CN115808436B - 利用核磁技术确定致密储层流体相态类型及饱和度的方法 - Google Patents
利用核磁技术确定致密储层流体相态类型及饱和度的方法 Download PDFInfo
- Publication number
- CN115808436B CN115808436B CN202211700246.0A CN202211700246A CN115808436B CN 115808436 B CN115808436 B CN 115808436B CN 202211700246 A CN202211700246 A CN 202211700246A CN 115808436 B CN115808436 B CN 115808436B
- Authority
- CN
- China
- Prior art keywords
- core
- volume
- phase
- holder
- stratum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000005516 engineering process Methods 0.000 title claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000011435 rock Substances 0.000 claims abstract description 47
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 39
- 239000007789 gas Substances 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 238000000197 pyrolysis Methods 0.000 claims abstract description 9
- 230000005311 nuclear magnetism Effects 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000012071 phase Substances 0.000 claims description 64
- 239000003921 oil Substances 0.000 claims description 32
- 239000007864 aqueous solution Substances 0.000 claims description 23
- 239000008346 aqueous phase Substances 0.000 claims description 11
- 238000005553 drilling Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- -1 polytetrafluoroethylene Polymers 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 238000007710 freezing Methods 0.000 claims description 7
- 230000008014 freezing Effects 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 5
- 238000005481 NMR spectroscopy Methods 0.000 claims description 4
- 230000033558 biomineral tissue development Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 235000011164 potassium chloride Nutrition 0.000 claims description 4
- 239000001103 potassium chloride Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 239000010779 crude oil Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000000704 physical effect Effects 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- 238000009738 saturating Methods 0.000 claims description 2
- 238000007664 blowing Methods 0.000 abstract description 3
- 238000003763 carbonization Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 238000000685 Carr-Purcell-Meiboom-Gill pulse sequence Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/30—Sample handling arrangements, e.g. sample cells, spinning mechanisms
- G01R33/305—Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for high-pressure applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
- G01N1/08—Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/42—Low-temperature sample treatment, e.g. cryofixation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
- G01N24/081—Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明涉及利用核磁技术确定致密储层流体相态类型及饱和度的方法,包括:将待测岩心放进核磁相态测试装置,夹持器两端连接压力表、阀门和中间容器;岩心恢复至地层温度后,从夹持器两端同时注入重水溶液,至岩心达到地层压力停止;用核磁扫描岩心得到二维核磁图谱,判断岩心原始状态下是否含气相;对夹持器降温,在降压过程中收集岩心中排出的油相体积、气相体积、水相体积;将管线中液体用氮气吹出,收集氮气吹出的管线中的水相体积、油相体积;将岩心进行干馏,得到干馏出的油相体积、水相体积;根据地层条件下岩心中多相流体体积,分别得到原始条件下的各相饱和度。本发明过程可控,测试结果符合工程实际,具有广阔的市场应用前景。
Description
技术领域
本发明涉及油气藏开发领域,尤其涉及一种原始地层条件下致密页岩储层流体相态类型及饱和度的实验确定方法。
背景技术
油藏流体相态的实验研究,对油藏储量计算、油田开发设计、动态分析、油井管理、提高采收率和油藏的数值模拟都有非常重要的意义。
发明专利“原位煤岩保温保压取心装置及应用方法”(CN112031688A),实现了取出煤岩样品最大限度地保持原始地层温度和压力。实用新型专利“一种钻井保压密闭取心工具”(CN214886948U),在保证取心压力基础上,通过设置弹性隔膜,将储气腔内的原有空气和岩心释放的气体隔离开来,保证岩心中的气体成分不与外界接触。发明专利“基于T2-T1二维交会图的雷四气藏流体判别方法”(CN110163497A),依据天然气和可动水在核磁共振弛豫谱的差异,形成适合不同气藏的流体判别方法。
常规油气藏相态研究已趋于成熟,但由于致密和页岩油气由于产量低、生产压差大等原因,在井下和地面都难以取得有代表性的流体,在生产气油比变化波动大的情况下,油藏原始油气相态判断困难,依据现有技术手段无法实现致密页岩油藏原位相态的判别和确定。
发明内容
本发明的目的在于提供利用核磁技术确定致密储层流体相态类型及饱和度的方法,该方法原理可靠,操作简便,通过高压密闭取心,恢复岩心原始流体相态,再利用二维核磁和干馏手段,有效确定致密储层原始条件下的流体相态类型及饱和度,实验过程可控,测试结果符合工程实际,具有广阔的市场应用前景。
为达到以上技术目的,本发明采用以下技术方案。
利用核磁技术确定致密储层流体相态类型及饱和度的方法,依次包括以下步骤:
(1)在冷冻岩心的中心位置轴向钻取1英寸柱状的待测岩心,并向待测岩心持续浇注液氮,防止其中流体受热流失;
(2)制备与待测岩心尺寸相同的聚四氟乙烯管(尽量减小死体积),将待测岩心套上聚四氟乙烯管,管两端密封,置于液氮中冷冻;
(3)将套上聚四氟乙烯管的待测岩心放入夹持器,将夹持器放进核磁相态测试装置,该装置具有高温循环系统,夹持器两端分别通过管线连接压力表、阀门和重水溶液中间容器(管线尽量短,死体积尽可能小);该装置的管线总体积为Vt,管线和阀门死体积用配制好的重水溶液填充,参考岩心液氮挥发关系图,夹持器安装和管线连接刚好在氮气挥发完的时间点完成;
(4)打开高温循环系统加热夹持器,逐渐升高岩心温度;岩心恢复至地层温度后,若岩心未恢复至地层压力,从夹持器两端同时注入重水溶液,至岩心达到地层压力停止,记录进入夹持器的重水溶液体积ViD,若岩心已恢复至地层压力,直接进行下一步;
(5)用核磁扫描岩心得到T1-T2二维核磁图谱;
(6)对夹持器降温,恢复至室温后降压,降压过程中收集岩心中排出的油相体积Vdo、气相体积Vdg、水相体积VdD;
(7)将管线中液体用氮气吹出,收集氮气吹出的管线中的水相体积VtD、油相体积Vto,通过公式(1)计算得到管线中的气相体积Vtg:
Vt=VtD+Vto+Vtg (1)
(8)计算注入岩心中的重水溶液体积VCD(地面条件):
式中ViD为恢复地层压力过程注入夹持器的重水溶液体积(地层压力条件),BD为重水溶液体积系数;
(9)将岩心从夹持器中取出进行干馏,干馏温度设置为干酪根裂解温度以下,收集干馏产物,干馏出的油相体积Vro,干馏出的水相体积Vrw,分别计算地层条件下岩心中油相体积Vo、水相体积Vw:
Vo=(Vdo+Vto+Vro)*Bo (3)
Vw=(Vw-VCD)*Bw (4)
式中Vdo为降压过程中岩心排出的油相体积,Vto为氮气吹出的管线中的油相体积,Vro为干馏出的油相体积,Bo为原油体积系数;Vrw为干馏出的水相体积,VCD为注入岩心中的重水溶液体积,Bw为地层水体积系数;
(10)根据T1-T2二维核磁图谱,判断岩心原始状态下是否含气相(Romero Rojas,P.A.,et al.,Advanced Reservoir Characterization Using Novel NMR TechnologySecures Complex Carbonate Gas Condensate Pay,A Case Study Onshore Ukraine[A].Offshore Technology Conference[C],2022),如果不含气相,则岩心中为油水两相流体,如果含气相,则岩心中为油水气三相流体,根据下式计算地层条件下岩心中气相体积Vg:
Vg=(Vdg+Vtg)*Bg (5)
式中Bg为地层气体积系数;
(11)根据计算得到的地层条件下岩心中多相流体体积,分别得到原始条件下的各相饱和度。
进一步地,所述步骤(1)中,所述冷冻岩心是指在井场密闭取心后立即用液氮冷冻,将地层流体保存于岩心中,使其无逸散,同时在岩心外围包裹密闭液,防止岩心污染。
进一步地,所述步骤(3)中,所述岩心液氮挥发关系图,制作过程如下:选取与冷冻岩心的岩性、物性与尺寸完全相同的岩心,先饱和地层水,再进行液氮冷冻足够时间,在该岩心的中心位置轴向钻取取1英寸直径的岩心并持续浇注液氮,钻取、浇注时间和待测岩心完全一致,再将其置于室温常压条件,收集氮气,得到氮气挥发量和挥发时间的关系曲线。
进一步地,所述步骤(11)中,将多相流体体积加和并与岩心孔隙体积作比较,如果多相流体体积加和值小于或等于岩心孔隙体积,则分别计算原始条件下的各相饱和度。
进一步地,所述重水溶液,是指用重水和氯化钾配置后具有真实地层矿化度的溶液。配置的重水溶液没有核磁信号,可杜绝核磁扫描过程中引入新的氢原子信号。
与现有技术相比,本发明具有以下有益效果:
(1)本发明用氯化钾和重水配置具有真实矿化度的重水溶液,在恢复地层压力的同时,屏蔽外界氢原子对核磁测量的影响;
(2)根据测试的冷冻岩心氮气挥发量和挥发时间关系曲线,可有效减小液氮冷冻对测试结果的影响;
(3)通过在线测量目标岩心T1-T2二维核磁图谱,通过二维核磁图谱直观展示地层原始相态;
(4)将二维核磁与干馏结合,得到岩心原始流体饱和度,计算结果准确可靠。
附图说明
图1为核磁原始相态测试装置结构示意图。
图中:1—围压泵;2—驱替泵;3、4—重水溶液中间容器;5—在线核磁岩心夹持器;6—高温循环系统;7、8—阀门;9、10—压力表。
图2为冷冻岩心在室温常压条件下氮气挥发量和挥发时间的关系曲线图。
图3为实施例中页岩岩心T1-T2二维核磁图谱。
具体实施方式
下面根据附图和实例进一步说明本发明,以便于本技术领域的技术人员理解本发明。但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,均在保护之列。
实施例1
本实例中原始地层压力为30MPa,地层温度65℃。
核磁相态测试装置(见图1)主要由在线核磁夹持器5、重水溶液中间容器3和4、围压泵1、驱替泵2、高温循环系统6组成。所述核磁夹持器5连接高温循环系统6,循环系统6加热提升岩心温度,通过围压泵1提升岩心围压。核磁夹持器5两端有压力表9、10和阀门7、8,核磁岩心夹持器入口端、出口端分别连接重水溶液中间容器3、4。
利用核磁技术确定致密储层流体相态类型及饱和度的方法,依次包括以下步骤:
(1)用氯化钾和重水配制矿化度58000ppm的重水溶液,装入中间容器3、4;
(2)冷冻岩心中心位置轴向钻取1英寸直径长5cm标准岩心,钻取过程中持续浇注液氮,防止岩心流体受热流失;
(3)选取和取心直径相同的相近岩性与物性岩心,抽真空饱和水,其后进行液氮冷冻48小时,在岩心中间位置取1英寸直径长5cm岩心持续浇注液氮,浇注和钻取时间和钻取实验样品岩心一致,将其置于室温常压条件下进行排水采气,绘制液氮挥发量和挥发时间的关系图(见图2);
(4)特制直径1英寸长9.2cm聚四氟乙烯岩心管,可最大限度减小死体积,将实验用岩心快速装入特制聚四氟乙烯管中,管两端密封,置于液氮罐冷冻;
(5)所有管线连接到岩心夹持器,用石油醚驱替清洗并连接氮气瓶空吹一段时间,去除管线中杂质后,将管线和阀门均填充重水溶液,可知管线和阀门总体积为2.150ml(7、8号阀门至岩心两端的管线和阀门体积);
(6)将套上聚四氟乙烯管的岩心装进在线核磁岩心夹持器,参考测试岩心液氮挥发曲线,岩心加持器装入核磁设备在液氮挥发时间点完成;关闭阀门7、8,根据出入口压力表9、10同步升高围压压力;压力表稳定时读数为11MPa,围压始终保持高于出入口压力3MPa;
(7)打开高温循环系统,整套系统恢复至地层温度65℃,此时压力表读数为23MPa,同步升高围压至26Mpa;
(8)对岩心两端管线进行加热,让管线中流体始终保持65℃,打开阀门7、8,通过驱替泵2将中间容器3、4中的重水溶液注入岩心夹持器5中,恢复岩心压力至地层原始压力30MPa,压力恢复过程共注入重水溶液5.105ml;
(9)核磁设备仪选用型号为MESOMR12-060-I,针对目标油藏的岩性特征,采用SR-CPMG序列测量岩心二维图谱,测试数据为:等待时间调整5000ms,回波时间0.06ms,回波个数6000个,反转时间个数33个,反转开始时间0.200ms,反转结束时间5000ms,采样频率333kHz,累加次数8次,测试岩心T1-T2二维核磁图谱,从二维核磁图谱(图3)可观测到本次实验岩心在原始地层条件下不含气相;
(10)关闭阀门7和8,关闭高温循环系统,让岩心缓慢降至室温;
(11)从阀门7和8下端断开管线,缓慢打开阀门7和8,同步缓慢降低两端压力到大气压并收集流体;待压力均恢复大气压后,计量降压过程中排出的气体体积为7.50ml,由于采出气少且二维核磁图谱未观察到气体信号,认定在原始地层,气全部溶于油中,收集到水相流体体积为5.740ml,油相为0.095ml;
(12)将阀门7和8至岩心两端管线中液体用氮气吹出,收集到管线中水相体积1.220ml,油相体积0.030ml,总管线体积为2.150ml,根据公式(1)可计算管线中含气0.90ml;
(13)重水溶液体积系数为1.005,在室温常压条件下,共注入重水溶液5.080ml,根据公式(2)可计算进入岩心中的重水溶液体积VCD为0.26ml;
(14)将岩心取出并进行干馏,干馏温度设置为300℃(干酪根350℃开始大量裂解),收集到干馏出的油相体积为0.780ml,水相体积为0.815ml;
(15)原始地层水体积系数为1.01,原油体积系数为1.37,在地层条件下,根据公式(3)、(4)可计算岩心中油相体积V0为1.240ml,水相体积Vw为0.562ml;
(16)用Dean-Stark法对岩心进行深度清洗,用氦气测出岩心孔隙度为7.6%,孔隙体积为1.864ml;由于计量误差和管线死体积等因素影响,降压和干馏出的油相在地下体积为1.240ml,水相在地下体积为0.562ml,油水总体积为1.802ml,小于岩心孔隙体积,计算岩心含油饱和度为68.8%,含水饱和度为31.2%。
Claims (4)
1.利用核磁技术确定致密储层流体相态类型及饱和度的方法,依次包括以下步骤:
(1)在冷冻岩心的中心位置轴向钻取1英寸柱状的待测岩心,并向待测岩心持续浇注液氮,防止其中流体受热流失;
(2)制备与待测岩心尺寸相同的聚四氟乙烯管,将待测岩心套上聚四氟乙烯管,管两端密封,置于液氮中冷冻;
(3)将套上聚四氟乙烯管的待测岩心放入夹持器,将夹持器放进核磁相态测试装置,该装置具有高温循环系统,夹持器两端分别通过管线连接压力表、阀门和重水溶液中间容器;该装置的管线总体积为Vt,管线和阀门死体积用配制好的重水溶液填充,参考岩心液氮挥发关系图,夹持器安装和管线连接刚好在氮气挥发完的时间点完成;所述岩心液氮挥发关系图,制作过程如下:选取与冷冻岩心的岩性、物性与尺寸完全相同的岩心,先饱和地层水,再进行液氮冷冻足够时间,在该岩心的中心位置轴向钻取取1英寸直径的岩心并持续浇注液氮,钻取、浇注时间和待测岩心完全一致,再将其置于室温常压条件,收集氮气,得到氮气挥发量和挥发时间的关系曲线;
(4)打开高温循环系统加热夹持器,逐渐升高岩心温度;岩心恢复至地层温度后,若岩心未恢复至地层压力,从夹持器两端同时注入重水溶液,至岩心达到地层压力停止,记录进入夹持器的重水溶液体积ViD,若岩心已恢复至地层压力,直接进行下一步;
(5)用核磁扫描岩心得到T1-T2二维核磁图谱;
(6)对夹持器降温,恢复至室温后降压,降压过程中收集岩心中排出的油相体积Vdo、气相体积Vdg、水相体积VdD;
(7)将管线中液体用氮气吹出,收集氮气吹出的管线中的水相体积VtD、油相体积Vto,通过公式(1)计算得到管线中的气相体积Vtg:
Vt=VtD+Vto+Vtg (1)
(8)计算注入岩心中的重水溶液体积VCD:
式中ViD为恢复地层压力过程注入夹持器的重水溶液体积,BD为重水溶液体积系数;
(9)将岩心从夹持器中取出进行干馏,干馏出的油相体积Vro,干馏出的水相体积Vrw,分别计算地层条件下岩心中油相体积Vo、水相体积Vw:
Vo=(Vdo+Vto+Vro)*Bo (3)
Vw=(Vrw-VCD)*Bw (4)
式中Vdo为降压过程中岩心排出的油相体积,Vto为氮气吹出的管线中的油相体积,Vro为干馏出的油相体积,Bo为原油体积系数;Vrw为干馏出的水相体积,VCD为注入岩心中的重水溶液体积,Bw为地层水体积系数;
(10)根据T1-T2二维核磁图谱,判断岩心原始状态下是否含气相,如果不含气相,则岩心中为油水两相流体,如果含气相,则岩心中为油水气三相流体,根据下式计算地层条件下岩心中气相体积Vg:
Vg=(Vdg+Vtg)*Bg (5)
式中Bg为地层气体积系数;
(11)根据计算得到的地层条件下岩心中多相流体体积,分别得到原始条件下的各相饱和度。
2.如权利要求1所述的利用核磁技术确定致密储层流体相态类型及饱和度的方法,其特征在于,所述步骤(1)中,所述冷冻岩心是指在井场密闭取心后立即用液氮冷冻,将地层流体保存于岩心中,使其无逸散,同时在岩心外围包裹密闭液,防止岩心污染。
3.如权利要求1所述的利用核磁技术确定致密储层流体相态类型及饱和度的方法,其特征在于,所述步骤(11)中,将多相流体体积加和并与岩心孔隙体积作比较,如果多相流体体积加和值小于或等于岩心孔隙体积,则分别计算原始条件下的各相饱和度。
4.如权利要求1所述的利用核磁技术确定致密储层流体相态类型及饱和度的方法,其特征在于,所述重水溶液,是指用重水和氯化钾配置后具有真实地层矿化度的溶液。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211700246.0A CN115808436B (zh) | 2022-12-28 | 2022-12-28 | 利用核磁技术确定致密储层流体相态类型及饱和度的方法 |
US18/167,712 US20240219329A1 (en) | 2022-12-28 | 2023-02-10 | Method for determining phase-state type and saturation of fluid in tight reservoirs by nmr technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211700246.0A CN115808436B (zh) | 2022-12-28 | 2022-12-28 | 利用核磁技术确定致密储层流体相态类型及饱和度的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115808436A CN115808436A (zh) | 2023-03-17 |
CN115808436B true CN115808436B (zh) | 2023-08-22 |
Family
ID=85486935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211700246.0A Active CN115808436B (zh) | 2022-12-28 | 2022-12-28 | 利用核磁技术确定致密储层流体相态类型及饱和度的方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240219329A1 (zh) |
CN (1) | CN115808436B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108049866A (zh) * | 2017-12-11 | 2018-05-18 | 中石化石油工程技术服务有限公司 | 二维核磁共振测井致密气藏定量评价方法 |
CN110163497A (zh) * | 2019-05-15 | 2019-08-23 | 中石化石油工程技术服务有限公司 | 基于t2-t1二维交会图的雷四气藏流体判别方法 |
CN110398510A (zh) * | 2019-05-15 | 2019-11-01 | 上海大学 | 一种基于核磁共振横向弛豫谱线的岩心油/水标定方法 |
CN111721684A (zh) * | 2019-03-22 | 2020-09-29 | 中国石油天然气股份有限公司 | 一种砾岩含油饱和度测定装置与方法 |
US11099292B1 (en) * | 2019-04-10 | 2021-08-24 | Vinegar Technologies LLC | Method for determining the composition of natural gas liquids, mean pore-size and tortuosity in a subsurface formation using NMR |
CN115266800A (zh) * | 2022-08-10 | 2022-11-01 | 西南石油大学 | 一种基于二维核磁共振的凝析油饱和度测试方法 |
-
2022
- 2022-12-28 CN CN202211700246.0A patent/CN115808436B/zh active Active
-
2023
- 2023-02-10 US US18/167,712 patent/US20240219329A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108049866A (zh) * | 2017-12-11 | 2018-05-18 | 中石化石油工程技术服务有限公司 | 二维核磁共振测井致密气藏定量评价方法 |
CN111721684A (zh) * | 2019-03-22 | 2020-09-29 | 中国石油天然气股份有限公司 | 一种砾岩含油饱和度测定装置与方法 |
US11099292B1 (en) * | 2019-04-10 | 2021-08-24 | Vinegar Technologies LLC | Method for determining the composition of natural gas liquids, mean pore-size and tortuosity in a subsurface formation using NMR |
CN110163497A (zh) * | 2019-05-15 | 2019-08-23 | 中石化石油工程技术服务有限公司 | 基于t2-t1二维交会图的雷四气藏流体判别方法 |
CN110398510A (zh) * | 2019-05-15 | 2019-11-01 | 上海大学 | 一种基于核磁共振横向弛豫谱线的岩心油/水标定方法 |
CN115266800A (zh) * | 2022-08-10 | 2022-11-01 | 西南石油大学 | 一种基于二维核磁共振的凝析油饱和度测试方法 |
Non-Patent Citations (1)
Title |
---|
The Application of Nuclear Magnetic Resonance 1D T2 and 2D T1−T2 Maps in the Research of Condensate Oil Saturation in Condensate Gas Reservoirs;Bowen Sun and Ping Guo;《Energy Fuels》;第36卷;7581−7591 * |
Also Published As
Publication number | Publication date |
---|---|
CN115808436A (zh) | 2023-03-17 |
US20240219329A1 (en) | 2024-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107894386B (zh) | 超临界二氧化碳注入对低渗透砂岩油藏孔喉结构影响的定量评价方法 | |
Gao et al. | Quantitative study on the stress sensitivity of pores in tight sandstone reservoirs of Ordos basin using NMR technique | |
Song et al. | The status of natural gas hydrate research in China: A review | |
Huang et al. | Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff | |
Shen et al. | Experimental investigation into the relative permeability of gas and water in low-rank coal | |
Hou et al. | Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs | |
CN106153662A (zh) | 岩心应力敏感性的测量方法 | |
CN106896212B (zh) | 监测深水钻井液侵入过程水合物储层物性变化的装置 | |
Wu et al. | Effects of geological pressure and temperature on permeability behaviors of middle-low volatile bituminous coals in eastern Ordos Basin, China | |
Le et al. | Kinetics of methane hydrate formation and dissociation in sand sediment | |
CN112459760A (zh) | 一种二氧化碳蓄能复合压裂实验装置 | |
CN112285201B (zh) | 一种低渗凝析气储层注气反蒸发凝析油饱和度测试方法 | |
CN109959672A (zh) | 一种二氧化碳置换页岩甲烷的定量评价方法及其应用 | |
Cui et al. | Experimental investigation on the spatial differences of hydrate dissociation by depressurization in water-saturated methane hydrate reservoirs | |
CN104389592B (zh) | 底水带油环凝析气藏水淹层油损失评价实验测试方法 | |
Zhou et al. | NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach | |
CN110320228B (zh) | 页岩油储层注co2渗吸驱油效率的测试分析方法及装置 | |
CN115266800A (zh) | 一种基于二维核磁共振的凝析油饱和度测试方法 | |
CN111238988A (zh) | 一种测量致密油岩心中超临界二氧化碳置换原油效率的实验装置及方法 | |
Zhao et al. | Visualisation of water flooding and subsequent supercritical CO2 flooding in fractured porous media with permeability heterogeneity using MRI | |
Zeng et al. | Experimental study on the influence of brine concentration on the dissociation characteristics of methane hydrate | |
CN115808436B (zh) | 利用核磁技术确定致密储层流体相态类型及饱和度的方法 | |
Li et al. | Pore size distribution of a tight sandstone reservoir and its effect on micro pore‐throat structure: a case study of the Chang 7 member of the Xin'anbian Block, Ordos Basin, China | |
Xiao et al. | Evaluation method of the micro-occurrence and utilization patterns of gas via a novel method based on nuclear magnetic resonance | |
CN109915121A (zh) | 一种确定致密砂岩气藏天然气充注临界条件的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |