CN115807080A - Thyroid cancer diagnostic method - Google Patents

Thyroid cancer diagnostic method Download PDF

Info

Publication number
CN115807080A
CN115807080A CN202111078925.4A CN202111078925A CN115807080A CN 115807080 A CN115807080 A CN 115807080A CN 202111078925 A CN202111078925 A CN 202111078925A CN 115807080 A CN115807080 A CN 115807080A
Authority
CN
China
Prior art keywords
seq
variant
complement
sequence
methylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111078925.4A
Other languages
Chinese (zh)
Inventor
苏志熙
刘轶颖
徐敏杰
刘琪
刘蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Fuyuan Biotechnology Co ltd
Jiangsu Fuyuan Biotechnology Co ltd
Original Assignee
Shanghai Fuyuan Biotechnology Co ltd
Jiangsu Fuyuan Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Fuyuan Biotechnology Co ltd, Jiangsu Fuyuan Biotechnology Co ltd filed Critical Shanghai Fuyuan Biotechnology Co ltd
Priority to CN202111078925.4A priority Critical patent/CN115807080A/en
Publication of CN115807080A publication Critical patent/CN115807080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for diagnosing thyroid cancer. Specifically, the present invention provides the use of (a) an agent or device for determining the methylation level of a DNA sequence or fragment thereof or one or more CpG dinucleotides therein in a sample from a subject, (b) a treated nucleic acid molecule of said DNA sequence or fragment thereof, said treatment converting unmethylated cytosine to a base having a lower binding capacity for guanine than cytosine, in the manufacture of a kit for diagnosing thyroid cancer in a subject or identifying benign or malignant thyroid nodules in a subject. The method and the application have high specificity and sensitivity, and obviously reduce the target detection area for diagnosing the thyroid cancer.

