CN115811112A - 开关电源型充电器及其限功率电源保护电路 - Google Patents
开关电源型充电器及其限功率电源保护电路 Download PDFInfo
- Publication number
- CN115811112A CN115811112A CN202211630534.3A CN202211630534A CN115811112A CN 115811112 A CN115811112 A CN 115811112A CN 202211630534 A CN202211630534 A CN 202211630534A CN 115811112 A CN115811112 A CN 115811112A
- Authority
- CN
- China
- Prior art keywords
- switch tube
- voltage
- indication signal
- output switch
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 35
- 238000004891 communication Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0022—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
- H02M1/092—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
- Protection Of Static Devices (AREA)
Abstract
提供了一种开关电源型充电器及其LPS保护电路。LPS保护电路被配置为:检测输出开关管的源极和漏极之间的源‑漏电压差,基于输出开关管的源‑漏电压差和第一输出开关管压降阈值生成第一输出开关管压降指示信号,并基于输出开关管的源‑漏电压差和第二输出开关管压降阈值生成第二输出开关管压降指示信号;在输出开关管导通且开关电源型充电器的负载拉载后检测开关电源型充电器的CC端电压,基于CC端电压和第一CC端电压阈值生成第一CC端电压指示信号,并基于CC端电压和第二CC端电压阈值生成第二CC端电压指示信号;基于第一输出开关管压降指示信号、第二输出开关管压降指示信号、第一CC端电压指示信号、以及第二CC端电压指示信号判定是否需要执行LPS保护。
Description
技术领域
本发明涉及电路领域,更具体地涉及一种开关电源型充电器及其限功率电源保护电路。
背景技术
随着移动电子设备的电池容量的增大、电池充电速度要求的提高,对充电器的输出功率的要求同步提高。目前,市场上大多数充电器的输出功率已提升到80W~90W区间、最大输出电流已上升到7.5A左右,同时这些充电器需满足限功率电源(Limited PowerSources,LPS)要求,即输出功率小于100W且输出电流小于8A。
发明内容
根据本发明实施例的LPS保护电路,用在开关电源型充电器中,该LPS保护电路包括:输出开关管压降检测模块,被配置为检测开关电源型充电器中的输出开关管的源极和漏极之间的源-漏电压差,基于输出开关管的源-漏电压差和第一输出开关管压降阈值生成第一输出开关管压降指示信号,并且基于输出开关管的源-漏电压差和第二输出开关管压降阈值生成第二输出开关管压降指示信号;快充协议通信检测模块,被配置为在输出开关管导通且开关电源型充电器的负载拉载后检测开关电源型充电器的CC端电压,基于CC端电压和第一CC端电压阈值生成第一CC端电压指示信号,并且基于CC端电压和第二CC端电压阈值生成第二CC端电压指示信号;以及逻辑控制模块,被配置为基于第一输出开关管压降指示信号、第二输出开关管压降指示信号、第一CC端电压指示信号、以及第二CC端电压指示信号判定是否需要执行LPS保护。
根据本发明实施例的开关电源型充电器,包括上述LPS保护电路。
附图说明
从下面结合附图对本发明的具体实施方式的描述中可以更好地理解本发明,其中:
图1示出了输出功率为65W的开关电源型充电器的电路原理图。
图2示出了根据本发明实施例的LPS保护电路被包括在快充协议芯片中的开关电源型充电器的部分电路的电路原理图。
图3示出了根据本发明实施例的LPS保护电路的示意框图。
图4示出了根据本发明实施例的LPS保护电路被包括在快充协议芯片中的另一开关电源型充电器的部分电路的电路原理图。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。本发明决不限于下面所提出的任何具体配置和算法,而是在不脱离本发明的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本发明造成不必要的模糊。
通常,在输出功率低于65W的开关电源型充电器(即,由开关电源实现的充电器)中,由用于控制充电器的开关频率的脉宽调制(PWM)控制器来限制充电器的输出电流和输出功率从而实现LPS保护,因为充电器的输出电流最大通常只有3.25A且65W距离100W空间足够。图1示出了输出功率为65W的开关电源型充电器的电路原理图。
但是,当开关电源型充电器的输出功率提升到80W~90W且输出电流接近8A时,PWM控制器因精度问题不再能用来实现LPS保护,因此通常使用快充协议芯片来实现LPS保护。具体地,快充协议芯片可以采用高精度、低温漂的精密电阻(例如,5mohm电阻)来精确检测充电器的输出电流和输出功率;但是,当精密电阻短路时,快充协议芯片无法检测充电器的输出电流,因而无法实现LPS保护;另外,当连接到VBUS输出端的金属氧化物半导体场效应晶体管(MOSFET,简称MOS开关管)的漏极和源极短路时,快充协议芯片能够检测到充电器的输出电流和输出功率超标却无法关断该MOS开关管,因而也无法实现LPS保护。
鉴于上述一个或多个问题,提出了根据本发明实施例的LPS保护电路,可以在开关电源型充电器中发生单点失效(即,充电器中某个器件的相邻引脚发生短路)的情况下实现LPS保护。
图2示出了根据本发明实施例的LPS保护电路被包括在快充协议芯片中的开关电源型充电器的部分电路的电路原理图。图3示出了根据本发明实施例的LPS保护电路的示意框图。下面结合图2和图3,详细描述根据本发明实施例的LPS保护电路的电路构成和工作原理。如图2和图3所示,LPS保护电路300包括:
输出开关管压降检测模块302,被配置为检测输出开关管Q1的源极和漏极之间的源-漏电压差Vds1,基于输出开关管Q1的源-漏电压差Vds1和第一输出开关管压降阈值Vref1a生成第一输出开关管压降指示信号T1a,并且基于输出开关管Q1的源-漏电压差Vds1和第二输出开关管压降阈值Vref1b生成第二输出开关管压降指示信号T1b;
电阻电流检测模块304,被配置为检测精密电阻Rcs两端的电压差作为电阻承载电压Vcs,通过比较电阻承载电压Vcs和第一电阻承载电压阈值Vref2a生成第一电阻承载电压指示信号T2a,并且通过比较电阻承载电压Vcs和第二电阻承载电压阈值Vref2a生成第二电阻承载电压指示信号T2b;
同步整流(SR)开关管压降检测模块306,被配置为在SR开关管Q2导通期间检测SR开关管Q2的源极和漏极之间的源-漏电压差Vds2,通过比较SR开关管Q2的源-漏电压差Vds2和第一SR开关管压降阈值Vref3a生成第一SR开关管压降指示信号T3a,并且通过比较SR开关管Q2的源-漏电压差Vds2和第二SR开关管压降阈值Vref3b生成第二SR开关管压降指示信号T3b;
快充协议通信检测模块308,被配置为在输出开关管Q2导通且开关电源型充电器的负载拉载后检测开关电源型充电器的CC端电压,基于CC端电压和第一CC端电压阈值Vref4a生成第一CC端电压指示信号T4a,并且基于CC端电压和第二CC端电压阈值Vref4b生成第二CC端电压指示信号T2b;
开关频率检测模块310,被配置为检测开关电源型充电器的开关频率Fsw,通过比较开关频率Fsw和第一开关频率阈值Fref5a生成第一开关频率指示信号T5a,并且通过比较开关频率Fsw和第二开关频率阈值Fref5b生成第二开关频率指示信号T5b;以及
逻辑控制模块312,被配置为基于第一输出开关管压降指示信号T1a、第二输出开关管压降指示信号T2a、第一电阻承载电压指示信号T1b、第二电阻承载电压指示信号T2b、第一SR开关管压降指示信号T3a、第二SR开关管压降指示信号T3b、第一CC端电压指示信号T4a、第二CC端电压指示信号T4b、第一开关频率指示信号T5a、以及第二开关频率指示信号T5b判定是否需要执行LPS保护。
这里,为了解决信号检测容差问题,对输出开关管压降检测模块302、电阻电流检测模块304、SR开关管压降检测模块306、以及快充协议通信检测模块308中的任意一个设定一对参考阈值VrefXa和VrefXb(X=1~4),并且对开关频率检测模块310设定一对参考阈值Fref5a和Fref5b,其中,VrefXa>VrefXb(X=1/2/3/4),Fref5a>Fref5b,VrefXa和Fref5a与LPS电流保护阈值Io1对应,VrefXb和Fref5b与LPS电流保护阈值Io2对应。通常,由于检测电路电气参数偏差或者存在弱短路情况会导致实际检测结果存在误差,需要将Io1与Io2适当拉开一定差值。例如,设定LPS电流保护阈值Io1=3A、Io2=1A。
在一些实施例中,对于输出开关管压降检测模块302、电阻电流检测模块304、SR开关管压降检测模块306、快充协议通信检测模块308、以及开关频率检测模块310中的任意一个,TXa(X=1/2/3/4/5)在开关电源型充电器的输出电流Io大于Io1时为第一逻辑值(例如,TXa=逻辑1)并且在Io不大于Io1时为第二逻辑值(例如,TXa=逻辑0),TXb(X=1/2/3/4/5)在Io大于Io2时为第一逻辑值(例如,TXb=逻辑1)并且在Io不大于Io2时为第二逻辑值(例如,TXb=逻辑0)。
在一些实施例中,假设输出开关管Q1的导通阻抗为Rdson1,通过快充协议芯片的VIN和VBUS引脚可以检测输出开关管Q1的漏-源电压差Vds1(Io=Vds1/Rdson1),并且通过内部放大器KA可以将Vds1放大K1倍后与Vref1a=Io1*Rdson1*K1和Vref1b=Io2*Rdson1*K1进行比较(由于Vds1通常较小,放大后比较易于实现),如果比较器CMP输出的T1a/T1b信号为逻辑1则说明输出电流Io已大于LPS电流保护阈值Io1/Io2。也就是说,T1a在Vds1大于Vref1a时为逻辑1并且在Vds1不大于Vref1a时为逻辑0,T1b在Vds1大于Vref1b时为逻辑1并且在Vds1不大于Vref1b时为逻辑0。
在一些实施例中,通过快充协议芯片的ISP和ISN引脚可以检测精密电阻Rcs两端的电压差Vcs(Io=Vcs/Rcs),并且通过内部放大器KA可以将Vcs放大K2倍后与Vref2a=Io1*Rcs*K2和Vref2b=Io2*Rcs*K2进行比较(类似地,由于Vcs通常较小,放大后比较易于实现),如果比较器CMP输出的T2a/T2b信号为逻辑1则说明输出电流Io已大于LPS电流保护阈值Io1/Io2。也就是说,T2a在Vcs大于Vref2a时为逻辑1并且在Vcs不大于Vref2a时为逻辑0,T2b在Vcs大于Vref2b时为逻辑1并且在Vcs不大于Vref2b时为逻辑0。
在一些实施例中,假设SR开关管Q2的导通阻抗为Rdson2,通过快充协议芯片的Vd和GND引脚可以检测SR开关管Q2的漏-源电压差Vds2(Io=Vds2/Rdson2),并且通过内部放大器KA可以将Vds2放大K3倍后与Vref3a=Io1*Rdson2*K3和Vref3b=Io2*Rdson2*K3进行比较(类似地,由于Vds2通常较小,放大后比较易于实现),如果比较器CMP输出的T3a/T3b信号为逻辑1则说明输出电流Io已大于LPS电流保护阈值Io1/Io2。也就是说,T3a在Vds2大于Vref3a时为逻辑1并且在Vds2不大于Vref3a时为逻辑0,T3b在Vds2大于Vref3b时为逻辑1并且在Vds2不大于Vref3b时为逻辑0。
在一些实施例中,通过快充协议芯片的CC端电压(即,CC1或CC2引脚处的电压)在开关电源型充电器带载前后的电压差值可以判断开关电源型充电器的输出电流Io的大小。具体地,可以在输出开关管Q1关断期间且CC端稳定接入下拉电阻Rd后检测CC端电压Sample1,并且在输出开关管Q1导通且开关电源型充电器的负载拉载后检测CC端电压Sample2。如果不考虑容差,sample1=Icc*Rd。但是,根据Type-C协议,Icc=330ua容差±10%,Rd=5.1K容差±10%,所以通常需要先利用Sample1对Vref4a/Vref4b进行校准,其中,Vref4a=Sample1+Rgnd*Io1,Vref4b=Sample1+Rgnd*Io2,通过反算可以得到Io=(Sample2-Sample1)/Rgnd,Rgnd为连接充电线与终端设备的充电线地线阻抗。如果Sample2大于Vref4a/Vref4b则说明输出电流Io超过了LPS保护电流阈值Io1/Io2。也就是说,T4a在Sample2大于Vref4a时为逻辑1并且在Sample2不大于Vref4a时为逻辑0,并且T4b在Sample2大于Vref4b时为逻辑1并且在Sample2不大于Vref4b时为逻辑0。
在一些实施例中,逻辑控制模块312进一步被配置为在T1a至T5a中的任意一个为逻辑1并且T1b至T5b中的任意一个为逻辑0的情况下,判定需要执行LPS保护。
在一些实施例中,逻辑控制模块312进一步被配置为在判定需要执行LPS保护且T1b为逻辑1(即,输出开关管Q1没有发生短路)的情况下,将LPS保护信息传递给PWM控制器。例如,逻辑控制模块312可以被配置为经由光耦或SR开关管将LPS保护信息传递给PWM控制器。
在一些实施例中,逻辑控制模块312进一步被配置为在判定需要执行LPS保护且T1b为逻辑0的情况下,控制输出开关管Q1从导通状态变为关断状态。
需要说明的是,根据本发明实施例的LPS保护电路在仅包括输出开关管压降检测模块302、电阻电流检测模块304、SR开关管压降检测模块306、快充协议通信检测模块308、以及开关频率检测模块310中的任意两个或更多个检测模块的情况下,结合逻辑控制模块312也可以判定是否需要执行LPS保护。另外,根据本发明实施例的LPS保护电路也可以位于快充协议芯片的外部,只要能够实现结合图3描述的上述功能即可。
图4示出了根据本发明实施例的LPS保护电路被包括在快充协议芯片中的另一开关电源型充电器的部分电路的电路原理图。图4所示的开关电源型充电器与图2所示的开关电源型充电器的区别主要在于,输出开关管Q1被集成在快充协议芯片中,并且输出开关管压降检测模块302与电阻电流检测模块304合并实现为一个模块。
本发明可以以其他的具体形式实现,而不脱离其精神和本质特征。例如,特定实施例中所描述的算法可以被修改,而系统体系结构并不脱离本发明的基本精神。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本发明的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本发明的范围之中。
Claims (21)
1.一种限功率电源(LPS)保护电路,用在开关电源型充电器中,所述LPS保护电路包括:
输出开关管压降检测模块,被配置为检测所述开关电源型充电器中的输出开关管的源极和漏极之间的源-漏电压差,基于所述输出开关管的源-漏电压差和第一输出开关管压降阈值生成第一输出开关管压降指示信号,并且基于所述输出开关管的源-漏电压差和第二输出开关管压降阈值生成第二输出开关管压降指示信号;
快充协议通信检测模块,被配置为在所述输出开关管导通且所述开关电源型充电器的负载拉载后检测所述开关电源型充电器的CC端电压,基于所述CC端电压和第一CC端电压阈值生成第一CC端电压指示信号,并且基于所述CC端电压和第二CC端电压阈值生成第二CC端电压指示信号;以及
逻辑控制模块,被配置为基于所述第一输出开关管压降指示信号、所述第二输出开关管压降指示信号、所述第一CC端电压指示信号、以及所述第二CC端电压指示信号判定是否需要执行LPS保护。
2.如权利要求1所述的LPS保护电路,其中,所述输出开关管压降检测模块进一步被配置为通过比较所述输出开关管的源-漏电压差和所述第一输出开关管压降阈值生成所述第一输出开关管压降指示信号,并且通过比较所述输出开关管的源-漏电压差和所述第二输出开关管压降阈值生成所述第二输出开关管压降指示信号。
3.如权利要求2所述的LPS保护电路,其中,所述快充协议通信检测模块进一步被配置为通过比较所述CC端电压和所述第一CC端电压阈值生成所述第一CC端电压指示信号,并且通过比较所述CC端电压和所述第二CC端电压阈值生成所述第二CC端电压指示信号。
4.如权利要求3所述的LPS保护电路,其中,所述第一输出开关管压降阈值大于所述第二输出开关管压降阈值,
并且其中,所述第一输出开关管压降指示信号在所述输出开关管的源-漏电压差大于所述第一输出开关管压降阈值时为第一逻辑值并且在所述输出开关管的源-漏电压差不大于所述第一输出开关管压降阈值时为第二逻辑值,
并且其中,所述第二输出开关管压降指示信号在所述输出开关管的源-漏电压差大于所述第二输出开关管压降阈值时为所述第一逻辑值并且在所述输出开关管的源-漏电压差不大于所述第二输出开关管压降阈值时为所述第二逻辑值。
5.如权利要求4所述的LPS保护电路,其中,所述第一CC端电压阈值大于所述第二CC端电压阈值,所述第一CC端电压指示信号在所述CC端电压大于所述第一CC端电压阈值时为所述第一逻辑值并且在所述CC端电压不大于所述第一CC端电压阈值时为所述第二逻辑值,并且所述第二CC端指示信号在所述CC端电压大于所述第二CC端电压阈值时为所述第一逻辑值并且在所述CC端电压不大于所述第二CC端电压阈值时为所述第二逻辑值。
6.如权利要求5所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为在所述第一输出开关管压降指示信号和所述第一CC端电压指示信号中的任意一个为所述第一逻辑值且所述第二输出开关管压降指示信号和所述第二CC端电压指示信号中的任意一个为所述第二逻辑值时,判定需要执行LPS保护。
7.如权利要求1所述的LPS保护电路,其中,所述快充协议通信检测模块进一步被配置为在所述输出开关管关断期间且所述开关电源型充电器的CC端稳定接入下拉电阻后检测所述CC端电压,并利用所述CC端电压校准所述第一CC端电压阈值和所述第二CC端电压阈值。
8.如权利要求6所述的LPS保护电路,进一步包括:
电阻电流检测模块,被配置为检测精密电阻两端的电压差作为电阻承载电压,通过比较所述电阻承载电压和第一电阻承载电压阈值生成第一电阻承载电压指示信号,并且通过比较所电阻承载电压和第二电阻承载电压阈值生成第二电阻承载电压指示信号。
9.如权利要求8所述的LPS保护电路,其中,所述第一电阻承载电压阈值大于所述第二电阻承载电压阈值,所述第一电阻承载电压指示信号在所述电阻承载电压大于所述第一电阻承载电压阈值时为所述第一逻辑值并且在所述电阻承载电压不大于所述第一电阻承载电压阈值时为所述第二逻辑值,并且所述第二电阻承载电压指示信号在所述电阻承载电压大于所述第二电阻承载电压阈值时为所述第一逻辑值并且在所述电阻承载电压不大于所述第二电阻承载电压阈值时为所述第二逻辑值。
10.如权利要求9所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为在所述第一输出开关管压降指示信号、所述第一CC端电压指示信号、以及所述第一电阻承载电压指示信号中的任意一个为所述第一逻辑值且所述第二输出开关管压降指示信号、所述第二CC端电压指示信号、以及所述第二电阻承载电压指示信号中的任意一个为所述第二逻辑值时,判定需要执行LPS保护。
11.如权利要求6所述的LPS保护电路,进一步包括:
开关频率检测模块,被配置为检测所述开关电源型充电器的开关频率,通过比较所述开关频率和第一开关频率阈值生成第一开关频率指示信号,并且通过比较所述开关频率和第二开关频率阈值生成第二开关频率指示信号。
12.如权利要求11所述的LPS保护电路,其中,所述第一开关频率阈值大于所述第二开关频率阈值,所述第一开关频率指示信号在所述开关频率大于所述第一开关频率阈值时为所述第一逻辑值并且在所述开关频率不大于所述第一开关频率阈值时为所述第二逻辑值,并且所述第二开关频率指示信号在所述开关频率大于所述第二开关频率阈值时为所述第一逻辑值并且在所述开关频率不大于所述第二开关频率阈值时为所述第二逻辑值。
13.如权利要求12所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为在所述第一输出开关管压降指示信号、所述第一CC端电压指示信号、以及所述第一开关频率指示信号中的任意一个为所述第一逻辑值且所述第二输出开关管压降指示信号、所述第二CC端电压指示信号、以及所述第二开关频率指示信号中的任意一个为所述第二逻辑值时,判定需要执行LPS保护。
14.如权利要求6所述的LPS保护电路,进一步包括:
同步整流(SR)开关管压降检测模块,被配置为在所述开关电源型充电器中的SR开关管导通期间检测所述SR开关管的源极和漏极之间的源-漏电压差,通过比较所述SR开关管的源-漏电压差和第一SR开关管压降阈值生成第一SR开关管压降指示信号,并且通过比较所述SR开关管的源-漏电压差和第二SR开关管压降阈值生成第二SR开关管压降指示信号。
15.如权利要求14所述的LPS保护电路,其中,所述第一SR开关管压降阈值大于所述第二SR开关管压降阈值,所述第一SR开关管压降指示信号在所述SR开关管的源-漏电压差大于所述第一SR开关管压降阈值时为所述第一逻辑值并且在所述SR开关管的源-漏电压差不大于所述第一SR开关管压降阈值时为所述第二逻辑值,并且所述第二SR开关管压降指示信号在所述SR开关管的源-漏电压差大于所述第二SR开关管压降阈值时为所述第一逻辑值并且在所述SR开关管的源-漏电压差不大于所述第二SR开关管压降阈值时为所述第二逻辑值。
16.如权利要求15所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为在所述第一输出开关管压降指示信号、所述第一CC端电压指示信号、以及所述第一SR开关管压降指示信号中的任意一个为所述第一逻辑值且所述第二输出开关管压降指示信号、所述第二CC端电压指示信号、以及所述第二SR开关管压降指示信号中的任意一个为所述第二逻辑值时,判定需要执行LPS保护。
17.如权利要求6所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为在判定需要执行LPS保护且所述第二输出开关管压降指示信号为所述第一逻辑值的情况下,将LPS保护信息传递给所述开关电源型充电器中的脉宽调制(PWM)控制器。
18.如权利要求17所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为经由光耦或同步整流开关管将所述LPS保护信息传递给所述PWM控制器。
19.如权利要求6所述的LPS保护电路,其中,所述逻辑控制模块进一步被配置为在判定需要执行LPS保护且所述第二输出开关管压降指示信号为所述第二逻辑值的情况下,控制所述输出开关管从导通状态变为关断状态。
20.如权利要求1所述的LPS保护电路,其中,所述开关电源型充电器包括脉宽调制(PWM)控制器和快充协议芯片,所述LPS保护电路位于所述快充协议芯片中。
21.一种开关电源型充电器,包括权利要求1至20中任一项所述的LPS保护电路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211630534.3A CN115811112A (zh) | 2022-12-19 | 2022-12-19 | 开关电源型充电器及其限功率电源保护电路 |
TW112106152A TWI826269B (zh) | 2022-12-19 | 2023-02-20 | 開關電源型充電器及其限功率電源保護電路 |
US18/544,804 US20240204554A1 (en) | 2022-12-19 | 2023-12-19 | Switched-mode power supply chargers with fault detection related to limited power source protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211630534.3A CN115811112A (zh) | 2022-12-19 | 2022-12-19 | 开关电源型充电器及其限功率电源保护电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115811112A true CN115811112A (zh) | 2023-03-17 |
Family
ID=85486194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211630534.3A Pending CN115811112A (zh) | 2022-12-19 | 2022-12-19 | 开关电源型充电器及其限功率电源保护电路 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240204554A1 (zh) |
CN (1) | CN115811112A (zh) |
TW (1) | TWI826269B (zh) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103475210B (zh) * | 2011-09-14 | 2016-04-27 | 矽力杰半导体技术(杭州)有限公司 | 一种开关型调节器的恒定时间控制方法、控制电路以及应用其的开关型调节器 |
JP5986839B2 (ja) * | 2012-07-27 | 2016-09-06 | ローム株式会社 | Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器 |
CN104065149B (zh) * | 2014-07-09 | 2016-09-14 | 昂宝电子(上海)有限公司 | 充电控制电路、反激式电源变换系统及充电控制方法 |
US10090688B2 (en) * | 2015-01-13 | 2018-10-02 | Intersil Americas LLC | Overcurrent protection in a battery charger |
CN112913106A (zh) * | 2020-04-26 | 2021-06-04 | 深圳市大疆创新科技有限公司 | 充电控制方法、充电器、充电系统及存储介质 |
CN113315192B (zh) * | 2020-05-12 | 2022-10-21 | 成都芯源系统有限公司 | 具有自动调节输出电压的双向电池充电电路和方法 |
CN114336532B (zh) * | 2020-10-10 | 2024-03-26 | 深圳英集芯科技股份有限公司 | 一种采样电阻短路保护方法 |
CN112290646A (zh) * | 2020-11-18 | 2021-01-29 | 江苏润石科技有限公司 | 锂电池充电方法及装置 |
CN112366799A (zh) * | 2020-11-23 | 2021-02-12 | 苏州热工研究院有限公司 | 一种快速限制锂电池充电冲击电流的方法和系统 |
-
2022
