CN115785504A - 一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法 - Google Patents

一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法 Download PDF

Info

Publication number
CN115785504A
CN115785504A CN202211683463.3A CN202211683463A CN115785504A CN 115785504 A CN115785504 A CN 115785504A CN 202211683463 A CN202211683463 A CN 202211683463A CN 115785504 A CN115785504 A CN 115785504A
Authority
CN
China
Prior art keywords
polylactic acid
tea saponin
copper
composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211683463.3A
Other languages
English (en)
Inventor
刘煜
余莉花
郑恩元
周润发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulis Biotechnology Co ltd
Original Assignee
Pulis Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulis Biotechnology Co ltd filed Critical Pulis Biotechnology Co ltd
Priority to CN202211683463.3A priority Critical patent/CN115785504A/zh
Publication of CN115785504A publication Critical patent/CN115785504A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜及制备方法。该法将使用了金属纳米粉体宏量制备技术(MPNP)的纳米铜粒子与茶皂素溶液按照特定的质量比进行复配得到复合抗菌剂。聚乳酸和丙酮与1‑4二氧六环的复配溶剂与上述复合抗菌剂共混,利用自动涂膜机将共混溶液在无菌的玻璃覆板上进行一定厚度的涂覆,在该膜覆上滴加菌悬液,按照特定的温度和湿度培养一定的时间,对活菌数目进行计数,即可计算出每组样本的抗菌率。使用该复合抗菌剂制成的聚乳酸薄膜在具有完全可降解性、低毒性、广谱性强等优点的基础上还具备一定的亲水性能,进一步拓宽了其在食品包装领域的应用。

Description

一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法
技术领域
本发明涉及聚乳酸抗菌薄膜领域,具体涉及一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法。
背景技术
近年来,社会各界对于食品塑料包装的要求不断提高,传统包装塑料如聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)等在环境中彻底降解需要几百年甚至更长时间,且在使用过程中易滋生各类细菌,对食品安全和人体健康存在威胁。
聚乳酸(PLA)是一种脂肪族聚酯,制成聚乳酸的原料为乳酸,而乳酸则是由淀粉或糖经发酵制得,乳酸经过脱水、裂解、丙交酯开环聚合等步骤可得到目标产物聚乳酸,由于聚乳酸原料源于可再生物质,且聚乳酸在合适的温度和湿度下可做到完全降解为CO2和H2O,对环境没有任何负担,因此聚乳酸被公认为新型环保材料,可代替传统塑料制品,具有广泛应用前景。但是纯聚乳酸几乎不具备抗菌性能,因此需要对聚乳酸中添加抗菌剂改性,在保证聚乳酸原有机械及降解性能的基础上,增强其抗菌性能。
发明内容
针对现有技术的不足,本发明提出了一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法。
本发明的目的可以通过以下技术方案实现:
一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法包括以下步骤:
S1、称取茶皂素溶解于蒸馏水,形成茶皂素溶液,再将纳米铜分散于茶皂素溶液中,干燥,得到茶皂素复合纳米铜的复合抗菌剂粉末。
S2、将S1中的复合抗菌剂分散于乙醇水溶液中,聚乳酸/丙酮与1-4二氧六环的复配液进行共混,无菌覆板上涂覆、干燥、脱模即可制得茶皂素复合纳米铜改性聚乳酸抗菌薄膜。
可选地,所述的纳米铜粒子的粒径在10~25nm,实际铜元素含量为99.05wt.%。
可选地,所述茶皂素浓度为85%~89%。
可选地,所述的纳米铜与茶皂素分散采用20kHz超声震荡处理4~6h。
可选地,所述茶皂素与纳米铜的质量比为(0.4~1.1):1。
可选地,所述聚乳酸与复合抗菌剂的质量比为100:(0.1~0.5)。
可选地,所述的无菌覆板上涂覆步骤中的涂覆厚度为1mm。
可选地,所述聚乳酸与复合抗菌剂的共混溶液中,聚乳酸在共混液中浓度为0.2~0.3g/mL,共混时长为5~8h。
可选地,所述的复合抗菌剂添加量为0.4wt%。
通过上述的制备方法制得的抗菌薄膜。
本发明的有益效果:
(1)本发明利用茶皂素复合纳米铜粒子为抗菌剂,其中茶皂素与聚乳酸可完全生物降解,来源较其它抗菌剂广泛,价格低廉。
(2)本发明的制备工艺简单,易于产业化。
(3)本发明所制备的复合抗菌剂广谱性更强、不易产生耐药性、将聚乳酸在亲水领域的应用进一步提升。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的抗菌性能参照国标GB/T 21510-2008和国标GB/T 21866-2008进行考察。本方法通过将接种菌悬液于待检测样品,使用贴膜法使菌悬液均匀接触待检测品,经过一定时间的培养,检测样品中的活菌数量,即可计算出样品的抗菌率。抗菌率的计算公式如下:
抗菌率R=(A-B)/A×100%
其中:A—对照样品与受菌接触一定时间后平均回收数,单位为菌落形成单位每毫升(cfu/mL);
B—试验样品与受菌接触一定时间后平均回收数,单位为菌落形成单位每毫升(cfu/mL)。
检测用菌:大肠杆菌(ATCC25922);金黄色葡萄球菌(ATCC10231)。
菌悬液的制备:取菌种第三代至第八代的营养琼脂培养基斜面18~24h新鲜培养物,用5mL吸管吸取3~5mL的磷酸盐缓冲液加入试管,反复吸取,洗下菌苔。将洗下的菌液移至另一试管,用振荡器混匀后,用0.03mol/L磷酸盐稀释至浓度约为105cfu/mL。
聚乳酸接触角测试方法为:在制得的复合抗菌剂聚乳酸薄膜上取(50mm±2mm)×(50mm±2mm)的方形样品。测试接触角的用水标准参照GB/T 6682-2008。温度在24℃±2℃,相对湿度在50%±10%。接触角测量仪测定范围为0°-180°,测试分辨率为0.1°,测量精度为±1°。
不同配方的茶皂素复合纳米铜粒子改性聚乳酸抗菌薄膜的制备:
对照例1:取6g聚乳酸溶解于30mL的丙酮与1-4二氧六环的复配溶剂中,磁力搅拌4~6h使其充分溶解。将该溶液使用自动涂膜机涂覆于无菌的玻璃覆板上,厚度控制在1mm,在(24~26)℃下使其溶剂挥发10~12h后,脱模后裁切为(40±2)mm×(40±2)mm,真空干燥24h。移取200μL的两种细菌的菌悬液于薄膜上,用镊子夹取灭菌的聚乙烯覆盖膜覆盖于聚乳酸薄膜上,铺平,待菌悬液于覆膜充分接触,置于灭菌平皿中,在(37±1)℃,相对湿度为90%左右的条件下培养约46~48h。
实施例1:取6g聚乳酸溶解于30mL的丙酮与1-4二氧六环的复配溶剂中,磁力搅拌4~6h使其充分溶解。称取0.02g纳米铜粒子在20kHz超声震荡处理4~6h使其分散于聚乳酸的丙酮与1-4二氧六环的复配溶剂中。将两分散溶液进行共混5~8h。使用自动涂膜机涂覆于无菌的玻璃覆板上,厚度控制在1mm,在(24~26)℃下使其溶剂挥发10~12h,脱模后裁切为(40±2)mm×(40±2)mm,真空干燥24h。移取200μL的两种细菌的菌悬液于薄膜上,用镊子夹取灭菌的聚乙烯覆盖膜覆盖于聚乳酸薄膜上,铺平,待菌悬液与覆膜充分接触,置于灭菌平皿中,在(37±1)℃,相对湿度为90%左右的条件下培养约46~48h。
实施例2:取6g聚乳酸溶解于30mL的丙酮与1-4二氧六环的复配溶剂中,磁力搅拌4~6h使其充分溶解。称取0.02mL86%的茶皂素溶液在20kHz超声震荡处理4~6h使其分散于聚乳酸的丙酮与1-4二氧六环的复配溶剂中。将两分散溶液进行共混5~8h。使用自动涂膜机涂覆于无菌的玻璃覆板上,厚度控制在1mm,在(24~26)℃下使其溶剂挥发10~12h,脱模后裁切为(40±2)mm×(40±2)mm,真空干燥24h。移取200μL的两种细菌的菌悬液于薄膜上,用镊子夹取灭菌的聚乙烯覆盖膜覆盖于聚乳酸薄膜上,铺平,待菌悬液与覆膜充分接触,置于灭菌平皿中,在(37±1)℃,相对湿度为90%左右的条件下培养约46~48h。
实施例3:(1)取10g86%的茶皂素溶解于蒸馏水,形成茶皂素溶液,然后加入5g经MPNP法制得的纳米铜粒子,在20kHz超声震荡处理4~6h,使纳米铜粒子均匀分散于茶皂素溶液并防止出现团聚现象,在室温下使用喷雾干燥设备处理,即得到纳米铜粒子复合茶皂素复合抗菌剂粉末。
(2)取200g聚乳酸溶解于1L的丙酮与1-4二氧六环的复配溶剂中,磁力搅拌4~6h使其充分溶解。称取0.2g(1)中的复合抗菌剂在20kHz超声震荡处理4~6h使其分散于聚乳酸的丙酮与1-4二氧六环的复配溶剂中。将两分散溶液进行共混5~8h。使用自动涂膜机涂覆于无菌的玻璃覆板上,厚度控制在1mm,在(24~26)℃下使其溶剂挥发10~12h,脱模后裁切为(40±2)mm×(40±2)mm,真空干燥24h。移取200μL的两种细菌的菌悬液于薄膜上,用镊子夹取灭菌的聚乙烯覆盖膜覆盖于聚乳酸薄膜上,铺平,待菌悬液与覆膜充分接触,置于灭菌平皿中,在(37±1)℃,相对湿度为90%左右的条件下培养约46~48h。
实施例4:(1)取10g86%的茶皂素溶解于蒸馏水,形成茶皂素溶液,然后加入5g经MPNP法制得的纳米铜粒子,在20kHz超声震荡处理4~6h,使纳米铜粒子均匀分散于茶皂素溶液并防止出现团聚现象,在室温下使用喷雾干燥设备处理,即得到纳米铜粒子复合茶皂素复合抗菌剂粉末。
(2)取180g聚乳酸溶解于650mL的丙酮与1-4二氧六环的复配溶剂中,磁力搅拌4~6h使其充分溶解。称取0.3g(2)中的复合抗菌剂在20kHz超声震荡处理4~6h使其分散于聚乳酸的丙酮与1-4二氧六环的复配溶剂中。将两分散溶液进行共混5~8h。使用自动涂膜机涂覆于无菌的玻璃覆板上,厚度控制在1mm,在(24~26)℃下使其溶剂挥发10~12h,脱模后裁切为(40±2)mm×(40±2)mm,真空干燥24h。移取200μL的两种细菌的菌悬液于薄膜上,用镊子夹取灭菌的聚乙烯覆盖膜覆盖于聚乳酸薄膜上,铺平,待菌悬液与覆膜充分接触,置于灭菌平皿中,在(37±1)℃,相对湿度为90%左右的条件下培养约46~48h。
实施例5:(1)取10g86%的茶皂素溶解于蒸馏水,形成茶皂素溶液,然后加入5g经MPNP法制得的纳米铜粒子,在20kHz超声震荡处理4~6h,使纳米铜粒子均匀分散于茶皂素溶液并防止出现团聚现象,在室温下使用喷雾干燥设备处理,即得到纳米铜粒子复合茶皂素复合抗菌剂粉末。
(2)取100g聚乳酸溶解于250mL的丙酮与1-4二氧六环的复配溶剂中,磁力搅拌4~6h使其充分溶解。称取0.4g(2)中的复合抗菌剂在20kHz超声震荡处理4~6h使其分散于聚乳酸的丙酮与1-4二氧六环的复配溶剂中。将两分散溶液进行共混5~8h。使用自动涂膜机涂覆于无菌的玻璃覆板上,厚度控制在1mm,在(24~26)℃下使其溶剂挥发10~12h,脱模后裁切为(40±2)mm×(40±2)mm,真空干燥24h。移取200μL的两种细菌的菌悬液于薄膜上,用镊子夹取灭菌的聚乙烯覆盖膜覆盖于聚乳酸薄膜上,铺平,待菌悬液与覆膜充分接触,置于灭菌平皿中,在(37±1)℃,相对湿度为90%左右的条件下培养约46~48h。
培养结束后,取出样品,分别加入15mL的洗脱液,清洗覆膜,充分摇匀后,取一定量接种于营养琼脂培养基中,在(37±1)℃的条件下培养28h后进行活菌计数。
其结果为:
不同样本培养28h后的大肠杆菌活菌数目及抗菌率
Figure BDA0004019033170000061
不同样本培养28h后的金黄色葡萄球菌活菌数目及抗菌率
Figure BDA0004019033170000071
不同含量复合抗菌剂添加量的薄膜接触角
Figure BDA0004019033170000072
对比上述纯聚乳酸薄膜与添加复合抗菌剂后分别对大肠杆菌和金黄色葡萄球菌的28h抗菌测试活菌数量和抗菌率的统计结果可知。添加了茶皂素复合纳米铜粒子的复合抗菌剂薄膜相比于纯聚乳酸薄膜抗菌性能优异,其复合抗菌剂添加量在在0.4g时对大肠杆菌和金黄色葡萄球菌的抑制率为100%,接触角为50.5°,相比于前人的研究结果本发明的抗菌效果更为优异。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

1.一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,包括以下步骤:
S1、称取茶皂素溶解于蒸馏水,形成茶皂素溶液,再将纳米铜分散于茶皂素溶液中,干燥,得到茶皂素复合纳米铜的复合抗菌剂粉末。
S2、将S1中的复合抗菌剂分散于乙醇水溶液中,聚乳酸/丙酮与1-4二氧六环的复配液进行共混,无菌覆板上涂覆、干燥、脱模即可制得茶皂素复合纳米铜改性聚乳酸抗菌薄膜。
2.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述的纳米铜粒子的粒径在10~25nm,铜元素含量为99.05wt.%。
3.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述茶皂素浓度为85%~89%。
4.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述的纳米铜与茶皂素分散采用20kHz超声震荡处理4~6h。
5.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述茶皂素与纳米铜的质量比为(0.4~1.1):1。
6.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述聚乳酸与复合抗菌剂的质量比为100:(0.1~0.5)。
7.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述的无菌覆板上涂覆步骤中的涂覆厚度为1mm。
8.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述聚乳酸与复合抗菌剂的共混溶液中,聚乳酸在共混液中浓度为0.2~0.3g/mL,共混时长为5~8h。
9.根据权利要求1所述的茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法,其特征在于,所述的复合抗菌剂添加量为0.4wt%。
10.通过权利要求1~9任一所述的方法制得的抗菌薄膜。
CN202211683463.3A 2022-12-27 2022-12-27 一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法 Pending CN115785504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211683463.3A CN115785504A (zh) 2022-12-27 2022-12-27 一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211683463.3A CN115785504A (zh) 2022-12-27 2022-12-27 一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN115785504A true CN115785504A (zh) 2023-03-14

Family

ID=85426894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211683463.3A Pending CN115785504A (zh) 2022-12-27 2022-12-27 一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN115785504A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117024811A (zh) * 2023-09-07 2023-11-10 广州华瑞环保新材料科技有限公司 一种可降解的抗菌塑料薄膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117024811A (zh) * 2023-09-07 2023-11-10 广州华瑞环保新材料科技有限公司 一种可降解的抗菌塑料薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Farag et al. Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity
Abd El-Mohdy et al. Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation
Ji et al. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds
CN106962498B (zh) 乳酸链球菌素/壳聚糖纳米粒子抗菌膜及制备方法和用途
Aradmehr et al. A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization
CN115785504A (zh) 一种茶皂素复合纳米铜改性聚乳酸抗菌薄膜的制备方法
Yang et al. The synthesis of nano-silver/sodium alginate composites and their antibacterial properties
Santiago-Castillo et al. Effect on the processability, structure and mechanical properties of highly dispersed in situ ZnO: CS nanoparticles into PVA electrospun fibers
Lethongkam et al. Prolonged inhibitory effects against planktonic growth, adherence, and biofilm formation of pathogens causing ventilator-associated pneumonia using a novel polyamide/silver nanoparticle composite-coated endotracheal tube
Wang et al. Antibacterial and drug-release dual-function membranes of cross-linked hyperbranched cationic polymers
CN108864451A (zh) 载银无机粘土和生物基材料复合膜及其制备方法
CN115518195A (zh) 一种长效抗菌复合微球及其制备方法和应用
Huang et al. Ag nanoparticles decorated electrospinning carbon nanotubes/polyamide nanofibers
Vasil’kov et al. Effect of Bacterial Cellulose Plasma Treatment on the Biological Activity of Ag Nanoparticles Deposited Using Magnetron Deposition
Tantala et al. ANTIMICROBIAL ACTIVITY OF CHITOSAN AND CARBOXYMETHYL CHITOSAN FROM DIFFERENT TYPES AND SOURCES OF CHITOSAN.
Matei et al. Sustainable rabbit skin glue to produce bioactive nanofibers for nonactive wound dressings
Garg et al. Hydrophobic Coating of Polymethylmetha-Crylate (PMMA) on Glass Substrate for Reduced Bacterial Adhesion.
Popuri et al. Evaluation of antibacterial activity and characterization of synthesized biodegradable copolymers
Zhu et al. Bio-based poly (ethylene furanoate)/ZnO transparent thin films with improved water vapor barrier and antibacterial properties for food packaging application
Chen et al. New type of borneol-based fluorine-free superhydrophobic antibacterial polymeric coating
CN111793463B (zh) 一种抗菌防霉硅酮密封胶的制备方法及其产品
CN108353911A (zh) 一种新型缓释高效纳米广谱杀菌剂及其制备方法、应用
Duan et al. ZnO@ polyvinyl alcohol/poly (lactic acid) nanocomposite films for the extended shelf life of pork by efficient antibacterial adhesion
Li et al. Preparation of copolymer-based nanoparticles with broad-spectrum antimicrobial activity
Rochima et al. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 68 Jishan Road, Sanshan Economic Development Zone, Wuhu City, Anhui Province, 241000

Applicant after: Pulis Biotechnology Co.,Ltd.

Address before: 230001 Floor 6, Building 4, South Longhu New Town, Sanshan Economic Development Zone, Wuhu City, Anhui Province

Applicant before: Pulis Biotechnology Co.,Ltd.