Description

Thyroid cancer diagnostic method
Technical Field
The invention relates to the field of cancer diagnosis, in particular to a thyroid cancer diagnosis method.
Background
Thyroid cancer is the most common type of endocrine tumor, accounting for 90% of endocrine malignancies. In recent years, the incidence of thyroid cancer has been on the rise due to the widespread use of ultrasound and cytopathology screening techniques.
Ultrasound examination is highly suspected of malignant thyroid nodules and requires further fine needle aspiration cytology (FNA) examination for a definitive diagnosis. Unlike other cancers, malignant and benign nodules are difficult to diagnose in some differentiated thyroid cancers due to their approximate cytological characteristics, and up to 40% of thyroid nodules are difficult to diagnose accurately by cytological characteristics. This can lead to over-diagnosis of over-treatment, which can result in unnecessary thyroidectomy in some patients, be costly, and can present serious post-operative complications; patients who receive the total thyroidectomy must take levothyroxine tablets for a long time after the operation, so that the problems of cardiovascular diseases (atrial fibrillation and arrhythmia), osteoporosis and the like can be caused, and the health is seriously influenced.
Although current molecular diagnostic methods improve the accuracy of identification, the efficacy of these methods remains to be improved. The most widely used thyroid nodule molecular diagnostic technique is
Figure BDA0003263152350000011
Gene Expression Classifier, however, has a Positive Predictive Value (PPV) of only 47%, and only fresh, punctured tissue can be detected due to RNA degradation. Furthermore, SEQv2 in thyo is a gene mutation-based method for diagnosing thyroid cancer, which detects H/K/NRAS gene mutations and RET/PTC gene rearrangements that are frequently carried by benign nodules, but whose PPV is only 42% to 77%. Hair in 2019A paper on Clinical Cancer Research developed a Diagnostic method called DNA Methylation Signature approach (DDMS) for the identification of benign and malignant tissues of thyroid Cancer. Although the method is high in accuracy, the article mentions that some samples are not suitable for detection by the method for technical reasons.
Disclosure of Invention
<xnotran> , , (1) SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , </xnotran> SEQ ID NO:29 or a complement or variant thereof, SEQ ID NO:30 or a complement or variant thereof, SEQ ID NO 32 or a complement or variant thereof, SEQ ID NO 33 or a complement or variant thereof, SEQ ID NO 34 or a complement or variant thereof, SEQ ID NO 35 or a complement or variant thereof, SEQ ID NO 36 or a complement or variant thereof, SEQ ID NO 37 or a complement or variant thereof, SEQ ID NO 39 or a complement or variant thereof, SEQ ID NO 40 or a complement or variant thereof, SEQ ID NO 41 or a complement or variant thereof, SEQ ID NO 42 or a complement or variant thereof, SEQ ID NO 43 or a complement or variant thereof, SEQ ID NO 44 or a complement or variant thereof, SEQ ID NO 45 or a complement or variant thereof, SEQ ID NO 46 or a complement or variant thereof, SEQ ID NO 47 or a complement or variant thereof, SEQ ID NO 48 or a complement or variant thereof, SEQ ID NO 49 or a complement or a variant thereof, SEQ ID NO 50 or a complement or variant thereof, SEQ ID NO 52 or a complement or variant thereof, SEQ ID NO 53 or a variant thereof, SEQ ID NO 52 or a complement or a variant thereof, SEQ ID NO 52 or a variant thereof, SEQ ID NO 54 or a variant thereof, SEQ ID NO 52 or a variant thereof, SEQ ID NO 55 or a variant thereof, SEQ ID NO: 5or a complementary sequence or variant thereof, 31 or a complementary sequence or variant thereof, 38 or a complementary sequence or variant thereof, said variant being a variant having at least 70% identity to the corresponding sequence and in which the methylation site is not mutated, and (2) a treated sequence of (1) which converts unmethylated cytosine to a base which has less ability to bind guanine than cytosine.
In one or more embodiments, the methylation sites are consecutive cpgs.
In one or more embodiments, the methylation marker can be any one or more CpG sites in the sequence region.
In one or more embodiments, the nucleic acid molecule is used as an internal standard or control for detecting the level of DNA methylation of the corresponding sequence in a sample.
In a second aspect, the present invention provides a reagent for detecting DNA methylation, the reagent comprising a reagent for detecting the methylation level of a DNA sequence or a fragment thereof or one or more CpG dinucleotides in a sample from a subject, the DNA sequence comprising the following gene sequences: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC65, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, KR 3, and so forth PCYT1B, PITX, PTAFR, PTPN7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, SNURF, STAT6, STEAP4, SUMF1, TBC1D10C, TEK, THEMIS2, TIMP1, TMEM119, TNFRSF6B, TUBB, VAMP5, VAV1, 3534 zxft 3511B, optionally further comprises one or more of ATF7IP2, PLVAP, SIRPB2.
In one or more embodiments, the reagents are used to detect benign or malignant thyroid cancer.
In one or more embodiments, the DNA sequence further comprises the following gene sequences: (1) ATF7IP2, PLVAP, or (2) SIRPB2, or (3) ATF7IP2, PLVAP, and SIRPB2.
In one or more embodiments, the DNA sequence comprises at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises a sense strand or an antisense strand of DNA.
In one or more embodiments, the fragment is 1-1000bp in length, preferably 1-700bp in length.
In one or more embodiments, the fragment is a promoter region of a gene sequence.
In one or more embodiments, the fragment comprises at least 1, preferably at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or a complement or variant thereof, 31 or a complement or variant thereof, 38 or a complement or variant thereof, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
In one or more embodiments, the DNA sequence further comprises the following sequence:
(1) 5or a complementary sequence or variant thereof, and 31 or a complementary sequence or variant thereof,
(2) 38 or its complement or variant, or
(3) SEQ ID NO. 5or a complement or variant thereof, SEQ ID NO. 31 or a complement or variant thereof, and SEQ ID NO. 38 or a complement or variant thereof.
In one or more embodiments, the agent is a primer molecule that hybridizes to the DNA sequence or fragment thereof or their transformed sequences. Said primer molecules being capable of amplifying said DNA sequences or fragments thereof or transformed variants thereof. In one or more embodiments, the primer sequence is methylation specific or non-specific. The primer molecule is at least 9bp.
In one or more embodiments, the agent is a probe molecule that hybridizes to the DNA sequence or fragment thereof or their transformed sequences. In one or more embodiments, the probe further comprises a detectable substance. In one or more embodiments, the detectable species is a5 'fluorescent reporter and a 3' labeled quencher. In one or more embodiments, the fluorescent reporter gene is selected from Cy5, FAM, and VIC. The probe molecule is at least 12bp.
In one or more embodiments, the agent comprises a nucleic acid molecule as described herein in the first aspect.
In one or more embodiments, the sample is from a mammal, preferably a human.
In a third aspect the invention provides a medium bearing a DNA sequence, or fragment thereof, and/or methylation information thereof, said DNA sequence comprising (i) the following gene sequence: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, FN13, AFURF, STAT6, STEAP4, SUMF1, PB 1D10C, TEK, THIS 2, THIS 1, SLC 24, VAMP 6, TMFRSF 24, VAMP 34, or a sequence that is less capable of converting to a cytosine 34 when treated with one or more than one of said MTBF 24, VA8, or more bases (or more) that is capable of converting to cytosine 34, optionally treated with a cytosine.
In one or more embodiments, the medium is used to align with gene methylation sequencing data to determine the presence, amount, and/or level of methylation of a nucleic acid molecule comprising the sequence or fragment.
In one or more embodiments, the DNA sequence comprises at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises a sense strand or an antisense strand of DNA.
In one or more embodiments, the fragment is 1-1000bp in length, preferably 1-700bp in length.
In one or more embodiments, the fragment is a promoter region of a gene sequence.
In one or more embodiments, the fragment comprises at least 1, preferably at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or a complement or variant thereof, 31 or a complement or variant thereof, 38 or a complement or variant thereof, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
In one or more embodiments, the DNA sequence further comprises the following sequence:
(1) SEQ ID NO. 5or its complement or variant, and SEQ ID NO. 31 or its complement or variant, or
(2) 38 or its complement or variant, or
(3) 5or a complement or variant thereof, 31 or a complement or variant thereof, and 38 or a complement or variant thereof.
In one or more embodiments, the medium is a support, including cards, such as paper, plastic, metal, glass cards, printed with the DNA sequence or fragment thereof and/or methylation information thereof.
In one or more embodiments, the medium is a computer readable medium having stored thereon the sequence and/or methylation information thereof and a computer program which, when executed by a processor, performs the steps of: comparing the methylation sequencing data of the sample to the sequence or information, thereby obtaining the presence, amount and/or level of methylation of nucleic acid molecules comprising the sequence in the sample. The presence, amount and/or methylation level of nucleic acid molecules comprising said sequences are useful for diagnosing thyroid cancer or identifying thyroid nodule benign or malignant.
The invention also provides the use of (a) and/or (b) in the preparation of a kit for diagnosing thyroid cancer or identifying benign and malignant thyroid nodules in a subject,
(a) Reagents or means for determining the methylation level of a DNA sequence or a fragment thereof or one or more CpG dinucleotides therein in a sample of a subject,
(b) A treated nucleic acid molecule of said DNA sequence or fragment thereof, said treatment converting unmethylated cytosine to a base having a lower binding capacity for guanine than cytosine,
wherein the DNA sequence comprises the following gene sequences: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC65, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, KR 3, and so forth PCYT1B, PITX, PTAFR, PTPN7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, SNURF, STAT6, STEAP4, SUMF1, TBC1D10C, TEK, THEMIS2, TIMP1, TMEM119, TNFRSF6B, TUBB, VAMP5, VAV1, 3534 zxft 3511B, optionally further comprises one or more of ATF7IP2, PLVAP, SIRPB2.
In one or more embodiments, the DNA sequence further comprises the following gene sequences: (1) ATF7IP2, PLVAP, or (2) SIRPB2, or (3) ATF7IP2, PLVAP, and SIRPB2.
In one or more embodiments, the DNA sequence comprises at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises a sense strand or an antisense strand of DNA.
In one or more embodiments, the fragment is 1-1000bp, preferably 1-700bp in length.
In one or more embodiments, the fragment is a promoter region of a gene sequence.
In one or more embodiments, the fragment comprises at least 1, preferably at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or a complement or variant thereof, 31 or a complement or variant thereof, 38 or a complement or variant thereof, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
In one or more embodiments, the DNA sequence further comprises the following sequence:
(1) SEQ ID NO. 5or its complement or variant, and SEQ ID NO. 31 or its complement or variant, or
(2) 38 or its complement or variant, or
(3) SEQ ID NO. 5or a complement or variant thereof, SEQ ID NO. 31 or a complement or variant thereof, and SEQ ID NO. 38 or a complement or variant thereof.
In one or more embodiments, the nucleic acid molecule is a nucleic acid molecule as described in the first aspect herein.
In one or more embodiments, the reagent comprises a primer molecule and/or a probe molecule.
In one or more embodiments, the agent comprises a primer molecule that hybridizes to the DNA sequence or fragment thereof or their transformed sequences. Said primer molecules being capable of amplifying said DNA sequences or fragments thereof or transformed variants thereof. In one or more embodiments, the primer sequence is methylation specific or non-specific. The primer molecule is at least 9bp.
In one or more embodiments, the agent is a probe molecule that hybridizes to the DNA sequence or fragment thereof or their transformed sequences. In one or more embodiments, the probe further comprises a detectable substance. In one or more embodiments, the detectable species is a5 'fluorescent reporter and a 3' labeled quencher. In one or more embodiments, the fluorescent reporter gene is selected from Cy5, FAM, and VIC. The probe molecule is at least 12bp.
In one or more embodiments, the reagent comprises a medium as described in any embodiment herein.
In one or more embodiments, the kit is a minimally invasive diagnostic kit.
In one or more embodiments, the subject is a mammal, preferably a human.
In one or more embodiments, the sample is from a tissue, cell, e.g., thyroid tissue, of a mammal. In one or more embodiments, the sample is a thyroid nodule fine needle biopsy.
In one or more embodiments, the sample comprises genomic DNA.
In one or more embodiments, the DNA sequence is transformed, wherein unmethylated cytosines are converted to bases that have less ability to bind guanine than cytosines. The conversion is carried out using an enzymatic method, preferably a deaminase treatment, or the conversion is carried out using a non-enzymatic method, preferably a treatment with bisulfite, bisulfite or metabisulfite or a combination thereof.
In one or more embodiments, the DNA sequence is treated with a methylation sensitive restriction endonuclease.
In one or more embodiments, the kit further comprises PCR reaction reagents. Preferably, the PCR reaction reagents include DNA polymerase, PCR buffer, dNTP, mg2+.
In one or more embodiments, the kit further comprises additional reagents for detecting DNA methylation, the additional reagents being reagents used in one or more methods selected from the group consisting of: bisulfite conversion based PCR (e.g., methylation specific PCR), DNA sequencing (e.g., bisulfite sequencing, whole genome methylation sequencing, simplified methylation sequencing), methylation sensitive restriction enzyme analysis, fluorometry, methylation sensitive high resolution melting curve, chip-based methylation profile analysis, mass spectrometry (e.g., flight mass spectrometry). Preferably, the additional agent is selected from one or more of: bisulfite, bisulfite or pyrosulfite or their derivatives, restriction endonucleases sensitive or insensitive to methylation, enzyme digestion buffer, fluorescent dyes, fluorescence quenchers, fluorescence reporters, exonucleases, alkaline phosphatase, internal standards, and controls.
In one or more embodiments, the reaction solution for PCR comprises Taq DNA polymerase, PCR buffer, dNTPs, KCl, mgCl 2 And (NH) 4 ) 2 SO 4 . Preferably, the Taq DNA polymerase is a hot start Taq DNA polymerase. Preferably, mg 2+ The final concentration is 1.0-10.0mM.
In one or more embodiments, the diagnosing comprises: and calculating to obtain a score, and diagnosing the thyroid cancer according to the score. In one or more embodiments, the calculation is calculated by constructing a logistic regression model.
In still another aspect, the present invention provides a method for diagnosing thyroid cancer or thyroid nodules benign and malignant, comprising:
(1) Detecting the methylation level of a DNA sequence or a fragment thereof or one or more CpG dinucleotides therein in a sample of a subject, said DNA sequence comprising the following gene sequence: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, PB 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 24, VAxft 3934, and optionally one or more of TBCF 3, TFL 24, TMOFFT 3934, TMOFFSP 34, TMOFFT 3, and TMPLS 3.
(2) Comparing with a reference, or calculating a score,
(3) And diagnosing thyroid cancer or identifying thyroid nodule benign and malignant according to the score.
In one or more embodiments, the DNA sequence further comprises the following gene sequences: (1) ATF7IP2, PLVAP, or (2) SIRPB2, or (3) ATF7IP2, PLVAP, and SIRPB2.
In one or more embodiments, the DNA sequence comprises at least 3 CpG dinucleotides.
In one or more embodiments, the DNA sequence comprises a sense strand or an antisense strand of DNA.
In one or more embodiments, the fragment is 1-1000bp, preferably 1-700bp in length.
In one or more embodiments, the fragment is a promoter region of a gene.
In one or more embodiments, the fragment comprises at least 1, preferably at least 3 CpG dinucleotides.
In one or more embodiments, the method further comprises DNA extraction and/or quality control prior to step (1).
In one or more embodiments, the DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, 56 or a variant thereof, and optionally one or more of the following, 54 or a variant thereof, 56 or a variant thereof, or a complement or variant thereof, or a variant thereof, 52 or a complement or variant thereof, 53 or a complement or a variant thereof, and optionally: 5or its complement or variant, 31 or its complement or variant, 38 or its complement or variant, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
In one or more embodiments, the DNA sequence further comprises the following sequence:
(1) SEQ ID NO 5or its complementary sequence or variant, and SEQ ID NO 31 or its complementary sequence or variant, or
(2) 38 or its complement or variant, or
(3) SEQ ID NO. 5or a complement or variant thereof, SEQ ID NO. 31 or a complement or variant thereof, and SEQ ID NO. 38 or a complement or variant thereof.
In one or more embodiments, step (1) comprises performing the detecting using a nucleic acid molecule, primer molecule, probe molecule and/or medium as described herein.
In one or more embodiments, the detection includes, but is not limited to: PCR based on bisulfite conversion, DNA sequencing, methylation sensitive restriction enzyme analysis, fluorescence quantification, methylation sensitive high resolution melting curve method, chip-based methylation map analysis, and mass spectrum.
In one or more embodiments, the detecting is DNA sequencing. In one or more embodiments, the DNA sequencing is at least 10X, preferably 20X, more preferably 30X deep.
In one or more embodiments, the sample is from a tissue, cell, e.g., thyroid tissue, of a mammal. The mammal is preferably a human. In one or more embodiments, the sample is a thyroid nodule fine needle biopsy.
In one or more embodiments, the sample comprises genomic DNA.
In one or more embodiments, the DNA sequence is transformed in which unmethylated cytosines are converted to bases that do not bind guanine. The conversion is carried out using an enzymatic method, preferably a deaminase treatment, or the conversion is carried out using a non-enzymatic method, preferably a treatment with bisulfite, bisulfite or metabisulfite or a combination thereof.
In one or more embodiments, the DNA sequence is treated with a methylation sensitive restriction endonuclease.
In one or more embodiments, the score in step (2) is calculated by a logistic regression model.
In one or more embodiments, step (3) comprises: when the score meets a threshold, the subject is identified as having thyroid cancer or a nodule thereof as malignant.
In another aspect of the present invention, there is provided a kit for identifying thyroid cancer or thyroid nodule benign or malignant, comprising:
(a) An agent or device for determining the methylation level of a DNA sequence or a fragment thereof or one or more CpG dinucleotides therein in a sample from a subject, and
optionally (b) a treated nucleic acid molecule of said DNA sequence or fragment thereof, said treatment converting unmethylated cytosine to a base having less ability to bind guanine than cytosine,
wherein the DNA sequence comprises the following gene sequences: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, PB 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 24, VAxft 3934, and optionally one or more of TBCF 3, TFL 24, TMOFFT 3934, TMOFFSP 34, TMOFFT 3, and TMPLS 3.
In one or more embodiments, the DNA sequence further comprises the following gene sequences: (1) ATF7IP2, PLVAP, or (2) SIRPB2, or (3) ATF7IP2, PLVAP, and SIRPB2.
In one or more embodiments, the fragment is a promoter region of a gene.
In one or more embodiments, the DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or its complement or variant, 31 or its complement or variant, 38 or its complement or variant, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
In one or more embodiments, the DNA sequence further comprises the following sequence:
(1) SEQ ID NO. 5or its complement or variant, and SEQ ID NO. 31 or its complement or variant, or
(2) 38 or a complementary sequence or variant thereof, or
(3) SEQ ID NO. 5or a complement or variant thereof, SEQ ID NO. 31 or a complement or variant thereof, and SEQ ID NO. 38 or a complement or variant thereof.
In one or more embodiments, the kit is suitable for use as described in any of the embodiments herein.
In one or more embodiments, the nucleic acid molecule is a nucleic acid molecule as described in the first aspect herein.
In one or more embodiments, the reagents comprise primer molecules and/or probe molecules.
In one or more embodiments, the agent comprises a primer molecule that hybridizes to the DNA sequence or fragment thereof or their transformed sequences. Said primer molecules are capable of amplifying said DNA sequences or fragments thereof or transformed variants thereof. In one or more embodiments, the primer sequence is methylation specific or non-specific. The primer molecule is at least 9bp.
In one or more embodiments, the agent is a probe molecule that hybridizes to the DNA sequence or fragment thereof or their transformed sequences. In one or more embodiments, the probe further comprises a detectable substance. In one or more embodiments, the detectable species is a5 'fluorescent reporter and a 3' labeled quencher. In one or more embodiments, the fluorescent reporter gene is selected from Cy5, FAM, and VIC. The probe molecule is at least 12bp.
In one or more embodiments, the reagent comprises a medium as described in any embodiment herein.
In one or more embodiments, the kit is a minimally invasive diagnostic kit.
In one or more embodiments, the subject is a mammal, preferably a human.
In one or more embodiments, the sample is from a tissue, cell, e.g., thyroid tissue, of a mammal. In one or more embodiments, the sample is a thyroid nodule fine needle biopsy.
In one or more embodiments, the sample comprises genomic DNA.
In one or more embodiments, the DNA sequence is transformed, wherein unmethylated cytosines are converted to bases that have less ability to bind guanine than cytosines. The conversion is carried out using an enzymatic method, preferably a deaminase treatment, or the conversion is carried out using a non-enzymatic method, preferably a treatment with bisulfite, bisulfite or metabisulfite or a combination thereof.
In one or more embodiments, the DNA sequence is treated with a methylation sensitive restriction endonuclease.
In one or more embodiments, the kit further comprises PCR reaction reagents. Preferably, the PCR reaction reagents include DNA polymerase, PCR buffer, dNTP, mg2+.
In one or more embodiments, the kit further comprises reagents for detecting DNA methylation, the reagents being reagents used in one or more of the following methods selected from: bisulfite conversion based PCR (e.g., methylation specific PCR), DNA sequencing (e.g., bisulfite sequencing, whole genome methylation sequencing, simplified methylation sequencing), methylation sensitive restriction enzyme analysis, fluorometry, methylation sensitive high resolution melting curve, chip-based methylation profile analysis, mass spectrometry (e.g., flight mass spectrometry). Preferably, the agent is selected from one or more of: bisulfite and its derivatives, restriction enzyme sensitive or insensitive to methylation, enzyme digestion buffer, fluorescent dye, fluorescence quencher, fluorescence reporter, exonuclease, alkaline phosphatase, internal standard, and reference substance.
In another aspect, the present invention provides an apparatus for diagnosing thyroid cancer or identifying benign or malignant thyroid nodules, the apparatus comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor when executing the program implements the steps of:
(1) Obtaining the methylation level of a DNA sequence or fragment thereof or the methylation level of one or more cpgs in said DNA sequence or fragment in a sample of a subject, said DNA sequence comprising the following gene sequence: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, PB 3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, SLF 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 3934, SIR 24, VAxft 3934, and optionally one or more of TBCP 3,
(2) Calculating a score, and
(3) And identifying the benign and malignant thyroid nodules according to the scores.
In one or more embodiments, step (1) is preceded by a step of obtaining DNA, such as DNA extraction and/or quality control.
In one or more embodiments, the DNA sequence further comprises the following gene sequences: (1) ATF7IP2, PLVAP, or (2) SIRPB2, or (3) ATF7IP2, PLVAP, and SIRPB2.
In one or more embodiments, the fragment is a promoter region of a gene.
In one or more embodiments, the DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or its complement or variant, 31 or its complement or variant, 38 or its complement or variant, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
In one or more embodiments, the DNA sequence further comprises the following sequence:
(1) SEQ ID NO. 5or its complement or variant, and SEQ ID NO. 31 or its complement or variant, or
(2) 38 or a complementary sequence or variant thereof, or
(3) SEQ ID NO. 5or a complement or variant thereof, SEQ ID NO. 31 or a complement or variant thereof, and SEQ ID NO. 38 or a complement or variant thereof.
In one or more embodiments, step (1) comprises detecting the level of methylation of the sequence in the sample using a nucleic acid molecule, primer molecule, probe molecule and/or medium described herein. In one or more embodiments, the detection includes, but is not limited to: bisulfite conversion based PCR, DNA sequencing (e.g., bisulfite sequencing, whole genome methylation sequencing, simplified methylation sequencing), methylation sensitive restriction enzyme analysis, fluorometry, methylation sensitive high resolution melting curve, chip-based methylation profile analysis, mass spectrometry (e.g., flight mass spectrometry). In one or more embodiments, the detecting is DNA sequencing. Preferably, the sequencing depth of the DNA sequencing is at least 10X, preferably 20X, more preferably 30X.
In one or more embodiments, the sample is from a tissue, cell, e.g., thyroid tissue, of a mammal. The mammal is preferably a human. In one or more embodiments, the sample is a thyroid nodule fine needle biopsy.
In one or more embodiments, the sample comprises genomic DNA.
In one or more embodiments, the sequence is transformed, wherein unmethylated cytosines are converted to bases that do not bind guanine. The conversion is carried out using an enzymatic method, preferably a deaminase treatment, or the conversion is carried out using a non-enzymatic method, preferably a treatment with bisulfite, bisulfite or metabisulfite or a combination thereof.
In one or more embodiments, the DNA sequence is treated with a methylation sensitive restriction endonuclease.
In one or more embodiments, the score in step (2) is calculated by constructing a logistic regression model.
In one or more embodiments, step (3) comprises: when the score meets a threshold, then the subject is identified as having or not having thyroid cancer or its thyroid nodule as benign or malignant.
The invention has the advantages that:
the sensitivity of the gene combination for identifying benign and malignant thyroid gland can reach 80% when the specificity is 100%. Compared with the existing molecular diagnosis thyroid benign and malignant technology, the gene combination marker provided by the invention has the highest Positive Predictive Value (PPV) of malignant thyroid nodules, and the Positive Predictive Value (PPV) reaches 100%. Effectively solves the problem of over-diagnosis and over-treatment of the existing thyroid cancer.
The invention can detect benign and malignant genes only by detecting the methylation levels of more than fifty genes, obviously reduces target detection areas, improves the application range of the technology and can contain more samples.
Drawings
FIG. 1 ROC curves for diagnosing benign and malignant thyroid nodules in training and test set samples using a predictive model of the group 1 gene combinations.
FIG. 2 ROC curves for diagnosing benign and malignant thyroid nodules in training and test set samples using a predictive model of the group 2 gene combinations.
FIG. 3 ROC curves for diagnosing benign and malignant thyroid nodules in training and test set samples using a predictive model of the group 3 gene combinations.
Detailed Description
The invention aims to provide a molecular detection method for diagnosing benign and malignant nodules by using gene combination, aiming at the problems that the existing thyroid benign and malignant nodule molecular diagnosis has low accuracy or can not cover all samples due to technical reasons and the like.
As used herein, the term "methylation marker" refers to a nucleic acid or gene region of interest, a methylation site: the methylation level or score of a computational model based on the methylation level is indicative of benign or malignant thyroid nodules. The term "methylation marker" shall be taken to include all transcriptional variants thereof and all promoter and regulatory elements thereof. As understood by those skilled in the art, certain genes are known to exhibit allelic variation or single nucleotide polymorphisms ("SNPs") between individuals. SNPs include insertions and deletions of simple repetitive sequences of different lengths (e.g., di-and trinucleotide repeats). Thus, the present application should be understood to extend to all forms of markers/genes resulting from any other mutation, polymorphism or allelic variation. In addition, it is to be understood that the term "methylation marker" shall include both the sense strand sequence of a marker or gene and the antisense strand sequence of a marker or gene.
The term "methylation marker" as used herein is to be broadly interpreted to include both 1) the original marker (at a specific methylation) found in a biological sample or genomic DNA, and 2) its processed sequence (e.g., the corresponding region after bisulfite conversion or the corresponding region after treatment with the methylation-sensitive restriction enzyme MSRE). The corresponding region after bisulfite conversion differs from the target marker in the genomic sequence in that one or more unmethylated cytosine residues are converted to uracil bases, thymine bases or other bases that differ in hybridization behavior from cytosine. The corresponding region treated with MSRE differs from the target marker in the genomic sequence in that the sequence is cleaved at one or more MSRE cleavage sites.
The inventors found that the nature of thyroid nodules is related to methylation of the following genes (e.g., promoter regions): ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, TBPTPN 7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STSTEAP 4, SUMF1, STF 1D10C, TEK, THIS 2, THIS 1, VAzmP 3934, SIR 24, ATxPLF 24, ATxP 3934, and optionally further comprising TMxPF 3911. The invention provides methylation detection of the genes of a sample, and a mathematical model is used for distinguishing benign nodules and malignant nodules of thyroid gland based on the methylation level of the genes, so that the aim of accurately diagnosing the thyroid cancer nodules is fulfilled.
Herein, the term "gene" includes both coding and non-coding sequences on the genome of the gene in question. Wherein the non-coding sequence includes introns, promoters and regulatory elements or sequences and the like.
In one or more embodiments, the nature of the thyroid nodule is related to methylation of a fragment of the above-described gene. The length of the fragment is 1bp-1kb, preferably 1bp-700bp; the fragments comprise one or more methylation sites in the chromosomal region of the corresponding gene. Such fragments are, for example, the promoter regions of the above-mentioned genes. Generally, a DNA sequence 1kb upstream and 200bp downstream of a Transcription Start Site (TSS) is defined as a promoter region. If a gene has multiple transcripts (i.e., multiple promoter regions), any of the promoter regions may be selected. In some embodiments, the detected fragment contains at least 3 CpG dinucleotides.
Thus, further, the nature of thyroid nodules correlates with the methylation level of the following sequences: <xnotran> ACSL5 SEQ ID NO:1, ACTR3B SEQ ID NO:2, AIM2 SEQ ID NO:3, ASB2 SEQ ID NO:4, C15orf62 SEQ ID NO:6, C2CD4B SEQ ID NO:7, CCDC65 SEQ ID NO:8, CCNB2 SEQ ID NO:9, CD200 SEQ ID NO:10, CD3G SEQ ID NO:11, CEBPD SEQ ID NO:12, CIITA SEQ ID NO:13, CSK SEQ ID NO:14, DLEU7 SEQ ID NO:15, DYNLT3 SEQ ID NO:16, ELF4 SEQ ID NO:17, FABP3 SEQ ID NO:18, HLA-E SEQ ID NO:19, HRH1 SEQ ID NO:20, IL12RB1 SEQ ID NO:21, IL17C SEQ ID NO:22, ITGB2 SEQ ID NO:23, KRTAP5-9 SEQ ID NO:24, LAT2 SEQ ID NO:25, LGALS1 SEQ ID NO:26, LPIN1 SEQ ID NO:27, OAS3 SEQ ID NO:28, PCYT1B SEQ ID NO:29, PITX1 SEQ ID NO:30, PTAFR SEQ ID NO:32, PTPN7 SEQ ID NO:33, S100A10 SEQ ID NO:34, SH3BP4 SEQ ID NO:35, SIGLEC14 SEQ ID NO:36, SIGLEC7 SEQ ID NO:37, SLC29A3 SEQ ID NO:39, SLC2A10 SEQ ID NO:40, SLC5A5 SEQ ID NO:41, SLFN13 SEQ ID NO:42, SNURF SEQ ID NO:43, STAT6 SEQ ID NO:44, STEAP4 SEQ ID NO:45, SUMF1 SEQ ID NO:46, TBC1D10C SEQ ID NO:47, TEK SEQ ID NO:48, THEMIS2 SEQ ID NO:49, </xnotran> 50 in TIMP1, 51 in TMEM119, 52 in TNFRSF6B, 53 in TUBB6, 54 in VAMP5, 55 in VAV1, 56 in ZYG B, optionally further comprising one or more selected from: 5 in ATF7IP2, 31 in PLVAP, 38 in SIRPB2.
The "thyroid cancer-associated sequence" as used herein includes any of the above 53 genes and optionally 3 genes, a sequence within 20kb upstream or downstream thereof, any combination of the above 56 sequences (SEQ ID NOS: 1-56), or their complements.
The positions of the above sequences in the human chromosome are shown in the following table, in which the base numbers correspond to the reference genome HG19:
TABLE 1
Sequence numbering Chromosome Starting position End position Sequence numbering Chromosome Starting position End position
SEQ ID NO:1 chr10 114134957 114136157 SEQ ID NO:29 chrX 24665153 24666353
SEQ ID NO:2 chr7 152455834 152457034 SEQ ID NO:30 chr5 134370124 134371324
SEQ ID NO:3 chr1 159046491 159047691 SEQ ID NO:31 chr19 17487959 17489159
SEQ ID NO:4 chr14 94442937 94444137 SEQ ID NO:32 chr1 28520247 28521447
SEQ ID NO:5 chr16 10478912 10480112 SEQ ID NO:33 chr1 202129551 202130751
SEQ ID NO:6 chr15 41061159 41062359 SEQ ID NO:34 chr1 151964854 151966054
SEQ ID NO:7 chr15 62457282 62458482 SEQ ID NO:35 chr2 235886347 235887547
SEQ ID NO:8 chr12 49296932 49298132 SEQ ID NO:36 chr19 52149854 52151054
SEQ ID NO:9 chr15 59396277 59397477 SEQ ID NO:37 chr19 51644558 51645758
SEQ ID NO:10 chr3 112051003 112052203 SEQ ID NO:38 chr20 1471842 1473042
SEQ ID NO:11 chr11 118214071 118215271 SEQ ID NO:39 chr10 73078015 73079215
SEQ ID NO:12 chr8 48651448 48652648 SEQ ID NO:40 chr20 45337126 45338326
SEQ ID NO:13 chr16 10970055 10971255 SEQ ID NO:41 chr19 17981782 17982982
SEQ ID NO:14 chr15 75084385 75085585 SEQ ID NO:42 chr17 33775656 33776856
SEQ ID NO:15 chr13 51417632 51418832 SEQ ID NO:43 chr15 25199135 25200335
SEQ ID NO:16 chrX 37706690 37707890 SEQ ID NO:44 chr12 57522683 57523883
SEQ ID NO:17 chrX 129244491 129245691 SEQ ID NO:45 chr7 87936006 87937206
SEQ ID NO:18 chr1 31845723 31846923 SEQ ID NO:46 chr3 4508765 4509965
SEQ ID NO:19 chr6 30456244 30457444 SEQ ID NO:47 chr11 67170660 67171860
SEQ ID NO:20 chr3 11177779 11178979 SEQ ID NO:48 chr9 27108147 27109347
SEQ ID NO:21 chr19 18209554 18210754 SEQ ID NO:49 chr1 28198079 28199279
SEQ ID NO:22 chr16 88704001 88705201 SEQ ID NO:50 chrX 47440712 47441912
SEQ ID NO:23 chr21 46340765 46341965 SEQ ID NO:51 chr12 108991700 108992900
SEQ ID NO:24 chr11 71258466 71259666 SEQ ID NO:52 chr20 62327021 62328221
SEQ ID NO:25 chr7 73623336 73624536 SEQ ID NO:53 chr18 12307058 12308258
SEQ ID NO:26 chr22 38070615 38071815 SEQ ID NO:54 chr2 85810531 85811731
SEQ ID NO:27 chr2 11885714 11886914 SEQ ID NO:55 chr19 6771737 6772937
SEQ ID NO:28 chr12 113375157 113376357 SEQ ID NO:56 chr1 53191181 53192381
Herein, methods of detecting DNA Methylation are well known in the art, such as bisulfite conversion-based PCR (e.g., methylation-specific PCR (MSP), DNA sequencing (e.g., bisulfite sequencing, whole genome Methylation sequencing, simplified Methylation sequencing), whole genome Methylation sequencing, simplified Methylation sequencing, methylation-sensitive restriction endonuclease analysis, fluorometry, methylation-sensitive high resolution melting curve, chip-based Methylation profiling, mass spectrometry (e.g., flight mass spectrometry), in one or more embodiments, detecting comprises detecting any strand at a gene or locus.
Thus, the present invention relates to a reagent for detecting DNA methylation. Reagents used in the above-described methods for detecting DNA methylation are well known in the art. In detection methods involving DNA amplification, the reagents for detecting DNA methylation include primers. As used herein, a "primer" refers to a nucleic acid molecule having a specific nucleotide sequence that directs the synthesis of a nucleic acid molecule at the initiation of nucleotide polymerization. The primers are usually at least 9bp. The primer sequence may be methylation specific or non-specific. The sequence of the primer may include a non-methylation specific blocking sequence (Blocker). Blocking sequences may enhance the specificity of methylation detection. Typically, primers are designed to amplify a product of 1-2000bp, 10-1000bp, 30-900bp, 40-800bp, 50-700bp, or at least 150bp, at least 140bp, at least 130bp, at least 120bp in length.
The reagent for detecting DNA methylation may further comprise a probe that hybridizes to a sequence to be detected. Typically, the sequence of the probe is labeled at the 5 'end with a fluorescent reporter group and at the 3' end with a quencher group. Illustratively, the sequence of the probe comprises MGB (Minor groove binder) or LNA (Locked nucleic acid). MGB and LNA are used to increase Tm, increase specificity of analysis and increase flexibility of probe design. As used herein, "hybridization" refers primarily to the pairing of nucleic acid sequences under stringent conditions. Exemplary stringent conditions are hybridization and washing of the membrane at 65 ℃ in a solution of 0.1 XSSPE (or 0.1 XSSC), 0.1% SDS.
The term "variant" or "mutant" as used herein refers to a polynucleotide that has a nucleic acid sequence altered by insertion, deletion or substitution of one or more nucleotides compared to a reference sequence, while retaining its ability to hybridize to other nucleic acids. A mutant according to any of the embodiments herein comprises a nucleotide sequence that has at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 97% sequence identity to a reference sequence and retains the biological activity of the reference sequence. Sequence identity between two aligned sequences can be calculated using, for example, BLASTn from NCBI. Mutants also include nucleotide sequences that have one or more mutations (insertions, deletions, or substitutions) in the reference sequence and in the nucleotide sequence, while still retaining the biological activity of the reference sequence. The plurality of mutations typically refers to within 1-10, such as 1-8, 1-5, or 1-3. The substitution may be a substitution between purine nucleotides and pyrimidine nucleotides, or a substitution between purine nucleotides or between pyrimidine nucleotides. The substitution is preferably a conservative substitution. For example, conservative substitutions with nucleotides of similar or analogous properties are not typically made in the art to alter the stability and function of the polynucleotide. Conservative substitutions are, for example, exchanges between purine nucleotides (A and G), exchanges between pyrimidine nucleotides (T or U and C). Thus, substitution of one or more sites with residues from the same in the polynucleotides of the invention will not substantially affect their activity. Furthermore, the methylation sites (e.g., contiguous CGs) in the variants of the invention are not mutated. That is, the method of the present invention detects methylation of a methylatable site in the corresponding sequence, and a mutation may occur in the base of a non-methylatable site. Typically, the methylation sites are consecutive CpG dinucleotides.
As described herein, transformation can occur between bases of DNA or RNA. "transformation", "cytosine transformation" or "CT transformation" as used herein is a process of converting an unmodified cytosine base (C) to a base having a lower binding ability to guanine than cytosine, for example, an uracil base (U), by treating DNA using a non-enzymatic or enzymatic method. Non-enzymatic or enzymatic methods of performing cytosine conversion are well known in the art. Exemplary non-enzymatic methods include treatment with a conversion reagent such as bisulfite, or metabisulfite, for example, calcium bisulfite, sodium bisulfite, potassium bisulfite, ammonium bisulfite, and the like. Illustratively, the enzymatic method includes a deaminase treatment. The transformed DNA is optionally purified. DNA purification methods suitable for use herein are well known in the art.
The invention also provides a methylation detection kit for diagnosing thyroid cancer, which comprises the primer and/or the probe, and is used for detecting the methylation level of the thyroid cancer related sequence discovered by the inventor. The kit may further comprise a nucleic acid molecule as described herein, in particular according to the first aspect, as an internal standard or positive control.
In addition to the primers, probes, nucleic acid molecules, the kit contains other reagents required for detecting DNA methylation. Illustratively, other reagents for detecting DNA methylation may comprise one or more of: bisulfite and its derivative, PCR buffer solution, polymerasedNTP, primer, probe, mg 2+ Restriction enzymes sensitive or insensitive to methylation, digestion buffer, fluorescent dye, fluorescence quencher, fluorescence reporter, exonuclease, alkaline phosphatase, internal standard and reference substance. The kit can also include a transformed positive standard in which unmethylated cytosines are converted to bases that do not bind guanine. The positive standard may be fully methylated.
Based on the inventors' findings, the present invention provides a method for thyroid cancer screening, comprising: (1) Detecting the methylation level of a thyroid cancer associated sequence described herein in a sample from a subject; (2) calculating to obtain a score; (3) Diagnosing thyroid cancer or identifying benign or malignant thyroid nodules according to the score. Typically, the method further comprises, prior to step (1): extraction of sample DNA, quality inspection, and/or conversion of unmethylated cytosines on DNA to bases that do not bind guanine.
The terms "benign" and "malignant" as used herein refer to the nature of thyroid nodules. Generally, benign is manifested by slow growth of nodules, uniform texture, good mobility, smooth surface, cystic changes, no enlargement of lymph nodes, no calcification, etc. Malignancy is characterized by uncontrolled malignant cell growth, spread and tissue infiltration. Ultrasound signs that suggest that thyroid nodules are malignant include: the height of the nodule is greater than the width, lack of vocal cord, micro-calcification, irregular boundaries, reduced echo, solid nodules, abundant blood flow inside the nodule, etc. In an embodiment of the invention, the malignant thyroid nodule is Papillary Thyroid Carcinoma (PTC).
The "diagnosis" in the present invention includes not only early diagnosis of thyroid malignant tumor but also late diagnosis of thyroid malignant tumor, and also includes screening, risk assessment, prognosis, and disease identification of thyroid malignant tumor. Early diagnosis refers to the possibility of finding cancer before metastasis, preferably before morphological changes in tissues or cells can be observed.
In a specific embodiment, step (1) comprises: treating the genomic DNA with a converting reagent to convert unmethylated cytosine to a base that has less binding capacity to guanine (e.g., uracil); performing PCR amplification using primers suitable for amplifying transformed sequences of thyroid cancer associated sequences as described herein; the methylation level of at least one CpG is determined by the presence or absence of an amplification product, or by sequence identification (e.g., probe-based PCR detection identification or DNA sequencing identification).
Or the step (1) may further include: treating genomic DNA with a methylation sensitive restriction enzyme; performing PCR amplification using primers suitable for amplifying sequences having at least one CpG dinucleotide in the thyroid cancer associated sequences as described herein; the methylation level of at least one CpG is determined by the content of the amplification product.
As used herein, "methylation level" refers to the level of methylation at a CpG site of interest or the average level of methylation at a plurality or all of the CpG sites in a sequence of interest. In an exemplary embodiment of the invention, the methylation level of a site is generally the percentage of methylated C's at that site, and if all C's at that CpG site are unmethylated, the methylation level is zero. The methylation level can also be other types of calculations, which are within the knowledge of a person skilled in the art. Furthermore, an increase or decrease in the methylation level of a sequence does not indicate an increase or decrease in the methylation level of all CpG sites in the region. Procedures are known in the art for converting results from methods for detecting DNA methylation (e.g., simplified methylation sequencing) to methylation levels. For example, the average methylation is calculated based on the detected methylation level of CpG sites in the promoter region of each gene, and is used as the DNA methylation level in the promoter region of the gene.
An exemplary calculation formula is as follows:
Figure BDA0003263152350000241
wherein y is the DNA methylation level of the promoter region of the gene, x is the methylation level of CpG sites, and n is the number of CpG sites in the promoter region.
As used herein, "methylation information" includes characteristic information associated with cytosines in a sequence that are likely to be methylated. The cytosine that is likely to be methylated is typically a C in CpG. Such features include, but are not limited to: whether any cytosine (C) residue within a sequence is methylated, the position of one or more methylation sites (e.g., cpG dinucleotides) and/or the methylation level thereof, the methylation level of any particular region of a nucleic acid, the frequency or percentage of methylated C, the relative concentration, absolute concentration or pattern of methylated C or unmethylated C, and methylated allelic differences due to, for example, differences in allelic origins. For example, if one or more cytosine (C) residues within a nucleic acid sequence are methylated, it may be referred to as "hypermethylated" or have "increased methylation", while if one or more cytosine (C) residues within a DNA sequence are unmethylated, it may be referred to as "demethylated" or have "reduced methylation".
The methylation level of the gene being tested can be mathematically analyzed to obtain a score. And for the detected sample, when the score is greater than the threshold value, judging that the result is positive, namely the thyroid cancer or the malignant nodule, otherwise, judging that the result is negative. Methods of conventional mathematical analysis and processes of determining thresholds are known in the art, and exemplary methods are mathematical models, including but not limited to regression models, support vector machines, random forests, and the like. For example, logistic Regression (Logistic Regression) is constructed for the methylation level of differential methylation markers, and the accuracy, sensitivity and specificity of the detection results and the area under the predictive value characteristic curve (ROC) (AUC) are used by the model to count the sample prediction scores in the test set.
In an exemplary embodiment, a logistic regression model is constructed for a training set by the following process. First, the input z of the Sigmoid function is calculated as follows:
z=Σw*y+w 0
then, σ (z) of the Sigmoid function (i.e., the malignancy prediction probability) is calculated as follows:
σ(z)=1/(1+e -z )
where w is the regression model coefficient for each gene, w 0 Is the intercept and y is the DNA methylation level of the promoter region of the gene in the sample. At the position ofIn an exemplary embodiment, the logistic regression model coefficients (w) for each gene in the respective mathematical models for the three sets of genes are shown in tables 2-4. Intercept of three mathematical models (w) 0 ) 1.786,1.770 and 1.742, respectively. The threshold value of the malignancy prediction probability obtained based on the group 1 gene combination model is 0.503, the sample malignancy prediction probability is greater than the threshold value, and the sample is judged to be malignant, otherwise, the sample is judged to be benign; the threshold value of the malignancy prediction probability obtained based on the group 2 gene combination model is 0.508, the sample malignancy prediction probability is greater than the threshold value, and the sample is judged to be malignant, otherwise, the sample is judged to be benign; the threshold value of the malignancy prediction probability obtained based on the group 3 gene combination model is 0.511, and the sample malignancy prediction probability is greater than the threshold value, so that the sample is judged to be malignant, otherwise, the sample is judged to be benign.
Examples
Example 1, procedure of experiment
Analysis was performed on all samples of benign and malignant thyroid nodules, namely 145 samples of fine needle biopsy samples (65 benign nodules and 80 malignant nodules) in the paper (John H Yi, clin Cancer Res.,2019, https:// pubmed. Ncbi. Nlm. Nih. Gov/30093451 /), published data, namely genome simplified methylation sequencing (RRBS) raw sequencing data (stored in GSE107738, see https:// www.ncbi.nlm.nih.gov/geo/query/acc. Cgiac = GSE 107738), to obtain the methylation level of each CpG site; then, based on the CpG sites detected in the promoter region of each gene, the average methylation is calculated and used as the DNA methylation level of the promoter region of the gene. For comparison with John H Yim, the present invention groups the article samples in accordance with the present invention, wherein Developing cost is used as the training set (28 benign nodules and 39 malignant nodules) and Testing cost is used as the Testing set (37 benign nodules and 41 malignant nodules). In the following examples, three sets of mathematical models constructed from training set samples were used, and the AUC (Area Under Curve) Under the receiver operating characteristic Curve (ROC) was predicted using the corresponding models in the test set samples.
1. Level of methylation
And (3) respectively detecting the DNA methylation levels of the three groups of gene promoter regions in the sample by using a genome simplified methylation sequencing (RRBS) technology. The DNA sequence 1kb upstream and 200bp downstream of the Transcription Start Sites (TSS) is defined as a promoter region. If a gene has multiple transcripts (Ensembl 74 is selected as the transcript version), i.e., multiple promoter regions, the longest transcript is selected as the promoter region of the gene. The genome coordinates of the promoter regions of the 3 groups of genes are shown in Table 1. At least 3 CpG sites are located in each gene promoter region, and the average sequencing depth of all CpG sites in the region is not less than 30x. Then, calculating the average methylation according to the methylation level of the CpG sites detected in each gene promoter region, and taking the average methylation as the DNA methylation level of the gene promoter region, wherein the calculation formula is as follows:
Figure BDA0003263152350000261
y is the DNA methylation level of the promoter region of the gene, and x is the CpG site methylation level n is the number of CpG sites in the promoter region.
2. Model construction
First, a Logistic Regression (Logistic Regression) model is constructed for a training set. Then, the input z of the Sigmoid function is calculated, which is given by the following formula:
z=Σw*y+w 0
y is the DNA methylation level of the promoter region of the gene in the sample, w is the regression model coefficient for each gene, w is the ratio of the methylation level of the promoter region of the gene in the sample 0 Is the intercept, and w0 are calculated by logistic regression models.
Then, σ (z) of the Sigmoid function (i.e., the malignancy prediction probability) is calculated as follows:
σ(z)=1/(1+e -z )
the logistic regression model coefficients (w) for each gene in the respective mathematical models for the three sets of genes are shown in tables 2-4. The intercepts (w 0) of the three mathematical models are 1.786 (set 1), 1.770 (set 2) and 1.742 (set 3), respectively.
TABLE 2 coefficients of the mathematical model of group 1
Gene Coefficient of logistic regression model Gene Coefficient of logistic regression model
ACSL5 1.364 PCYT1B -0.855
ACTR3B 1.317 PITX1 -1.58
AIM2 -0.335 PTAFR -1.982
ASB2 1.685 PTPN7 -1.244
C15orf62 -2.332 S100A10 -0.523
C2CD4B -0.462 SH3BP4 -1.956
CCDC65 2.32 SIGLEC14 0.613
CCNB2 -1.118 SIGLEC7 1.953
CD200 1.553 SLC29A3 1.399
CD3G -0.127 SLC2A10 -1.537
CEBPD 1.804 SLC5A5 -0.533
CIITA -0.449 SLFN13 1.263
CSK -0.53 SNURF 1.949
DLEU7 -0.842 STAT6 -1.854
DYNLT3 -0.657 STEAP4 -0.665
ELF4 -1.507 SUMF1 1.36
FABP3 -0.302 TBC1D10C 1.941
HLA-E -0.694 TEK -0.835
HRH1 -1.654 THEMIS2 1.029
IL12RB1 -0.665 TIMP1 -0.608
IL17C -1.418 TMEM119 -0.361
ITGB2 1.43 TNFRSF6B 0.089
KRTAP5-9 2.28 TUBB6 -1.009
LAT2 -2.332 VAMP5 -0.862
LGALS1 -1.198 VAV1 -0.413
LPIN1 1.42 ZYG11B 1.033
OAS3 -1.354
TABLE 3 coefficients of the mathematical model of group 2
Figure BDA0003263152350000271
Figure BDA0003263152350000281
TABLE 4 coefficients of the mathematical model of group 3
Figure BDA0003263152350000282
Figure BDA0003263152350000291
Example 2 combination of group 1 genes for prediction
The AUC was tested in the test set samples using the model constructed from the group 1 gene combinations. The results showed that the gene combination had an area under the ROC curve of 0.95% and 95% CI of 0.93 to 0.98 (FIG. 1). In the training set, when the specificity is 100% and the sensitivity is 97%, the malignancy prediction threshold is 0.503, that is, the malignancy prediction probability (malignancy probability for short) is greater than 0.503, and it is judged to be malignant, otherwise, it is judged to be benign. The sensitivity of the threshold value to the diagnosis of thyroid malignant nodules in a test set reaches 80%, the specificity reaches 100%, the PPV reaches 100%, and the NPV (negative predictive value) reaches 82%. The test set samples were used to predict the results using the group 1 gene combinations shown in table 5.
TABLE 5 test set samples prediction results with group 1 Gene combinations
Figure BDA0003263152350000292
Figure BDA0003263152350000301
Example 3 combination of group 2 genes for prediction