- 2022-12-19 CN CN202211630534.3A patent/CN115811112A/zh active Pending
-
2023
- 2023-02-20 TW TW112106152A patent/TWI826269B/zh active
- 2023-12-19 US US18/544,804 patent/US20240204554A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI826269B (zh) | 2023-12-11 |
US20240204554A1 (en) | 2024-06-20 |
TW202427912A (zh) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6924207B2 (ja) | 結合部の温度と電流の検知 | |
US9812983B2 (en) | Synchronous rectifier circuit | |
US10236677B2 (en) | Semiconductor device | |
US9628072B2 (en) | Driving device and switching circuit control method | |
US9825555B2 (en) | Semiconductor control device, switching device, inverter, and control system | |
US9571088B2 (en) | Semiconductor device | |
US7741884B2 (en) | Load drive circuit | |
TWI593222B (zh) | 用於磁滯電流控制模式的單電感雙輸出電源轉換器及其控制方法 | |
CN110022051B (zh) | 用于驱动功率级的装置和方法 | |
US20150346038A1 (en) | Semiconductor apparatus | |
US11183945B2 (en) | Semiconductor device and method of operating the same | |
US9041457B2 (en) | Electronic apparatus having a diode connected to a control terminal of a switching element | |
US9568505B2 (en) | Semiconductor device | |
US20240195300A1 (en) | Peak current limit management for high frequency buck converter | |
US9791881B2 (en) | Self-driven synchronous rectification for a power converter | |
CN115811112A (zh) | 开关电源型充电器及其限功率电源保护电路 | |
US9577568B2 (en) | Detection of a wire-break fault during the operation of a brushless d.c. motor | |
US11003232B2 (en) | Power management integrated circuit including a supervisory circuit that controls a switch arranged between a node of an electrical resistance circuit and a reference potential node | |
US9059594B2 (en) | Battery switching charger and method for controlling battery switching charger | |
US10581425B2 (en) | Semiconductor device | |
US12047060B2 (en) | Drive device for voltage-controlled semiconductor element | |
JP2024113808A (ja) | 電源制御装置 | |
JP2023170903A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |