoV-2疫苗候选物BNT162b1的剂量依赖性安全性和良好的免疫原性,并进一步扩展BNT162b1在德国和美国试验中的先前发现7,8,15。在年轻和年长成年人中,增加的反应原性以及更有利的疫苗引发的病毒中和应答据发现与30μg的BNT162b1有关。相比之下,从相同平台生产的另一种疫苗候选物BNT162b2显示出更有利的安全性谱8。与编码全长刺突免疫原的BNT162b218相比,BNT162b1编码相对小的RBD免疫原,它可能诱导较窄范围的中和抗体,其对SARS-CoV-2的潜在抗原漂移的稳健性较低。值得注意的是,已发现候选物BNT162b2在预防参与者中COVID-19方面的有效性超过95%,而在65岁以上的群体中效力并未降低19
方法
研究设计和参与者
这项随机、安慰剂对照、观察者盲的I期试验于中国江苏省泰州市,在18-59岁的健康年轻成年人和65-85岁的年长成年人中进行。通过筛查访视时的病史、体检和实验室测试,确定参与者的总体良好健康状况。男性和女性都包括在内,并同意在试验期间采取避孕措施。我们排除怀孕或哺乳期的参与者。通过SARS-CoV-2的IgM/IgG抗体商业快速诊断试剂盒(由Livzon diagnostics inc.,Zhuhai,China制造)或通过咽拭子核酸诊断测试(由Fosun pharma,Shanghai,China制造)测试为SARS-CoV-2阳性的参与者被排除在外。胸部CT扫描中出现COVID-19的影像特征是进一步的排除标准。患有严重的心血管疾病或慢性疾病如未控制的糖尿病和高血压、人免疫缺陷病毒、乙型肝炎和丙型肝炎的参与者被排除在外。在研究开始之前,从每名参与者获得书面知情同意。
研究是根据赫尔辛基宣言(Declaration of Helsinki)和良好临床实践(GoodClinical Practice)进行的。试验方案经中国国家药品监督管理局(National MedicalProducts Administration,China)和江苏省疾病预防控制中心(Jiangsu ProvincialCenter of Disease Control and Prevention)机构审查委员会审查通过。
随机化和盲化
18-55岁符合条件的参与者入组到年轻组中,并且大于或等于65岁且小于或等于85岁的年长参与者入组年长组中。参与者以1∶1∶1的比例随机化,以接受低剂量BNT126b1或高剂量BNT126b1或安慰剂。使用基于Web的交互式响应技术(IRT)系统,按性别对参与者进行分层。屏蔽的随机化列表由独立统计学家使用SAS软件(版本9.4)生成。
授权的非盲药剂师通过IRT系统根据参与者的分配情况来准备疫苗或安慰剂,并且护士对参与者进行研究产品的给药。非盲工作人员在试验中没有进一步参与,并禁止披露分配信息给他人。在整个试验中,所有其他研究人员、参与者、实验室工作人员和主办者均不知情。
疫苗和疫苗接种
给药的BNT162b1由良好制造规范(GMP)级mRNA药物物质组成,其编码三聚体SARS-CoV-2刺突糖蛋白RBD抗原,用脂质配制以获得RNA-LNP药物产品。如本文所述,将疫苗运输并作为缓冲液体溶液提供以用于肌肉内注射,并且储存在-80℃下。
低剂量和高剂量BNT126b1分别包含10μg和30μg活性成分,而安慰剂是市售生理盐水溶液。每名参与者接受间隔21天的10μg/0.5ml或30μg/0.5ml的疫苗候选物BNT162b1的初免-加强剂量给药方案或0.5ml的安慰剂,给药至三角肌。
安全性和免疫原性监测
要求每名参与者在疫苗给药后至少六小时留在研究现场,以在初免疫苗接种之前和之后24小时捐献血样以及在加强疫苗接种之前和之后8天再捐献血样用于实验室测试。在基线以及疫苗接种后一小时、三小时和六小时,测量包括体温、血压、脉搏和呼吸率在内的生命体征。参与者使用日志记录疫苗接种后的任何不良事件,直到加强剂量给药后第28天。年轻组参与者已入组并首先接受疫苗接种。在对年轻组初免疫苗接种后的第一个14天的初步安全性数据进行评估后,启动年长组的入组。不良事件的严重程度和实验室异常变化由中国国家食品药品监督管理局(China State Food and Drug Administration)20和美国食品药品监督管理局(U.S.Food and Drug Administration,FDA)21发布的规格(scale)分级。
在疫苗接种前、加强剂量后第8天和/或第22天采集血清和PBMC,以方便测量对RBD和刺突糖蛋白S1的特异性IgG抗体应答、对SARS-CoV-2的中和抗体和T细胞应答。
研究人员对所有报告的不良事件进行审查。不良事件归类为可能、很可能或肯定与疫苗候选物相关。
人康复期血清
中和滴度是保护至少50%的细胞免于细胞病变影响的最高样品稀释度的倒数。由18-70岁(平均年龄45.8岁)的从SARS-CoV-2感染恢复的供体获得一组24份康复期人血清样品;在经过聚合酶链式反应确诊后并且症状消退后至少14天获得样品。这些患者的疾病严重程度从无症状(n=3,13%)、轻度(n=8,33%)、中度(n=10,42%)或重度(n=3,13%)不等。
供体亚组中的中和几何平均滴度(GMT)如下:3名无症状感染的供体为40;8名轻度感染的供体为91.9;中度感染者为160;3名严重感染的供体为226.3。组中的每份血清样品来自不同的供体。因此,大多数血清样品是从具有中度Covid-19的人获得。将康复期血清样品与从本试验参与者获得的血清样品进行并列比较试验。
ELISA
我们采用酶联免疫吸附测定(ELISA)评估针对SARS-CoV-2 RBD和S1的结合抗体应答。
微中和测定
我们基于3级生物安全性实验室(BSL-3)中通过SARS-CoV-2毒株BetaCoV/JS02/human/2020(EPI_ISL_411952)观察到的细胞病变,通过微中和测定检测血清中的SARS-CoV-2特异性中和抗体。
ELISpot
通过使用Mabtech(Nacka Strand,Stockholm,Sweden)制造的商业离体干扰素-γ(INF-γ)酶联免疫斑点(ELISpot)试剂盒评估针对肽的特异性T细胞应答22。从新鲜血液样品中分离PBMC,并在测量前用不同的重叠肽池进行刺激。在这项研究中使用:S1肽池,其覆盖SARS-CoV-2刺突的N末端一半,包括RBD;以及S2肽池,其覆盖SARS-CoV-2刺突的C末端,其中不包括RBD23。由来自人巨细胞病毒、爱泼斯坦-巴尔二氏(Epstein Barr)病毒和流感病毒的32种MHC I类限制性病毒肽组成的肽池(CEF肽池),用于刺激CD8+ T细胞以评估一般T细胞反应性(对SARS-CoV-2不具特异性24)。
结果
这个试验的主要和次要目标是评价疫苗候选物BNT162b1在健康中国成年人中的安全性和免疫原性。安全性评价的主要终点是疫苗接种后14天内注射部位的征求的局部反应或全身性不良反应的发生率,以及免疫后至接受加强剂量后28天的不良事件。从基线到疫苗接种后24小时或7天的任何临床实验室异常,以及发生的任何严重不良事件(SAE)也被记录。
免疫原性的次要终点是几何平均滴度(GMT)、血清转换率和病毒中和抗体的倍数增加,以及每次疫苗接种后第8、22天测得的与S1或RBD结合的ELISA IgG抗体。血清转换定义为,与基线相比,抗体滴度增加四倍或更多,或者如果基线滴度低于检测极限,则为下限值。ELISA的血清稀释从1∶100开始,而微中和测定的血清稀释从1∶10开始。
作为探索性终点,探讨了加强剂量后第8天和第22天,在浓度为1×105/孔的PBMC中,关于分泌干扰素γ(IFN-γ)的阳性细胞数量的细胞免疫应答。
统计分析
本研究的总样本量为144名参与者,每个治疗组包括24名各年龄组的参与者。根据疫苗接种后不良反应发生率为8%的假设,每个剂量组24名参与者中观察到至少一起事件的概率为86.5%。
所有接受至少一个剂量的研究性疫苗的随机参与者都纳入安全性分析。安全性终点描述为观察期间不良反应或事件的95%置信区间(CI)的频率(%)。我们用Chi-square或Fisher精确法(eaxct)比较各组的具有不良反应或事件的参与者的比例。所有接受过至少一次疫苗接种并在接种之前或之后有血清学测量结果的参与者都纳入免疫原性分析。在指定时间点对免疫学终点进行描述性总结,并在各组间进行比较,对对数(log)转化的抗体滴度采用ANOVA,对非正常数据采用Wilcoxon秩和检验(rank-sum test)。将每个剂量组中参与者的中和抗体应答与PCR确诊SARS-CoV-2感染的患者进行比较。任何低于检测下限的血清学值设置为该值的一半(对于ELISA为1:50,对于微中和测定为1:5),而高于最高稀释滴度的值则分配最高稀释的值进行计算。进行RBD或S1特异性ELISA抗体和中和抗体的Pearson相关性分析,以评估不同测定的应答之间的关系。
参考文献
1.Gudbjartsson,D.F.,et al.Spread of SARS-CoV-2 in the IcelandicPopulation.The New England journal of medicine 382,2302-2315(2020);see alsoWHO factsheet:https://covid19.who.int/.
2.Huang,C.,et al.Clinical features of patients infected with 2019novel coronavirus in Wuhan,China.Lancet(London,England)395,497-506(2020).
3.Jackson,L.A.,et al.An mRNA Vaccine against SARS-CoV-2-PreliminaryReport.The New England journal of medicine 383,1920-1931(2020).
4.World Health Organization.DRAFT landscape of COVID-19candidatevaccines–3 November 2020.Vol.2020(2020).
5.Corbett,K.S.,et al.SARS-CoV-2 mRNA vaccine design enabled byprototype pathogen preparedness.Nature 586,567-571(2020).
6.Anderson,E.J.,et al.Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults.The New England journal of medicine(2020).
7.Mulligan,M.J.,et al.Phase I/II study of COVID-19 RNA vaccineBNT162b1 in adults.Nature 586,589-593(2020).
8.Walsh,E.E.,et al.Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates.The New England journal of medicine(2020).
9.Wrapp,D.,et al.Cryo-EM structure of the 2019-nCoV spike in theprefusion conformation.Science(New York,N.Y.)367,1260-1263(2020).
10.Güthe,S.,et al.Very fast folding and association of atrimerization domain from bacteriophage T4 fibritin.Journal of molecularbiology 337,905-915(2004).
11.Krammer,F.SARS-CoV-2 vaccines in development.Nature 586,516-527(2020).
12.O'Callaghan,K.P.,Blatz,A.M.&Offit,P.A.Developing a SARS-CoV-2Vaccine at Warp Speed.Jama 324,437-438(2020).
13.Poland,G.A.,Ovsyannikova,I.G.&Kennedy,R.B.SARS-CoV-2 immunity:review and applications to phase 3 vaccine candidates.Lancet(London,England)396,1595-1606(2020).
14.Deming,M.E.,Michael,N.L.,Robb,M.,Cohen,M.S.&Neuzil,K.M.Accelerating Development of SARS-CoV-2 Vaccines-The Role for ControlledHuman Infection Models.The New England journal of medicine 383,e63(2020).
15.Sahin,U.,et al.COVID-19 vaccine BNT162b1 elicits human antibodyand T(H)1 T cell responses.Nature 586,594-599(2020).
16.Kamphuis,E.,Junt,T.,Waibler,Z.,Forster,R.Kalinke,U.Type Iinterferons directly regulate lymphocyte recirculation and cause transientblood lymphopenia.Blood 108,3253–61(2006).
17.Hodgson,S.H.,et al.What defines an efficacious COVID-19 vaccine?Areview of the challenges assessing the clinical efficacy of vaccines againstSARS-CoV-2.The Lancet.Infectious diseases(2020).
18.Lan,J.,et al.Structure of the SARS-CoV-2 spike receptor-bindingdomain bound to the ACE2 receptor.Nature 581,215-220(2020).
19.Pfizer Inc.Pfizer and BioNTech Announce Vaccine Candidate AgainstCOVID-19 Achieved Success in First Interim Analysis from Phase3Study.Vol.2020(2020).
20.Center For Drug Evaluation,NMPA.Guidances for grading adversereactions in clinical trials of preventive vaccines.Vol.2020(2008).
21.US Food and Drug Administration.Toxicity Grading Scale for HealthyAdult and Adolescent Volunteers Enrolled in Preventive Vaccine ClinicalTrials.Vol.2020(2007).
22.Slota,M.,Lim,J.B.,Dang,Y.&Disis,M.L.ELISpot for measuring humanimmune responses to vaccines.Expert review ofvaceines 10,299-306(2011).
23.Buchan,S.A.,et al.Effectiveness of Live Attenuated vs InactivatedInfluenza Vaccines in Children During the 2012-2013 Through 2015-2016Influenza Seasons in Alberta,Canada:A Canadian Immunization Research Network(CIRN)Study.JAMA pediatrics 172,e181514(2018).
24.Victor,J.C.,et al.Efficacy of a Russian-backbone live attenuatedinfluenza vaccine among children in Senegal:a randomised,double-blind,placebo-controlled trial.The Lancet.Global health 4,e955-e965(2016).
表24.参与者的基线特征,按年龄组
Figure GDA0004051824180003311
数据为平均值(SD)或n(%)。*“其他”包括扁桃体炎、螺杆菌感染、人乳头瘤病毒感染、牙周炎、心电图高压、淋巴结病、贫血、肝囊肿、口咽部不适、甲状腺功能亢进、非感染性牙龈炎、高脂血症、良性前列腺增生、前列腺炎、单侧失明、脑梗塞、肢体损伤、脊柱畸形、尿路结石和淋巴结病。
表25A:疫苗接种后14天内的征求的不良反应,直到第43天的非征求的不良反应,按年龄组
Figure GDA0004051824180003312
Figure GDA0004051824180003321
表25B(修改的)疫苗接种后14天内的征求的不良反应,以及直到第43天的非征求的不良反应,按年龄组,包括“安慰剂校正”的AE率
Figure GDA0004051824180003322
Figure GDA0004051824180003331
数据显示为具有事件的参与者数(%)。3级为严重反应(即阻止活动)。SAE=严重不良事件。在特定的反应类别中,一名参与者只计算一次,以及一次以上的不良反应。只列出了两名或更多名参与者报告的非征求的不良反应。*发热的参与者按照美国食品药品监督管理局(FDA)的指南进行分级。发烧也按照中国国家药品监督管理局(NMPA)发布的《疫苗临床试验不良事件分级指南》进行分级,其中3级发烧定义为腋温≥38.5℃。
Figure GDA0004051824180003332
1名受试者在初免剂量后,经历3级发烧,并伴有注射部位的疼痛、发痒和瘙痒,并选择性地退出了加强疫苗接种。
实施例33:通过BNT162b2疫苗引发的血清中和SARS-CoV-2谱系B.1.1.7假病毒
2020年9月,在英国检测到SARS-CoV-2变体B.1.1.7,其流行率随后提高,显示出增强的传播性,并扩散到其他国家和洲。B1.1.7在其刺突蛋白中具有一系列突变:ΔH69/V70、ΔY144、N501Y、A570D、D614G、P681H、T716I、S982A和D1118H。其中N501Y特别值得关注,因为它位于受体结合位点;具有这种突变的刺突与其细胞受体ACE-2结合更紧密;并且具有这种突变的病毒的宿主范围增加,包括小鼠。通过BNT162b2免疫血清中和19种假病毒,每种假病毒带有在流传的毒株中发现的具有不同突变的SARS-CoV-2 S,与非突变体假病毒一样有效。下面的研究表明,具有英国变体刺突中全套突变的病毒也能被BNT162b2-免疫血清有效中和。
我们产生带有武汉参考毒株或谱系B.1.1.7毒株刺突蛋白的VSV-SARS-CoV-2-S假病毒。此前报道的试验(Sahin U.et al.,medRxiv 2020.12.09.20245175;doi:https://doi.org/10.1101/2020.12.09.20245175)的16名参与者的血清,在用30μg BNT162b2加强免疫后21天,抽取自8名年轻(18-55岁)和8名年长成年人(56-85岁),通过50%假病毒中和测定(pVNT50;图122),测试对SARS-CoV-2武汉和谱系B.1.1.7刺突假型VSV的中和。血清针对SARS-CoV-2谱系B.1.1.7刺突假型VSV的50%中和GMT与针对武汉参考刺突假型VSV的50%中和GMT的比为0.79,表明针对两种假病毒的中和活性无显著生物学差异。
BNT162b2-免疫血清对带有B.1.1.7刺突的假病毒的中和作用得以保留,表明英国变体病毒无法逃脱BNT162b2-介导的保护。此外,由于假型中和与SARS-CoV-2中和测定之间有良好的一致性,因此使用非复制型假病毒系统预期不会成为工作的潜在限制。
材料和方法
VSV-SARS-CoV-2 S变体假病毒的产生
根据公布的假型包装方法,将重组复制缺陷型水疱性口炎病毒(VSV)载体与源自武汉参考毒株(NCBI Ref:43740568)或关注的变体(VOC)-202012/01(也称为SARS-CoV-2谱系B.1.1.7)的SARS-CoV-2刺突(S)假型包装(图123)(PMID:21998709),所述载体编码绿色荧光蛋白(GFP)和萤光素酶而不是VSV-糖蛋白(VSV-G)。简而言之,用VSV-G互补的VSVΔG载体接种转染以表达SARS-CoV-2 S的HEK293T/17单层。在37℃下孵育1小时后,取出接种物。用PBS洗涤细胞,然后加入补充有抗VSV-G抗体(克隆8G5F11,Kerafast Inc.)的培养基以中和残留的VSV-G互补输入病毒。含有VSV-SARS-CoV-2-S假型的培养基在接种后20小时收获,0.2μm过滤,在-80℃下保存。在用于中和测试之前,在Vero 76细胞上滴定假病毒批次,并通过流式细胞术确定感染细胞的百分比(图124)。个体滴度以每毫升的转导单位(TU)计算。产生带有武汉参考毒株或谱系B.1.1.7毒株刺突蛋白的VSV-SARS-CoV-2-S假病毒,获得类似的滴度(表26)。
表26.SARS-CoV-2武汉参考毒株和谱系B.1.1.7刺突假型VSV的滴度,转导单位(TU)/mL
Figure GDA0004051824180003341
血清标本和中和测定
图125示意性地说明免疫和血清采集方案。对于测量中和滴度,将各血清在培养基中2倍系列稀释,第一稀释度为1∶20(稀释范围为1∶20-1∶2560)。将VSV-SARS-CoV-2-S颗粒在培养基中稀释以在测定中获得100TU。将血清稀释液在室温下与假病毒以1∶1混合30分钟,然后加入96孔板中的Vero 76细胞单层,并在37℃下孵育24小时。移除上清液,用萤光素酶试剂(Promega)裂解细胞。记录萤光,并在GraphPad Prism版本9中,通过在每个系列血清稀释度生成中和百分比的4参数逻辑(4PL)拟合来计算中和滴度。50%假病毒中和滴度(pVNTs0)报告为产生50%萤光减少的稀释度的插值倒数。提供中和滴度的表(表27)。图126中绘制了各血清针对SARS-CoV-2谱系B.1.1.7和武汉参考毒株刺突假型VSV的pVNT50的比率。
表27. 16份BNT162b2免疫后血清针对SARS-CoV-2武汉参考毒株刺突假型和谱系B.1.1.7刺突假型VSV的pVNT50
Figure GDA0004051824180003342
实施例34:在孕妇中给药SARS-CoV-2 RNA疫苗的示例性方案
本实施例描述在孕妇(例如,在18岁及以上的健康孕妇)中给药本文所述的SARS-CoV-2RNA疫苗(具体地,在该实施例中,BNT162b2)的示例性方案。
孕妇有感染SARS-CoV-2感染和COVID-19的风险。由于怀孕期间的生理变化可能增加呼吸道感染的易感性,并随后迅速发展为呼吸衰竭,因此怀孕可能导致罹患严重COVID-19的风险增加。此外,据报道,患有COVID-19的孕妇有较高比例的早产、剖腹产、胎儿窘迫和需要新生儿重症监护的婴儿。
本实施例描述了某些方案,根据这些方案,可以向孕妇和/或由这些孕妇所生的婴儿给药BNT162b2,并且还描述了可以进行的某些评估和/或可以取得的结果。例如,本实施例描述了研究,其会评估BNT162b2在孕妇及其婴儿中的安全性;还会评估BNT162b2在孕妇中的免疫原性、抗体向其婴儿的转移以及婴儿中抗体转移的动力学。
在其他方面,本实施例描述了研究,其会评估预防性BNT162b2在向妊娠24-34周的18岁或以上的接种疫苗的母体参与者给药时的安全性和耐受性。不希望受任何特定理论约束,本实施例提出,在这个时间段内开始疫苗接种可以提供特定的优势。意识到在怀孕期间任何时候接种疫苗的建议(例如,见“Israel Recommends COVID Vaccination in AllStages of Pregnancy,Updating Guidelines”Haaretz February 1,2021)以及在怀孕期间避免接种疫苗的其他建议(例如,见WHO Strategic Advisory Group recommendation),本实施例描述了特定的方案,其中怀孕母亲在妊娠的约24-约34周之间,或在一些实施方案中在妊娠的约27-约34周之间接受第一剂量的疫苗,并在约21天后,理想地在婴儿分娩前接受第二剂量的疫苗。
不希望受任何特定理论约束,本实施例提出,根据这一方案接种疫苗可以例如减少对胎儿的风险,其例如可能在妊娠早期暴露于免疫的母体免疫应答。此外,仍然不希望受到任何特定理论的约束,本实施例提出,所提供的疫苗接种时间安排,当在婴儿分娩前至少给药两个剂量时,可以提供特定的益处。此外,本实施例提出,所提供的方案可以提供特别有益的风险/收益平衡。此外,本公开教导,可以提供这样的益处,通过对怀孕母亲进行免疫,特别是通过按照本实施例所述的方案进行这种免疫,可以向婴儿赋予免疫力,在一些实施方案中,其可以通过分娩携带(carry past delivery),这减少对婴儿免疫的需要,至少在产后几天、几周、几个月或几年的时间段内(例如,1、2、3、4、5、6、7、8周或更长,或1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24个月或更长,或1、2、3、4或5年)。因此,在一些实施方案中,如本文所述,在怀孕期间接种疫苗的母亲所生的婴儿,例如,根据本文所述的特定方案,在出生后的一段时间内(例如,如本文所述),可以不需要进一步的疫苗接种,或者可以需要减少的疫苗接种(例如,较低的剂量和/或较少的给药次数--例如,加强--和/或在给定时间段内较低的总体暴露)。
例如,在每个疫苗组接受至少1个剂量的研究干预的母亲参与者中,将评估报告以下情况的母亲参与者的百分比:(i)每个剂量后达7天的局部反应;(ii)每个剂量后达7天的全身性事件;(iii)从剂量1到剂量2后1个月的AE;(iv)从剂量1到产后1个月的SAE。替代地或额外地,在符合某些关键协议标准(可评价的母亲参与者)并且没有既往SARS-CoV-2感染的血清学或病毒学证据(接受第二剂量后达1个月)的母亲参与者中:可以评估(v)GMR,通过剂量2后1个月孕妇中SARS-CoV-2中和滴度的几何平均值与非孕妇中SARS-CoV-2中和滴度的几何平均值的比率来估算。
更进一步替代或额外地,在符合关键协议标准(可评价的参与者)和/或有或没有(例如,分别为那些有和没有,或独立地)既往SARS-CoV-2感染的血清学或病毒学证据(在接受剂量2后7天之前)的母亲参与者中:(vi)可以评估100×(1-IRR)[活性疫苗与安慰剂的比率]。
仍然更进一步替代或额外地,可以评估以下一项或多项:
-来自各疫苗组的符合关键协议标准的母亲参与者(可评价的母亲参与者)中:(a)基线(剂量1之前)、剂量2后2周、剂量2后1个月和产后(delivery)6个月的GMC/GMT(b)基线至剂量2后2周、剂量2后1个月和产后6个月的GMFR;
-在每个疫苗组接受至少1个剂量的研究干预的母亲参与者所生的婴儿中,有以下的婴儿的百分比:(a)具体的出生结果;(b)从出生到1个月大的AE;(c)到6个月大的SAE和AESI(主要先天性畸形、发育迟缓)。
-在每个组疫苗的可评价母亲参与者所生的婴儿中:(a)出生时和产后6个月的GMC和GMFR;
-在接受BNT162b2的母亲参与者(在最初随机化时和产后一个月)中:(a)每1,000人-年随访的发生率;
-在初始随机化时接受BNT162b2并且没有证据表明以前有SARS-CoV-2感染的母亲参与者中:(a)每1,000人-年随访的发生率
-在每个疫苗组的可评价母亲参与者的每个子集中具有:(a)确诊的COVID-19;(b)确诊的严重COVID-19;(c)SARS-CoV-2感染但未确诊COVID-19;(d)基线、剂量2后1个月和产后6个月的GMC/GMT和GMFR:
-在可评价的母亲参与者中:(a)基线和剂量2之前的GMC/GMT;(b)从基线至剂量2之前的GMFR;
-基于母乳喂养状况,在每个疫苗组的母亲参与者所生婴儿中:(a)出生时和产后6个月的GMC和GMFR;
-基于母乳喂养状况,在每个疫苗组的接受至少1个剂量的研究干预的母亲参与者所生的婴儿中,有以下的婴儿的百分比:(a)从出生到1个月大的AE;(b)从6个月大的SAE和AESI(主要先天性畸形、发育迟缓);
-在每个疫苗组的母亲参与者所生婴儿中:(a)确诊COVID-19的婴儿参与者的发病率;
-在每个疫苗组的母亲参与者所生婴儿中:(a)MIS-C的发病率。
在一些实施方案中,在孕妇的妊娠27-34周期间给药第一剂量,然后在大约21天后给药第二剂量。在一些实施方案中,在孕妇的妊娠24-34周期间给药第一剂量,然后在大约21天后给药第二剂量。在一些实施方案中,对参与者母亲进行长达约6、7、8、9、10、12、13、14、15、16、17、18个月或更长时间段的评估(例如,在研究开始后、给药第一剂量后、给药第二剂量后和/或婴儿出生后)。
在一些实施方案中,对已给药一个或多个(例如,两个)疫苗剂量的母亲(例如,在妊娠期间给药两个剂量)所生的婴儿进行长达约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18个月或更长时间段的评估(例如,在研究开始后、给药第一剂量后、给药第二剂量后和/或婴儿出生后)。
在一些实施方案中,如本文所述,剂量会是30μg的BNT162b2。
在一些实施方案中,对疫苗性能的评估在任何年龄或在特定年龄范围内(例如,等于或高于18岁)的孕妇群体中进行。在一些实施方案中,对疫苗性能的评估在怀有单胎的妇女群体中进行。
在一些实施方案中,孕龄通过末次月经期、超声检查、体检和/或其组合中的一个或多个来评估。在一些实施方案中,孕龄由超声检查确定。在一些实施方案中,通过考虑两个或更多的评估(例如,在怀孕的不同时间,如在不同的妊娠期进行的两个或更多的超声检查)来确定孕龄。
在一些实施方案中,对疫苗性能的评估在具有一个或多个以下特征的群体中进行:怀孕至少18周进行的超声检查,且未观察到明显的胎儿异常(例如,经许可的研究者评估);记录的HIV、梅毒和/或HBV检测或其组合为阴性;孕前BMI≤40kg/m2
在一些实施方案中,对疫苗性能的评估是在群体中进行的,所述群体不包括具有一个或多个以下特征的受试者:患有可能增加疫苗接种风险的医疗或精神疾病状况,或以其他方式,根据许可研究者的合理判断认为受试者不适合接受疫苗;之前的临床或微生物学诊断为COVID-19;与疫苗相关的严重不良反应史和/或对疫苗任何组分的严重过敏反应史(如过敏反应(anaphylaxis));已知或疑似免疫缺陷;出血性体质或与长期出血、妊娠高血压或先兆子痫-子痫、胎盘异常、羊水过多或羊水过少、明显出血或凝血障碍、妊娠糖尿病相关的疾病状况,当前妊娠有一个或多个早产迹象,或当前妊娠有持续的介入(医疗/手术)以防止早产,以前有死胎或新生儿死亡,以前有低出生体重或早产,以前有至少3次流产史,以前妊娠次数5次以上,或以前的婴儿有已知的遗传疾病或重大先天性畸形,以前接种过任何冠状病毒疫苗,接受旨在预防COVID-19的药物,从研究介入给药前60天接受或计划通过分娩(delivery)接受(1个例外,抗D免疫球蛋白(例如,RhoGAM),其可以在任何时间给予)血液/血浆制品或免疫球蛋白,目前酗酒或非法使用药物,接受免疫抑制疗法(包括细胞毒性剂或全身性皮质类固醇,例如,用于癌症或自身免疫疾病,或计划通过疫苗接种后抽血接受)治疗的参与者,在参加研究前28天内和/或参加研究期间参与其他涉及研究介入的研究,以前参加涉及含有LNP的研究介入的其他研究,目前患有发热性疾病,目前有COVID-19感染的症状,在过去14天内接受任何季节性或大流行性流感疫苗,在研究介入给药后的7天内预计接受任何季节性或大流行性流感疫苗,在过去14天内接受含有破伤风、白喉和/或百日咳的疫苗,在研究介入给药后的7天内预计接受含有破伤风、白喉和/或百日咳的疫苗,剂量给药前少于28天接受短期(<14天)全身性皮质类固醇(允许使用吸入/雾化、关节内、囊内(intrabursal)或体表(皮肤或眼睛)皮质类固醇)。
在一些实施方案中,如本文所述接种疫苗的母亲可以正在服用或可以开始服用,例如解热药或其他止痛药来治疗与疫苗接种相关的症状。替代地或额外地,在一些实施方案中,母亲可以正在服用或可以开始服用治疗预先存在的稳定疾病状况所需的药物和/或吸入、体表或局部注射皮质类固醇。
在一些实施方案中,如本文所述接种疫苗的母亲可以被给予一种或多种产前皮质类固醇,特别是如果妊娠有早产的风险。在一些实施方案中,皮质类固醇是糖皮质激素。在一些实施方案中,皮质类固醇是倍他米松(betamethasone)或孕酮,或其混合物。
在一些实施方案中,如本实施例所述的疫苗接种降低母亲和/或其所生婴儿的COVID-19疾病(和/或记录的SARS-CoV-2感染)或严重的COVID-19疾病的发生率,例如,相对于在可比的未接种疫苗(例如,接受安慰剂)群体中观察到的发生率。在一些实施方案中,如果存在COVID-19疾病的至少1种症状(发烧;新的或增加的咳嗽;新的或增加的呼吸急促;新的或增加的肌肉疼痛;味觉或嗅觉新的丧失;咽喉痛;腹泻;呕吐;和/或在某些实施方案中,疲劳、头痛、鼻塞或流鼻涕、恶心),并且在症状期期间或症状期之前或之后4天内,在中央实验室或当地检测机构(使用可接受的测试)获得SARS-CoV-2NAAT阳性检测,则认为母亲患有COVID-19疾病。在一些实施方案中,如果母亲已确诊COVID-19,并且存在以下一项或多项,则认为母亲患有严重的COVID-19疾病:
-静止状态下的临床体征提示严重的全身性疾病(RR≥30次呼吸/分钟,HR≥125次/分钟,在海平面室内的空气中SpO2≤93%,或PaO2/FiO2<300mmHg);
-呼吸衰竭(定义为需要高流量氧、无创通气、机械通气或ECMO);
-有休克证据(SBP<90mmHg,DBP<60mmHg,或需要血管加压药);
-明显的急性肾、肝或神经功能障碍*;
-进入ICU;
-死亡。
在一些实施方案中,如果至少有一种症状(发烧;新的或增加的咳嗽;新的或增加的呼吸急促;腹泻;呕吐;和/或在某些实施方案中,鼻塞或流鼻涕、食欲差或喂养不良、腹痛/绞痛中的一种或多种),并且在症状期期间或症状期之前或之后4天内,在中央实验室或当地检测机构(使用可接受的测试)获得SARS-COV-2NAAT阳性测试结果,则认为婴儿患有COVID-19疾病。在一些实施方案中,如果婴儿已确诊COVID-19,并且存在以下一项或多项,则认为婴儿患有严重的COVID-19疾病:
(i)静止状态下的临床体征提示严重的全身性疾病:
-RR(呼吸/分钟):从出生至1周大>50,从1周至1个月大≥40,从1个月大至6个月大≥34;
-HR(次/分钟):>180;
-室内空气中SpO2≤92%或>50% FiO2以维持≥92%,或PaO2/FiO2<300mmHg24;
(ii)呼吸衰竭(定义为需要高流量氧,包括鼻CPaP/BiPaP、无创通气、机械通气或ECMO);
(iii)有休克或心力衰竭的证据:
-SBP(mm Hg)(<年龄的第5百分位数);
+从出生至1周大<65,从1周至1个月大<75,从1个月大至6个月大<100;
或者
-需要使用血管活性药物以维持BP在正常范围;
(iv)明显的急性肾衰竭:血清肌酐>2倍年龄的ULN或基线肌酐增加2倍;
(v)明显的GI/肝衰竭:总胆红素>4mg/dL或ALT为2倍年龄的ULN;
(vi)明显的神经功能障碍:Glasgow Coma Scale评分<11,或精神状态急性改变,Glasgow Coma Scale评分从异常基线下降≥3分。
(vii)进入ICU;
(viii)死亡。
在一些实施方案中,在母亲按本文所述接种疫苗的婴儿中,多系统炎症综合征的发生率没有显著增加(例如,相对于母亲未接种疫苗和/或未按本文所述方案接种疫苗的可比群体)。在一些实施方案中,在以下情况下,认为婴儿患有多系统炎症综合征:
-婴儿出现发烧(≥38.0℃持续≥24小时,或报告主观发烧持续≥24小时);和
-有炎症的实验室证据(基于当地实验室范围),包括但不限于以下一项或多项:CRP、ESR、纤维蛋白原、降钙素原、D-二聚体、铁蛋白、LDH或IL-6升高,嗜中性粒细胞升高,淋巴细胞减少,白蛋白低;以及
-有证据表明临床严重疾病需要住院治疗(定义同上文严重疾病的定义),多系统(≥2)器官受累:
ο心脏(如休克、肌钙蛋白升高、BNP升高、超声心动图异常、心律失常);
ο肾(如急性肾损伤或肾衰竭);
ο呼吸系统(如肺炎、ARDS、肺栓塞);
ο血液学(如D-二聚体升高,血栓形成倾向(thrombophilia)或血小板减少);
οGI/肝(如胆红素升高、肝酶升高或腹泻);
ο皮肤病(如皮疹、黏膜皮肤病变(mucocutaneous lesions));
ο神经(如CVA、无菌性脑膜炎、脑病);和
-没有替代性可信的诊断;以及
-通过RT-PCR、血清学或抗原测试,婴儿确定为当前或最近感染SARS-CoV-2的阳性;或
-婴儿在出现症状前4周内有COVID-19暴露。
在一些实施方案中,如本文所述的母亲接种疫苗不会实质性地增加婴儿早产发病率。
在一些实施方案中,母亲如本文所述接种疫苗的婴儿的COVID-19疾病(和/或记录的SARS-CoV-2感染)的发生率相对于母亲未如此接种疫苗的婴儿的发生率降低。在一些实施方案中,母亲如本文所述接种疫苗的婴儿的COVID-19疾病(和/或记录的SARS-CoV-2感染)的发生率与产后直接接种疫苗的婴儿的发生率相当。
在一些实施方案中,如本文所述的疫苗接种实现以下主要或次要结果测量的一个或多个。
主要结果测量:
1.报告局部反应的母亲参与者的百分比
电子日记自述的注射部位疼痛、发红和肿胀
[时间框架:剂量1和剂量2后7天]
2.报告全身性事件的母亲参与者的百分比
电子日记自述的发烧、疲劳、头痛、寒战、呕吐、腹泻、新的或加重的肌肉疼痛以及新的或加重的关节疼痛
[时间框架:剂量1和剂量2后7天]
3.报告不良事件的母亲参与者的百分比
由调查点工作人员引出
[时间框架:从剂量1至剂量2后1个月]
4.报告严重不良事件的母亲参与者的百分比
由调查点工作人员引出
[时间框架:从剂量1至产后6个月]
5.证明与没有既往SARS-CoV-2感染证据的C4591001研究的未怀孕女性参与者相比,孕妇中的免疫应答不逊色。
GMR,通过孕妇与未怀孕女性参与者的SARS CoV 2中和滴度的几何平均值的比率来估算。
[时间框架:剂量2后1个月]
6.证明与有或无之前的SARS-CoV-2感染证据的C4591001研究的未怀孕女性参与者相比,孕妇中的免疫应答不逊色。
GMR,通过孕妇与未怀孕女性参与者的SARS CoV 2中和滴度的几何平均值的比率来估算。
[时间框架:剂量2后1个月]
次要结果测量:
7.评估针对疫苗接种前无感染证据的参与者中确诊的COVID 19的效力
1000人年的随访。
[时间框架:剂量2后7天]
8.评估针对无先前感染证据的参与者中确诊的COVID 19的效力。
1000人年的随访
[时间框架:剂量2后7天]
实施例35:通过BNT162b2疫苗引发的人血清中和SARS-CoV-2谱系B.1.1.298(丹麦毒株;又名SARS-CoV-2/hu/DK/CL-5/1(簇5))和B.1.351(南非毒株;又名20H/501Y.V2(501.V2))假病毒
通过50%中和测定(pVNT50)来测试此前报告的德国1/2期试验中的12名年轻成年人参与者的血清(用30μg BNT162b2加强免疫后7天或21天抽取)对SARS-CoV-2武汉Hu-1(参考)、南非谱系B.1.351(SA毒株)和丹麦水貂(Danish mink)相关谱系B.1.1.298(DNK毒株)刺突蛋白假型VSV的中和。与武汉参考相比,SA毒株刺突蛋白带有如下氨基酸改变:L18F、D80A、D215G、ΔL242-244、R246I、K417N、E484K、N501Y、D614G、A701V。与武汉参考相比,DNK毒株刺突蛋白带有以下氨基酸改变∶Y453F、D614G、I692V、M1229I。
BNT162b2免疫血清对DNK毒株假病毒的中和几乎与SARS-CoV-2武汉Hu-1假型参考一样有效。与针对武汉Hu-1假型参考的滴度相比,测量到的针对SARS-CoV-2谱系B.1.351假病毒的中和滴度下降(5倍)。重要的是,所有测试的BNT162b2免疫血清仍然能够中和,没有发现完全逃逸(图127)。
材料和方法:
根据公布的假型包装方法,将重组复制缺陷型VSV载体与:武汉-Hu-1分离株SARS-CoV-2刺突(S)(GenBank:QHD43416.1);变体,所述变体带有丹麦水貂相关谱系B.1.1.298的S蛋白中发现的4个突变(Y453F、D614G、I692V、M1229I);或者变体,所述变体带有在南非谱系B.1.351的S蛋白中发现的10个突变(L18F、D80A、D215G、R246I、Δ242/243/244、K417N、E484K、N501Y、D614G、A701V)假型包装,所述载体编码绿色荧光蛋白(GFP)和萤光素酶(Luc)而不是VSV-糖蛋白(VSV-G)。简言之,用VSVΔG-GFP/Luc载体接种转染以表达C末端胞质19个氨基酸截短的的各个SARS-CoV-2 S(SARS-CoV-2-S(CΔ19))的HEK293T/17单层。于37℃下孵育1小时后,取出接种物,用PBS洗涤细胞,然后加入补充有抗VSV-G抗体(克隆8G5F11,Kerafast)的培养基以中和残留的输入病毒。接种后20小时收集含有VSV-SARS-CoV-2假病毒的培养基,0.2-μm过滤,-80℃下保存。
对于假病毒中和测定,每96孔接种40,000个Vero 76细胞。将血清从1:10稀释度开始,在培养基中1∶2系列稀释(稀释范围为1∶10-1∶2,560)。VSV-SARS-CoV-2-S假颗粒稀释在培养基中,用于测定中约1,000TU的荧光灶单位(ffu)计数。将血清稀释液与假病毒以1:1在室温下混合30分钟,然后加入96孔板中的Vero 76细胞单层,并在37℃下孵育24小时。移除上清液,用萤光素酶试剂(Promega)裂解细胞。记录萤光,并在GraphPad Prism版本9中,通过在每个系列血清稀释度生成中和百分比的4参数逻辑(4PL)拟合来计算中和滴度。50%假病毒中和滴度(pVNT50)报告为产生50%萤光减少的稀释度的插值倒数。
实施例36:通过BNT162b2疫苗引发的血清中和N501Y突变体SARS-CoV-2
英国和南非出现了快速传播的SARS-CoV-2变体(Volz E.et al.Report 42-Transmission of SARS-CoV-2 Lineage B.1.1.7 in England:Insights from linkingepidemiological and genetic data.https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-42-sars-cov-2-variant/;TegallyH.et al.Emergence and rapid spread of a new severe acute respiratorysyndrome-related coronavirus 2(SARS-CoV-2)lineage with multiple spikemutations in South Afric.medRxiv 2020.https://doi.org/10.1101/2020.12.21.20248640)。这些变体在其S糖蛋白中有多个突变,所述S糖蛋白是病毒中和抗体的关键靶标。这些快速传播的变体共有刺突N501Y取代。这个突变特别值得关注,因为其位于用于进入细胞的病毒受体结合位点中,增加了与受体(血管紧张素转化酶2)的结合,并且使病毒扩大其宿主范围以感染小鼠(Gu H.et al.Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy.Science 2020;369:1603-7;Chan K.K.et al.Anengineered decoy receptor for SARS-CoV-2 broadly binds protein S sequencevariants.Cold Spring Harbor Laboratory 2020.doi:10.1101/2020.10.18.344622)。
我们在N501临床毒株USA-WA1/2020的遗传背景上产生同基因的Y501 SARS-CoV-2,这也提供BNT162b2编码的刺突抗原的遗传背景。通过50%噬斑减少中和测定来测试以前报告的试验中20名参与者的血清(用间隔3周的两个30μg剂量的BNT162b2免疫后2或4周抽取)(Walsh E.E.et al.Safety and Immunogenicity of Two RNA-Based Covid-19Vaccine Candidates.N Engl J Med 2020;Polack F.P.et al.Safety and efficacy ofthe BNT162b2 mRNA Covid-19 vaccine.N Eng.J Med 2020.DOI:10.1056/NEJMoa2034577)对N501和Y501病毒的中和(PRNT50;图128)。血清针对Y501病毒的50%中和GMT与针对N501病毒的50%中和GMT的比为1.46,表明针对带有Y501刺突的病毒的中和活性没有降低。
材料和方法
同基因(isogenic)病毒的构建
我们制备了含有N501或Y501刺突蛋白的SARS-CoV-2的同基因对(图129)。N501Y突变通过利用临床毒株WA1(2019-nCoV/USA_WA1/2020)(Xie X.et al.An Infectious cDNAClone of SARS-CoV-2.Cell Host Microbe 2020;27:841-8e3)的感染性cDNA克隆,在病毒基因组的核苷酸23,063处进行A至T取代而制备。按照之前报道的诱变方法(Plante J.A.etal.Spike mutation D614G alters SARS-CoV-2 fitness.Nature 2020),我们回收N501和Y501病毒,其滴度为>107噬斑形成单位(PFU)/ml。这两种病毒在Vero E6细胞上发展类似的噬斑形态(图130)。
血清样本和中和测定
图131示意性地说明免疫和血清采集方案。对于测量中和滴度,将各血清在培养基中2倍系列稀释,第一稀释度为1∶40(稀释范围为1∶40-1∶1280)。将稀释的血清与100PFU的N501或Y501病毒在37℃下孵育1小时,之后将血清-病毒混合物接种到6孔板中的Vero E6细胞单层上。如以前的报道(Muruato A.E.et al.A high-throughput neutralizingantibody assay for COVID-19 diagnosis and vaccine evaluation.Nat Commun 2020;11:4059),进行传统的(非荧光)噬斑减少中和测定以定量血清介导的病毒抑制。抑制>50%的病毒噬斑的最小血清稀释度定义为PRNT50。提供中和滴度的表(表28)。图132中绘制了各血清针对N501和Y501病毒的PRNT50的比率。
表28. 20份BNT162b2免疫后血清针对N501和Y501 SARS-CoV-2的PRNT50
Figure GDA0004051824180003411
实施例37:通过BNT162b2疫苗引发的血清中和刺突69/70缺失、E484K和N501YSARS-CoV-2
英国(UK)、南非(SA)和其他地区出现了快速传播的SARS-CoV-2变体(Volz E.etal.CMe.Report42-Transmission of SARS-CoV-2 Lineage B.1.1.7 in England:Insights from linking epidemiological and genetic data.https://wwwimperialacuk/mrc-global-infectious-disease-analysis/covid-19/report-42-sars-cov-2-variant/2021;Tegally H.et al.e.Emergence and rapid spread of a newsevere acute respiratory syndrome-related coronavirus 2(SARS-CoV-2)lineagewith multiple spike mutations in South Africa medRxiv 2020.:https://doi.org/10.1101/2020.12.21.20248640)。这些变体在其刺突糖蛋白中有多个突变,所述刺突糖蛋白是病毒中和抗体的关键靶标。出现的刺突突变引起了关于疫苗对这些新毒株的效力的担忧。本研究的目的是研究UK和SA毒株的几个关键刺突突变对BNT162b2疫苗引发的中和作用的影响。
我们设计了三种SARS-CoV-2,其含有来自新出现的英国(UK)和南非(SA)变体的关键刺突突变:来自UK和SA的N501Y;来自UK的69/70缺失+N501Y+D614G;以及来自SA的E484K+N501Y+D614G。二十份BTN162b2疫苗接种的人血清针对三种突变体病毒的几何中和平均滴度(GMT)是针对亲本病毒的GMT的0.81-1.46倍,表明两个BNT162b2剂量引发的血清的中和受突变影响很小。
利用SARS-CoV-2的传染性cDNA克隆(Xie X.et al.An Infectious cDNA Cloneof SARS-CoV-2.Cell Host Microbe 2020;27:841-8e3),我们在临床毒株USA-WA1/2020的遗传背景上设计了三种刺突突变体病毒(图133)。(i)突变体N501Y病毒含有UK和SA变体共有的N501Y突变。该突变位于用于进入细胞的病毒受体结合结构域(RBD),增加与受体(血管紧张素转化酶2)的结合,并且使病毒扩大其宿主范围以感染小鼠(Xie X.et al.AnInfectious cDNA Clone of SARS-CoV-2.Cell Host Microbe 2020;27:841-8 e3;WrappD.et al.Cryo-EM structure of the 2019-nCoV spike in the prefusionconformation.Science 2020;367:1260-3)。(ii)突变体Δ69/70+N501Y+D614G病毒含有来自UK变体的的两个额外改变:氨基酸69和70缺失(Δ69/70)以及D614G取代。氨基酸69和70位于刺突S1片段的N末端结构域,这些残基的缺失可能会別构(allosterically)改变刺突的构象(Wrapp D.et al.Cryo-EM structure of the 2019-nCoV spike in theprefusion conformation.Science 2020;367:1260-3)。D614G突变在世界各地的流传的毒株中占主导(Plante JA et al.Spike mutation D614G alters SARS-CoV-2fitness.Nature 2020;Korber B.et al.Tracking Changes in SARS-CoV-2 Spike:Evidence that D614G Increases Infectivity of the COVID-19Virus.Cell 2020)。(iii)突变体E484K+N501Y+D614G病毒含有E484K取代,其也位于病毒RBD中。单独的E484K取代赋予对几种单克隆抗体的抗性(Ku Z.et al.Molecular determinants and mechanismfor antibody cocktail preventing SARS-CoV-2 escape.Nat Commun 2021;12:469;Baum A.et al.Antibody cocktail to SARS-CoV-2 spike protein prevents rapidmutational escape seen with individual antibodies.Science 2020;369:1014-8)。与野生型USA-WA1/2020毒株相比,三种突变体病毒在Vero E6细胞上表现出相似的噬斑形态(图134)。
我们测试了之前报道的临床试验中20名参与者的一组人血清(用间隔3周的两个30μg剂量的BNT162b2免疫后2或4周抽取)(Walsh EE et al.Safety and Immunogenicityof Two RNA-Based Covid-19 Vaccine Candidates.N Engl J Med 2020;Polack FP etal.Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.N Engl J Med2020)(图135)。通过50%噬斑减少中和测定,测试每份血清对野生型USA-WA1/2020毒株和三种突变体病毒的中和(PRNT50;表29和30)。
表29. 20份BNT162b2免疫后血清针对野生型(USA-WA1/2020)和突变体N501YSARS-CoV-2的PRNT50
Figure GDA0004051824180003431
表30. 20份BNT162b2免疫后血清针对野生型(USA-WA1/2020)、Δ69/70+N501Y+D614G以及E484K+N501Y+D614G SARS-CoV-2的PRNT50
Figure GDA0004051824180003432
所有血清在野生型病毒和突变体病毒之间表现出相当的中和滴度,差异≤4倍(图136)。值得注意的是,20份血清中的10份针对突变体Δ69/70+N501Y+D614G病毒的中和滴度是其针对野生型病毒滴度的两倍(图136b),而20份血清中的6份血清针对突变体E484K+N501Y+D614G病毒的中和滴度是其对野生型病毒滴度的一半(图136c)。血清针对N501Y、Δ69/70+N501Y+D614G和E484K+N501Y+D614G病毒的中和GMT与其针对USA-WA1/2020病毒的中和GMT的比分别为1.46、1.41和0.81(图137)。
与最近其他关于变体SARS-CoV-2的中和或者康复期或免疫后血清对相应的假病毒中和的报道一致(Wibmer CK et al.SARS-CoV-2 501Y.V2 escapes neutralization bySouth African COVID-19donor plasma.bioRxiv 2021:doi:https://doi.org/10.1101/2021.01.18.427166;Wang Z.et al.mRNA vaccine-elicited antibodies to SARS-CoV-2and circulating variants.bioRxiv 2021:doi:https://doi.org/10.1101/2021.01.15.426911),血清组针对具有来自SA变体的三个突变(E484K+N501Y+D614G)的病毒的中和GMT比针对N501Y病毒或者具有来自UK变体的三个突变(Δ69/70+N501Y+D614G)的病毒的中和GMT略低。但是,与用于标识流感疫苗中毒株改变的潜在需要的血细胞凝集抑制滴度中的4倍差异相比(Smith DJ et al.Mapping the antigenic and geneticevolution ofinfluenza virus.Science2004;305:371-6),针对本研究中任何病毒的中和GMT的差异程度很小。
方法
同基因病毒的构建。通过之前报道的基于PCR的诱变方法(Plante JA etal.Spike mutation D614G alters SARS-CoV-2 fitness.Nature 2020),在源自临床毒株WA1(2019-nCoV/USA_WA1/2020)的感染性cDNA克隆的遗传背景上制备三种重组SARS-CoV-2突变体(在刺突蛋白中N501Y、Δ69/70+N501Y+D614G、E484K+N501Y+D614G)(Xie X.etal.An Infectious cDNA Clone of SARS-CoV-2.Cell Host Microbe2020;27:841-8e3)。将全长感染性cDNA在体外连接并用作模板以转录全长病毒RNA。体外RNA转录物的电穿孔后,在第2天从Vero E6细胞回收突变体病毒(P0)。通过将P0病毒在Vero E6细胞上传代一次来收获P1病毒,作为原种(stock)。通过Vero E6上的噬斑测定来确定P1病毒的滴度。通过Sanger测序来验证P1病毒的基因组序列。详细的方法如最近所报道(Xie X.etal.Engineering SARS-CoV-2 using a reverse genetic system.Nature Protocols2021:https://doi.org/10.1038/s41596-021-00491-8)。
血清标本和中和测定。图135示意性地说明免疫和血清采集方案。如之前报道的(Muruato AE et al.A high-throughput neutralizing antibody assay for COVID-19diagnosis and vaccine evaluation.Nat Commun 2020;11:4059),进行传统的(非荧光)噬斑减少中和测定以定量血清介导的病毒抑制。简言之,将每份血清在培养基中2倍系列稀释,第一稀释度为1∶40(稀释范围为1∶40-1∶1280)。将稀释的血清与100噬斑形成单位的野生型或突变体病毒于37℃下孵育1小时(h),然后将血清-病毒混合物接种至6孔板中的VeroE6细胞单层上。37℃下感染1小时后,向细胞添加2ml包含2%胎牛血清(FBS)和1%青霉素/链霉素(P/S)的Dulbecco’s modified Eagle medium(DMEM)中的2%Seaplaque琼脂(Lonza)。孵育2天后,向第一层的顶部添加2ml包含2%FBS、1%P/S和0.01%中性红(Sigma)的DMEM中的2%Seaplaque琼脂(Lonza)。于37℃下再孵育16小时后,计数噬斑数目。抑制50%噬斑计数的最小血清稀释度定义为50%噬斑减少中和滴度(PRNT50)。每份血清一式两份进行测试。在University of Texas Medical Branch的生物安全3级实验室进行PRNT50测定。
实施例38:BNT162b2引发的血清的中和活性
首先在英国(B.1.1.7谱系)、南非(B.1.351谱系)和巴西(P.1谱系)检测的在S基因中带有突变的新的高传染性SARS-CoV-2变体正在全球扩散。为了分析BNT162b2引发的中和的效果,我们从三个新谱系的每一个设计S突变入USA-WA1/2020,这是一种2020年1月的病毒的较早期分离株(图138)。我们随后制备5种重组病毒。第一种具有B.1.1.7谱系(B.1.1.7-刺突)中的S基因中发现的所有突变,第二种具有P.1谱系(P.1-刺突)中的S基因中发现的所有突变,第三种具有B.1.351谱系(B.1.351-刺突)中的S基因中发现的所有突变,第四种具有B.1.351谱系中发现的N-端结构域缺失和全世界占主导的D614G取代(B.1.351-Δ242-244+D614G),而第五种具有来自B.1.351谱系的位于受体结合位点的三个突变(K417N、E484K和N501Y)和D614G取代(B.1.351-RBD+D614G)。B.1.351-RBD+D614G病毒中突变的氨基酸残基也在P.1谱系病毒中突变的那些氨基酸残基中,但是在P.1谱系病毒中,K417突变为苏氨酸而不是天冬酰胺。所有的突变体病毒产生的感染性病毒滴度超过107噬斑形成单位/毫升。B.1.1.7-刺突和B.1.351-刺突病毒形成的噬斑小于其他病毒(图139)。
给药第二剂量的30μg BNT162b2(首次免疫后3周进行)后2或4周,我们利用获得自关键试验中的15名参与者的20份血清样品进行50%噬斑减少中和测试(PRNT50)(Polack FPet al.Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine.N Engl J Med2020;383:2603-15;Walsh EE et al.Safety and immunogenicity of two RNA-basedCovid-19 vaccine candidates.N Engl J Med 2020;383:2439-50)(图140)。所有的血清样品有效地中和USA-WA1/2020,并且其中大部分的滴度高于1∶40。针对USA-WA1/2020、B.1.1.7-刺突、P.1-刺突、B.1.351-刺突、B.1.351-Δ242-244+D614G和B.1.351-RBD+D614G病毒的几何平均中和滴度分别为532、663、437、194、485和331(图141和表31)。因此,与对USA-WA1/2020的中和相比,对B.1.1.7-刺突和P.1-刺突病毒的中和是大体上相等的,而对B.1.351-刺突病毒的中和仍然是稳健的,但是低~2.7倍。我们的数据与针对具有全套的B.1.351-刺突突变的病毒的中和滴度低于具有任何亚组的突变的病毒是一致的,并且表明受体结合位点(K417N、E484K和N501Y)中的突变比刺突蛋白的N-端结构域中的242-244缺失对中和的影响更大。
由于BNT162b2引发的血清对B.1.1.7-刺突和P.1-刺突病毒的中和与USA-WA1/2020的中和大体上相等,因此中和数据强烈支持BNT162b2会继续提供针对在英国或巴西最先检测到的变体的保护。针对B.1.351谱系病毒的保护也是预期的,考虑到,当在关键C4591001效力试验中已经观察到强效力时(Polack FP et al.Safety and efficacyofthe BNT162b2 mRNA Covid-19 vaccine.N Engl J Med 2020;383:2603-15;Walsh EEet al.Safety and immunogenicity of two RNA-based Covid-19 vaccinecandidates.N Engl J Med 2020;383:2439-50;Sahin U et al.BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans.December 11,2020(https://www.-medrxiv.-org/-content/-10.-1101/-2020.-12.-09.-20245175v1).preprint.),虽然针对这一变体的中和滴度较低,但是其仍然是稳健的并且大大高于一个剂量的BNT162b2后观察到的勉强检测到的滴度。此外,保护中也可以涉及T细胞免疫(Liao M etal.Single-cell landscape of bronchoalveolar immune cells in patients withCOVID-19.Nature Medicine 2020),并且BNT162b2免疫引发识别多种变体的CD8+ T细胞应答(Skelly DT et al.Vaccine-induced immunity provides more robust heterotypicimmunity than natural infection to emerging SARS-CoV-2 variants ofconcern.Research Square2021)。
材料和方法
同基因病毒的构建。在源自临床毒株USA-WA1/2020的感染性cNDA克隆(Xie X etal.An Infectious cDNA Clone of SARS-CoV-2.Cell Host Microbe 2020;27:841-8e3)的遗传背景上制备所有的具有刺突突变的重组SARS-CoV-2(图138)。利用之前报道的基于PCR的诱变方法(Plante JA et al.Spike mutation D614G alters SARS-CoV-2fitness.Nature 2020.doi:10.1038/s41586-020-2895-3;Xie X et al.Neutralizationof SARS-CoV-2 spike 69/70 deletion,E484K and N501Y variants by BNT162b2vaccine-elicited sera.Nat Med 2021.doi:10.1038/s41591-021-01270-4),将突变引入刺突基因。将全长感染性cDNA连接并用作模板以体外转录全长病毒RNA。体外转录的RNA电穿孔后,在第2天从Vero E6细胞回收原始病毒原种(P0)。在Vero E6细胞上增殖P0病毒再一轮以产生P1病毒用于中和测定。P1病毒的滴度通过Vero E6细胞上的噬斑测定来测量(图139)。P1病毒的完整刺突序列通过Sanger测序确定,对来自USA-WA1/2020序列仅有预期的核苷酸改变。最近报道了上述实验的详细方法(Xie X et al.Engineering SARS-CoV-2using a reverse genetic system.Nature Protocols 2021:https://doi.org/10.1038/s41596-021-00491-8)。
血清样本和中和测定。图140示出免疫和血清收集方案。如之前的报道(MuruatoAE et al.A high-throughput neutralizing antibody assay for COVID-19diagnosisand vaccine evaluation.Nat Commun 2020;11:4059),进行传统的50%噬斑减少中和测试(PRNT50)以定量血清介导的病毒抑制。简言之,将每份血清在培养基中2倍系列稀释,起始稀释度为1∶40(稀释范围为1∶40-1∶1280)。将稀释的血清与100PFU的USA-WA1/2020或突变体SARS-CoV-2孵育。于37℃下孵育1小时后,将血清-病毒混合物接种于前一天预接种在6孔板上的单层Vero E6细胞上。抑制>50%的病毒噬斑的最小血清稀释度定义为PRNT50。中和滴度示于表31。
表31. 20份BNT162b2免疫后血清针对USA-WA1/2020和突变体SARS-CoV-2的PRNT50
Figure GDA0004051824180003461
*USA-WA1/2020的数据来自3个实验;B.1.1.7-刺突、B.1.351-Δ242-244+D614G和B.1.351-RBD-D614G病毒的数据各自来自一个实验;P.1-刺突和B.1.351-刺突病毒的数据来自2个实验。对每个独立的实验,各自的PRNT50值为一式两份的噬斑测定结果的几何平均值;在一式两份的测定之间没有观察到差异。
Figure GDA0004051824180003471
几何平均中和滴度。
#GMT的95%置信区间(95%CI)。
实施例39:BNT162b2诱导的CD4+和CD8+ T细胞应答的持久性
在跨越10-30μg的剂量水平的24名受试者的亚组中,分析第85天和第184天收集的样品(分别为加强后9周和23周),以确定BNT162b2诱导的T细胞应答的持久性。在第184天和初始收缩后,大部分个体中的CD4+和CD8+ T细胞应答都是可检测的,跨越测试的3个剂量水平。在用10μg BNT162b2疫苗接种的4名年长成年人受试者中观察到的CD4+和CD8+应答的动力学与较年轻成人受试者的相当,并且在加强疫苗接种后23周的所有4名受试者中,S蛋白特异性CD4+ T细胞仍然是可检测的。BNT162b2诱导的CD4+和CD8+应答高于回忆抗原记忆应答或在其范围内(图142)。
实施例40:BNT162b2诱导的CD8 T细胞识别的MHC-I结合表位
利用MHC I类多聚体技术,鉴定了跨越S蛋白的整个长度分布并由常见的HLA-A和HLA-B等位基因的组合呈递的几个表位,以被BNT162-b2诱导的CD8+ T细胞识别(加强疫苗接种后7天测量)。在多于一名受试者中发现了一些肽/HLA组合。
表32.BNT162b2诱导的CD8 T细胞识别的MHC-I结合表位
Figure GDA0004051824180003472
实施例41:给药BNT162b2后的组织学发现
进行经典显色免疫组织化学(IHC)和显色双IHC-ISH(原位杂交实验)以研究BNT162b2于注射后6小时和6天后在小鼠组织中的生物分布。
方法
收获后,将组织在4%RotiHistofix于4℃固定过夜,并在Leica组织脱水机(Tissue Processor)中脱水后包埋在石蜡中。进行显色IHC。用抗Spike2小鼠单克隆抗体(Genetex)检测突刺突蛋白。根据自己建立的方法,基于Advanced Cell Diagnostics的文档MK 51-149,利用公司试剂盒和试剂,进行双IHC-ISH测定。ISH的BNT162b2探针(modV9)由Advanced Cell Diagnostics基于TRON提供的序列定制。免疫细胞标志物CD11c(CellSignaling)、CD19(Cell Signaling)、CD169(Thermo Fisher)和F4/80(Cell Signaling)的IHC方法在TRON,并且其适应于项目的双IHC-ISH测定。利用Vectra PolarisMultispectral Slide Scanner显微镜(Akoya Bioscience)获得图像,并且用PhenoChart软件(Akoya Bioscience)分析。
结果
如图143可见,在双IHC-ISH测定中,利用modV9探针,注射后6小时在淋巴结中检测到特异性疫苗mRNA信号(红色)。疫苗主要定位在被膜下淋巴窦(subcapsular sinus)(位置9和5中的LN)和B细胞滤泡(位置12和1中的LN)。树突细胞通过CD11c染色(蓝绿色,上图)可视化并且其仅有一些吸收疫苗。大部分CD169+巨噬细胞(被膜下淋巴窦巨噬细胞,蓝绿色,中图)对疫苗是阳性的。B细胞(CD19+,蓝绿色,下图)是第二主要的表现出疫苗信号的群体。
在双IHC-ISH测定中,注射6天后,利用modV9探针,在LN中仍然可检测到特异性疫苗mRNA信号,虽然是非常少量(数据未显示)。一些CD11c+DC和被膜下淋巴窦巨噬细胞对疫苗是阳性的。大部分检测的疫苗信号在B细胞中(CD19+)。
如图144可见,在双IHC-ISH测定中,注射后6小时,利用modV9探针,在脾中检测到特异性疫苗mRNA信号(红色)。在白髓中检测到主要的疫苗信号。树突细胞通过CD11c染色(蓝绿色,上图)可视化并且其仅有一些吸收疫苗。少部分F4/80+巨噬细胞(蓝绿色,中图)吸收疫苗。B细胞(CD19+,蓝绿色,下图)是主要的表现出疫苗信号的群体。
在双IHC-ISH测定中,注射后6天,利用modV9探针,在脾中仍然可检测到特异性疫苗mRNA信号,虽然是非常少量(数据未显示)。检测的疫苗信号仅在B细胞中(CD19+)。没有DC和巨噬细胞在注射后6天表现出疫苗信号。
6天后,利用小鼠抗S2小鼠单克隆抗体,我们在肌肉中检测到信号,特别是在一些肌肉纤维和结缔组织肌束膜中。在LN中,我们在T细胞区中检测到表达刺突蛋白的细胞(数据未显示)。
6天后,利用小鼠抗S2小鼠单克隆抗体,在肌肉中没有检测到刺突表达。相比之下,LN充满表达疫苗的细胞(数据未显示)。
在显色IHC实验中,利用S2小鼠单克隆抗体没有检测到非特异性染色。
总结
注射后6小时,在引流LN和脾中可观察到非常强的疫苗信号。在LN中,疫苗主要在B细胞滤泡和被膜下淋巴窦中检测到,一些信号也位于T细胞区。通过双IHC-ISH,我们显示,B细胞(CD19+)和被膜下淋巴窦巨噬细胞(CD169+)确实是吸收疫苗的主要细胞。
T细胞区中的树突细胞(CD11c+)和中间窦(intermediary sinus)也吸收疫苗。6天后,在引流LN中,仍然可观察到一些疫苗mRNA。6天后T细胞区中观察到的信号在树突细胞(CD11c+)中。一些B细胞和LN巨噬细胞在该阶段仍然具有一些疫苗。
注射后6小时收集的脾的分析表明,疫苗在6小时内已经到达脾,主要可能是通过血液循环。信号位于白髓,在那里B细胞和T细胞形成主要群体并且向T细胞的抗原呈递发生在白髓中。通过双IHC-ISH测定,我们表明,大部分的B细胞吸收疫苗。围绕B细胞的许多DC(CD11c+)也是阳性的。6天后,信号限于B细胞。
建立IHC方法,以利用抗刺突S2小鼠单克隆抗体,在用/不用疫苗处理的细胞团上,检测刺突蛋白表达。仅在用BNT162b2处理的细胞中检测到特异性信号。在测试的初始
Figure GDA0004051824180003481
组织中没有观察到非特异性染色。在肌肉中,注射后6小时,在肌肉纤维和结缔组织肌束膜检测到刺突表达。6天后,在肌肉中未检测到染色。相比之下,注射后6天,在LN中可观察到大量刺突表达,特别在T细胞区中。
实施例42:稳定性研究
在各种浓度(例如,0.5mg/mL、1mg/mL和2mg/mL)下进行BNT162b2制剂的稳定性评价,并且包括在各种温度(例如,-70℃[例如,-70±10℃]、-20℃[例如,-20±5℃]、+5℃[例如,5±3℃]或+25℃[例如,25±2℃])和/或各种时间段(例如,0.5个月、1个月、2个月、3个月、4个月,并且在某些情况下,一个或多个中间时间点(例如,1.5个月、2.5个月等)下保存的组合物的评价。
在示例性研究中,在第0天用20μL的相关制剂注射小鼠(单腿)。在给药后14、21和28天后收集血液并产生血清;在第28天分离脾。
进行ELISA以检测血清中结合S1蛋白或特异性结合RBD结构域的抗体的存在。图145示出从用指定制剂注射的小鼠的28天血清获得的示例性S1 ELISA结果,该制剂已经在指定温度条件下保存了指定的时间段。参考图145可见,保存1个月后,所有保存的样品表现良好,并且是合理地可比的。保存2或3个月后,+25℃下保存的样品观察到一些活性下降,但是-70℃、-20℃、+5℃下保存的样品保持显著的性能。
在一些时间点,评价一个或多个参数,如外观、RNA含量、RNA完整性、RNA包封、脂质含量(整体和/或单独组分和/或其比例)、粒径、颗粒多分散指数、体外可表达性等;可以或者已经评价额外或可选的参数。
示例性观察包括在+25℃保存约2周以上的时间段是不推荐的,并且优选不超过约1周除此之外,观察到RNA完整性显著下降。还观察到,在至少一些情况下,保持诱导抗体的显著能力,即使在体外可表达性明显下降的情况下。据观察,特别是保存约3个月或保存4个月后,在+5℃或高于+5℃保存的制剂的多分散指数的改变大于在更低温度保存的制剂。
实施例43:储存和运输
这个实施例说明用于注射的疫苗浓缩液的多剂量小瓶的储存、运输和剂量制备。如图146所示,在初级包装阶段,使用2mL 1型玻璃、无防腐剂、多剂量小瓶(MDV),其中所述MDV具有0.45mL冷冻液体药物产品,并且每瓶有5个剂量。在二级包装阶段,单个托盘容纳195个小瓶,如每个托盘975个剂量。托盘(白盒)尺寸为229X229x40mm。在三级包装阶段,将最少1个托盘(975个剂量)(或最多5个托盘(最多4875个剂量)叠在有效负载纸箱中。将有效负载纸箱浸没在23Kg干冰颗粒(10mm-16mm颗粒)中。保温运输工具尺寸如下:内部尺寸:245mm X 245mm X 241mm;外部尺寸:400mm X 400mm X 560mm。保温运输工具的总重量为~35Kg。
市场中可获得不同大小的超低温(ULT)冷冻机。图147示出小容量存储(约90升;约30K剂量(左))和大容量存储(约500升;约200K剂量(右))的实例。如果在15℃-25℃温度下储存而不打开,则保温运输工具保持ULT长达10天。在收到和打开后,应当在24小时内为盒子补充干冰(23Kg干冰颗粒(10mm-16mm颗粒))。保温运输工具应当每5天重新加冰。建议保温运输工具每天打开不超过两次。保温运输工具应当在打开后1分钟(或更短)内关闭。疫苗可以在2℃-8℃下储存最多2天,或在解冻后在室温下储存不超过2小时。稀释后使用期为6小时。
实施例44:运输和操作
这个实施例说明多剂量小瓶中的疫苗的运输和操作程序。这种疫苗的性质要求它在运输和到达后的储存期间保持在极低的温度下。为了实现这一点,将冷冻疫苗的多剂量小瓶在包含干冰的隔热运输容器中运输。这允许疫苗在这种低温下保持冷冻。
干冰是二氧化碳的冷冻形式。当加热时,大多数冷冻固体融化为液体形式,但是干冰直接转化为气体(升华)。干冰在-109°F(-78℃)或以上的温度下升华。干冰的主要危害包括窒息和灼伤。在密闭空间(小房间或步入式冷却器)和/或通风不良的区域使用干冰会导致氧气耗尽,引起窒息。暴露的皮肤应当避免与干冰接触。
当收到保温运输容器时,应当目视检查以确认所有订购数量(包括小瓶托盘和小瓶)均完好无损地收到。提起运输容器时要小心,因为它可能很重。根据订购的疫苗量,运输容器的重量可以约为36.5kg(81lb)。在打开保温运输容器之前,请确保您工作的区域通风良好。在密闭空间如小房间、步入式冷却器和/或通风不良的区域使用干冰会导致氧气耗尽,引起窒息。在操作干冰时,请确保佩戴带侧护罩的安全眼镜或安全护目镜和防水隔热手套。干冰的一般安全指南包括以下内容:
请勿触摸-避免眼接触
取出或添加干冰时使用防水隔热手套以防止冷灼伤和冻伤。避免与面部和眼睛接触。佩戴带有侧护罩的安全眼镜或安全护目镜。
请勿食用
如果食用或吞食,干冰是有害的。如果摄入,请立即就医。
请勿储存在密闭空间
干冰在室温下非常迅速地变成气体,取代氧气。仅在开阔或通风良好的区域使用干冰。
请勿放置在密闭容器中
当暴露在-109°F(-78℃)以上的温度下时,干冰会迅速膨胀为气体,密闭容器可能爆炸。
通风
在室温(包括大多数冷藏温度)下,干冰变成二氧化碳气体,这可能导致呼吸困难或窒息。如果干冰已在封闭区域、拖车或容器中,请在进入之前打开门并允许充足的通风。如果您感到气短或头痛,这些可能是您吸入过多二氧化碳的迹象。立即离开该区域。二氧化碳比空气重,并且积聚在低的、通风不良的空间。进入存在干冰的封闭区域的操作实践应当由您的职业健康和安全官员进行检查并同意。
灼伤治疗
干冰可能对皮肤造成冷灼伤。在操作干冰时使用防水隔热手套。按照干冰安全数据表的指示寻求医疗护理。
处理
一旦不再需要干冰,打开容器并将其置于室温下通风良好的区域。它很容易从固体升华为气体。请勿将干冰留在不安全的地方。请勿放入下水道或冲水马桶。请勿丢弃在垃圾中。请勿放置在封闭区域如密闭容器或步入式冷却器中。
干冰补充
保温运输容器可以用作临时储存设备。在此期间可能需要补充干冰。
内容和包装
有几种类型的保温运输容器可以使用。请勿丢弃原始保温运输容器或其任何组件。图151和152示出两种类型的保温运输工具。
开箱保温运输容器:对于图151和152中示出的任一种保温运输工具,第一步是打开外箱的封条。当您打开保温运输容器时,您会看到嵌入在泡沫盖子中的温度监测装置。在图151示出的保温运输容器中,这个盖子会连接至保温运输容器。打开盖子时要小心,因为您会注意到保温运输容器的一个翻盖永久固定在盖子上。不要拉这个翻盖。当打开盖子时,使用泡沫盖子中的三个指孔,这然后会允许盖子摆动打开。当打开与图152中示出的保温运输工具相关的泡沫盖子时,轻轻取下整个盖子(温度监测装置仍连接),并放置在一边。
温度监测装置在运输过程中持续跟踪温度以确保冷冻疫苗产品在运输到疫苗接种中心的过程中保持在所需温度。收到后,按住停止按钮5秒。站点负责继续监测产品储存温度。
当您准备操作装有干冰的容器层时,请确保您现在戴着防水隔热手套和带有侧护罩的安全眼镜或安全护目镜。泡沫盖下方是干冰舱,里面装有一层干冰以帮助保持多剂量小瓶的温度。在容器的隔间中也会有干冰,这些隔间围绕着装有小瓶托盘的盒子。如果使用保温运输容器作为临时储存,则在重新结冰时需要填充这两个区域。使用您的防水隔热手套,取出干冰舱。
您现在会看到用于盛放小瓶托盘的盒子的盖子。打开盒子,您会看到小瓶托盘。里面会有最多5个小瓶托盘。从保温运输容器取出盛放小瓶托盘的盒子,以便接触和取出小瓶托盘。检查小瓶是否损坏。如果小瓶破损、损坏或泄漏,为了防止割伤和接触疫苗,请勿赤手操作小瓶。戴上防护手套,并且使用镊子、钳子或其他适当工具将小瓶碎片放入医用锐器容器中。从保温运输容器取出小瓶托盘之后,您必须立即将疫苗产品存放在超低温(ULT)冰箱中。如果没有ULT冰箱,可以将保温运输容器用作临时储存。如果使用保温运输容器作为临时储存,则必须在收到后24小时内打开、检查和补充。不再需要保温运输容器储存疫苗之后,您可以丢弃干冰。通过查看干冰安全数据表采取必要的预防措施,并且咨询您的职业健康部门。为了丢弃,打开保温运输容器并将其置于室温下通风良好的地方。它会从固体升华为气体。请勿将干冰留在不安全的地方。请勿放入下水道或冲水马桶。请勿丢弃在垃圾中。请勿放置在封闭区域如密闭容器或步入式冷却器中。
实施例45:小瓶托盘
这个实施例说明可用于储存包含温度敏感材料的小瓶的托盘。托盘由波形半透明或白色聚丙烯(例如
Figure GDA0004051824180003511
或其等同物)制成,其防止静电粉尘。托盘材料的一个重要考虑因素是它应当避免在超低温如-80℃下变脆,并且还应当在解冻(和因为冷凝而润湿)后保持其强度。下表列出这类托盘的几种可能规格:
表33:托盘规格
Figure GDA0004051824180003512
a.高度计算说明:(对于FEFCO 0210,0204)
例如托盘4:长襟翼的划线之间的距离:346mm;短襟翼的划线之间的距离:343mm
平均高度=(346+343)/2=344.5mm
内部尺寸:平均高度-2x厚度=337.5mm
外部尺寸:平均高度+2x厚度=351.5mm
b.设计
根据上表中提到的FEFCO类型-制造商接头紧密密封。接头:焊接。FEFCOO426无接头
c.公差
-尺寸:平面上±1mm,切割模式
-尺寸:±2mm,由连接引起
-折叠盒高度:-1mm/+3mm;对于FEFCO 0426公差为-1/+1mm
-重量:±7.5%
-厚度:±0.25mm
d.鉴定
每个包装标有:项目编号、订购单编号以及每包数量。
e.图片
几个示例性托盘的详细图在图148、149和150中示出。
实施例46:动态解冻模拟
Covid-19疫苗是一种脂质纳米颗粒(LNP),旨在缓解2020年初发生的全球Covid-19大流行。由于这种产品的医疗必要性,迫切需要将这种疫苗引入市场。这个阶段的推荐储存温度在-60℃和-90℃之间。为了克服这种产品的潜在温度限制,设想一种生产过程,其中二级包装会在生产线上或在制造步骤之后立即进行,并且二级包装之后会立即进行冷冻步骤,温度在-60℃和-90℃之间。这是为了避免在初级和二级包装之间重新解冻。进行这个研究以支持产品在室温(RT)下的短时间转移。在以前的研究中证明产品质量不受从-60℃至-90℃到-10℃的三次短时间温度漂移(excursion)和一次高达-5℃的漂移的影响。这个研究的目的是调查在RT下5、10和15分钟的模拟运输对产品温度的影响,以便确认在这些运输时间间隔内在最坏情况位置的温度会保持在<-10℃。在0.45mL的实际填充上确定影响。由于真正的产品主要由水组成,与其他化学品相比其具有高热容量,因此将水用作产品的替代品以跟踪温度曲线。用于这种产品的小瓶是2mL小瓶(PPU5A0049),填充量为0.45mL。在灌装线上对小瓶进行灌装、加塞、卷边和标记。在冷冻之前将小瓶包装在Akylux托盘中。在这个研究中测试5个托盘的堆叠。
材料和方法
材料、设备和仪器
以下是用于执行配制、灌装、冷冻干燥和封盖的设备和仪器的列表。所述列表包括但不限于:
材料
·2mL小瓶(PPU5A0049):0.45mL灌装、加塞、卷边、标记并包装在正确的二级包装中。
设备
·设置在-75℃的Phcbi MDF-DU702VH冰箱
·穿孔搁板
·4个Testo 176温度记录仪,总计12个T型热电偶
热电偶放置
与边缘小瓶相比,中心小瓶的加热速率预计会有所不同。预计边缘小瓶会加热更快,因为它们在运输过程中与RT下的周围空气更密切地接触。RT运输打算在5个小瓶托盘的堆叠中发生。热电偶(TC)用于监测温度。在每个堆叠中探测3个小瓶托盘,每个有两个热电偶(中心或边缘小瓶),在研究中总计12个热电偶。TC位置如图153所示。
运输模拟和温度读出
将堆体放置在储存冰箱内足够的时间(>12h)以允许产品冷冻至目标冷冻温度。在开始运输模拟之前,确认所有产品温度在-70℃和-80℃之间。将堆体从冰箱中取出并放置在有塑料表面的手推车上。因为产品和周围环境之间的温差非常大(90-100℃),所以在动态条件下进行解冻研究。因此模拟在RT下持续供应空气。通过在实验室环境中步行5、10和15分钟来模拟运输。最后,将堆体再次放回冰箱,并且在读出传感器之前放置至少4小时。
结果和讨论
图154、155和156示出动态解冻实验过程中获得的温度曲线图。在模拟RT运输过程中,最坏情况位置的温度迅速上升,而在堆体中心的小瓶保持稳定的温度。一旦将产品放回冰箱,边缘位置的温度迅速下降。
下面的表34总结每个动态测试持续时间获得的结果。其显示5-分钟测试达到的最高温度为-31.6℃,10分钟测试为-18.2℃,15分钟测试为-17℃。一旦产品的温度高于-20℃,产品温度上升的斜率开始下降。所有产品温度均保持在-10℃以下。基于此数据,一堆5个小瓶托盘可以允许最多15分钟房间运输时间。
表34:0.45mL灌装物的解冻时间和恢复时间的制表结果
Figure GDA0004051824180003531
基于图154、155和156还注意到,与顶部小瓶托盘中的产品相比,与手推车表面接触的产品具有稍快一些的升温。预计放置冷冻小瓶托盘的表面的导热特性可能在解冻速度中起重要作用。
结论
在RT下运输过程中,对每个装有填充体积0.45mL的小瓶的5个小瓶托盘堆体测试温度升高。为了做到这一点,将堆体放置在单独的手推车上,分别运输5、10和15分钟。结果显示可以容忍长达15分钟的RT运输时间。在这些短时间内,产品温度不会升高超过-10℃。产品数据可获得,表明多次偏移至-10℃和单次偏移至-5℃不会影响产品质量。
实施例47:小瓶在托盘中的排列
这个实施例说明可以如何将小瓶放置在托盘中,以便最大化可以有效保持在足够冷的温度(例如-80℃)下的有效负载,考虑到保温运输工具的空间限制,以及如实施例43、44和45所述的小瓶托盘。
保温运输工具(见实施例43和44)限定的有效负载空间为约229x229x229mm,尝试几种配置,包括不同的小瓶托盘尺寸,以及如何将小瓶放置在小瓶托盘内。下面的表35总结在给定尺寸限制和有效负载保持在足够冷的温度的要求下探索的最佳有效负载配置。
表35:在固定的有效负载空间中建议的保温运输工具中的小瓶配置。
Figure GDA0004051824180003541
*A、B和H是使用的小瓶托盘的尺寸(以mm计),如图157-167所示。
如图157-167中可以进一步看到,配置A-L证明考虑的各种选项,以便最大化可以放置在固定体积(约229x229x229mm)中的小瓶数量,受设计为保持小瓶中的材料在超低温(例如-80℃)下的限制。如表35所示,配置J导致在这个空间中可以容纳的最大小瓶数量(975)。
Figure IDA0004051824270000011
Figure IDA0004051824270000021
Figure IDA0004051824270000031
Figure IDA0004051824270000041
Figure IDA0004051824270000051
Figure IDA0004051824270000061
Figure IDA0004051824270000071
Figure IDA0004051824270000081
Figure IDA0004051824270000091
Figure IDA0004051824270000101
Figure IDA0004051824270000111
Figure IDA0004051824270000121
Figure IDA0004051824270000131
Figure IDA0004051824270000141
Figure IDA0004051824270000151
Figure IDA0004051824270000161
Figure IDA0004051824270000171
Figure IDA0004051824270000181
Figure IDA0004051824270000191
Figure IDA0004051824270000201
Figure IDA0004051824270000211
Figure IDA0004051824270000221
Figure IDA0004051824270000231
Figure IDA0004051824270000241
Figure IDA0004051824270000251
Figure IDA0004051824270000261
Figure IDA0004051824270000271
Figure IDA0004051824270000281
Figure IDA0004051824270000291
Figure IDA0004051824270000301
Figure IDA0004051824270000311
Figure IDA0004051824270000321
Figure IDA0004051824270000331
Figure IDA0004051824270000341
Figure IDA0004051824270000351
Figure IDA0004051824270000361
Figure IDA0004051824270000371
Figure IDA0004051824270000381
Figure IDA0004051824270000391
Figure IDA0004051824270000401
Figure IDA0004051824270000411
Figure IDA0004051824270000421
Figure IDA0004051824270000431
Figure IDA0004051824270000441
Figure IDA0004051824270000451
Figure IDA0004051824270000461
Figure IDA0004051824270000471
Figure IDA0004051824270000481
Figure IDA0004051824270000491
Figure IDA0004051824270000501
Figure IDA0004051824270000511
Figure IDA0004051824270000521
Figure IDA0004051824270000531
Figure IDA0004051824270000541
Figure IDA0004051824270000551
Figure IDA0004051824270000561
Figure IDA0004051824270000571
Figure IDA0004051824270000581
Figure IDA0004051824270000591
Figure IDA0004051824270000601
Figure IDA0004051824270000611
Figure IDA0004051824270000621
Figure IDA0004051824270000631
Figure IDA0004051824270000641
Figure IDA0004051824270000651
Figure IDA0004051824270000661
Figure IDA0004051824270000671
Figure IDA0004051824270000681
Figure IDA0004051824270000691
Figure IDA0004051824270000701
Figure IDA0004051824270000711
Figure IDA0004051824270000721
Figure IDA0004051824270000731
Figure IDA0004051824270000741

Claims (88)

1.一种试剂盒,其包括:
a)主容器;
b)有效负载容器;
c)放置在所述有效负载容器内的至少一个托盘;以及
d)干冰容器;
其中所述至少一个托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,并且H为约38至约46mm。
2.权利要求1的试剂盒,其中所述有效负载容器的尺寸为约229mm x 229mm x229mm。
3.权利要求1-2中任一项的试剂盒,其中所述至少一个托盘包含温度敏感材料。
4.权利要求3的试剂盒,其中所述试剂盒能够将所述托盘内材料的温度保持在-50℃或更低至少10天。
5.权利要求3-4中任一项的试剂盒,其中所述试剂盒能够将所述托盘内材料的温度保持在-70℃或更低至少10天。
6.权利要求3-5中任一项的试剂盒,其中所述试剂盒能够将所述托盘内材料的温度保持在-80℃至少10天。
7.权利要求1-6中任一项的试剂盒,其进一步包括温度监测系统。
8.权利要求1-7中任一项的试剂盒,其进一步包括光传感器。
9.权利要求3-8中任一项的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述有效负载容器内的温度为约-80℃以上时,所述温度监测系统能够显示或警告。
10.权利要求1-9中任一项的试剂盒,其中所述主容器包括顶部部分和底部部分,并且所述主容器配置为在所述底部部分接收所述有效负载容器和在所述顶部部分接收所述干冰容器。
11.权利要求1-10中任一项的试剂盒,其中所述有效负载容器配置为接收所述至少一个托盘。
12.权利要求1-11中任一项的试剂盒,其中所述有效负载容器能够在有效负载容器内同时包含一个或多个托盘。
13.权利要求1-12中任一项的试剂盒,其中所述有效负载容器能够在有效负载容器内同时包含1、2、3、4或5个托盘。
14.权利要求3-13中任一项的试剂盒,其中所述温度敏感材料包含在至少一个玻璃小瓶内,并且其中所述至少一个玻璃小瓶放置在所述托盘内。
15.权利要求14的试剂盒,其中所述至少一个玻璃小瓶是多剂量小瓶。
16.权利要求1-15中任一项的试剂盒,其中每个托盘配置为包含至少25个小瓶,或者其中至少一个托盘包含至少25个小瓶。
17.权利要求1-16中任一项的试剂盒,其中每个托盘配置为包含至少50个小瓶,或者其中至少一个托盘包含至少50个小瓶。
18.权利要求1-17中任一项的试剂盒,其中每个托盘配置为包含至少75个小瓶,或者其中至少一个托盘包含至少75个小瓶。
19.权利要求1-18中任一项的试剂盒,其中每个托盘配置为包含至少125个小瓶,或者其中至少一个托盘包含至少125个小瓶。
20.权利要求1-19中任一项的试剂盒,其中每个托盘配置为包含至少150个小瓶,或者其中至少一个托盘包含至少150个小瓶。
21.权利要求1-20中任一项的试剂盒,其中每个托盘配置为包含至少195个小瓶,或者其中至少一个托盘包含至少195个小瓶。
22.一种容器系统,其包括:
a)主容器;
b)有效负载容器,其配置为接收至少一个托盘;以及
c)干冰容器;
其中所述至少一个托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,并且H为约38至约46mm。
23.权利要求19的容器系统,其中所述有效负载容器的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,并且H为约228至约233mm。
24.权利要求20的容器系统,其中所述有效负载容器的尺寸为约229mm x 229mm x229mm。
25.权利要求22-24中任一项的容器系统,其中所述至少一个托盘包含温度敏感材料。
26.权利要求22-25中任一项的容器系统,其进一步包括温度监测系统。
27.权利要求22-25中任一项的容器系统,其进一步包括光传感器。
28.权利要求25-27中任一项的容器系统,其中所述系统能够将所述托盘内材料的温度保持在-50℃或更低至少10天。
29.权利要求25-28中任一项的容器系统,其中所述系统能够将所述托盘内材料的温度保持在-70℃或更低至少10天。
30.权利要求25-29中任一项的容器系统,其中所述系统能够将所述托盘内材料的温度保持在-80℃或更低至少10天。
31.权利要求22-30中任一项的容器系统,其中所述主容器包括顶部部分和底部部分,并且所述主容器配置为在所述底部部分接收所述有效负载容器和在所述顶部部分接收所述干冰容器。
32.权利要求22-31中任一项的容器系统,其中所述有效负载容器配置为接收至少一个托盘。
33.权利要求22-32中任一项的容器系统,其中所述有效负载容器能够在有效负载容器内同时包含一个或多个托盘。
34.权利要求22-33中任一项的容器系统,其中所述有效负载容器能够在有效负载容器内同时包含1、2、3、4或5个托盘。
35.权利要求25-34中任一项的容器系统,其中所述温度敏感材料包含在至少一个玻璃小瓶内,并且其中所述至少一个玻璃小瓶放置在所述托盘内。
36.权利要求35的容器系统,其中所述至少一个玻璃小瓶是多剂量小瓶。
37.权利要求22-36中任一项的容器系统,其中每个托盘配置为包含至少25个小瓶,或者其中至少一个托盘包含至少25个小瓶。
38.权利要求22-37中任一项的容器系统,其中每个托盘配置为包含至少100个小瓶,或者其中至少一个托盘包含至少100个小瓶。
39.权利要求22-38中任一项的容器系统,其中每个托盘配置为包含至少195个小瓶,或者其中至少一个托盘包含至少195个小瓶。
40.一种运输温度敏感材料的方法,包括以下步骤:
a)将所述材料放置在权利要求1-21中任一项的试剂盒或权利要求23-39中任一项的容器系统中;以及
b)运输所述试剂盒或容器系统。
41.权利要求40的方法,其中在整个运输过程中连续监测所述有效负载容器内的温度。
42.权利要求40-41中任一项的方法,其中所述运输是在陆地、空中和/或水上进行的。
43.权利要求40-42中任一项的方法,其中所述运输通过陆地车辆、飞机和/或船进行。
44.权利要求40-43中任一项的方法,其中在整个运输过程中将所述有效负载容器内的温度保持在-70℃或更低。
45.权利要求40-44中任一项的方法,其中在整个运输过程中将所述有效负载容器内的温度保持在-80℃或更低。
46.权利要求40-45中任一项的方法,其中每个托盘中有至少150个小瓶。
47.权利要求40-46中任一项的方法,其中每个托盘中有195个小瓶。
48.权利要求40-47中任一项的方法,其中所述有效负载容器内有至少5个托盘。
49.权利要求40-48中任一项的方法,其中通过使用全球定位系统(GPS)至少定期监测所述试剂盒或容器系统的位置。
50.一种尺寸为约229mm x 229mm x 229mm的有效负载容器,并且其配置为在所述有效负载容器内接收至少5个托盘,并且其中每个托盘配置为容纳至少100瓶温度敏感材料。
51.一种尺寸为约229mm x 229mm x 229mm的有效负载容器,其中在所述有效负载容器内放置至少5个托盘,并且其中每个托盘包含至少100瓶温度敏感材料。
52.权利要求50-51中任一项的有效负载容器,其中每个托盘包含至少150瓶温度敏感材料。
53.权利要求50-52中任一项的有效负载容器,其中每个托盘包含195瓶温度敏感材料。
54.一种配置为承载温度敏感材料的托盘,其中所述托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,并且H为约38至约46mm。
55.权利要求54的托盘,其配置为在所述托盘内容纳至少150个小瓶。
56.权利要求54-55中任一项的托盘,其配置为在所述托盘内容纳195个小瓶。
57.一种配置为承载温度敏感材料的托盘,其中所述托盘的尺寸为A x B x H,其中A为约228至约233mm,B为约228至约233mm,并且H为约38至约46mm,并且其中所述托盘包含至少150个小瓶。
58.权利要求57的托盘,其中所述托盘包含195个小瓶。
59.一种包含脂质纳米颗粒包裹的mRNA的多剂量制剂,其中所述多剂量制剂能够在多次或重复从所述多剂量制剂的容器中取出至少一部分所述制剂的情况下在规定时间内保持稳定。
60.权利要求59的制剂,其包含至少2个剂量/容器。
61.权利要求59-60中任一项的制剂,其包含总计5个剂量/容器。
62.权利要求59-61中任一项的制剂,其包含总计6个剂量/容器。
63.权利要求59-60中任一项的制剂,其包含总计2-12个剂量/容器。
64.权利要求59-63中任一项的制剂,其中每个剂量的体积相等。
65.权利要求59-64中任一项的制剂,其中所述制剂的总体积为1-3mL。
66.权利要求59-65中任一项的制剂,其中所述制剂是冷冻的。
67.权利要求59-66中任一项的制剂,其中所述制剂包含RNA,其编码:
氨基酸序列,所述氨基酸序列包含SARS-CoV-2S蛋白和/或其免疫原性变体;和/或
SARS-CoV-2S蛋白的免疫原性片段和/或其免疫原性变体。
68.一种包含RNA的组合物,所述RNA编码:
氨基酸序列,所述氨基酸序列包含SARS-CoV-2S蛋白和/或其免疫原性变体;和/或
SARS-CoV-2S蛋白的免疫原性片段和/或其免疫原性变体,
其中所述组合物或药物制品已在-20℃以下的温度下保存并避光,并且其中所述RNA是稳定的。
69.权利要求68的组合物,其中所述组合物进一步包含包裹所述RNA的一种或多种脂质纳米颗粒。
70.权利要求68-69中任一项的组合物,其中所述脂质纳米颗粒是稳定的。
71.权利要求68-70中任一项的组合物,其中所述组合物是适合向受试者给药的药物制品。
72.一种试剂盒,其包含
(a)包含脂质纳米颗粒包裹的mRNA的组合物;以及
(b)温度监测系统。
73.权利要求72的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述试剂盒的温度达到约-80℃以上的温度时,所述温度监测系统能够显示和/或警告。
74.权利要求72的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述试剂盒的温度达到约-60℃以上的温度时,所述温度监测系统能够显示或警告。
75.权利要求72的试剂盒,其中所述温度监测系统包括温度传感器和显示器,其中当所述试剂盒的温度达到约-20℃以上的温度时,所述温度监测系统能够显示或警告。
76.一种试剂盒,其包含
(a)包含脂质纳米颗粒包裹的mRNA的组合物;以及
(b)光传感器。
77.权利要求76的试剂盒,其中将所述组合物避光。
78.权利要求76-77中任一项的试剂盒,其中所述光传感器包括光敏元件,所述光敏元件配置为对曝光反应,导致所述光敏元件的材料和/或电特性改变。
79.权利要求76-78中任一项的试剂盒,其中在一些或全部制备、储存、运输、表征和/或使用所述组合物的过程中,所述组合物包含的所述mRNA暴露于光所产生的降解产物不超过0.1重量%。
80.一种试剂盒,其包含
(a)包含脂质纳米颗粒包裹的mRNA的组合物;以及
(b)实时监测温度、光和/或位置的记录设备。
81.一种运输和/或储存组合物的方法,所述方法包括运输和/或储存脂质纳米颗粒包裹的mRNA,其中将所述组合物填充至玻璃小瓶或注射器中;其中所述玻璃小瓶或注射器包含至少一个剂量。
82.权利要求81的方法,其中所述玻璃小瓶或注射器包含多个剂量。
83.权利要求81-82中任一项的方法,其中所述玻璃小瓶或注射器包含2-6个剂量。
84.权利要求81-83中任一项的方法,其中所述组合物在4℃或低于4℃的温度下运输或储存。
85.权利要求81-84中任一项的方法,其中所述组合物在0℃或低于0℃的温度下运输或储存。
86.权利要求81-85中任一项的方法,其中所述组合物在-20℃或低于-20℃的温度下运输或储存。
87.权利要求81-86中任一项的方法,其中所述组合物在-60℃或低于-60℃的温度下运输或储存。
88.权利要求81-87中任一项的方法,其中所述组合物在-80℃或低于-80℃的温度下运输或储存。
CN202180030057.4A 2020-04-22 2021-04-16 冠状病毒疫苗 Pending CN115843330A (zh)

Applications Claiming Priority (49)

Application Number Priority Date Filing Date Title
EP2020061239 2020-04-22
EPPCT/EP2020/061239 2020-04-22
EP2020066968 2020-06-18
EPPCT/EP2020/066968 2020-06-18
EP2020068174 2020-06-26
EPPCT/EP2020/068174 2020-06-26
EPPCT/EP2020/069805 2020-07-13
EP2020069805 2020-07-13
EP2020071733 2020-07-31
EPPCT/EP2020/071733 2020-07-31
EP2020071839 2020-08-03
EPPCT/EP2020/071839 2020-08-03
EPPCT/EP2020/073668 2020-08-24
EP2020073668 2020-08-24
EP2020081544 2020-11-09
EPPCT/EP2020/081544 2020-11-09
EPPCT/EP2020/081981 2020-11-12
EP2020081981 2020-11-12
EPPCT/EP2020/082601 2020-11-18
EP2020082601 2020-11-18
EP2020082989 2020-11-20
EPPCT/EP2020/082989 2020-11-20
EP2020083435 2020-11-25
EPPCT/EP2020/083435 2020-11-25
EP2020084342 2020-12-02
EPPCT/EP2020/084342 2020-12-02
US202063120977P 2020-12-03 2020-12-03
US63/120,977 2020-12-03
EPPCT/EP2020/085145 2020-12-08
EP2020085145 2020-12-08
EP2020085653 2020-12-10
EPPCT/EP2020/085653 2020-12-10
EP2020087844 2020-12-23
EPPCT/EP2020/087844 2020-12-23
EPPCT/EP2021/050027 2021-01-04
EP2021050027 2021-01-04
EPPCT/EP2021/050874 2021-01-15
EPPCT/EP2021/050875 2021-01-15
EP2021050875 2021-01-15
EP2021050874 2021-01-15
EP2021051772 2021-01-26
EPPCT/EP2021/051772 2021-01-26
EP2021052572 2021-02-03
EPPCT/EP2021/052572 2021-02-03
EPPCT/EP2021/052716 2021-02-04
EP2021052716 2021-02-04
EP2021054622 2021-02-24
EPPCT/EP2021/054622 2021-02-24
PCT/EP2021/060004 WO2021213945A1 (en) 2020-04-22 2021-04-16 Coronavirus vaccine

Publications (1)

Publication Number Publication Date
CN115843330A true CN115843330A (zh) 2023-03-24

Family

ID=75497942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180030057.4A Pending CN115843330A (zh) 2020-04-22 2021-04-16 冠状病毒疫苗

Country Status (11)

Country Link
US (1) US20240002127A1 (zh)
EP (1) EP4139616A1 (zh)
JP (1) JP2023526178A (zh)
KR (1) KR20230015351A (zh)
CN (1) CN115843330A (zh)
AU (1) AU2021260750A1 (zh)
BR (1) BR112022019793A2 (zh)
CA (1) CA3176481A1 (zh)
IL (1) IL297414A (zh)
MX (1) MX2022013264A (zh)
WO (1) WO2021213945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116139108A (zh) * 2023-04-23 2023-05-23 威瑞生物科技(昆明)有限责任公司 一种脂质递送系统及其所构成的类病毒结构疫苗

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4349405A3 (en) 2015-10-22 2024-06-19 ModernaTX, Inc. Respiratory virus vaccines
US20240277830A1 (en) 2020-02-04 2024-08-22 CureVac SE Coronavirus vaccine
CA3174215A1 (en) 2020-04-22 2021-10-28 Ugur Sahin Coronavirus vaccine
KR20230164648A (ko) 2020-12-22 2023-12-04 큐어백 에스이 SARS-CoV-2 변이체에 대한 RNA 백신
WO2022155524A1 (en) * 2021-01-15 2022-07-21 Modernatx, Inc. Variant strain-based coronavirus vaccines
AU2022207495A1 (en) * 2021-01-15 2023-08-03 Modernatx, Inc. Variant strain-based coronavirus vaccines
EP4313894A1 (en) * 2021-03-25 2024-02-07 SCHOTT Pharma AG & Co. KGaA Pharmaceutical container
EP4319803A1 (en) 2021-04-08 2024-02-14 Vaxthera SAS Coronavirus vaccine comprising a mosaic protein
AU2022270658A1 (en) 2021-05-04 2023-11-16 BioNTech SE Technologies for early detection of variants of interest
EP4145132A1 (en) * 2021-09-03 2023-03-08 ISAR Bioscience GmbH Methods and kit for determining the antibody status and t-cell immunity against sars-cov-2
WO2023220693A1 (en) * 2022-05-12 2023-11-16 SunVax mRNA Therapeutics Inc. Synthetic self-amplifying mrna molecules with secretion antigen and immunomodulator
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898278A (en) * 1986-12-05 1990-02-06 Nalge Company Storage container
JPH10113117A (ja) * 1996-10-11 1998-05-06 Tomoji Tanaka 保冷箱
US6381981B1 (en) * 2001-05-02 2002-05-07 Advanced Tissue Sciences, Inc. Container for shipping and storing frozen products
US20030082357A1 (en) * 2001-09-05 2003-05-01 Cem Gokay Multi-layer core for vacuum insulation panel and insulated container including vacuum insulation panel
US20050178142A1 (en) * 2004-02-17 2005-08-18 Perry Ralph J. 96 hour duration insulated cryo-pack for maintaining -40 degree fahrenheit
US7870748B2 (en) * 2005-02-25 2011-01-18 Byrne Kathleen H Method for controlled rate freezing and long term cryogenic storage
US20110255644A1 (en) * 2005-12-05 2011-10-20 Seldon Technologies, Inc. METHODS OF GENERATING NON-IONIZING RADIATION OR NON-IONIZING 4He USING GRAPHENE BASED MATERIALS
EP1996053B1 (en) * 2006-03-02 2015-12-30 Cold Chain Technologies, Inc. Insulated shipping container and method of making the same
EP2281579A1 (en) 2009-08-05 2011-02-09 BioNTech AG Vaccine composition comprising 5'-Cap modified RNA
US8763811B2 (en) * 2011-05-05 2014-07-01 Gary Lantz Insulated shipping container, and method of making
US9060508B2 (en) * 2012-07-18 2015-06-23 Alex N. Anti High-performance extended target temperature containers
WO2014078673A1 (en) * 2012-11-16 2014-05-22 Savsu Technologies Llc Contents rack for use in insulated storage containers
WO2014197511A2 (en) * 2013-06-03 2014-12-11 Biocision, Llc Cryogenic systems
WO2016005004A1 (en) 2014-07-11 2016-01-14 Biontech Rna Pharmaceuticals Gmbh Stabilization of poly(a) sequence encoding dna sequences
GB201502260D0 (en) * 2015-02-11 2015-04-01 Verona Pharma Plc Salt of Pyrimido[6,1-A]Isoquinolin-4-one compound
WO2017059902A1 (en) 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
GB2546257A (en) * 2016-01-08 2017-07-19 The Wool Packaging Company Ltd Temperature controlled packaging and transportation method
GB201611050D0 (en) * 2016-06-24 2016-08-10 Softbox Systems Ltd A passive temperature control system for transport and storage containers
CA3059901A1 (en) * 2017-02-23 2018-08-30 Vericool, Inc. Thermally insulating packaging
US10619907B2 (en) * 2017-05-31 2020-04-14 Keith A. Kenneally Refrigerated, thermally insulated, collapsible cover system, assembly and method of using to transport perishable products
IT201700111328A1 (it) * 2017-10-04 2019-04-04 Bellco Srl Secondary packaging container and method for hemodialysis dialyzers
WO2019079186A1 (en) * 2017-10-16 2019-04-25 American Aerogel Corporation COMPARTMENTAL SHIPPING CONTAINER FOR DELIVERY OF TEMPERATURE CONTROL MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116139108A (zh) * 2023-04-23 2023-05-23 威瑞生物科技(昆明)有限责任公司 一种脂质递送系统及其所构成的类病毒结构疫苗

Also Published As

Publication number Publication date
WO2021213945A1 (en) 2021-10-28
AU2021260750A1 (en) 2022-11-24
JP2023526178A (ja) 2023-06-21
EP4139616A1 (en) 2023-03-01
CA3176481A1 (en) 2021-10-28
BR112022019793A2 (pt) 2022-12-13
MX2022013264A (es) 2023-01-24
US20240002127A1 (en) 2024-01-04
KR20230015351A (ko) 2023-01-31
IL297414A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP7514206B2 (ja) コロナウイルスワクチン
CN115843330A (zh) 冠状病毒疫苗
EP4226938A2 (en) Coronavirus vaccine
WO2023147092A2 (en) Coronavirus vaccine
WO2024002985A1 (en) Coronavirus vaccine
CN117750974A (zh) 病毒疫苗
AU2021261471B2 (en) Coronavirus vaccine
US20240042011A1 (en) Coronavirus vaccine
CN118302189A (zh) 冠状病毒疫苗
CN116650633A (zh) 冠状病毒疫苗
WO2024086575A1 (en) Combination vaccines against coronavirus infection, influenza infection, and/or rsv infection
TW202430206A (zh) 組合疫苗

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40091203

Country of ref document: HK