The AUC was tested in the test set samples using the model constructed from the group 2 gene combinations. The results showed that the gene combination had an area under the ROC curve of 0.95% and 95% CI of 0.93 to 0.98 (FIG. 2). When the specificity in the training set is 100% and the sensitivity is 97%, the malignancy prediction threshold is 0.508, that is, the malignancy prediction probability is greater than 0.508, and the result is judged to be malignant, otherwise, the result is judged to be benign. The sensitivity of the threshold value to the diagnosis of thyroid malignant nodules of the test set reaches 80%, the specificity reaches 100%, the PPV reaches 100%, and the NPV reaches 82%. The test set samples were used to predict the results using the group 2 gene combinations as shown in table 6.
TABLE 6 prediction of group 2 gene combinations for test set samples
Figure BDA0003263152350000302
Figure BDA0003263152350000311
Example 4 combination of group 3 genes for prediction
The model constructed with the group 3 gene combinations tested AUC in the test set samples. The results showed that the gene combination had an area under the ROC curve of 0.95% and 95% CI of 0.93 to 0.98 (FIG. 3). When the specificity of the training set is 100% and the sensitivity is 97%, the malignancy prediction threshold is 0.511, that is, the malignancy prediction probability is greater than 0.511, and the result is judged to be malignant, otherwise, the result is judged to be benign. The sensitivity of the threshold value to the diagnosis of thyroid malignant nodules of the test set reaches 80%, the specificity reaches 100%, the PPV reaches 100%, and the NPV reaches 82%. The test set samples were predicted using the group 3 gene combinations and the results are shown in table 7.
TABLE 7 prediction of group 3 Gene combinations for test set samples
Figure BDA0003263152350000312
Figure BDA0003263152350000321
Comparative example
John (John H Yim, clin Cancer Res.,2019, https:// pubmed. Ncbi. Nlm. Nih. Gov/30093451/, raw data stored in GSE107738, see https:// www.ncbi.nlm.nih.gov/geo/query/acc. Cgiac = GSE 107738) developed a method for diagnosing benign and malignant tissue of thyroid Cancer, known as a Diagnostic method based on DNA Methylation Signature (DDMS). It is mentioned that 24 samples (11 training sets, 13 test sets, all samples from example 1) are not suitable for detection by this method due to the lack of apparent changes in the target area.
These 24 samples (data from GSE 107738) were selected as comparative examples and the results showed that the predicted accuracy for all 24 samples was 100% (24/24) for all three combinations. The results are shown in tables 8 to 10.
TABLE 8, prediction results of group 1 Gene combinations for 24 samples
Sample ID Group of samples Type of sample Probability of malignancy prediction Predicted results
117T Training set Malignancy 0.646 Malignant disease
134T Training set Malignancy 0.836 Malignancy
109T Training set Malignancy 0.930 Malignancy
102T Training set Malignancy 0.838 Malignant disease
125T Training set Malignancy 0.694 Malignancy
11T Training set Malignancy 0.759 Malignancy
122T Training set Malignancy 0.835 Malignancy
506B Training set Benign 0.442 Benign
502B Training set Benign 0.273 Benign
17B Training set Benign 0.197 Benign
7B Training set Benign 0.036 Benign
610T Sequencing set Malignancy 0.582 Malignancy
158T Sequencing set Malignancy 0.875 Malignancy
154T Sequencing set Malignant disease 0.811 Malignant disease
150T Sequencing set Malignancy 0.623 Malignancy
162T Sequencing set Malignancy 0.622 Malignant disease
613T Sequencing set Malignancy 0.546 Malignancy
169T Sequencing set Malignancy 0.869 Malignancy
565B Sequencing set Benign 0.163 Benign
579B Sequencing set Benign 0.122 Benign
531B Sequencing set Benign 0.043 Benign
572B Sequencing set Benign of the body 0.270 Benign
534B Sequencing set Benign 0.136 Benign
564B Sequencing set Benign 0.268 Benign
TABLE 9 prediction of group 2 Gene combinations for 24 samples
Figure BDA0003263152350000331
Figure BDA0003263152350000341
Table 10, prediction results of group 3 Gene combinations of 24 samples
Figure BDA0003263152350000342
Figure BDA0003263152350000351
Sequence listing
<110> Jiangsu Kun Yuanzhi Co., ltd
SINGLERA GENOMICS Inc.
<120> method for diagnosing thyroid cancer
<130> 214176 1CNCN
<160> 56
<170> PatentIn version 3.5
<210> 1
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 1
tgcctcttgg ggagctgagt tcctgaaact aagcaaatga caagtgctcc tccagccgtg 60
agatgagcca gaggatggaa tgccacaggc cccacttcgt ctcccagccc ttcatctttc 120
ttccatgtcc aaaggcggct ccccagaggc caagggctca gctcttgtgt tctctgagac 180
tgtggcacag ctcaccctgg cttccttagt aggaagcttt taagaactgc tctgtagaaa 240
gaacaaaccc taatctagct ccagcaaaga gccaggatca tgctgaactt cctgtgagcc 300
ttcgtggggg atcgaggctg gagaaagtgc tgcttcattc tgaggtatct gtgaggtggg 360
gaaggggcag gaaaatttgt catttcggct tcctaatctg agaatggtag ctccagggcc 420
cccctgtagc cacagcctta ggcggatcaa aaatgagact aatacaggtc ctggtaatac 480
tgggggtgac caaggcgaaa gaatcgattt ttaagttaag ttttgaggtg tgactgtatc 540
agagggaaag aaaccatgcc aattgaacga ctcacagccc tgtcgttcct gacttgctta 600
ttttcttggc tttgccagaa cttcttcaga gaccaaggca ggcagctctg gcgactggag 660
agaggcgggg tagaaggtgt ttgtgtgggt ctgagggctg aggtaccctc tagccagact 720
ttcctgtcct ccgaatccag cagggaacag cgtcacctct gcctctgtga ggcttctgat 780
ctgagggggc acctcaagtc attttagttt gtttgttttc atcttagttg aaagatgata 840
ggccacagga gggcagggtc aactgtgttg aggcaagctg gcttttgtgt cggcccttag 900
gggctgaggt gaaaggcttt gacacggagc cagggtagct ttggcagctt ctcccctcct 960
ggtcagaaca cttccacttt cagttgtgaa aaaaaaaatt aaaaccagga agtgaagtcc 1020
ccgagcacgt tagaaagcct gacatggcct gactcgggac agctcagagc agggcagaac 1080
tggggacact ctgggccggc cttctgcctg catggacgct ctgaagccac cctgtctctg 1140
gaggaaccac gagcgaggga agaaggacag ggactcgtgt ggcaggaaga actcagagcc 1200
g 1201
<210> 2
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 2
ttttccagga gtgatcttgg tgtggtttac tcagtctaag gccattcatt ccttaaggct 60
ggccaagcat ttgttttgca gatttttctt cttagaaaaa tttaggccgt gttaggtata 120
ataattccaa ctaatttttt ttgttgtttt tttgagacag actctcgccc tgttgtccag 180
gctggagtgc aatggcgcga tcttggctca ctgcaacctc cgcctcccag gttcaagcga 240
ttctcctgcc tcagcctccg gagcagctgg gattacaggc acccgccacc acgcccggct 300
aatttttgta ttttcagtag agaaggggtt tcaccatgtt ggccaggctg gtctggaact 360
cctgaccttg tgatccaccc tcagcctccc aaagtgctgg gattacaggc gtgagccacc 420
gcgcccggcc aattccaact aatttttttt ttttttttta ttatatgggg aaggttactc 480
agtcattcaa caaacatttg ggcacttcca caggtacacc aaatactgtg ctaagcacct 540
gctgctcatc aatagtgatt aagacagact caagccctat cctagaagat ttgatagtcc 600
agtaggggag gcagacaaca aatacataaa tataaaaata taaacacttt gctttaaggg 660
ttaggaatga aaccaacaga ttgttgagac agaggataca gtaccggtag gggacatagt 720
cagggtgatc aggaacaact tccctcgcaa ggtgacattc gagcgaagac ttacaggagg 780
agaaaggcgc caggcctcgg aaatggggtc acgttcatgt aagtcagtta aaaataaacc 840
ccaatctctc cagcagcaag gttggacgta tggggccaag aagcctcgct gccagcacta 900
aagatggcgc gccggagtgg gggtgggggt gttgggggag gcggggcgtg cgcgcgttct 960
gattggccga ccggggagtg acgtcacgtg tcggccgccg agcatccggg ctcccggcag 1020
cggcgctgcg gcggctcgcg ggagacgctg cgcgcggggc tagcgggcgg cggagcggac 1080
ggcgacgggg cgctctcggg ctgccggcgg ggccgagcgc cgcgcgtccc gagcatggca 1140
ggctccctgc ctccctgcgt ggtggactgt ggcaccgggt aagagcagct cggcgcccac 1200
c 1201
<210> 3
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 3
ggactcagga gagcatgccc aaataaccta ggtgactttc aaagctacaa agactctgac 60
acttctggac ggcttcacat gtacccctaa taaacacttc ccttcacccc caggcccagt 120
gtgggtagga gtgacaactg gagctctaat tggctgagct ggtttgggtt ctcactagca 180
gccacagaag aaaatgtcta tagaaacttg tatctgagtc atgccacata ggaactacac 240
tgattggaaa cagaaagtgg cctagaaact gtaaaaaatg accgcagatg acttcttgat 300
acactttgtg actaaggggc ctggtgatga catttttctg gtataaacaa gcacactgat 360
ctcagagggt atctaaaagt gttgccagta gggcagtgca ggttcttgtc ttcaaagcat 420
aagagaatct gaaaatgaga cccaagcgaa agtatagaca ttttattgtg gagcaaaacc 480
aacgacaccc tcaagggagg agtgcaggca ctcaaagatt tgagtcacag gcaatgtggt 540
tcacgtacta tatgaataag cacaatgaag gtatggagta ctctgtaatc aaggggaggg 600
gttttctggg aaatgggcgg gcaattcccg gaatcggggt gccacccttt tcttgactaa 660
agatggttaa tccggaactg tcatggcgtc aggtgcatga tgggagtggg aatttcccca 720
tggaagtttt atgatattaa gggcataatg aagctaaggg tcagcagtca gccaagtttt 780
cgaccatctt ggctttaacc agttgcggcc agtttcttct gtgttacatt ctcatctgtg 840
cctaagtagg aagtttgcaa tctgtcttca ttgtcacagg ctgttgtaac agttcctatc 900
tactagtggg gcaatccctc tgctaacctt tttgaccgca tttttattgc ttgtagccac 960
ctgcaagtaa tcatgcctca ttccctcact gactgcttgc ctcaaaagca tatatacagt 1020
ctttcttcct aacccaggct cctaacccta aattcagagc ttgagggctt gattctagtc 1080
agcaatttac ttgaggtttt cctttcttat tcattgaatt aacaattatg cactgaacat 1140
ctaatatgat gtattagatt ctgagaatat aaaagttagt aagacaaagt tccagatgtt 1200
g 1201
<210> 4
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 4
cagggagttt attttggggc caccgcatga ccaacgttga caagccaaac tataagatgt 60
tatacatctc agatttcctg tttggaggtt gcactgagga agctgcaatc ctgccttccg 120
ttcctccggg tgcatcgaat acagactctc acttcagaga ggatcccgga gctttggccc 180
tcacgtgatg tcatcatttg tgatccttga catggaggcc atatatgggt atgtttctgg 240
aactacccag gggagagcca gacaggagag agatgcagtg ggtcagagac agaggcaggg 300
aacgaggacg aggagacgca tagttgggag acaaagagtg aggagcaagg gaggaggaag 360
aaaggggaag aggagaagta aaggcaacaa aggagggaag gcaagacagc aggaaggaag 420
aggatggagt gaaagagaag ggaagaaggg gagagaggag atgaaggagt tgacgtaaaa 480
gggctttgga gaaatcaagg tttggtgctg agcttgtggc agcatttggg gatagcaggt 540
gtctggctgc tggatactgt ggggtggggc tggggataca aagggccagg gtacaaatga 600
gccaacaaac aaacacagag gcatgcgggc aagccctggg cagagatata caacagaaga 660
gagcccttcc tcctggtcta gggaagaacg tcccatttct ggaataggtc aaatgtcaaa 720
gacaacacat acacagccac atgcactgag catccgggat gtgacaggac atggccaggc 780
acctactctc ccacccgtgt gttcacatct catgcctcag agttaggggt ccagaaacat 840
gacttggtct gttcctctaa ggggagaatc atttttgttt cagtggccca ttccccttgg 900
aggatgtgga tttatgatgg ccacagcatg atttctcact gattcaaact caggaaacct 960
caggatgcct ttacacgcac ttcgaatatt ccacaaggaa atacatctca gtatacaagg 1020
tgccacgggg ttgagtcaag gttctggagg tctgactggt gctaaagatg ggaaggacac 1080
cagtggtccc caggcagtcc cccagcttcc ctggtacctg ccaaattgct catcacccca 1140
gctgggtcag tcttcccagg ccactgtggc tgggtggccc tcaaagttag ctcaagttca 1200
g 1201
<210> 5
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 5
gagcaaaact ctgtcaaata aataaataaa ttaattaatg aaaaagaggg cattatggat 60
ctaatctact gttgtatttc ctgtattttc tacacagtgg gcattcagtg accacctgtt 120
gagtgagttc atggcatcca agtgcacagc cacctaaggc atcgggcctc atgaaatcac 180
aagcagccaa ggctggcagg ttcctgggac aatttagcaa actcaaggct atggtgcggg 240
tgggtgcagt ggctcatgcc tgtaatccca acatatgggg aggcagaggt ggcggatcac 300
ctgaggtcca ggagttcaag accagcctgg ccaacatagt gaaaccccat gtctattaaa 360
agtacaaaaa ttagccgggc atggtggtgc acacctgtgg tcccagctac tcgggaggct 420
aaggcaggag aatcgcttga acctgggagg tgggaaatgg gggtacagtg agctgagatc 480
acgccactga actccagcct gggcgacaag agcgaaactc cgtctcaaaa aaaaaaaaaa 540
aaaaaaaaga ctacggtgct aggaccaatc tcctgagtca caaaatttaa ggagtcgtcc 600
aaaaaagtaa ataagataaa tattttcaaa caatattaga aaattcaaat cggaaactac 660
cgaccgggtg aggagttgtt tttgtaaata aggtcttatt cctaataagt ttcgaaagtc 720
taaatcttca cacgagtcac tcaaaagaaa ggcccagctc aggagcctgc atctgcgcta 780
tggcgggtaa gccccggtgg ctgaccggaa gaagcgccca cggaggcgaa ccccaggcgc 840
ccctcagcct acttccattt cccctcgcga cccttcgccc cgcccactct agctggctgt 900
gcctgactgg ctgggctgcc gcatattcgc gctgccattg gtccataatc agctgggggt 960
gggcgtaggg agacctactt cagcaggtcc tggccggacc agcattgtta acggctgcgg 1020
ttcgaagtgg ctgtgggtat tgctgcggct ggtgcgtcgt cgctctaggt acgttggggc 1080
cgggcgagtg tcctgcgaga gcggcgattg gcggggtggc ggctctagga gcgtcggtcg 1140
cctctctgag ggccggcccc ggaggcctcg gagcgccggg cctaccggac gtttgcggcg 1200
a 1201
<210> 6
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 6
ccccgcatgg ggacgctgtc acagagcaag gcaggaggaa aatgtggtgg tcagtgaccc 60
ggggaatagg aagggagcag ctagggttga gatgccaggc cctggccagc aggtttggag 120
taaggggtgt agagaaacag gaagtgttac tcagcctggg ttcccctgtt cctcccgatg 180
gctgcacccc tcccctctcc ccggctgcag cagtcccagc taggccggac tgctaagcct 240
ggcccagagc acggctgaca attcacggca gcctccctgg cccagcctcc tgcaagagaa 300
ggaggacccc agaggaagcc cggtagccag aggggaaggg ctggagcaca gccaggtagg 360
aggcaacacg gcccggcctt cagcagccgc tctcctggca ggagccctct agggtaaaac 420
aagggaggac aaggaaatag cagccaggct gatggcaggc caagaggagg ccacatctcc 480
catccccagg ttaatgctgc tctgccaaga aaacttggag ccacccttgg cgggccccca 540
gcccaaccct gggcagcaga gcccgcccat cacaggcatg gcgctgctcc ccattaacac 600
accctctgcc ccccttcctg ttcctgctcg tgagggcctg acagcggggc tgagtcaccc 660
ataccagcta caggtctctt ccttccccaa caatcgttcc acacgcctgc ctttcaatta 720
actcccaccc gccccgaact cttcctaccc agacactgtg ggcagggagc caggcgcacc 780
tgctgggggc ccagggtggt ggggctgtga tcagaaagga agccgcgtgg tgacacataa 840
agcagggctg cccccacacg agtccccaga ggaatcttaa gctccccatt gccctggggt 900
gttggtccca gctgccccat ccctgcacgc ggatgctgca attacccaag agcacgaaac 960
ctggcttccc acctgactga gtcagctgag aacaaaaaca catctccacc gccacaaaca 1020
gccaggccac tcatcagagt ccgggagcca ctggcagaga gggcacggcc ccacactgcc 1080
ccagagacat ataggagcca ggcaaacacc agggcgagtg agctcgggcc atctgctgcc 1140
tgcctgtgga aggagcgctc gccagcctca cccagcccga gaaggtccac ctctgcctcc 1200
g 1201
<210> 7
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 7
cggctggatc cctcccccag accctgtaaa cgtcccccac gtgtttaaga ccccagacca 60
gttccagcct tcctctcccc tgcacccaca acaaatcagc cccgcttcag acctttctct 120
cttcttcagt gtctctggat ctggttgcaa gctcagtgcc agtggcctct agcccgctgc 180
cgaggcgcca ccttcagtac tgcggccagg agagtggcgc tcccctctta taccgtaggc 240
tgagtcccgc ccagccgcca gcggcccaac ccggaggtgc tgcacagccc gccttcccgc 300
caccctctcc cacgacgccg ggaggtctgc atgcactggg cgctcaggtc tgcgcgaagc 360
tgtcgcggga gcaggcacct tgtggtcagc tctgggaccc gcatttgcag tgagtgcgtg 420
gagccccagg caaggcctgg gaaaggttgc aggtgaagag agggcaccct gtcgtcctgc 480
caaggaaaaa ttggcggctg aaaatgtttc tggcttcttg gagaaggtga ggctggacga 540
ggaaacagga agttaatttg gctaggagat aaaccgtcac tcaccctgca tgtaacctgg 600
acgtgacctg cacgtcctgg gagcttctgt tttcctgtcc ccacgcactc gcagcgtgca 660
gaccaatatg gtttccagtt atttatatac ttatttactg tctgtctccc tctgctagac 720
tgtgctcttt ttgatagcat aggccctggc tcagtccatg ccctaagtac tggtgaagtg 780
ggtaaattaa tcgttgagaa aatttctgat cgcttcttgg tcttttggct aagatcaagt 840
ggagaaagcc tctgaatggc tgcaggctct gcctgtcatc ttgatagtta caaaacatgg 900
ggcttctggc tcctgcccta aaataacact tgacgttttt aaaactaccc cttttttttt 960
gctctagcac ggaggtatcc agttagaaag caccttcccg aaatatagat tccttctttc 1020
cacccccgac cttcattttc tgagatgtga agactgaaat cccagaggga cctgaggaaa 1080
ttccagaaag gttaaaaaga gccagttaat ggcagaagct ggaactagca atttcctgtt 1140
tctttggctt tgcatgtgat gcttcctgtg atctgaaatg ccttttctct gctttttctt 1200
t 1201
<210> 8
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 8
tgtatacatg ctttcatttc tcttaggcag atccctaaga gtgaaattat tgggtcacat 60
ggtaaattta tgtttaacat tttaaaaaat tgccaaactg ttttccaaag tggctacacc 120
attttacatt tctaccacca atatatgagg gttctcgttt ctccacattc tctccaacac 180
ttatcttttt aaaaaaggtt tttgttgttg ttgttgtttg cagtttttac agttttattt 240
aaacagaaaa catacacatg agctgtctac tcattttctt tgctgcgcag cctgggattg 300
gggttggtga ctctgacggc cagctgggca gctcttttcc acgatggctt tgcggttctt 360
ggaggaaaca ttgtgagcga tctcagcaca gtaagatttg ttgcacaaca gcagcacttc 420
cagctccttg acgtgtggac caggaatttc cggaagccac tgggcagcat gtgctttgtt 480
ttcttgttgc tcccataatc aatgttgggc atcaagatct aacccttgaa ccttccacga 540
accctgttgt caatacctct gggtttccgc cggttacgct taattttgac atatcggtca 600
gactggtgcc ggataaactt cttggttctc tttttgacga tcttgggctt cccaagggtt 660
ctgaggacgg tttataaaag tgcactgagg ggaggctgag acaggagaat tgcttgaacc 720
cgggaggcgg aggttgcagt gagccgagat cgtgcccatc ctaggcgaca gagagagact 780
ctatgtcaaa aataaataaa taaataaata aataaataaa taaataaata aataaaatgc 840
actgaggaga cagatttttg agagttaaaa ggaccctctc aaaaaccgac cgcggtcctc 900
cactgggtag ggggcgctcc aagacaggga ctcttctagc ctgttgcctc tccatgttag 960
cgatatcctc gttgctagga gactagacgc gtcttacagt gggagagctc agcctcactg 1020
atagccgggg atctctcctg ttcgagggct gagatctccg gtcccacaac cgcccacaac 1080
caggggcact tctggaagtc ccctttctag ggacattttt cttctaagct ctgtaacgcg 1140
ggccgaggca gaccgaggct tctttcccgg atccaatccc ctgcccccat gcctaagaaa 1200
g 1201
<210> 9
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 9
gggattacag gtgtgagcca ctgcgcccgg cctttttttc tgacttttta atgatggcca 60
ttcttgcagg agtaaggtgg tatctccttg tggtattaac ttgcatttct tcgatgatca 120
gtgatgttga gcattttttc atgtatttgt tggccatttg aatatctttt gagaaatatc 180
tattcatgtc ctttgcccat tttttgatgg cattattttc tttcttgctg atttgagttc 240
cttctagatt ctggacacta ggcctttttc cgatgcatag tttgcaaata ttttctctta 300
atctgtggtt gtctattatt tcttttgatg tgcagaagct ttttagttta attaggtccc 360
atttatgtat ttttgttttt gttgcatttg cttttggggt cttagacatg aattctttgc 420
ttgggctgat tattagacga acatttattg agcaccaacc atatacgaca aacgatgtac 480
taggtgttgg gaatacaatg gagaacttac atgaatcacc agtcacacaa atctctttta 540
tctttttttt tttttttttg ccttacttga gaatttgggt ttttgagtaa acgccattat 600
tctctctttt tttaagcaca cttttgcatc tcaaccacct aacacactgc atccctgagc 660
aacccggagg ggccggttcc tgcacccagg ccaacacaac ttaaacccca acacaccaga 720
agaggaataa aggccaacca acttccgccc acccactaca aacgtcgaga gaaattcgta 780
gatgaggcct tgtcaaaatt cagaggcgtc ctacgtctgc tttcccaatg agacagttcc 840
tttttgtttg tctcagagac tggggttttt ttttttttaa aagactgtag gcagaaaaaa 900
caccccaacc ggctgttgtg acaatcaaac gtgtctaaga aaattcagcc aatgagagtg 960
cgagagtgca tcttgtgttg gccaatgaga acagcgaccc gtgcgcaggg ccgcccaatg 1020
gggcgcaagc gacgcggtat ttgaatcctg gaacaaggct acagcgtcga agatccccag 1080
cgctgcgggc tcggagagca gtcctaacgg cgcctcgtac gctagtgtcc tcccttttca 1140
gtccgcgtcc ctccctgggc cgggctggca ctcttgcctt ccccgtccct catggcgctg 1200
c 1201
<210> 10
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 10
tttctttgtc cttttttttt tttttttaag agccaagaac tctggaacaa gaagaagaag 60
acgaaggagg aggaggaggg ggagggggag gaggagaagg agaaggagga gaaggagaag 120
gagaaggaga cggagaagga ggaagaggag gaggagggcc gggcgcagtg gctcacgcct 180
gtaatcccag cattttggga ggccgaggcg ggcggatcac gaggtcaaga gaccgagacc 240
atcctggcta acatggtgaa accccgtctc tactaaaaat acaaaaaatt agccgggcat 300
ggtggcgggc gtctgtagtc ccagctactc gggaggctga ggcaggagaa tggcgggaac 360
ccgggaggcg gagcttgtag tgagccaaga tagcgccact gcactccagc ctggaccaca 420
gagcgagact ccgtctcaag aagaagaaga aggagaagaa ggagaaggag aagggaaaaa 480
agaatcctca tcattaatgc aagtggaagg aaactcttca ccaaagaatt gatcacatca 540
tgaaaggtga aatcattacg gaattgctta aatatataat ttgaatctgg atttaaaaat 600
aataaatgta agttttttct ttaaaaaaaa aaaaaagtcc attggttaaa ttcagcttga 660
atcctttgcc actacatcaa gagctaacag gtcaacaact gatctccaca acctcccacc 720
tcatttcctt tctcagtcca ggtagcagga aaatggaaaa aaaaaaatga tttttttttt 780
ccaaacactt tgtcagtttc cccagcggtc acctttgaaa agggaaaaat gtctgaaaat 840
agacaaagct gaatataaac atcatttaat tccccccaca cagacagcct ccgctcctgt 900
gagggcgtgg ggaaaacgga gtgggagaag ggggctagcg aggaggaaga ggcgggaggt 960
gcggcagggg cacaggtgac gctcctcccg cctgcctagc agagctccag gcgcacatcc 1020
gcagtcagcc acctcgcgcg cgcctccagg agcaaggatg gagaggctgg tgagcggggc 1080
cggggcttgg gaaggagggc gcagggcagg cgatgttgag ccggtggccc tggggcgggc 1140
ggcgagtgga aggcgcggag cttcggctct tgccacaatc tggtccgggg actagatcag 1200
c 1201
<210> 11
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 11
ctgcagttag actgtcactt acctggggac agagtcatgc ctgtcttgct cactgctgta 60
tcttgtgcct ggcacataac gggagctctg cacatttttg ttggctcact gactgactgg 120
ctgagggaga taggggcctg agatcctgga cattcagtcc gggctctggc ccctgaaaat 180
gtgctggcct gtcctcggaa ttgttccacc tattgccttc caggcgcctc tttcatgatc 240
tcaaaagaat agtgaaacca ggtgccgtgt ctcacgcctg taatcccaac actttgggag 300
gctgaggcag gtggatcaca aggtcaggag ttcgagacca gcctgaccaa caaggtgaaa 360
ccccgtctct actaaaaata caaaaattag ccgggcttgc tggcacgcac ctgtaatctc 420
agctactcag gaggctgagg caggagaatc gcttgaaccc cggaggtgga ggttgcagtg 480
agctgagata gcgccactgc actccagcct gggcaacaaa gtgagactct gtctcaaaaa 540
agaaaaagaa aaaaaaagtg aaaaaaattc ctgaatgaag gcctggactg aggtggcttt 600
ccatttggag gtccagcccc aagcatctga gagtccctcc taaattcatt acctacagca 660
acaacaacta gcaacaagta acaactggct acgatcctaa caactaatga cagggacatt 720
tatctccctc atgaagaaac ggtcccagga ccatctccca cccagcatcc attgcggttc 780
cctgtgcaag atgagtctct gagtgggaat ccagcactct ctccctcttc ttccccacca 840
ccttcaccct ccttaacgga aaaacaaaag gcatctgcac ctgcagccct gctgaggccc 900
ctgctgctca cacttgcagc agagggtgga ggctctgggt tcttgccttc tctcaaaggc 960
cccagcccca acagtgatgg gtggagccag tctagctgct gcacaggctg gctggctggc 1020
tggctgctaa gggctgctcc acgcttttgc cggaggacag agactgacat ggaacagggg 1080
aagggcctgg ctgtcctcat cctggctatc attcttcttc aaggtaaggg cctactaggg 1140
gtctggaagc ctggggaagg gctcaaggga agagcccatc actagtgaga caggaatatt 1200
g 1201
<210> 12
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 12
ggccgacggg acgctgtcgc caaaagcaga gcagatgggg gagacgcggt cacgacaccg 60
cgtcctccgc cggctcctcg aggtgcgggc tctccggccg gacgctactc cccgaccccg 120
cagacccggg cgtccgccgc cagctcccgc gcccgcgttt cttccaggtc tacggaagca 180
gtgccatcgt gtggcggcat cttgcgttag acctgttttt agttccaggc tctttccctg 240
ttaaatattc caaaaaagtg ccttgaacct aaagtagttg ggtccttttt gggaaacagg 300
taagatctac cagtagctat agcagggtgc agatgggcct cgactcacga tggggttaca 360
tcccggtaga cccatcgcac actgaaaatg tcttaagtaa gaatgggctt tgtcatgtgt 420
cctgcaattt gaggcaggca tttctggtca gacccattta ttattttaaa ttaaaaatat 480
ggtttttttc agccgagcac agtggctcat gccggtaatc ccagcatttt gggaggctga 540
ggtgggcgga tcacttgagg tcaggagttt gaaaccagcc tggtcaacat ggtgaaaccc 600
catttctact aaaaatacaa aaattagcca agcgtagtgg cgtgcgcctg taatcccagc 660
tactcgggag gctgaggcag gagaatcgct tgaacccggg aggcggaggt tgcagtgagc 720
cgagatcgtt ccattgcact ccagcctggg cgacagagcg agactccatc tcaaaaaaaa 780
aattgagatg ggatctcaca atattgtcca ggctggtttc aaactcctgg gcttaagaga 840
ttcgccggcc tcagcctccc aaagtgctgg gattacaggc gtgagccacc atgtcgggcc 900
caaatccatt aaatcactat cgctagtcac acctgctcca tgtcgagtct cttcctgcgc 960
aggcctctca ccagatctgc gtcggaacac caagctctac taactgctgt gcagtttctg 1020
cagtcagttc cagaggtcat ttctaacgtt gcactatggg atatttaata ggtttcctaa 1080
agaacaaaca tatttcttta gagttactca gagggtacac aatgatgatg tcacacaatt 1140
aattacctat taagactgaa atccagcaat gcatagagtg tggacttacg cacatccaga 1200
a 1201
<210> 13
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 13
agacataggg tgtcactatg ttgcccaggc tagcctccaa ctcccggctt caagcaatcc 60
tcctgcttcg gcctcccaaa atgttggaat tacaggcaca agccacctgg cccagccatc 120
tactttatat tcaaataaaa ctttacgtcc cattataaag ggaaaaaatg gcaaaaacag 180
gaggtaacca tttaacaaga aagcagagtg atgttagatt atagcaagat actgttgact 240
gtagaaggct ctgaggctag agagctgctt tctataaaac agagtgatca tatattagaa 300
gaggtgttaa agacatgttc acaccaagct gagacttcct ccttgatacc accaggagga 360
tgggcagaga ctggaaaaga cactaacttt ctccctatgg gagtcagtat tatttagcat 420
cactttggcg ggtcacccca aaccatctga ctacaagggt accatatttg ggttaacact 480
cttttggtat aatttatgtt ttagtccaat gtcttgggat gaaaatgaca ggtgggccac 540
ttatgatctc cagagaaatt cagggcaatt tggtgtggga gtaggcatgg tagaggagag 600
cagcatctaa gaagtcccca gcagaggctc tcagcttgtc ttgaggcatc tgggcggagg 660
gctatgatac tggccccatc ctgcagaagg tggcagatat tggcagctgg caccagtgcg 720
gttccattgt gatcatcatt tctgaacgtc agactgttga aggttccccc aacagacttt 780
ctgtgcaact ttctgtcttc accaaattca gtccacagta aggaagtgaa attaatttca 840
gaggtgtggg gagggcttaa gggagtgtgg taaaattaga gggtgttcag aaacagaaat 900
ctgaccgctt ggggccacct tgcagggaga gtttttttga tgatccctca cttgtttctt 960
tgcatgttgg cttagcttgg cgggctccca actggtgact ggttagtgat gaggctagtg 1020
atgaggctgt gtgcttctga gctgggcatc cgaaggcatc cttggggaag ctgagggcac 1080
gaggaggggc tgccagactc cgggagctgc tgcctggctg ggattcctac acaatgcgtt 1140
gcctggctcc acgccctgct gggtcctacc tgtcagagcc ccaaggtaaa aaggccggga 1200
a 1201
<210> 14
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 14
ctctatcatg gggagtgttc agtatcggca tctagagatc tcccctggcc ccatcacagc 60
tagagctatg ctgtcccctt tcagggacat cttgtaattt atccacccag cccccaactg 120
atggacataa aggctgtctc cccatcatct cctgctacta cagacagcac tgcagggact 180
gtcctgctgt gtttttttaa ggcatgggta ctccagaagc agttgctcag ctgcaccccc 240
aaggttgagt ggaagtccct cggtaaagga ggaggagaga gtgtgaaggg aatggcaagg 300
cggggaggga gacagggcac aggtgtcctg gcaacagcag atgggaaaca ggtctggcta 360
aggtaccaga agccaacaag tcccagaaag gtcaagtgac tttcccaagg tcacacagca 420
agttgatggc agagctgggt acaggactca gagcatctga cacccaggac gatgttcctg 480
cactgttcca tagagtagcc cgactcttaa gtttaaataa ccccaggaag gaccccctct 540
ctgtgcctga cccccgctgg gttgtagagg cctaagtttg cagtagctcc tcccagccac 600
tctggctgtc agcctctgac ctgcagtggg agggtctcac cttctggaga tgttttaagg 660
aggggacccc ggcctaggca ctagctggga agccactgag ccatcttgtc tgcggccact 720
gacgtcagtg cttgggcaca atgccagcct gttcccggga ccccagcaca agggctactg 780
ggagccgggt ttggggcagg aagtcagcgt gaagcactgg tcctgccaca tcccaagccc 840
cttgtcccct agctctgtgg gggtggggtg acagctgcta tcgctttggg gttaactata 900
gtccctttgg ggttaactat agtcccattg gttatgggac ctcagtgtga tgtagccagg 960
ctggattccc ccttttgttt gttcatttat tcattcattc aggggtctca tgaccccacc 1020
agggaggagc cgtccaagag agttagcagc tcccacttgc aagatgtctg tggcaaggca 1080
ggcactgttc tggtgctgag agctcaactc cagtcctcac agcagccccc agagccaagg 1140
agtatcacca gtccattgca cagatgggga agctgggttc tagagtcaca gccagcagag 1200
t 1201
<210> 15
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 15
ctggagcggt ggacacgtgg tctgggtccc gcgggttccc gggggcgact ggaccgtccc 60
cccagcccca ctcctgctgc agcagctgca aggtctgcag agccaccatt tggtggctga 120
tggaggccac taagggcgca gggctggcca tcgcctccgc tggcggcccg gcgcgctccg 180
cgtgcaggtg gagcagcagc gagggaggcg ggggcgttgg ggtcgccaag gtcacatttt 240
ctaacccgcg gctcctcggc ctctgggtct cacagcgtgt gtggtcggcc ccgcccccgg 300
ctctgaatcg gtgacccgtg ctggcctctg ccttcgcctg aagtccgaat caggcgtgtt 360
ctgacccaaa gctgcctgaa gcgctgctcg gtgtgcactt gaaaatcagc gaaatgctga 420
gcgttgcttc ttccctctct ccagggcttt gatgagaaaa cgtgctgctt tgtgcgggcg 480
catccatcgg cggggatacc ccgcccccac ctccttcgaa ggatgcctgc caatgaccac 540
tgaggtctgg gaggtggggg tgcaaaagac ccactctagg gcaaaagtac gaagggctct 600
agaaaaactt gcaaaaggaa gactgtgcct ttcccaaccc gaggggaatt ttcagaaact 660
tgttgaagca gccttcaagg ccttgcatcc cccaaacaaa agaaggagga gttgtgtatc 720
tggaagttct gctcttctct gctttgctgg gtgccacttg agcaccgaga gcctggtggc 780
tgaactagca tcagcaagcc tcaaggccca ggcctggcac tgcccagaaa agcctaaatg 840
tttttttgtg acactcccaa aagacttagg cagcaaggtt gaagttaatc cttttatgag 900
ccatgaactt agggacagct gtacaaatag ttgctgtttt taattaaacc caacatggct 960
acttccttaa cttagaaaaa agcgactagc aatgttatgc tttgatagat tggaaaccat 1020
gggtgtgtga tcacacttaa gaaaatagaa gatatttgag aggagtggta tggaaaacca 1080
gtccggagca gcattgttcc tgcttgcttt ctgcaaggaa aaccactaga caacccaaca 1140
gcccagtaaa gccagggcaa tggtgcatgc ccacgacaga caggtgggcc ctggcagacc 1200
t 1201
<210> 16
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 16
aaggcgggag tggggggcgc tcccaggtag ccaaggggcg gtacctcgtc gcagtggcga 60
tggtactcct ccatggtagc gccggctctc cctggggcgg agcgacacgc cggtagagca 120
ccgcggccgc gcactggcct ccggggaggc cccacccccg tttatggcct agggcctttc 180
cctacgcaat ccccgccttt gtgtcgcagt ggcgtcacct ggcagcgctg ggcgggcttc 240
gggcaacgcc aggcgtcact tcaggccacg cactttttcc tcgcttcctc tgccctttct 300
ggaaacaagg gatgaatgta aagaactggg aatggcgcca gtgtggatca gatggggtga 360
cctagtggca gttagtctag actccgcact agtggttgag tgcccactgc tgtgattact 420
tgcacgtatt tgttcattca ccatcatgtg gcacataaat gtagttaatt tcgtggtaaa 480
ccagccactt tgatttgtcc acttactagc tatgttactt ggaaaaattc acctcccaca 540
gcttcagttt tctcatatgg aaacttacca tcatacctat ttcactactg gttgtaagga 600
tctgatgaga agctgtatac acggctccta aagtagatgc ttctcaacaa gagaacaatg 660
actacatttt aaaataaatg tagtaatttt aaattagtaa ttttaaaata aatgtagtaa 720
ttttaaatta gtaattttaa aataaattac taatttccag atgatcctag acacttcctc 780
aaaacctcac aataagtcag aggagttagt tcttccatca ctgcttttat caagatgaaa 840
ctgaggtata gagaatttaa tttgcccaag gtcatacagc cagtagggtg tagaaaaggg 900
acttgagctc aagtagtctg atagcagagc ccaagctctt aaccactgta ttactttcct 960
attgctactg taacaaatta ccgtaaatgt agtgccttaa agaaacacag tcctgttctc 1020
ttacagttct gttaccagtg tagggtgtcc aggttcttgg ctctttgaac aaagaattgg 1080
acaaaacgca caaacaaagc aaggaaagaa tgaagcaaca aaagcagaga tttattgaaa 1140
acgaaagtac actctacagg gtgggagcgg gcagagaagc cgctcaaggg ccgggatcca 1200
g 1201
<210> 17
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 17
ccggtcggtc cccgcggccg ccggggccgc cgtcccccgc cctcctcccc gcccgccctt 60
cttccccgcc cgcctgcccc cgccaccccg cgcccgtgac tcacctcggc gccggggcag 120
gctggtccgg gcgggcgagg cgcagggctc tcccacactt cgcgccgcca atggcaagtt 180
ggagggagag atgcaaatac caggtgagac ggcggcgccc ctgataaaac ggggcggggg 240
gcggggtgga gcgcgcgggg agcggggcgg acgccgggga gggccgggcc aagacacggg 300
gcggcagggg cgcccgggga gggggcgcga accggcgcag acatgcaccg aaacgagcga 360
gcgaaagggg aaatgcagta gagacacaca cgtccccgca ggcggcggat ggggcgggcg 420
cgaaggaggc agggcgggag ggagggaaga gccggaggga gggaccgacg ggagggactg 480
cgggcgggcg gggtggggga gggaacgagg gagggacgag gcatctcggt ggaaacagcg 540
cccgtccgcc ccggcccgcc cgccgcggtc gccagcacgg catggggagc cgtgccaggg 600
gcccgcgcgg cctctcattc ccctcgcggc tcgctcgcgc ccgggggacc acgaggcagg 660
gcgcccgcag agcccgcgtc gtgcgccgcg gcccgggcgg gcgctcccca ctctgcttct 720
agccagcgag actccgagct ctctgctcgt tccgcgccct tcccggtgcg aagcccccat 780
acaacgcccc gcagagaaat cccttccccg cggactcggg aaggtttcgt ccagccccct 840
cggcccgtgc aagtggagac ttgcttgacg cctttgggcc aagccctgcg ctccacatta 900
ttgagctcct ggggtgtgca ggccccagcg ggagggcggg ccgtgcggcg ggtgaggccg 960
cgagatgccc agaggataca attttggaac catatgcccg actccgcaga atcctgggcg 1020
taacacctgg ggtgactgga gagtttcggc gacttcttag ggaagtcgag tctaggactc 1080
ctgcgggaag ttggggtggg ggacgctggc aagatatgag tcaggggaag ggctaggggg 1140
agaggggctg gcccagcaag tgcaaagaga gccagagttc gggtgctgga agaaagccca 1200
t 1201
<210> 18
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 18
gcgtggggct aggcacgcca ccagccagtc cccaagccaa catcctgagc cccgcggctt 60
gctcaccgag tgacttcatg tagtcatcga aattcttgct gtccactagc ttccaggtgc 120
ccaggaaagc gtccaccata gtgatgctgg gctaggctga gagaagctac aagagagcag 180
gcgtgcaagg gctccgacgg cggctccctg cccgggctgc cgctttaaat agccctcgca 240
tcacatgagg agacgtggcc cacgcccccg gctcccgaaa taggaagccc caggctaggg 300
ctcacccagg aggggctggt gcgcccatcc cccaacccac cgaggtgggt ggggaccagc 360
cagtggcgcc ctgctagcct gcgtcagcgc cagtgcctgg cccccgagtc cctaccccag 420
gctggtagga ccttctccct ttcctggcct ctaggcactc tggaatctga gaaggaagca 480
gccaacacca gcccgagagc tagggcgcat gccatggtgg atatcttccc gtcccccagt 540
ccctctttga gcttagcgtc agagcagaga tgagactaga aaagcaaaac gcccttgggc 600
tggtgcccac gccggggaaa gctctggttg acttctggca cgggcatctg tcctcgtttt 660
acaagtgagg agtccgaggc tcacagggga actgacaagg tctcaagaaa taggaggggg 720
tgaatggagc tcagattgca agcttagtct agcgggcttc agagctcgcg ctctcccttc 780
actctcactg cctggtggcg gagacagtca ccagcggctc ggtctgcggc tgagctgacc 840
ttgtcctctg cctgttttga gcaaaagcct gacccttcgc gccccgcccg cctcacacgt 900
gcttgcccct ccctgcggaa tgtctcctgc tggccctcct ccgtccccac cccaccccac 960
catctagctc cccacccgcc cctgcaagtg ctctgggctt ttccggtttc ttcgcacagc 1020
tccgagcttt agctcaggtc gttcccagct cccctcctgc agaaattctg ccaattcggt 1080
cagctcttca aggcccatgg ctgccttccc cacctgccgc cctttctttg gcctgtgcac 1140
actagcaagc cgcctgcact tttgggtaat ttgctgcctc ctttcgagag cctgttgtgc 1200
g 1201
<210> 19
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 19
gccaggttag tcttgaactc ctgacctcgt gatctgcctg cctcggccta ccaaaatgct 60
gcgattacag gcgtgagcca ccgttcccgg cctatacgtt gtttattttg gaaaaattaa 120
aaattaagtt ttttttcatt aaagatatgt tatttccgat caagagatca agaccatcct 180
ggccaacatg gtgaaacccc gtctctacta aaaacacaaa aattagctgg gtgtggtggc 240
acacgcctgt agttccagtt actggggagg ctgaggcagg agaatcgctt gaacccggga 300
gaaggaggtt gcagtgagcc gagatcatgc cactgcactc cagcctgggg acagagcaag 360
actctgactc aaaaaaaaaa aaaagttgtt tctattaaca tgtaatgggt tattaatatt 420
ctcttaaatg aattaatatt tttaatattt tgttttaata tcttttaatt tatatatgat 480
aaaaattgat acaatccaca gaaacaaaat ttatttgggt cctcactaat ttcttttttc 540
ttgttgccca ggctggaggg caatggcacg atcttggctc accgcaacct cctcctcctg 600
ggttcaagtg attctcctgc ctcagcctcc caagtagcca ggattacagc catgcgccac 660
cacgccggct aattttttgg acttttagta gagacagggt ttctccatat tggtcgggct 720
ggtctcgaac tcccaacctc aggtgatcag cccgccttgg cctcccaaag tgctgagatt 780
acaggcgtga gccaccgcgc ccagccagga ctaatttcta agagtgtgca gagataccga 840
aacctaaaag tttaagaact gctgattgct gggaaactct gcagtttccc gttcctctcg 900
taacctggtc atgtgtcctt cttcctggat actcatgacg cagactcagt tctcattccc 960
aatgggtgtc gggtttctag agaagccaat cagcgtcgcc acgactcccg actataaagt 1020
ccccatccgg actcaagaag ttctcaggac tcagaggctg ggatcatggt agatggaacc 1080
ctccttttac tcctctcgga ggccctggcc cttacccaga cctgggcggg tgagtgcggg 1140
gtcgggatgg aaacggcctc taccgggagt agagaggggc cggcccggcg ggggcgaagg 1200
a 1201
<210> 20
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 20
tgtgcccggc cctaaaccca gctcatttta aacattggtt tcaattccat tcaccctatg 60
atggagcatc ctgcccctcc ccgacaactc ccatacacca ctgagcctcc cctaccccag 120
gtgcctgcaa gcccctcaga gaccaaggct gtgtgccagg gcttttctct cccagaacat 180
ccttgatagc cacatttaga aaacagtcgc cagaatggcc tctgtattgc cagcagtttg 240
gcagtgggaa agccagcttt tggcttccag acaggaaaag caaggcgtgc tgaccacaca 300
cagcctgcac ctcagtgacc ctctggccag aggctgcctt aggattctgg gaggagagct 360
agacctggtt ccctgcagca acaccttggg aggttaaaaa atacagatga ctgggtctct 420
accccaaccc agcagtagga tccagggatc cttatttcta acaaactccc ccgatgattc 480
caacacacgt caaggctgga agcaaccgat tcgtttcttt gggcctcagt ttccccatcc 540
aacttaaaac tcacacagga gtctagataa tcttctttga gcctcacggc catctaaaaa 600
aatgtcattg ttcccatttt tgagatggga agaatggagg tttatagagg caaagggatg 660
aaggggtggg ccacatggtc attagtcttt ttcggcgctg gggtttgaag atcctaagac 720
gacctaagga aggcagctga atccgccttc caaacccctg gggtagactc aggctctcac 780
acacccagga gagtcatttc taggcacatc ttctcgggtg actcatgagc accaaggcag 840
gcctgtgtgt ccaagcgcct gcacaggcag aagcgaggct ctttcccata accggaaccc 900
ttaccgtgcc cctagcaaac tcccagctcc tgcctgacaa gttactgcct aacccgtgac 960
ttatttcggg aatccctgac gcatttcttt accgtccctc atttcaaagc acaccatgcc 1020
ggcagcactt ggaggtggta tgtgctggga aactgaccaa cagtttagtc agactgagtc 1080
acttcaagga ggggagtgga gacagcagtg ggtgccagat gacacggagc tgtcggcttc 1140
cgtgtgcatt ttcttttgat agtagccgta gagaagttgt ccgccaggca gccctcaatg 1200
g 1201
<210> 21
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 21
tcagcactta cccaacgaac atttatggag cgcctgctgt gtgcctggct ctggagaggc 60
agcggagtgt tctgcaacct ctggagctgc cctcctagaa accccaacct gttgggggag 120
gtagacgcca gagcagcggt gaccccacgg agtgatcagt tgtgataagg gactcacagc 180
aagtgaagga ggcgcctgac ccagtcattg ctgggagccc tggggtagag gaggcagcca 240
agggtggcga ggcattgcag cggggggcgg tatttaggga aatgaaagag gttgacagaa 300
gctggaacct agggaggact gagcaggtgg ggtgggggtc ggggactgag gttagctccg 360
ggcgggttga gggggtgaga ggaatggggc cggcgggtct ccaacctgga gccgcaccgg 420
tagctgcggg actgcgaact cagcaggtga tgggaagcca ggtcgggagt ggtcagggaa 480
ggcacgggct gagctgcaga tcagagacac ccggtctctg gccgcgcggg ggtggggcag 540
aactggaggc gctgaggcca gaggcaagag tgggggactt gggcggaaag gagggggcgg 600
ggcgggattg gcgagcagcg tggtgttggt gggggggcag tcccgcctcc agccccagtt 660
agatgccaac ccgcccgcag cctcttaaaa tagagaaacc gcctccgggt aggcgaatgg 720
gggtgctgct gacgtcaaga agtggggcct gttccatggt gggggggtca aacatttcct 780
gatggtaagt tctatgttac aaaaggggaa actgaggttc agagaagcat agccactgtc 840
cgggtttcac aaagtatagg tgacagagtc agacaggatt tgaacccacg cagttccggc 900
ttcctctcca aaccaaccca gcacaggcgt ccctccacga aggtggaggg atgagcacgg 960
attccccgac tgaatgaggg cattccgggc agaggccaca gcacgtgcaa aggcccagag 1020
gcatgtagcc tttcttacct gtttatatgg ggaaacaaga acttgaacct atttcttagc 1080
actagaggct gatggccagg acttaatgct tccagggcct tcagtgctga ttttgaagag 1140
gttagacttt ccccctaggg tgatggggag ctatggaagg tgctggagca ggagaggaca 1200
t 1201
<210> 22
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 22
tgtagtccca gctacccggc aggctgaggc aggagaatgg cgtgaaccca ggaagctgag 60
cttgtagtga gccgagatcg caccactgta ctccccgcct gggcgacaga gtcagactcc 120
gcctcaaaaa aacaacaaaa aaaaaaacaa cacagaaacc caacagagac ctgaagacgt 180
gcctgcctcc cccatctccg ggacctctcc cacctgggtg aagggggcac gtgagcctca 240
cctgatcttg accatctcag ctaaaacact gaaccaccct tggcacccac cagcagcaga 300
cggagaagaa ctgtataggg tgcaaaagcg ccccgccacc atcaggtcca gatgaaaacc 360
tacaagttga atcagcaagg tgctgacgga tacgcaagca gaaaccctct tataggaggt 420
tcaaggctgg gcgcagtggc tcactcctgt aatcccagca ctttgggagg ccaaggcgag 480
cagatcactt gaggtcagga gcctcagacc agcctggccg atatggcaaa accctgtctg 540
tactaaaaat acaaaaatta gccaggcatg gtggggggtg cctgtaatcc cagctactcg 600
gaagcctgag gcaggagaat cgcttgaacc tgggatgtgg aggttgcagt gagctgggac 660
agcaccattt ccctccagct cgggtgacag caagaccctg tctcaaaaaa aaaaaaaaag 720
tttgagaatg tcagacaagg cagcaccctg tgtaggtgct caggttgggc ggagtctctc 780
tcgggggagg ggggtaacag gacagcgcct cccggggcct ccttgcatgt ctgtgtcctg 840
atgcacagca ggcgggggct gcggggacca gagaaggaag aagcgcccca gctgggcact 900
tcccgaggag gaagtggtgc cggaatttcc cccaggtgtg gcctcaggta taagagcggc 960
tgctgccagg tgcatggcca ggtgcacctg tgggattgcc gccaggtgtg caggccgctc 1020
caagcccagc ctgccccgct gccgccacca tgacggtgag cctctccaca tgccgctcgg 1080
atggatgctg cttggatgtg cagcctggca tggaagggct ggggttctct gagcctggga 1140
ggagggtgtt gggatggggt ctgggaaacc cctcagtctg ggggtagggg aggcagctgc 1200
a 1201
<210> 23
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 23
tcctggctgg gcgtgggggc tttgctacca gtctgccctg ggtcacgtct agaaacctca 60
gctggaggcg cgggtcgtaa agtcctgaca cttcctgttc ctctcagctc ctccttggag 120
gaagtggtgg gttgcaccac cgtggccctt cacccctgcc cctctccgct ctacagcagc 180
tctgatgtca gagagcggcc ccttgagaca ggtgggacat gtcatttctc acatgaggtc 240
ccggcgagaa ggacctgctt ccatcagatt cacacttggg agaggggccc ggcctccagg 300
agcgccaggc agaaagggca cccattagga agaagaacac agaggccatg ggagtgaaaa 360
gtttgatgct ggaaagcaac agtagcacat tctgctacag agcggaatga aaaaccctgg 420
ggagcaaatt cctgagccag agaatggagc ggaggaacca gccaaggagg ataaagaggt 480
gggaacaggc aagaaaacct gggtgcgtgc acgcattgac atccacctgc atgtgagggc 540
gggaggggac agaacaggga cagcgaggag gagacactca ggtcacagga ggaaggctgc 600
ggatctgggc ggggacgtgg attgcgaggc cactgaacac cccagggatg gatggatgag 660
gtcctgttaa ctagggacat taggaggata ccacagaaca cgaaagggaa aatactacag 720
gctcagagag agagagaagg gagaggagga ggaggaggaa gaggagggaa agagattata 780
cctagaaaaa aaacccaaat cagacatctt cagagcaagg actcagacac attactaccc 840
taaactctgt tttatttatt tatttatttt tatgttttca gttttttttg agacagagtt 900
ttgcttttgt cacccaggct ggagtgcagt ggcgtgatct cagctcactg caacctctgc 960
ctcccgggtt caagcaattc tcctgcctca gcctcccaag tagctgggat tacaggcaca 1020
tgtaccacca cgcctgggta atttttgtat tcttagtaga gacagggttt cactatgttg 1080
accaggctgg tcttgaactc ctggcttcaa gtgatccatc cacctctgcc ttccaaagtg 1140
ctgggattac tggcgtgagc catggctccc ggctcctaaa ctctgtttta aagatgtctt 1200
g 1201
<210> 24
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 24
gaccccacaa atcatgcggc ctgtgccacc atccagtgcc ggatctgaac tactgatcca 60
ctgagctttg ggctgattgg ttctgcaacg atgggtggcc aaggccacgg tcaaatccag 120
ctggagaggt ggatggggcc agtgtcaggg gtttggattt caccccaagt cagctgaggc 180
acactggaat gtcgtaagcc tgcacatcca ctcatcacac attttaaccg catctgagtg 240
tggaccgtac cgatgggttc ctgcacctgc agcctccaca ccattgctgg tgccctgcct 300
cctagctgga gtatccttcc tgtctcttgg ctgctctttg tacccatcat ggtcccccta 360
ccaccctcca agttctgctc caagctttgt tttcctccaa gagaagaacc tgtccagaca 420
atagtttcaa agcagcggga agctctgctc acgtgtcccc aaggaccatg ctgtgtgaaa 480
ttcccttctg taatcacaga gcccattgcc ctggcctatt cctggtccag gaatagggag 540
gaggtagaca gaggatgcct ccttccccac tgctgagaac cctgccatcc tcagccacag 600
ttgccacaga gaagatacca catccctggg ggaatcagca ggaatcaggt agagagtggc 660
actgctctgg ggagggaggg cgtctcacag catcaaacgt caaaaaccca caacattgac 720
ccagtcctgc caagacggaa ccctgcatga gcatggggga tggggagttg gggtgttgca 780
aaagacgcaa tacatgaatg atctcaggta attctcaggc aacccccgga ggctggtgtt 840
gctagcaccc ctctgcagga gaagaagctg gggctcggga gctgactgga tctgctcaaa 900
ggcccaggaa gaataagagt taggaactgg gacagacctt gaggaagctg cacttcctcc 960
tgaggtgagc cagcgttgga gctgtttttc ctttcagtat gaattccaca aggaaatcat 1020
ctcaggagga agggctcata cttggatcca gaaaatatca acatagccaa agaaaaacaa 1080
tcaagacata cctccaggag ctgtgtaaca gcaaccggaa agagaaacaa tggtgtgttc 1140
ctatgtggga tataaagagc cggggctcag ggggctccac acctgcacct ccttctcacc 1200
t 1201
<210> 25
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 25
gtcttcttct tttttttttt ttttttgaga tgaagtcttg ctctgtcacc caggctggag 60
tgcagtggcg ctatcttggc tcactgcaac ctccacctcc tgggttcaag caattctcct 120
gcctcagcct cccgagtagc tgggattaca ggcacccgcc accacaccca gataattttt 180
gtatttttgg tagatatggg gtttcaccat gttggtcagg ctggttttga acccctgact 240
tcatgacctg cctgccttgg cctcccaaag tgctgggatt acaggcatga gccaccgcgc 300
ccggcccatg ggtgtgaatt tctgcctgtg tgtgtctttt tagcgtatgt gtgtctccat 360
atctgccatc tgcaggagca cctcagtttc attatcttgc tccctgtcta ttggagtgta 420
tctctcttcc tctctgtgtg actttttgtg tttatgtgtg tgtttagtgt gtgtccatat 480
tttcctgttc tcttgtgtct ctctgctgtg tctctctctt tttctttctg ttttttgaga 540
cggagtctcc ctctgtcacc caggctggag tgcagtggtg cgatctcggc tcactgcaac 600
ctctgcttct gaggttcaaa cgattctcct gcctcagcct cccgagtagc tggaattaca 660
gacacatgcc accatgccca gctaattttg tatttttaat agagacgggg tttcaccatg 720
ttggccaggc tggtcttaaa ctcttgacct tacgtgatcc acccgcctcg gcctcccaaa 780
gtttttggat tacaggtgtg agccacctcg cccggtccta tctctctttc ttctctttct 840
ccctctcact ttgtttctct tctctctctc tctcccgcct ccttcccccg tctcccctcc 900
cttcccccca ccgccctctt catagctgag cctgtccggc agtgcggcgg atgtacggat 960
gattcagtgg ctggcaggaa gcccgccctg cccgcccgcc agtgtcagtg gtgttggcat 1020
cagcttgggc aggtgtgcgg gctcaggatg gggcggccgt ggtgaggaac cctggactct 1080
caggtaagcc tttcccaggg gtgcctcagt cctcaggctg tcccccatcc cccaggagct 1140
cctggcccca ctgggtgggg tgggaagagg cctggatgcc tggcgccccc tcccgcagcc 1200
c 1201
<210> 26
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 26
agaccagcct ggccaacgtg gtgaaacccc gtctctacta aaagtacata aattagccgg 60
gtgtggtggt gggggcctgt agtcccagct actcgggagg ctgaggcagg agaatcagtt 120
gaacctggga ggcagaggtt gcagtgagct gagatcacgc cactgcactc cagcctgggc 180
gacagagcga gactccatct caaaaataaa tatataaata aataaaaata aaaaagagaa 240
aggacagggt gcacagagcc aggaccccac cccctcctgg tctggaccac cctgggccat 300
ctcctaagct tgacactctc aggcctgagg ctgtcaggcc agggcgcttt gactatcccc 360
tgcctgcccc tgaacgcggc caagcccgag gccttagcca agccctgcag cctcaggctt 420
ggcgcccggc ccagcctttc tttagccttc ccgaggagcc agcgagagag cgctgcagca 480
gccgcagtcc ttgcttccgg ggaaggcccg ggtggggcca gggcctgtgg ttaagtcagt 540
ggccctctgc agacgcgcac gcagcaggag ccacgccctg gtccctgccc gggagtggcc 600
tggtctcccc cagctctgat tccctgaagg accctgcacc tcctcagcca tcttctctgg 660
gcaccccctg agcccagcct gctggccaca ggccccttcc cgccaacttg tgggcctagc 720
tcatcatcaa actattttcc actggcttcc cccaatctct gccacagcac aattttggtg 780
gggaggtgga gagggatgaa ggagaatagg aggtggagct tggactctgg ccgggggcgg 840
cggggtgagg gggggcagca gctcgccact ctgattggtc acctctgctc caaaactggc 900
ttcaaaattc cacggactcc gcccccagtg gcccccagcc ctatcctgac ttgcaattgg 960
ctgaactttc agggggcggg gctcacccgg tccggtccag ttaaaagggt gggagcgtcc 1020
gggggcccat ctctctcggg tggagtcttc tgacagctgg tgcgcctgcc cgggaacatc 1080
ctcctggact caatcatggc ttgtgtgagt gtggggaccc ccccccaagg tccaggggat 1140
agggcaggaa ctgatggcca gaggagagct gggcagatcg ggagcagatt ctagccccag 1200
c 1201
<210> 27
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 27
tggtcccagc tacttgagag gctgaggcag gaggattgcc tgaggccaga aggtgaaggc 60
tgcagtgaac cgagattgtg ccactgcact gtagcttggg tgacagagtg ggaccctgtc 120
tcaaaaagaa ttggtttgga ataacattta aataatacct aaactccttg ccttggccta 180
caagacctga atatttggcc cctgccttcc ctccagccca cagcaccggc cccaggacct 240
ttgcacctgc catttctgct ctccagaaag ccctgcctcc tccccatctt tgtagtcata 300
ggtgtttctt gtcatttaga gtttcagttc aaatatgaca ccctcccatt gatggaaatc 360
atttcaccac cagacgttat gtggctcatt gtttatccgc tgcctgcctc ccggctggag 420
aggcgcaggg agctgcctgt ccctcctgtt cagagccacc gttccgcacc tggaccaccg 480
cttggcagag gcgggagtgg aggctgtcac catcaggatg aaggacaggg gtggcccggc 540
gtggagaagc taagaagaga tggcgatagg tcaacgcgat tgcgccttta aggtggaaga 600
aacgaagggc gagggtcagt aaagtcaagg acgggctcag atcccgccac tggtgataag 660
cgggacccat aggaccgacg tgatcgcggc caggccctgg gtggtttacc tggactttta 720
cctggctgcc ttttctctgc acccctccgt cctcactccc ccagtcatcg gcataggtca 780
agtcagagtg ttgaagaaac acacgagttt ggctctggaa aggaaaatca gaaaggcggc 840
ctaaggggcc ccacccccag gaacgctaag ataggcggcc aggggtgagc gggcagggcc 900
ggccagcagg ccctgaaagc agccgggcca ccagcgcgtc ccgagtcccc ctcgcaccgc 960
cccgcttgcc ccgcccctgc cctctgcccc cgcccctgcc ccgcccccga aggcgagctg 1020
cgctgacagc cggcggcggg ctgggtgttt gcaatacaaa ggcggccacg cgcggcgccg 1080
ctcggtgagt agccgccgcc tccagcctcc cgctgtggag caggggccgc agcctcgggt 1140
taggcggggc ggggcgcggc gccggggcgc tgaggacgcg tggcgaggcg ggggctcggc 1200
c 1201
<210> 28
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 28
aggcagagta aatgctgggt cccggagcag acaggagaga ggacctggga gttttttagt 60
aagatgggga ggaggagata ggctatggct tggaccaggc ctggaagaga gctcaggtgt 120
gcagtctcta ggaacccggg tggagaagca gcaggaaata agcagaaaaa ggagacaggc 180
catgaagata gaagcgcaat ggtcctggat tcaaatctcc actctgcagc ttatagctta 240
cagtccgctt agctttgtgc ccattccaag aggatttccc tattgtagct ttacaatgtt 300
ttaatatgta gtattgttgt gcaaggtacc atcctaaact gactgacttt ccttcctcct 360
tctcctccaa aataattttt aattcttgca gacagacttt agatcgtgtg tttgaagttt 420
ttaaagatgg aatttttatt ggaactgcat tacacgtata aattatttag gaagagttgg 480
cttctgaaga gggcagctct gtgggcttgg gctgggtttg aatccagcca gacaactttc 540
cagctgtgtt accttggaca gttacctagt tcctctgtac cttgacttcc tcatctgtca 600
aatgggtgat gataatagca cctacaccat ggtcgttggg aggagtcagt gagagtctcc 660
aagtgtgctt tattatcgtt ggtggtggta gtggtgttta gaacgcatcc ctcagtcaga 720
cagcgaggta ggacttctcc gtttattaaa tcctgacctt ttttttccat gtaaaacctg 780
cacgtttctg aaatgctcag agtacgttac tcagtatgta cccatatgtt ctgtgggtat 840
actttgttag gttgtgatta gttcgttgga gctggtggtt gcagggacgg ctggaagcaa 900
ggagatgaag gagaggaagt cgtagctggg aaggggacca ggaagtgggt gtcaggtcca 960
agagctgcta gaaagaaacg aaactgaaag cagggaattt cccaagtttg gggaagacag 1020
gaactgcagc gcccctcccc gtttcacgcc acgcgcggga ccgaggacct aggacctggc 1080
cagctgggcg tggttcggag agccgggcgg gaaaacgaaa ccagaaatcc gaaggccgcg 1140
ccagagccct gcttcccctt gcacctgcgc cgggcggcca tggacttgta cagcaccccg 1200
g 1201
<210> 29
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 29
agggaggctc attggaaagg gattttggga tacctgtttc tgactcagca tcagtggtaa 60
ctactggcat ggccagtgaa tgctccctct agctctacac cctcagagag tctcctccca 120
ggcagagaat gttttctttg tcacgtattt ttctcccctc taccctccac ccatcccccc 180
gcttcttctc cccttctttc tgtcttccct aggggaagta aagaggttac cccccgcccc 240
tctctctctc tctctctccc agaagccaag aggcaaggcc tcagtttatc actataacaa 300
ccagacgaca ctgaagcggc tggtgcggga tacagtatct catttgcata gagcgcgctg 360
gttggctact gtcatcatag taccactccg ccgggaagcg gccgggcccc attggctagc 420
cctccgtacc cacgggcccg aacttgctgc ttttgtttct tctgtttaat tcagttgcaa 480
aggtctccgt cctctctggg cacgggaccc gggctgcgcc acccagataa cataaaaccg 540
cttcctgagg ggcctaggac gccttgagaa acaacatagc agacctccac taataaagga 600
ccatgtccct gggatgagct agtgcatgat gtgctgtagt caggatattt gccaaatagg 660
agtcaccctg aagacaaagc cacttttgag cccaaattca ttgtgctaat tgccagtgga 720
gggcccctcc gggcattcac tatgggcacc tgagtgttcg acccctggac ttcatgcaac 780
gtgaaccctg gcagatcccc tcgtggcctg gtgtagccct ggagccctcc cctggggctg 840
ccctaggggg aactttgaag gaggtagatt gtctttaaca gcctgcctcc tactcctggc 900
tgccctttcg cagttgcttc ctctgtcagc cactcttccc cttccccagc tattcaaagt 960
ttcctcaaga agtcttgctg ttgtgtgcct ttcaatacac tgttccatgc actgctctat 1020
tttctcttgg ttcctacttt accagtcgtg ggtcccattt ccgaagtacc ctgctctcag 1080
ccaaatgctc atggcaatca gagatggaat gttaacgatc aggtgcttta atgtctacat 1140
tatctaggga cattcacatt ttaagaggag cattctgaag acacacatcc aaagaactta 1200
c 1201
<210> 30
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 30
caccttcccg ccgcctcccc gccccccgcg gcctcgccgc gcctctccct ccttccccgg 60
tgacacaccg agttctccct cggcctcaca aaagaaacgc atctggcctg cgagtcccgg 120
gcggctcgtg cacacctcag gcctcaaatg acttgtttcg cctagaatca actcccgtct 180
cggccgcctc gaagtcccca gccctggcga gaacagccca ggatgagtga atgtttgccg 240
aacaggatcg caccgagcgg gcgccttcga gccagcgccg gggcgggggc agagcccggg 300
gcccgttccg gcagctccca gcggtgtcct cgtcgagggg ccgcctgccc ctccttctcc 360
agcctcttct cccgggaact cagcccggct gagtgacagc agcctgcgct ctaatgggcc 420
cccggatgct gcctcctaat tagcttggac cttctcccct acggctgctt ctcaggcctc 480
cctctctgca ccgcagtcaa ttttccggga ttgggataga aatgatggct tctaatcaga 540
cgaaacgttt ctgctggctc taggcgtttg gagaatgcag aaggaagacc ccaaggatcc 600
cagccagacc ccacagcctc ttgtacctct ccccttgttt tacaccttag gccttggcca 660
aatgggccag gcctggcctt ggcaggcatg gggttggcct tggcagcctt tgccctcctt 720
cagggtagct ttgtcccagc ctggggcctg cgtcctggct tcccagggct tcaggcatag 780
gcctggtaag ccaggtgact gctgtctccc aaccctgggc cagcagccca ggaagccctc 840
agtcttccag cttctctccc acacagtggt agctgagctg cagctccaat gggccttcac 900
tgggcacagg caaagacatt actctcccac tcctaagagt gattccctcc tcgagtcctt 960
gcacgtaggt gaagtttgtc gaaggatttt gctcaacaat tgttagctgg ccccgagacc 1020
tcagcgtctt gagcaaacag gccacagctg gggcggcaag gcgccgccct gacctgctcc 1080
tctggccata ggcggacccc agactgccct ctgcccctca cctgtgatca gctccaccag 1140
acacagcaac ccaagggagc tgcgccagga ttgtctgcct gggaaagaag cagggaggtg 1200
t 1201
<210> 31
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 31
tgaagagcac gagccccagg atgatgagga attggatgag ggagacgaag aggaagaagt 60
agcgcaggta ataccagcag ccccgagagc tgccccccgc ccgagcgtag gaccctccgt 120
gctccatggc cagacccatt tgctcgatcc cgccgtccgg tgcaccgtcc ctgctcacca 180
ccaggcctgc tctggccccc gcctcgcagg ggggagtgct tatattactc ctcttaatac 240
ttcctctgcc tggctccttc ctggcccgga ggaaacgggg gctgcgggtt atcacaacac 300
tcccactctg gctgtgagaa ggcgggggtg gggctggggg cccagagcca gggcaccggc 360
tggacccctc tgattaatgc tgggtggggc gctggctggc tggtcaggca ttcctggcct 420
cttcgagcct cgcgttcgcc tttacttgct ggcgggtgct gttctcagta cctgctgtga 480
ttaggtcgct gaatcatgcc aggtctgttg ctgtctccct tgtgtggcgg aggaaactga 540
ggcacaggga ggagaagggg ttgcctcggg gtctcacgct gttagttcag cgaacttgac 600
ttacctcaag acaggctggc tacagacgtg cacccacttc accagggcgg tgctgattaa 660
gtgccacaaa acgtgggaaa tgtgccaggc acggtggctc acgcctataa tcccagcact 720
ttgggaggct gaggcggacg gatcacctga ggtcagaagt ttgagaccaa cccggtcacc 780
gtggtgaaac cccccgtctc tactaaaaat acaaaactta gccaggtgtg gtggtgctcg 840
cctgtaattc cagctaccca ggaggctgag gcaggagaat cgcttgaacc caggagtcgg 900
aggttgcggt gagcagagat cgtgccattg cactccagcc tggggtatag agcaagactc 960
tgtttcaaaa aaaaaaaaaa acagaaaaag tgtgaaactc ttagctagcc tagggatgga 1020
gaagcagtag gtgattagta attgcatagg agggcgtcac ggagggctga gccatggatg 1080
gcggtggcgc tggctcccca agctctgtca ttgcccccag tgccctgttc acttagatgc 1140
tcagtaaatg ctccaggaaa ctgcagcaca aggaataatg aacttggagc ggggaagagc 1200
t 1201
<210> 32
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 32
ggacaatggt ccaggcagtg acaaagaggc tgaggcagat gggggtcccc tgagagcatg 60
tttcctggac ggcttctcgg ggaggtcctg gatgacttct cggggagctc aggaagcagg 120
taatgagtgc acaggaggca gaggacgggc ccaggcacag gtgtgtgact cactctgctc 180
taccctccaa tgagcagcag caggatgaag gattaggaaa ggcctgcccc cgggctctgc 240
tgggtgggca gggcagctga ggccaggaag ccagctcctg gggcggggcc ccaacaccaa 300
ggtcaccggg aatacccaca tccagccagg cacaccagct catcccacaa tactgggctg 360
ggcccctctg atgctgcgcc cctctgggag gaagggctgg gcttgggctg gcaggggaga 420
gaggaactgg gtcctttgac tgagggggag atgagccctg acctagagaa ggttttagcc 480
ctgtcctcag gagcccccag cctgggggag atggggacac agccctgtcc tcaggagccc 540
caagcctggg ggagatgggg acacagccct gtcctcagga gtccccagcc tgggggagat 600
ggggacacag ccctgtcctc gggagcccgg gcttcaattc aatgggtaca gccccaaatc 660
cagtgagccc caagttgatg aaaaagaccc aaagctgctt tcagaaggca ccctgtctga 720
ggggacacac agccagtttg cccacaggag gccagtacaa tgggtgtgac aaagccctgc 780
ccacaggtgc cctcaacaga aggggagaca gacctgcctt cagaaatgcc cagcctctgg 840
gaaagagaag tttctgcctt ctgaagccat atccggctga gagggagaca aagccatccc 900
tgtccccata gccatcaggc tgagggagaa gacaaaccct tgcacctcag agttctggca 960
aaagcctagg actgcaccca gtgctccagc tttgcacgtt ctgcactgaa agttactcta 1020
tttctattaa tacctctccc caccgccccc taccacaacc aaaatattgg gcttagcagg 1080
gagcagaggt gtcaggccac agaggaaagc aaactgggcc atggcatagg tgaacattct 1140
caaatgccag ctctaagaat ctgccagatg agggcttaac cgccgcctct ggtcctcagc 1200
t 1201
<210> 33
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 33
agccaggcac tgtggcgccc cactcgccct cccgcactcc ctcctagaga tgccctctta 60
tatccccgga gttcgcaccc cccggggcca caggactccc agtcccccct tcagatactt 120
actgaagcag ctgtggcccc caggctgcct cttgccagct gtctgtctgt ctgtcggtct 180
gtctttgagg gctgagaagg ctccaggaag ccagcttcct ccctccgccc ctccttgctg 240
ccacccacgc acaccccagc tgcattctgc cctcctgtgc ctgctgccgc tgccaccagg 300
ggtcggctgc ctcccgcctg tgcccttctg gggcccaagg ccccgttccc tgggaatggg 360
tgaggggcca ggccttcccg accatcctgc tttccccagc ttccagaccc tctcccctct 420
tctgtgtttc tcctctgggt ctttgtcaca tccagccgct gcctacttgc tgggcacagc 480
tcgcctgacc cccagctctg tgctgtccca caaagaaccc aaggctctcc tgctcaacct 540
gaccttggcc ggaggcttat ttctccttct ctgcttctgc cccacagccc tctccctcaa 600
ggccctctcc ctcaaggccc tctccctcaa agcccttgct gcttcaagcc ttgggaattc 660
atggccaagc acagaccaca tcttcccaga gcagatgtgg cacagactcg gggtggggaa 720
aaagaagaag caagaatcca tgcctcacaa tgtgaaggaa agggccgggg ccaggccaaa 780
aaggtcgtct ccacgcctgt gccacggccc agctctccac agcccacggc ctgagtgtag 840
gccagcccag caggaagcag atagcagagt ccacttgtgg gagggagtcc gaggggcttc 900
ccctgggccc tcagccccct gcaggcctcc tcccagaacc ctgacatcta cttagaagac 960
ttacagacag tggacagtct ctggccctca caccagggga ctcccatgtc ctcttcgctg 1020
ctggggtgcc tggatgcctg ggacctgaag ggtggccccc aagtccaaga ctcctctgcc 1080
cactgcccct gcctgacctt ggcaggctcc ttgcgggcca gcagcccagc cggttcatgc 1140
tcgctgcacg cctcctttta ccttgtaaca tttcaaacgc ccttcccttc ccggccccca 1200
a 1201
<210> 34
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 34
aggctgaggc aggctgccag gcgcatactg gccgataacg aaaagcggtc tcgccaaggc 60
cctgcagatc taattactgc cctcaccggc agttcagtcg agaaacctct cctgcagact 120
ggcagccaga ccaggtgtga ctcacttcct cttggaaaat gccctctgag atggcacagt 180
tctccttttc cttcagggag tgttctgtcc aaaccatcca ccgagagtat ctgcaaccgg 240
ccacacccac atggtctcac agctgagtca caggcctcag accactggga gaatcctgga 300
gccctttgtg ctaaccacgc cctgcagaag ctcccgcaga gacggaactg ggtgggggca 360
gaaaacgggg tgggcttaat gcatcccaga atctggctta gggctcccct gtgctggcct 420
ggcttggagc gctctgcatt ccaccccagc caacaaggca gagctcctgg tttcacttag 480
gcagagctgg actgaggctg gacaggcagc agtgtccacg gctaggggca gcgccattcc 540
ttcggccaaa gcacaggtgg tgaaccaagt accaaaggca cgtctgtctg tttcactgca 600
ccgggccaaa ttaatctatg attggaagat ccttcatcaa gcctgctctt cctccatctc 660
tttctggttc cacttattaa gacagcaagg gaaccctttc agtagagaaa ccacgtcaca 720
cagggccctc tcccacaaac cccagccaaa ctgctgtaga aagaaaacaa gtggacctcc 780
ctccctcagc aggaagaccc tttccgtcga gcagacaaca ggaagccccg accagaaacg 840
cctgtttggc cgacggacta agggttacgg aagggacgcc ccagctgcct actcgtccta 900
cccgcgccta cttgggcggt acagccggga gcaggctacg aacatgcaga cccggcctgc 960
gagcggaacc caccaagaaa cacgccagcc agggcagggg cgtgtaggag ggattcggta 1020
acccgagaga cgagtgggaa agtaggaaag gtgggagtaa agcaacgcaa acataaaggg 1080
aggagggaag aggttcaggc gcaccaatac cacggtcccc tcctaaagaa caagtgcccc 1140
ctcctctggt ccgcgtgggt ctgggggcgg ccgcgcccgg gccggggagg ggcgctgctg 1200
g 1201
<210> 35
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 35
gaggcacctg ctccgtagat gatttttttt tgcttatgca gttagtgcac agagtgagcc 60
ctgcgctggg aaagacacgc acacgcatat gcacacacat gggcacacac acacatgcgt 120
gcacacacac gcagaccctg agaccctgca cttgagtttc tagtcttaag caagaagggt 180
gtcaccgagg ttgtgtcctg cagctgctag tggccagtct gtcccacttg gatggtctgt 240
ttctatttta ttttattttt tacttttttt gagacagagt ttggctcttg ttggccaggc 300
tggagtgcag tggcgccatc tctgctcact gcaacctctg cctcctgggt ttaagcaatt 360
ctcctgcctc agcctcccga gtagctggga ttacaggcat gcgccaccat gccggctaat 420
ttttgtattt tttagtagag aaggggtttc accatgttgg ccaggctgga atcgaactcc 480
cgacctcagg tgatccgcct gcctcagcct cccaaagtgc tgggattaca ggcgtgagcc 540
accatgctgg cagtctgttt ctattttggc atttcctcac tgcacctgga gaagagcttc 600
attcattaat tcatccattc attcattcat tcaacaagta cctgacagcc tgtacagcag 660
tggtgccagg tgaggagggt gggtaaaaat gcagggtcct cctcactgca gtcactgcgg 720
gaccaggtac tcttttcctg cgccccacac tgccccaagg ccccactggt catccgtcca 780
gcactctgtg ctcgctgact ggtgcggtga actctccggc tgggctcctt tcctgctgca 840
ggtgccgcgt ctctttctta agcctgtgta gaaagttctt ttgtccgggt gacattggca 900
tgattgaatc agtgccagag ccaaacagga tgtggttctg ggcgactccc aacttccagc 960
aaatccgtgg ttgttttcag ttaccttaag agggacaact gaaacagaga caagcacccc 1020
aacagtaggg tgcttcgagg tcctggaggg gagccctggc cctgtggaga gagaccgagt 1080
cgtgcagcgt ccgtggcctg catttgaaac tgaagggcaa gaggctggtg agatccgaga 1140
gtcatgccgc tgcgtggagg aacatgctga acctctggag gaacggctct acctccaggt 1200
c 1201
<210> 36
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 36
tgcacttgca gctcgtacac tggcttctcc tgcagggacc ctggggggac acagaagctc 60
agctgcagct ccagcccccc ttctcacccc tgtgcctgtc cctcctccct cagctcactc 120
acccccccac agcaggggca gcagcagcag gggcagcatg tctccatccg ccagggcccc 180
agcccagtcc caggtccggc tgtcagggaa ggaaatgctc caaatgtcca aacgtggggt 240
ggggctgaga aagccccgac aggaagccgg agggtgagtg agagctgtgg acgcgcacag 300
aaggggaact tgggcatcac gtgctgttgg ggtgaggctg gggctgggaa gccattctgc 360
tcccaccccc actggacgcc gatggtgaag atactgaggc ccccagaggg gcttgtccag 420
acttgtaagt ctagactcct gaggtcacca ggtcccatag ctgcagcact ttccttatgc 480
acctttgtct acataggaag gagaacacca cttggccagc tccctgggag tcagggcctc 540
gggaccctca gcgagatggg agaataaatc ctttatgaca tgataggagc tgtggtgagg 600
gaagcacacg ctgggggttt caggtgggga agactttcct ctttccagag ggaaggcaag 660
ttgtcaggga caaacacatc aggtggacat gaccgggtcc ttagcagtca agagagatgt 720
ggtccccacc accagttgga tttgggaacc tcatctcatc cttgtccttg tcccaggcag 780
cgtcagaccc catccctgat gttgacagcc agatgaggct tgagagccgg gcatttgaaa 840
tgtgaacgtt gaggatatgg aataccaagt gtgaacccag acccctcacc taccggctgt 900
tgaactttac aaaagttacc taccctctct gtgcctcagt ttgctcagct gaaaaatgca 960
gacaataata gaattgctgt gtggggattc agtgaggtct catgtgtaaa gtgcttagga 1020
cagtgtctgg ccccgagaat tcactcattc aactgatgct tcatgggcgc ctatggtgca 1080
ccaggccccc tgttttagga gctggagata cagcaaagga taaactctta ggatgagaag 1140
gtaagtcaaa aatcctagtg ggggctcctc tgggcacact gcttatgcat acccctgctc 1200
c 1201
<210> 37
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 37
tttcttctct cagaaaatcg cgcccatcac tgagggtgga cgccccgggg ctggtgtctt 60
tgctccacgt ctcctgttca cctgaacccc taggagcagt tcctgcagga gcaaagcccc 120
agggccagca gacccctcac actctgcact aaccaggcct catgagatag cagtggtgaa 180
gggaaatgtc cttgtgctca gagagctgtg aggatgggaa tagtgtctgc tcttttcata 240
ttgatccttt cccttatgac tttcctgtct accaagcccc acaatacaac aatcacagcc 300
tcagcttccc cggcctcctg caggctgggc tcccctccgt gtccttggcg tgtatcaaca 360
ggcgcaatcc tcaccttcac agccccatgt ccgtctgctc ggtcctcctg agactgaacc 420
cccgacctag gggagagtga ccccaccctg cctgtgcccc ccactgaagc tcctgtcatg 480
gggagctcaa acgtcaggag actcagtgtc tccccaccac acagtgactc cttggggaca 540
gtgtccggct ctgctgtgtt gacctcattg tgcagaaagg gggtgcccac ctcgtggctg 600
ctgagggagg gatgagaggc tgcctgttca ccccacctgc acccctgtct ctcatggccc 660
cgagtcccac ttctgagcta cgcagacatc cacagcctgt gactcagggg tctgggcaga 720
tgggagttat tttcaccctg cagaaaatat cacctaaagg gaaaggcatt gagagggagg 780
caggaggtgg ggtgggccct gcatggggtg ggaatctggg tgagtctgtc tcccgctctg 840
gcctcaggga cccaggagtg aatgtcgggt ggtggacggt ggatctccca gggctgaccc 900
agccctgaca gtgtctgtgt gtgaagttct tcttctaagg aggtcactgt tttgacctca 960
ccaccgactt cctgtagggc ctcttctaag tcttgagccc gcagttcctg agagaagaac 1020
cctgaggaac agacgttccc tcgcggccct ggcacctcca accccagata tgctgctgct 1080
gctgctgctg cccctgctct gggggaggga gagggtggaa ggacagaaga gtaaccggaa 1140
ggattactcg ctgacgatgc agagttccgt gaccgtgcaa gagggcatgt gtgtccatgt 1200
g 1201
<210> 38
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 38
ggcatggcag agcacttagt gcccctctag ggactgacca gccgggggtg gaccctgttc 60
tatcctagac cccacttacc tgaggggaca aggaccagtg ccagcagcag gaagcaggga 120
ggcaagtggg ccaggcaggt gggggccgac atcgtggagc acatggcatc ttctgtggtc 180
cccaagactt ggggctcctc tgctctcttg tgagtgttgg agtctgaggc ggggcccgtg 240
gacaaggcag tttctgcgtc tcttggccac agctgcttgg ggaagtgttt tcattgcagc 300
aacacaaggc tgttggtgca ataggaagga gcccggtcaa agggtttcct gcttttgtgt 360
ctgggctgtg attcctgtag tcactgtgct aaaaccttgc cataggctcc atcctaggtg 420
cccgggaggg aggtgggcac tgaggtcata ggacgcactc cagaatcggg tggaatttgg 480
agcaaacatt ggatcttcct cttcttggct gtgcaagatt tcaaagtcac ttcccatttc 540
tgagcctttt gtttcttcat ctgcagcgta ggaacaacgg cagttccctc ctcagaacag 600
ttttggtaag attatgagaa ataatgtgag ggcacagaac aatgtaaatg ctaaacatat 660
taaccattat tattcatgat gtgcagaaag tagaggaggt gacattgctt aagaagaagg 720
atttattata aagcaagccc catgggggcc tccttttagc actgcaggga gggtacaggc 780
ctaattccta aaagtataat catgtgtaac tctctcagcc tctgtttcct ggggtccaag 840
tgaaacatac tcagattgtg caaacatttg cgtttgtggc atctttgttt cctgtaagtg 900
atctgaactt cctcaggagc ctcctggtgc tggctatcaa gaaggaaaag cttaatcttg 960
ccaattcatg caatccaggc aatctcttta gccacactgt ctgggttcaa atcttggctt 1020
tactcagtct ggctgtgtga ccttaggaca atcatttgac cactttatgc ctcggtttcc 1080
tcatctgtaa aacaggaata aaaatgtggt agcatgtgtg gggtggagta agcactctat 1140
aggctttcac cattgtcttt taggttaact cagtctttta attaactcag ggaaaagtac 1200
a 1201
<210> 39
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 39
caactgcaag aatttactat ccatggtcac agatcttcag gccctgtgaa gcatccagat 60
ccccgctctg aataggccaa ctgggccagg accgggagtc aggaaggttt ccgccttttt 120
tttttttttt ttttttttga gatggagtct tgctctgtcg cccaggctcc aggctggagt 180
gcagtggcac catctcggtt cactgaaatc tccgcctccc gggttcaagc gattctcctg 240
cctcagcctc ccacatagct gggatcactg gcacgcacca ccatgcccgg ctacttttgt 300
attttcagta gagacgaggt ttcgccatgt tggccaggct ggtctcaaac tcccgacctc 360
aggtgatccg cctgcttcgg cctcccaaag tgctgggatt acaggcgtga gccaccgcgc 420
ccggcccctg ctttcttaaa gaacacgcgg cagctgtgtg ttacacgcta tggctgaggt 480
caagtgtgag ggctggaatt gctgactgcc atgttctggg tctactgaaa atagctgcct 540
ggcctgggag gcccagttca gtccgggtgt gggtcccgct tcacctccag agcagcggca 600
gccggtaagg gtagaagcgg cctttggaga ggggtctctg cagcggcctg gggacaagat 660
gagggctcct ttgagtcctg gggtgcaggt tatagtagct aaaggggagg tctgagacag 720
tggggtctgg ctccaaggta aagaaggagc agcaaccaaa aggcctgatg cgcagcgcac 780
ccatcgcaag catgggcagt gcgtttaaga ctgggtgact cactttttct cctataaaat 840
gggcgcacgc aggccccagc tcagcgccag aagggggagc cccggcgcgc cggcagaaga 900
caaaggaaaa aagcgtgttt gcaaacgggg aagcggcggc gtgctgccgc gaggggcggg 960
gcggggccgg gggaggagcc cgcctgccgc ctgccaagcc cagtggtcct ggccgtgcgc 1020
cggaggcagc ggcggcgtgg cgcagcggcg acagtaagtg cgggccggct cgggctcttc 1080
cggctacggt cccggccgcc cccagactcg cgctcagcga cctccctccc gggccctggg 1140
ggcggctgcg ggctgccagg ggagccgcag gaccctaccc catccgtggt cccttcccca 1200
c 1201
<210> 40
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 40
atgtcacaca gccaagacag aactctggat ctcctttccc agccacaagc tgcccctctt 60
ccagtctgta agttcttacg gagcatatat atgtgatctg cctacttttc tccaacctca 120
ccacagtgac atgagcccaa accaacttct caccttgcaa cagcctccca ggtgggaagg 180
ctgagtattc tggcccttaa ccagttagaa ctccccagtt atctgtcctg ctgatggggt 240
tgaaatctac attcctgacc ctggcccacc aaagcccctc ccttagctcc catctccctc 300
ctctctccct gtcttctcct ctgctccaga cactctggct tcatttctgc gttttttgta 360
ccccataagc tccttcccac cccggggcct ttgcctttgc tgttccccct gcggggaatg 420
ccggatctct gctcagatat cctcttctca gatcagcaag ctaaagcagc cacctgtgtc 480
tgcctaaccc accaccgtag tttaactttc tgcctagtct ttatcactag ctgatatttc 540
tcaggatcct ttagttactt ctttttcgtc ttcccctcct agaatgtaaa ctcttcccct 600
cctagaaggt aaacaaaaga cctgttctgt tttgttcttc ggcccatccc aagcctagcg 660
tagtgcctgg tatgtggtgg tgtccaaacc caagcgtgga gtgaatgagg gatgaatcca 720
tgagagagtg agcggctcca gtgggtatgc gcgagtgtct cactcggtgt agatgtgtgt 780
gttgtgtgtg ttgtgtgtgt gcgcacgctg gggaggccag acaagtgtgg accagtgatt 840
ggggcacctc ttccctgcaa agaggccagg ggaagacagt gcgtgtgggg tcttctacca 900
gggaggatgg cttgctggtg tgtccccccc aggggaggac taccaacgaa ggggacccgg 960
gagatggcgg gtgggggccc ccgggaggac agtgggcgag ggagggggtc cttgccaggc 1020
ctggggcggc cgggggcggt cctgggctcc cctccgtccc gcctccaggc ctcggggcct 1080
ggctggccga cgtggcgttg gcggcgctgc gcgcgggagg gcagggcagg agggacagag 1140
gcgggggcgg gccggaaagt ttgtccggcg gcagcggcgt tggggactcc ggcgggggat 1200
g 1201
<210> 41
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 41
gaagggccct gagatgacag ctcgttggtc ctcatggaag cgtgaccccc ccagtagact 60
ttctcccaca cccaaccttg gtttcctcat ctatatgata gggacaagcc agactctacc 120
tccctggtgg tcatggtctc cgcttattcg ggttcataac cttaaaggcc cctcgcacca 180
cctcagtgag ccatttatgc ctggcacagg gccaactctc agtgcatatc tgcaaaggaa 240
ccaatgaatg aatgaatgaa gtgacaaatg aataaaggaa taaatgaatg aggcacttat 300
catgtaccag gctttcgtta ccacgtccca tttattcctc tgaggcaggg tctattttat 360
ccttgttaca gatggggaaa ctaaggccca gggaggagca aagtcttccc caagtatgta 420
cccactcaga acttgagctc tgaatgtctc ccacccagct tagcccaaga gcggggttca 480
gtgatgccca ccccctaagg ctctagagaa agggggtagg cccacatgcc agtttggggg 540
tggtaaagcc aggtaagttt tctttatggg tcccctgaaa ccctgaaagt gaaccccagt 600
cctgcatgaa agtgagctcc ccatagctca aggtattcaa gcacaatacg gctttgagtg 660
ctgaagcagg ctgtgcaggc ttggatagtg acatgccctc tctgagcctc aatttcccca 720
cctgtcaaca gcagacagtg acagctgtga tcaggggatc acagtgcatg gggatgggtg 780
ggtgcatggg gatggagggg catttgggag ccctccccga taccaccccc tgcagccacc 840
cagatagcct gtcctggcct gtctgtccca gtccagggct gaaagggtgc gggtcctgcc 900
cgcccctagg tctggaggcg gagtcgcggt gacccgggag cccaataaat ctgcaaccca 960
caatcacgag ctgctcccgt aagccccaag gcgacctcca gctgtcagcg ctgagcacag 1020
cgcccaggga gagggacaga cagccggctg catgggacag cggaacccag agtgagaggg 1080
gaggtggcag gacagacaga cagcaggggc ggacgcagag acagacagcg gggacaggga 1140
ggccgacacg gacatcgaca gcccatagat tcctaaccca gggagccccg gcccctctcg 1200
c 1201
<210> 42
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 42
tccagggtcg tgccggacta gaccctaggg cgtgggtaca aacgggagct ccgcagtccc 60
cgtaggagca gggaccctct cttacctctc aagctccagc gcgtcaagct ccaggacact 120
ccgcgtttcc ctggaggcgc caaggtcagg ttcttataac caatggttgg cgcctacctg 180
ggcaggtccc acacagggga tgaacgaacc aatgggtccc aggcagggca tggacgcgcc 240
aatgggagtg tctacaaagc ccgggaacac tttgccacgc tgtctagaag gcctggcggg 300
aggctcgcgc ctatgaaatc ccagcacttt gggaggccta agcgggttca tcgcttgagc 360
caagaagttc gagaccagcc tggacagcac agtgggaccc ccgtctgtac aacaacaaca 420
acaacaacaa caacaacaaa attactcagg cttagtggcg cgcgcctgta gactcaaatg 480
tagtctcaga tgcccgggag gctgaggctg gaggatcact tgagcccgag gaagtccagg 540
gtaaagtgag tcgagatcgc accactgcac tccagcttgg gcgacagagt gagagcctgt 600
tccccctaca aaaaaaaaaa aaaatgtctg gaaacgccaa gttttctgat tgctttcgag 660
tggttcttag ttctttctta ctccccctcc gcccctcctc cgtccctatc tctctctcct 720
ttcccggagc ctgcggtccc gccttccccg gacccctcct ctgagggtcc agccaagctc 780
tcgcccgagc tttccccttc caccgcactg caactgccca taccccagct tgggcttctc 840
tccccactgc ctgccccaga aagtgggcct tgagacccgg gaaccccagg tcaaaatgcg 900
acggatgctc ggatcgggcg gcactcggtt cctggctgga tttgtggctc cgcagacccc 960
gcgccagagt gggatgtggc ggcggccggt gctctgtgct cagtcaacgc cttggagagg 1020
aggactacga aacccataca ctcggacaga accctggcag gtgttaaagg ctgcggcaga 1080
gcagaaaagc agaaccctgg ctggttttct tgtaacacga gcagtgtgac ggttaccggg 1140
gttgaccaag caccgcgcat cggccaagtt ctcactgacg cggactggcc caagggtggg 1200
a 1201
<210> 43
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 43
aacctccact cacatcaccc tcccttcttc gataatgggc aattgagaaa gggcaaatgt 60
gtgtaaaaac tatgcagatg cagtttcagg attattttct tcttttctgc agtgtctttt 120
cccaagctac atcagcgtct aaattttgga gttactgatg cttccgttat ttctgcagat 180
agaatattat gtcgtaaata atgtttactt gtccattagt attatataaa agtgcctgtt 240
tctccccact ccagctatca ttgattattg gtaaaaattt taatgtatcc aattctaata 300
ggcaaagaaa ggctctccta cttagatctt aggtgggggt ctaagttcat atttttgttt 360
tacaaaaatt gaatagccag tgtttttgag ttgaatgatc tatccattcc gtataggaga 420
gtttaattat attgtgattt tgggggagat aattttcaca atttaccccc tcaaaatgta 480
gaaagtagaa aaagggtaga aaaatcgcac caaatttgaa caatgtagca tgcttttaga 540
gttagggata ttttcttttg gaaggatttc aagtctggcg tatttgcatt gattgtggtt 600
atggcgcatt taacttttcc aaaccagctt ttttgtaccg cacataggaa gacctgaggg 660
tgagtgtaaa ttaggattgt ttggccagtg gtgtgtgcaa aaatttattg tagaaccaag 720
aattatttct ttagtatttt acacatttta aaaaacaggt agacatgtcc attgatccca 780
ggttgcttat ggtttctaga ggccccctct cattgcaaca gtgctgtggg gccctagggg 840
tccagtagcc ccctcccccc aggtcattcc ggtgagggag ggagctggga cccctgcact 900
gcggcaaaca agcacgcctg cgcggccgca gaggcaggct ggcgcgcatg ctcaggcggg 960
gatgtgtgcg aagcctgccg ctgctgcagc gagtctggcg cagagtggag cggccgccgg 1020
agatgcctga cgcatctgtc tgaggagcgg tcagtgacgc gatggagcgg gcaaggtcag 1080
ctgtgccggt ggcttctctc aagagacagc ctggggagcg gccactttta ttcatcagat 1140
attccaagtt tttaggactt ggagtactga ataaacggaa tttgggccct aaagtccttt 1200
g 1201
<210> 44
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 44
gggggtgaag gagagaagta gcaggaccag aggggaaggg gctgctgctt gcatcagccc 60
acaccatgct gaccccgccg ttgctcctgc tgctgcccct gctctcagct ctggtcgcgg 120
cggctatcga cggtgagtga gattccgcgt cccccttgga cccctggggg caccctctcc 180
ccagccccca ctcctgcata cggatgggga agggagacgc gggagggggt gccttttgtt 240
atcccagtcc agctgacaca gcagcggccc gactgggggc ggggatgggg tccgatttgg 300
gggatggggg ccctgggcaa atgatgcttc cggggccccc cagcacaaac aaagaccaga 360
ggcctgggta gagagaagag ggctccccat ttttctgatc ctggggagga gaggccttct 420
tttcctatct ctgttcgggg agggcctccg cctcccctac atcctcacaa ccccccaccc 480
cccatctgaa ttgtgaagga atccggattt gcaatgttcg gctgcaaaag ggggtggggg 540
tggggggggt ggcttttgca ctggcctctg tagctcgaaa ggggagccag gccaggggta 600
ccctgccggg cagagggcag gcaggcccgg gaaggctgtg ggtggggaga gggagggccc 660
cctgcttggg cgtggaatcg accccagagc cccggctgga ggcctgggtg ctgaagtagg 720
ctcttccccc tctcagggcc tctgtcagta gcctggggta gggctgtgtt ggggggcaga 780
gagggggagc tcgccatact atgtgacttt gaattttcct tcttaattcc tgggagcttt 840
gagatgaaaa aacgtcagat gtcatcactg gggaagggga ctggagaatg gcctggaatg 900
ctggggtagg agggtggggg aggctgcctt cttcctgact tctggcttca tcacagtttg 960
gattggaagg agagttggag gttggatggg gattatggct gtgcccccac actcctttag 1020
taaatctgtt tattccctgc acccctccaa gcccaaaacc ccatacacac acactttgta 1080
tattgcagag ttaggcttag gctagaactg catccttttg gggaaatggg gtgcctctct 1140
tccctttttt tgtcagctgt ttttttctcc tacttgtgag tcactggttc aagtcttgcc 1200
c 1201
<210> 45
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 45
tcttcagtgc gatgggctgg ggagtggggt cctagcagca gggactggag gtgagctgaa 60
gcagataagg gacgggagcc ttgtggcgaa aagtgaccca cctgagggag aggcgcttcc 120
aaggaggaag cgtccagcgc caacggtgcg cgccgcgggc cgggcgggta gagggaagtt 180
tcgccgcgcc tgcagctcag cgctgtggct tgtggctctc gctgctataa gaagccagag 240
aagggcggga cggtctgctg gatttcgcaa gagaagcgga aaagaacttg tttcctggaa 300
gagttcaagc tgagaatccc agcagctgga aggaccggaa cttctatact gcggtgctgc 360
tgatggtgcc gctgaccccc gggaagcggg gattttaagg gttacacccg agcccttggc 420
atctgtgcat cccagggtga ttgaggtttg gagaggtcta ggaatccccc tttcctaaag 480
gagcaagaag gatctctttg agtagctgag aaaacagcac ctggactagg cttctaggca 540
attcttttgc catcttgtct cagtttatag aaaaggtggt atctttcccc tccgcctgga 600
agccatgggt tcttatgggg ctcataactt ggaagatctt gagttttcag gtcttaattt 660
aggtagatta aagaaataaa acaaatgaaa gagggatcgg gataccttat gatatacatg 720
caaatgtgtc tttctacaga gaaggtcaaa aaccacagcc ctggttgttt aagattgaaa 780
taatcctgat aaactatggg gcaaagcatc catacactcc caaactctgt aatctaaatc 840
ccagagtctt cccaatgatc tccactcagc catgggtctt aaattccaca gcatacgctt 900
gccaagctcc agaggcccgg ccacatggga ggcctgttcc tcccatggaa aggggttgtt 960
gagtcaacct tccctttgtc tggattgcaa ctctcctcat agcttcttgt ggggttggtc 1020
agaccccatg tctttcaaga ggtcttttct tagccattag ttgcaattaa tattttcttt 1080
ctctatacag tagtttatac ttttagcaca gcaattaaga caatttgcct ttcaaaagag 1140
ttattatcat gtgtgtgtgt cttgtcctgg actgcagtct tcgagggatg acaccctagt 1200
t 1201
<210> 46
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 46
gggcgtgccg cagccgcaag aacccgcaag ggaccccgcg cccgcaccgg tcccggcctc 60
ctggctccct gccgctccac acagcagcga gagcagcagc agcaagagga cgagacccag 120
ctcagggcaa cgtccacaca ccagccctag tgcgggcgca gccatgttgt cccgcgggcc 180
atgtgacccg gttggtcacg tggctgagcc ctccttaaag gggcagaatt ttgagctgac 240
ttacgaagtg accaggagag ttgctcttca cctttcttca ggtacttctt tggcgctgct 300
gcttgcctgt gctaacgtca aaacgcagca aaacacaaaa ctccacaaaa ctcaaggcct 360
tccacagacc gtgcacccct ttatgatttc ttggttgaaa aataacagtc aaatttgctg 420
ggcatttggt aagtgccaga gtactatgct aagcacttca ctttttaaaa tctcatttaa 480
tcctcacaaa gacccagtaa tggcgcgctt gtagtcccag ctagtcggga ggccaaggca 540
ggagaatcgt ttgaacctgg gaggcggagg tttcagtgag cccagatccc gccactgcac 600
tccagcctcg gcgacagagc aagactccgt ctcaaaaaaa aaagagaaat acaatacgga 660
atcagaatcc gtggggactg gacacagcaa tccagggttt cacaagctct ccagatgatt 720
ctaatccaca cttaagttta agaaccactg ttctacagtt ccgtaatcga acaaaatgca 780
aaaccaaaac aaaaagaaga tgaaggagaa acttacagat taaaaaacaa catagcaggc 840
cgggcgcggt ggctcaagcc tgtaatccca gcactttggg aggccgaggc gggtggatca 900
cgaggtcagg agatcgagac catcctggct aacacggtga aaccccatct ctactaaaaa 960
atacaaaaaa ttagcccggc gtggtggcac gcgcctgtag tcccagctac tcgggaggct 1020
gaggcaggag aatggcatga atccgggagg tggagcttgc agtgagccga gatggcgcca 1080
ccgcactcca gcctggggac agagcaagac tccatctgaa aaaaaaaaaa aaaaaaaaaa 1140
catagcagcc agctgcaata tgtgaacctt atctaaatac taattcaaac ctactgagtt 1200
c 1201
<210> 47
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 47
tggtctcttg cgtccagcct gggcaacaca gcgaaaccct gtctcaacaa aaaatacaaa 60
aattagctgg gcatggtggt gcgcgcctgc agtcccagct actgtggagg ctgacgcagg 120
aggatctctt gagaccagga ggtggaggtt gcagtgagcc cagatcgtgc cattacactc 180
cagcctgggt gacagagcaa gaccctgtct caagaaacaa acatgaagtc caggcgcagt 240
ggctcatgcc tgcaatccca gcactttggg aggctgaggt ggatggatca cctgaggtca 300
agagtttgac caatgtggca aaaaccctgt ctctactaaa aatacaaaaa ttagccgggc 360
atggtggtgc ttgtctgtag tccctgctac ttggggggct gaggcaggag aatcacttga 420
atccgggagg tggaggttgc agtgagctga gaccgcgcca ctgcactcca gcctgggcaa 480
cagagcgaga ctctgtctca aaagaaacaa acaaaagaac tggaggtggc ccggcccctg 540
cgtctaacag tcctgggccc tccacaccag cacaggaact caagcctgca gtcactgggg 600
ccatggggaa ggtgggagga gcccacagct caggggcact ggggcaggca ggaagagcct 660
cagagaggaa ggggtgacac cccccaccct tgggaggggc ccccagcggt tgccaaagct 720
gtgtgaggag gaggaggaag tgagaggagg aggtgaggtg ctgcgggagg tgagctgggc 780
tggtggggac aggggcaggg cttggggctg ggtctccgga cagaggcctg gcttttctgt 840
cagggcaggg cctagcccct gcccccataa aagaggagac atagggggct tggtgagata 900
ccctgaaacc tcccccctct gaccccgcag ccaggcccca ggctggccgg gagtggcccc 960
tcacactggt tctccccact ttctctgcct gtggcatcga aggccccggg caccatggcc 1020
caggccctgg gggaggacct ggtgcagcct cccgagctgc aggatgactc cagctccttg 1080
gggtccgact cagagctcag cgggcctggc ccatatcgcc aggccgaccg ctatggattc 1140
attgggggca gctcagcaga gccagggtaa gggggcaggg tgagggctgg cggaatgctg 1200
g 1201
<210> 48
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 48
cacctgggaa ggagatattt ttgccatttc acagctgttg aaactgaggc tcaaaaagac 60
taagtaactt ttctcagcta cacatgtggc tgagccagta tttgaaccca gttctgtttg 120
cagacagaac ctgggctttt tcacacctgc aaactggaaa cattaattgg ttcttaagat 180
catcatcgat gtgataaaac ctgggacaga aattagtcaa gactagctgc atctgccttt 240
tcctctggtg ggtaggaaaa ggaggagtat aatgatttcc tcaggcatga aggtcgatga 300
tgagcaaagt gtatactctc taatctaatg tcataattca tattgtggag taattatctg 360
gataagtgta gggtctctga cctcattcta gatattgtac attccatggc tattttcatt 420
ttggtccatg aactctcttt gctctcatga gcaccatttt tatcccaatc taatcctgta 480
tgtttgtgtt tttacacaga ttagttttta aatgttatat ataatttgct tctgaaacac 540
cattgctcaa tgactaccaa atctttctca ttaccaaaat ccttctatgc caacttcttc 600
aagaaatttg atcaccttta gatgaattgt taatgaaaat taaagctata gccggcaaca 660
tgggtatctt tgggctaatg gccaaccaac aggccatctg tgtgaaagaa aacaggctaa 720
caattttgga ctctggtctc ttggggctac attgagcatt gacctcaccg gtgctcactg 780
aaattaattg cttttcaggt tgtattttct catcacggaa accttcttct cccaattcaa 840
accatgtggg ttaaaatgag aaaacaaaag ccaaaacggc ttcccacacc caaaagctcc 900
ttctgtcaga gatcccagta gccccgggag agctgttaga agtctgagaa ggattggtca 960
tcatcgcata ccatacatag gtggagggct tgttattctc agtttcccgc ctatgagagg 1020
atacccctat tgtttctgaa aatgctgacc gggacccaca cttccaacaa aaattcctct 1080
gcccctacag cagcagcaaa agcagcagca gaagcaacag caacagataa gtgttttgat 1140
gaattgcgag atggataggg cttgagtgcc cccagccctg ctgataccaa atgcctttaa 1200
g 1201
<210> 49
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 49
tgcaacctct gcctcccagg ttcaagcgat tctcctgcct cagcctcccg agtagctggg 60
attagaggtg tgtgccacca cgtctggcta ggtttttttg tatttttagt agaaacgggt 120
tttcaccatg ttagtctggt ctcaaactcc tgacctcagg tgatccaccc gcctcggcct 180
cccaaagtgc tgggattata ggcgtgagcc attgcgcccg gccctcttct ccctgtttta 240
gagagtaaga aactgaggtt cacacaatca aagtgatttg cctaacgtca tacaacgagc 300
aagaggagac ctgggatttg aacctatgtt ggtctgactc ctgagggaca gggaaatgga 360
aaaggcttat cccgagcctg tggggtcagg ataagtggtt ggtccggctt ctaagcagat 420
ttctctttag ccttaggaag aatttttaac tagaattggt gaggcccggc gtggtggctc 480
acaggtggat cacacctgtg atcccagcac tttgggaggc cgaggtggga ggatcacttg 540
agtccaggag ttcgaggcca acgtagacaa taattatcga aagagtatgg gagttctgga 600
gaggtaatga gatccccttc accaggaggt ttccgataga ggaccatgga gtgtcctgga 660
gggacattcg ggagccctga cactacatct ccctcctcaa acccaaaggg cagaggcatg 720
tccctcctat gagacgcaga acaagtcggg ccgcgtcccc tttttctaac tgggagcact 780
gctgaggggg cgtctgggac ttcttcatct tcatcatcgc cccttcccca tagggtactg 840
cagggggcgg ggggcggggc ttcggcgggg cggggctgca gggctcccgc gggctggcgg 900
ggcggcttcg gcgtgcgggg cggggcatcg gcggggcggg gctgcagggc tcccggggac 960
cgcccgcccg cccctcagtc tgagcccaga gagccgcggg gaccatggag ccggtgccgc 1020
tgcaggactt cgtgcgcgcc ttggaccccg cctccctccc gcgcgtgctg cgggtctgct 1080
cgggggtcta cttcgagggt gagcgggggc tggaacccct ccgagcactc ccttggtgtg 1140
gggcgggggc agagacccgg agaagacgtt agcaatccgg ggaaactgcc cctgggttca 1200
a 1201
<210> 50
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 50
cgaattaagg atgttaatca gaaccccagg gaaggttcct gcattgtcag aaagctggtg 60
ggcaaggatt gccccacccc accccccacc aggggtacag gtccatgggg agggggcagg 120
gcaggatggg gtggggatta gttttctact gacccactca cttgcttctt tcaccatcat 180
tcatggccac ccccttccca atgctcattc attcacccgc accattccct gcttgctagg 240
acggtgccac tcctgagtta caaccctggt gccaggtagc ctctgtttga atcccggcca 300
tgccctgtga tcttaggaaa attctacagt tcctctacgc cccatatttc ctcatccgta 360
aaacgggaat aagaaccggt acccatctca gagatttgtt gtgagctttg agtgagataa 420
actatgctga gtgcctggta tacagtaggt gctgtataaa tgccggctat ttgcctgtgt 480
tatttgagac cctggctttg gctcctggcc acctgagttc cagtctcagt tctgccatgt 540
attgactctg tgatcctggg taagtcactt aaccactccg tgcctcagtt tccccatttt 600
gtattcctcc cctttcacct gccttatctc cctccactgc tgctacttaa tttgtttcct 660
ctctgccacc cctcaccagc atgtcagaca tacaaaacaa gggatttttg tgtgcttggc 720
acacagtaga tgcacaataa atgttgaagg gctgaactaa tttgggtttg agtcataggg 780
agcttggggg atgtgggtga ttggatagat tctggagact ttaggggact gggccggggg 840
aaatgcggcc tctaagctct ccgctgaggc ggcttggaag gaatagtgac tgacgtggag 900
gtgggggagg tggctggccc gggcgaggcc cagggagagg gagaggaggc gggtgggaga 960
ggaggagggt gtatctcctt tcgtcggccc gccccttggc ttctgcactg atggtgggtg 1020
gatgagtaat gcatccagga agcctggagg cctgtggttt ccgcacccgc tgccaccccc 1080
gcccctagcg tggacattta tcctctagcg ctcaggccct gccgccatcg ccgcagatcc 1140
agcgcccaga gagacaccag aggtaagcag ggcccggggt ggcccagcag ggaccggagc 1200
t 1201
<210> 51
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 51
gatagctcca ggctctcagg acagaggagg ggaccccagg actcaccagt tccttggcgt 60
acaggactgg gtgctcccgc cgaatggagc gagagtgggg ggcacctggg ctggaagaga 120
gagtccgtgc tggtgcccgg ggctgctctg ggctggcgcc tgcccgccct ccctcctccc 180
gtccctcctc ccgtccctcc tccttcctcc ctccccggct gggccgcagg gccagcttga 240
tttcattaag agggtttggg gtggggacag ggggagggga ggggctactc tcgggccaca 300
cgcaatccca cccttgctca cactctcgct ctggggaaga ccagatgcgg cacttcctcc 360
ctgacctcgg gtccccaggg caggctgaga cagacagaca aggctgtcct gcagcgctcc 420
cccagacagt gagctggggt tctgcccacg ctgctgccca ataccctcca aaggggacaa 480
gctcagggag gttcagaggc ctctggaagt gggaaggaaa attccccgtc cttgtgtggc 540
tcaggcttcc aggctcaggg tgcagcgtgg gagctgggat tcgttttaga gacaggcctg 600
atggtgggtc cgagcctgag acagggagcc caactctgcc cttccctctc cagacctcag 660
tttcccattt gtagggatgg gtgggaagct ttctgggcta cctctgactc tgatgttctg 720
ggatctgtgg cctcacaatg cccccaaatg atagtagctt gaataggagt tggagcccca 780
tttcacagag ggggaaagtg aggcagggtg agttctaatg gttcaagcag ggtcctgagg 840
tgagtcagtg gcaggccttg gaaccgggac gtctggctga cctgaggagt cctgtggatt 900
agcagcccct tgcattcatt cattcattca ttcattcatg cattcattcg gcaagtgctc 960
aatgaacacc tgcagcaggc cacgcactgt gctaagcaag ttccagaggt gaatcaggca 1020
cagcccagcc ttggggagct cacagactac cagggagaag gacaccgagg taaattactt 1080
ttttgccaaa cagaaagggg tcaggtcaag ggctccgaga accccaagac agagagatca 1140
atcccccaag ggaaagaggt aggaagccat cctggagggc atgcctgtgt atgagcagaa 1200
g 1201
<210> 52
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 52
acagttcctg ctgggtgtag ccccaggtga tgggctgagg gggaaagggc aggcccttgt 60
cctggtggca acgcctggca gacgtgtgca gtgggccggt tgtctcacag gcctctagga 120
tgtgcccagc ctgccacacc gcctccagga agcagagcgt catgcaggtc ttctggccag 180
agccccagtg agtgcccacg gaggccccca gcacacccaa cgtggcttga tcacctgcct 240
gtccagctct ggtgggccaa gaacccaccc aacagaatag gccagcccat gccagccggc 300
ttggcccgct gcaggcctca ggcaggcggg gcccatggtt ggtccctgcg gtgggaccgg 360
atctgggcct gcctctgaga agccctgagc taccttgggg tctggggtgg gtttctggga 420
aagtgcttcc ccagaacttc cctggctcct ggcctgtgag tggtgccaca ggggcacccc 480
agctgagccc ctcaccggga aggaggagac ccccgtgggc acgtgtccac ttttaatcag 540
gggacagggc tctctaataa agctgctggc agtgcccagg acggtgtctt cgtggcctgg 600
gcttggtggt gggagttgag ggacagggag ttggcagagg cccctcccag cctgccatgt 660
gacactgtac ttcctccacg gtgggctcag ccctgccctc atcctcacag ccgcagccaa 720
gctgcagttg gtaggggatc caccgacaca ccaggctgcc tgggctggtc tctgggttgg 780
gagctgcccc aggtgctgag gagggcagct ccctggctgg tgaggcccct cccagaacca 840
cccttggact gagctctggg gagggatggt accaggtggg tgaggggggc tgcctgggga 900
gggaggggtt cctatggggc gtggcgaggc tggcccagcc ctctccccgc ccatatatgt 960
agggcagcag caggatgggc ttctggactt gggcggcccc tccgcaggcg gaccgggggc 1020
aaaggaggtg gcatgtcggt caggcacagc agggtcctgt gtccgcgctg agccgcgctc 1080
tccctgctcc agcaaggacc atgagggcgc tggaggggcc aggcctgtcg ctgctgtgcc 1140
tggtgttggc gctgcctgcc ctgctgccgg tgccggctgt acgcggagtg gcagaaacac 1200
c 1201
<210> 53
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 53
ggaggcgggg acccaagggt taaaaaaaaa aattcctcaa tttggaaaca tttgcaaaac 60
tccagaagaa aaacttttaa aagttctcca ctcccttcca aacgtacaaa catgcacaca 120
cacaattagg aatttcccaa agttttcatc tgtctaaaaa gaaagtgcca gtgcaaatta 180
cagaacatcg tcgcttcctc atgtgcggcg tttctacggg cctgggaggg gacgcagagg 240
ctaccccggt ggtcccagcc tgcagcgttc acgtgaggaa acttccgcaa aagccctgat 300
gcatgcacat tctgactgca gaggccagag catcccgcat tttggaggct gaaaggctcc 360
cctaggataa ccttttccgt taacagagga gtccgctgaa gcgcagagct aactgaaaac 420
agctagaatt aaaatccaag tcacccggcc ggcatcagca gtcattcctt tccaccacac 480
aaaactggcc aggaagacgg actctggcgc gccctcccag gccgaagcgc atttcttcgc 540
taacgcgcga ggagtaggct gcatagaccc ggcgcaggag gtgttcattt tcggatccag 600
ccctgtagtc actttagcta aacccggttc caaaggggtg ggagtcgtcg gagaggaatg 660
gcctctgtat ctccggagac ggaaacacca ggacgaagag gccctaagaa cgtgtgcccg 720
gggtgcgacc ggggggtggg gggcaggggg cagagaccct gaaaagctcc accgccgaac 780
cccagggcag tgtcccggct tggctggact gggcgcgggc ggctgcaatg ctcccgggcg 840
cggcgctggg accccgcggg ccacgtcggc tccgctgccc cgacgccagg gcccgactcg 900
cgtctccctc tggcggggca ccacaagggg cagcgaaacg gtggtggggg cgggcgccgc 960
gctccttccc gtctcctccc cgccagctcc gggcccgtcc ttttccgccc ggctcccggc 1020
aagggtcccc cgactggcgc ccgcgcgtcc tccctcggct gctgcaggcc gggccgcggc 1080
gtcgagcggg ggcggcgggg cggggcccgc agccattggc gagcggcggg gcgggggcgg 1140
gggcgcggag ggtcggcccc gggacgcgcg cagccggccc gcagttgccg ctgtcgtccg 1200
c 1201
<210> 54
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 54
gctcagcccc agagagggaa actttcaatt ctgttggtca agagaggcct cacttgaggg 60
accaggccca gtggctcaca cctgtaatcc caacactttg gaaacctgag gcagaagaac 120
tgcttgaggc caggagttcg agaccagcct ggtcaacata gtgagaccct gtctctctca 180
aaaaaaaaaa acaaacaaac aaaaaaaaaa aaacgaggga ccttatttta agatgtccga 240
ggcagcttgg agtagtggag aacaggtagc tggtggtttc tctgtagcag tgagaggaca 300
ggatgggtag attcggctca ggaaggctct gaagtggtag tagatacacc agcctccccc 360
atcctctgac tgaggagcaa gtgcatggcg ggtgcatgac agcacagagc tgcacttgcc 420
ctcatggtga ggaaagacat acagaaaggc tagagctagt actttgccca tgtggggctg 480
ctttcttttt gaatagaggt gaaagtcaca caatgtacag tttgttattt taaagtgtac 540
agatcagtga catgtattca gaatgttgtg caaccaccac ttgtctttag tttcaaaact 600
ttttgggtgc ctgtttttgg ttctgggtga gatgcactca ccagggtgat aaagaccctg 660
cctggcttgt tcatggcgtc tccaggacct agtatggtgc ctgaccgtgg cactcatagg 720
gtgtttgttg agtgaatgaa tgatgccttt tcagctgaac tcgagctaga agactccagg 780
gctcactcca ctgtgcccat tccacagatc cggccccgag gtgtgcccgt tcaccaggca 840
gaggtgtcat ccgaattcag gctcctgggg cccgggaggg tccgactcta cggacccagg 900
tcgctgtggc ccatcgcttt cgatttgact tggtttctgt cgccactcgc ggaaggcgcg 960
ccccccgccc tcgctcggcg gcccgccccg ccccgcccct gctcttcctc cggggccgct 1020
ggcactgcgg ccgctccgca ggcagagaag ccgggagcgg gcgaggcggc ggcggcagca 1080
gcgatggtga gggcccaggc ggggccggcc agccctgcga cgggcagagg gcgagtggcg 1140
agggtgggag agaggagtcc aaagtccgcg ggctggggcc tcccctgggg cccacgaggg 1200
c 1201
<210> 55
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 55
agtgagactc cgtctcaaaa aaaaaaaaag aagaaagaaa caaagagaga aagaaaggaa 60
agaaagaaag gaaggaagga aggaaggaag gaaggaagga agaaaggaag ggagggaaag 120
agggagagaa aggaaggaag gaaaaaaata acttaaaaaa tcagatttgt tggacaaaga 180
tcagggctta acctagggag gtgggtagag ctaatggaat gcggaaaagg ctgtgatttg 240
aaatgagggg atttaggaag acctcatgag aaggtagcat ttgagcaaag acatgtaggg 300
gtgagggagc tagccatgaa gttgcttaag gtggaggaca cagcccgtgc aaaggccctg 360
gggcagggcc gtatgttcct ggcatgttgg aggaagagcg aagaggcccg tgtggctgga 420
gcacagtgaa gagggggaga gagggagtgg ggagggcagg gagggaactg ggcaattcaa 480
gcagggtttt gtgggccttg gggaggactt gggcttgtcc ctggaggaaa gtgggagcca 540
tagagagttg tgggcagaag aagggtgtgc cctgactcag atgctcacag gcaacctctg 600
gtggtggctg cagggaggac agactgtggg gtacgggggc tggagtcaga agaccagctg 660
agtgatgacg gggctggacc agacagagga gggggtgaga agtgggtgaa ttctgggtat 720
atttcagagt gtcactgccg ccgtctgcat atggaggaag ctcacccatc tcatagtcta 780
gctggcctga ctcccccagc cccccaactc cccatgccca ggcctgtgtc gagtgggcgg 840
aagaaagaga tgtcagattc tgcatggaag gcgtggggtg gggctgggct gcaggtgctc 900
ccccagctcc cccccgcccc atggctcctc ctcctccacc ccctctcagg gcgacagtta 960
caggcaaaga agaggaagtg gtagcactag ctgtcgctcc acaggcgagc agggcaggcg 1020
tgcgggcggg tgggtggtgg aggctgcgag ggtgcacggc cggccctggg caggcggtag 1080
ccatggagct gtggcgccaa tgcacccact ggctcatcca gtgccgggtg ctgccgccca 1140
gccaccgcgt gacctgggat ggggctcagg tgtgtgaact ggcccaggcc ctccgggatg 1200
g 1201
<210> 56
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 56
aaagtgagta cataaggcca gcgtggggag gaatagcgaa aaggtagttg gatcaatgga 60
tttggggtct tggagttgaa gtttttggag ttggagtatt atcagacaga gtgagctaga 120
aaggaagaag gttgtggccg ggcgcagcgg ctcacgcctg taatcccagc actttggaag 180
gccaaggcaa gcggatcacc tgaggtcagg agttcgagac cagcctggcc aacatggtga 240
agccacttct ctactaaaaa tacaaaaatt agccgggtgt ggtgccgggt gtttgtaatc 300
ccagctactc gggaggctaa ggcaggagaa tcacttgaac ccgggaggtg gaggttgcag 360
tgagccaaga tcgcaccact gcactccagc ctgggcaaca agagcgaaac tccatctcaa 420
aaaaaaaaaa aaaaaagaaa gaaagaaaga aagaaagaaa ggaagaaggt tgcaatggga 480
gttagaggat taaaattgag attgtagaga agttacaatt attcgtatga gcatgagagt 540
gagaggctga gccaagaatg atccctagag aagaatctga gaggccagag gattggaaga 600
attaagcgaa ttttgaaata accaagagtt atgacaatag tagtaatgaa tgacagtgaa 660
ccagaagccc aaatcttaga gaatgatggt gaatgacaga ggagtctata ggtgaccgaa 720
gtgagcgatg ctctaatctc tcgtcatgat gtaatattta aagcttttca tattttgaag 780
ggatgctagg atttgggggt gtgtggctcc tttaagggcc tgggaggggg agaagctgga 840
ggtcgggctg gggggggcgg gaccccctcg tctgagtctg cgcattgaga gcggaggcgg 900
gtccaggcgc gggctcgcgc gcccgggcgg gtcctcgcgg gggcggagtc tgcgctctgg 960
ttcgggctgc ggctgcggct gcggctgcgg ctgctactgc tacgctccta gcttgaggga 1020
aagaggccga ggcctgggcc aagcccggag ccgccgctcg ccggagcctc ctggagcctc 1080
cgcgccggct cagcctgggg gcgggctccg gtccggcccg ccgccgcacc caggacggag 1140
gctgcatgcc cgaggaccag gccggcgcag ccatggtgag ggagcaaggc ctgccctagc 1200
c 1201

Claims (10)

1. Use of (a) and/or (b) in the manufacture of a kit for diagnosing thyroid cancer in a subject or identifying benign or malignant thyroid nodules in a subject,
(a) Reagents or means for determining the methylation level of a DNA sequence or a fragment thereof or one or more CpG dinucleotides therein in a sample of a subject,
(b) A treated nucleic acid molecule of said DNA sequence or fragment thereof, said treatment converting unmethylated cytosine to a base having a lower binding capacity for guanine than cytosine,
wherein the DNA sequence comprises the following gene sequences: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, PB 3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, STF 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 3934, SIR 24, ATxPLP 34, and optionally one or more of TBCP 3,
preferably, the first and second electrodes are formed of a metal,
the DNA sequence also includes the following gene sequences: (1) ATF7IP2, PLVAP, or (2) SIRPB2, or (3) ATF7IP2, PLVAP and SIRPB2, and/or
The fragment is a promoter region of a gene sequence, and/or
The fragment comprises at least 1, preferably at least 3 CpG dinucleotides.
2. The use according to claim 1, wherein the DNA sequence comprises the sequence: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, 55 or a complement or variant thereof; the DNA sequence optionally further comprises one or more selected from the group consisting of: 5or a complement or variant thereof, 31 or a complement or variant thereof, 38 or a complement or variant thereof, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated,
preferably, the DNA sequence further comprises the following sequence:
(1) SEQ ID NO. 5or its complement or variant, and SEQ ID NO. 31 or its complement or variant, or
(2) 38 or a complementary sequence or variant thereof, or
(3) SEQ ID NO. 5or a complement or variant thereof, SEQ ID NO. 31 or a complement or variant thereof, and SEQ ID NO. 38 or a complement or variant thereof.
3. The use according to claim 1 or 2,
said reagent comprising a primer molecule which hybridizes to said DNA sequence or fragment thereof or transformed variant thereof and which is capable of amplifying said DNA sequence or fragment thereof or transformed variant thereof and/or
Said agent comprising a probe molecule which hybridizes to said DNA sequence or fragment thereof or transformed variant thereof, and/or
The sample is derived from mammalian tissue, cells, e.g., thyroid tissue, and/or
The DNA sequence is transformed in that unmethylated cytosine is converted into a base having a lower binding capacity for guanine than cytosine, and/or the DNA sequence is treated with a methylation-sensitive restriction endonuclease, and/or
The diagnosis includes: and calculating to obtain a score, and diagnosing the thyroid cancer according to the score.
4. <xnotran> , , (1) SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , </xnotran> SEQ ID NO:29 or a complement or variant thereof, SEQ ID NO:30 or a complement or variant thereof, SEQ ID NO 32 or a complement or variant thereof, SEQ ID NO 33 or a complement or variant thereof, SEQ ID NO 34 or a complement or variant thereof, SEQ ID NO 35 or a complement or variant thereof, SEQ ID NO 36 or a complement or variant thereof, SEQ ID NO 37 or a complement or variant thereof, SEQ ID NO 39 or a complement or variant thereof, SEQ ID NO 40 or a complement or variant thereof, SEQ ID NO 41 or a complement or variant thereof, SEQ ID NO 42 or a complement or variant thereof, SEQ ID NO 43 or a complement or variant thereof, SEQ ID NO 44 or a complement or variant thereof, SEQ ID NO 45 or a complement or variant thereof, SEQ ID NO 46 or a complement or variant thereof, SEQ ID NO 47 or a complement or variant thereof, SEQ ID NO 48 or a complement or variant thereof, SEQ ID NO 49 or a complement or a variant thereof, SEQ ID NO 50 or a complement or variant thereof, SEQ ID NO 52 or a complement or variant thereof, SEQ ID NO 53 or a variant thereof, SEQ ID NO 52 or a complement or a variant thereof, SEQ ID NO 52 or a variant thereof, SEQ ID NO 54 or a variant thereof, SEQ ID NO 52 or a variant thereof, SEQ ID NO 55 or a variant thereof, SEQ ID NO: 5or a complementary sequence or variant thereof, 31 or a complementary sequence or variant thereof, 38 or a complementary sequence or variant thereof, said variant being a variant which is at least 70% identical to the corresponding sequence and in which the methylation site is not mutated, and (2) a treated sequence of (1), said treatment converting unmethylated cytosine to a base which has less binding capacity to guanine than cytosine.
5. An agent for detecting methylation of DNA, said agent comprising an agent for detecting the level of methylation of a DNA sequence or fragment thereof or one or more CpG dinucleotides therein in a sample from a subject, said DNA sequence comprising the following gene sequences: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, PB 3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, STF 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 3934, SIR 24, ATxPLP 34, and optionally one or more of TBCP 3,
preferably, the first and second electrodes are formed of a metal,
the fragment is a promoter region of a gene sequence, and/or
The fragment comprises at least 1, preferably at least 3 CpG dinucleotides, and/or
The DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, 56 or a variant thereof, and optionally one or more of the following, 54 or a variant thereof, 56 or a variant thereof, or a complement or variant thereof, or a variant thereof, 52 or a complement or variant thereof, 53 or a complement or a variant thereof, and optionally: 5or its complement or variant, 31 or its complement or variant, 38 or its complement or variant, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
6. The reagent according to claim 5,
said agent is a primer molecule which hybridizes to said DNA sequence or fragment thereof or transformed variant thereof and which is capable of amplifying said DNA sequence or fragment thereof or transformed variant thereof, or
The agent is a probe molecule that hybridizes to the DNA sequence or fragment thereof or the transformed variant thereof.
7. A medium bearing a DNA sequence or fragment thereof and/or methylation information thereof, said DNA sequence comprising (i) the following gene sequence: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, SH3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, FN13, AFURF, SLSTAT 6, STEAP4, SUMF1, PB 1D10C, TEK, THIS 2, THIS 1, SLC 24, VAMP 6, TMR 24, VAMP 6, TMSFF 24, VAzF 34, or a sequence that is less capable of converting to a cytosine 34 when treated with one or more than one of said sequence (S3, TMSFF 24, VAxIFF 34),
preferably, the first and second electrodes are formed of a metal,
the DNA sequence comprises a sense strand or an antisense strand of DNA, and/or
The fragment is a promoter region of a gene sequence, and/or
The fragment comprises at least 1, preferably at least 3 CpG dinucleotides, and/or
The DNA sequence comprises: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or its complement or variant, 31 or its complement or variant, 38 or its complement or variant, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated.
8. The medium of claim 7,
the medium is a support on which the DNA sequence or a fragment thereof and/or methylation information thereof is printed, e.g., paper, plastic, metal, glass card, and/or
The medium is a computer-readable medium storing the sequence and/or its methylation information and a computer program which, when executed by a processor, performs the steps of: comparing the methylation sequencing data of the sample to the sequence or information, thereby obtaining the presence, amount and/or level of methylation of nucleic acid molecules comprising the sequence in the sample.
9. A kit for identifying thyroid cancer or thyroid nodule benign and malignant comprising:
(a) Reagents or devices for determining the methylation level of a DNA sequence or a fragment thereof or one or more CpG dinucleotides therein in a sample of a subject, and
optionally (b) a treated nucleic acid molecule of said DNA sequence or fragment thereof, said treatment converting unmethylated cytosine to a base having less ability to bind guanine than cytosine,
wherein the DNA sequence comprises the following gene sequences: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, PB 3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, SLF 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 3934, SIR 24, VAxft 3934, and optionally one or more of TBCP 3,
preferably, the first and second electrodes are formed of a metal,
the fragment is a promoter region of a gene,
the DNA sequence comprises the following sequences: <xnotran> SEQ ID NO:1 , SEQ ID NO:2 , SEQ ID NO:3 , SEQ ID NO:4 , SEQ ID NO:6 , SEQ ID NO:7 , SEQ ID NO:8 , SEQ ID NO:9 , SEQ ID NO:10 , SEQ ID NO:11 , SEQ ID NO:12 , SEQ ID NO:13 , SEQ ID NO:14 , SEQ ID NO:15 , SEQ ID NO:16 , SEQ ID NO:17 , SEQ ID NO:18 , SEQ ID NO:19 , SEQ ID NO:20 , SEQ ID NO:21 , SEQ ID NO:22 , SEQ ID NO:23 , SEQ ID NO:24 , SEQ ID NO:25 , SEQ ID NO:26 , SEQ ID NO:27 , SEQ ID NO:28 , SEQ ID NO:29 , SEQ ID NO:30 , SEQ ID NO:32 , SEQ ID NO:33 , </xnotran> 34 or a complement or variant thereof, 35 or a complement or variant thereof, 36 or a complement or variant thereof, 37 or a complement or variant thereof, 39 or a complement or variant thereof, 40 or a complement or variant thereof, 41 or a complement or variant thereof, 42 or a complement or variant thereof, 43 or a complement or variant thereof, 44 or a complement or variant thereof, 45 or a complement or variant thereof, 46 or a complement or variant thereof, 47 or a complement or variant thereof, 48 or a complement or variant thereof, 49 or a complement or variant thereof, 50 or a complement or variant thereof, 51 or a complement or variant thereof, 52 or a complement or variant thereof, 53 or a complement or variant thereof, 54 or a complement or variant thereof, or a variant thereof, optionally further comprises one or more of the following: 5or a complement or variant thereof, 31 or a complement or variant thereof, 38 or a complement or variant thereof, said variant being a variant having at least 70% identity to the corresponding sequence and wherein the methylation site is not mutated, and/or
The agent comprising the agent of claim 5or 6 and/or the medium of claim 7,
the sample is derived from mammalian tissue, cells, e.g., thyroid tissue, and/or
The kit further comprises a reagent for converting the DNA sequence, said conversion converting unmethylated cytosine to a base having a lower binding capacity for guanine than cytosine, preferably said reagent comprises bisulfite, bisulfite or metabisulfite or a combination thereof, and/or
The kit further comprises a methylation sensitive restriction enzyme, and/or
The kit also comprises PCR reaction reagents.
10. An apparatus for diagnosing thyroid cancer or identifying thyroid nodules as benign or malignant, the apparatus comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor when executing the program performs the steps of:
(1) Obtaining the methylation level of a DNA sequence or fragment thereof or the methylation level of one or more cpgs in said DNA sequence or fragment in a sample of a subject, said DNA sequence comprising the following gene sequence: ACSL5, ACTR3B, AIM, ASB2, C15orf62, C2CD4B, CCDC, CCNB2, CD200, CD3G, CEBPD, CIITA, CSK, DLEU7, DYNLT3, ELF4, FABP3, HLA-E, HRH, IL12RB1, IL17C, ITGB2, KRTAP5-9, LAT2, LGALS1, LPIN1, OAS3, PCYT1B, PITX, PTR, PTPTPN 7, S100A10, PB 3BP4, SIGLEC14, SIGLEC7, SLC29A3, SLC2A10, SLC5A5, SLFN13, AFURF, STAT6, STEAP4, SUMF1, SLF 1D10C, TEK, THIS 2, THIS 1, VAzmP 24, SIR 3934, SIR 24, VAxft 3934, and optionally one or more of TBCP 3,
(2) Calculating a score, and
(3) Diagnosing thyroid cancer or identifying benign or malignant thyroid nodules according to the scores,
step (1) comprises detecting the methylation level of the sequence in a sample, including but not limited to: PCR based on bisulfite conversion, DNA sequencing, methylation sensitive restriction enzyme analysis, fluorescence quantification, methylation sensitive high resolution melting curve method, chip-based methylation map analysis, mass spectrometry,
step (1) comprises detecting the methylation level of said sequence in a sample using a reagent according to claim 5or 6, a medium according to claim 7, or a kit according to claim 8 or 9, and/or
The sample is derived from mammalian tissue, cells, e.g., thyroid tissue, and/or
The sequence is transformed in that unmethylated cytosine is converted to a base that does not bind guanine, or the DNA sequence is treated with a methylation sensitive restriction enzyme.
CN202111078925.4A 2021-09-15 2021-09-15 Thyroid cancer diagnostic method Pending CN115807080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111078925.4A CN115807080A (en) 2021-09-15 2021-09-15 Thyroid cancer diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111078925.4A CN115807080A (en) 2021-09-15 2021-09-15 Thyroid cancer diagnostic method

Publications (1)

Publication Number Publication Date
CN115807080A true CN115807080A (en) 2023-03-17

Family

ID=85481936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111078925.4A Pending CN115807080A (en) 2021-09-15 2021-09-15 Thyroid cancer diagnostic method

Country Status (1)

Country Link
CN (1) CN115807080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116949156A (en) * 2023-09-19 2023-10-27 美迪西普亚医药科技(上海)有限公司 Analysis method for detecting human T cells in general way based on nucleic acid variants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116949156A (en) * 2023-09-19 2023-10-27 美迪西普亚医药科技(上海)有限公司 Analysis method for detecting human T cells in general way based on nucleic acid variants
CN116949156B (en) * 2023-09-19 2023-12-08 美迪西普亚医药科技(上海)有限公司 Analysis method for detecting human T cells in general way based on nucleic acid variants

Similar Documents

Publication Publication Date Title
TW201632629A (en) Methods for cancer diagnosis and prognosis
KR20140027205A (en) Modulation of signal transducer and activator of transcription 3 (stat3) expression
CN101688239A (en) The early detection of colorectal carcinoma and prognosis
CA2941594A1 (en) Genetic polymorphisms of the protein receptor c (procr) associated with myocardial infarction, methods of detection and uses thereof
CA2514187A1 (en) Expression profiles for colon cancer and methods of use
CN101687050A (en) Be used to differentiate the method and the material of the origin of the cancer that former initiation source is not clear
KR102613599B1 (en) Prediction method for risk of ischemic stroke onset
KR20150023904A (en) Use of markers in the diagnosis and treatment of prostate cancer
US20030235847A1 (en) Association of polymorphisms in the SOST gene region with bone mineral density
KR20130123357A (en) Methods and kits for diagnosing conditions related to hypoxia
EP3102697A1 (en) Method for predicting the response to an anti-her2 containing therapy and/or chemotherapy in patients with breast cancer
WO2005100604A2 (en) Methods for identifying risk of osteoarthritis and treatments thereof
US20030099958A1 (en) Diagnosis and treatment of vascular disease
KR20120034650A (en) Phosphodiesterase 9a as prostate cancer marker
CN113767179A (en) Method for predicting risk of developing cerebral infarction
KR20230154009A (en) Diagnosis and risk assessment of head and neck cancer
CN115807080A (en) Thyroid cancer diagnostic method
US6723508B2 (en) Method for determining the presence of at least one allele of a GSTT1 deletion mutant
KR100901147B1 (en) A marker for predicting recurrence of a uterine cancer patient treated with radiation therapy, a kit and microarray comprising the same and method for predicting recurrence of a uterine cancer patient after radiation therapy using the marker
CN107075580B (en) Cancer detection kit
TW201718876A (en) Methods for making diagnosis and/or prognosis of neoplasm
CN114277123A (en) Polynucleotides containing SNP sites related to schizophrenia and application
KR20110113642A (en) Methods for the subclassification of breast tumours
CN113825839A (en) Treatment of elevated lipid levels with sterol regulatory element binding protein cleavage activator protein (SCAP) inhibitors
KR101818352B1 (en) Biomarkers for diagnosis and prognosis of bladder cancer and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Building 6, Chuangfu Workshop, No. 1, Chuangfu Road, Hanjiang District, Yangzhou City, Jiangsu Province, 225000

Applicant after: Jiangsu Fuyuan Biotechnology Co.,Ltd.

Applicant after: Jiangsu Huayuan Biotechnology Co.,Ltd.

Address before: Building 6, Chuangfu Workshop, No. 1, Chuangfu Road, Hanjiang District, Yangzhou City, Jiangsu Province, 225000

Applicant before: Jiangsu Fuyuan Biotechnology Co.,Ltd.

Applicant before: Shanghai Fuyuan Biotechnology Co.,Ltd.

CB02 Change of applicant information