CN115755378A - 一种基于二分法的叠层成像轴向距离误差快速校正方法 - Google Patents

一种基于二分法的叠层成像轴向距离误差快速校正方法 Download PDF

Info

Publication number
CN115755378A
CN115755378A CN202211238906.8A CN202211238906A CN115755378A CN 115755378 A CN115755378 A CN 115755378A CN 202211238906 A CN202211238906 A CN 202211238906A CN 115755378 A CN115755378 A CN 115755378A
Authority
CN
China
Prior art keywords
axial distance
function
dichotomy
search range
laminated imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211238906.8A
Other languages
English (en)
Other versions
CN115755378B (zh
Inventor
窦健泰
裴子豪
马驰
蔡雯雯
张聖卓
裴桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202211238906.8A priority Critical patent/CN115755378B/zh
Publication of CN115755378A publication Critical patent/CN115755378A/zh
Application granted granted Critical
Publication of CN115755378B publication Critical patent/CN115755378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于二分法的叠层成像轴向距离误差快速校正方法,包括:预准备阶段,确定轴向距离的搜索范围,设定初始距离,将衍射图样和初始距离带入叠层成像算法中迭代,当迭代满足第一终止条件时,获得重建物函数Oi(x,y,Lm);轴向距离误差校正阶段,计算物函数Oi(x,y,Lm)的清晰度偏值Δ,依据清晰度偏值Δ确定修正方向,在修正方向上将搜索范围缩小,并将新的搜索范围的中间值代入叠层成像算法中,重建新的物函数,依次往复计算,直至相邻计算的轴向距离满足收敛条件,输出最佳轴向距离;输出结果阶段,将校正后的轴向距离和重建物函数继续带入叠层成像算法中进行迭代计算,直至满足第二终止条件时输出最终重建结果。

Description

一种基于二分法的叠层成像轴向距离误差快速校正方法
技术领域
本发明涉及一种叠层成像轴向距离误差校正方法,尤其涉及一种基于二分法的叠层成像轴向距离误差快速校正方法。
背景技术
叠层成像是一种广泛应用于可见光、x射线和电子束领域的无透镜成像方法,在叠层成像系统中将待测样品放在二维位移台上,使用探针光束照射在待测样品上,相对探针逐行逐列移动样品,要求相邻扫描位置的照明区域有一定的重叠率,通过CCD记录一系列衍射图样。在叠层成像恢复算法的整个计算过程中,样品和CCD靶面之间的轴向距离被多次使用,轴向距离误差会影响位相缺陷相位和空间尺寸的检测精度。由于CCD窗口结构的隔档和保护玻璃的存在,难以精确测量待测样品到记录平面的有效轴向距离,导致测量的轴向距离与实际轴向距离存在偏差,这将会缩放重建像素尺寸从而降低重建图像的质量。
中国专利公开号CN107655405B公开了一种利用自聚焦迭代算法消除物体与CCD间轴向距离误差的方法,该方法先利用菲涅耳衍射积分将重建图像传播到轴向距离不同的平面上,再利用Tamura系数计算对应图像的清晰度评价指标,并将Tamura系数最大值对应的轴向距离作为下一次迭代的初始距离。虽然该方法能够精确地得到轴向距离,但是只对振幅型样品有效,并且该方法校正步长很小,在大范围搜索时会耗费大量的时间,搜索时的步长决定了测量的校正精度。
中国专利公开号CN113888444A公开了一种基于叠层自聚焦实验的图像重建方法及系统,该方法先计算初始衍射距离周围预设范围内所有重建图像的像质评估算子,再使用Adam优化算法搜索像质评估算子中的最大值,并确定梯度更新方向,最终得到精确的轴向距离。虽然该方法对振幅型和生物型样品都有效,并且解决了过往的自聚焦算法因生物样品纹理结构复杂而导致的距离结果收敛不准确的问题,但是需要计算每个间隔的偏差,并一步一步地校正轴向距离,而且为保证精度步长需设置很小,这将会耗费大量的时间。
发明内容
发明目的:针对现有校正技术中存在的技术问题,本发明提供一种基于二分法的叠层成像轴向距离误差快速校正方法,以解决传统轴向距离校正方法耗时长的问题,在提高校正速度的同时又保证了重建图像的质量。
技术方案:本发明包括以下步骤:
步骤一、预准备阶段:确定轴向距离的搜索范围,设定初始距离,将衍射图样和初始距离带入叠层成像算法中迭代,当迭代满足第一终止条件时,获得重建物函数Oi(x,y,Lm);
步骤二、轴向距离误差校正阶段:计算物函数Oi(x,y,Lm)的清晰度偏值Δ,依据清晰度偏值Δ确定修正方向,在修正方向上将搜索范围缩小,并将新的搜索范围的中间值代入叠层成像算法中,重建新的物函数,依次往复计算,直至相邻计算的轴向距离满足收敛条件,输出最佳轴向距离;
步骤三、输出结果阶段:将校正后的轴向距离和重建物函数继续带入叠层成像算法中进行迭代计算,直至满足第二终止条件时输出最终重建结果。
所述步骤二具体包括:
S21:截取物函数Oi(x,y,Lm)的有效区域并计算清晰度偏值Δ;
S22:如果在轴向距离Lm处的清晰度偏值Δ>0,则Lup=Lm,否则,Ldown=Lm
S23:在更新后的搜索范围[Ldown,Lup]中选取中间值L(i)=(Ldown+Lup)/2;
S24:将更新后的轴向距离L(i)代入叠层成像算法中迭代s次,得到一个新的更新物函数Oi(x,y,L(i)),其中i=i+s;
S25:计算上一步重建物函数Oi(x,y,L(i))的清晰度偏值Δ,如果Δ>0,则Lup=L(i),否则,Ldown=L(i),更新轴向距离L(i+1)=(Lup+Ldown)/2;
S26:重复步骤S24至S25,直至达到轴向距离的收敛条件|L(i+1)-L(i)|<ε,其中0.0001≤ε≤0.01。
所述清晰度偏值Δ的计算过程为:
S211、利用角谱传输,将在z0=Lm处重建的物函数O(x,y)经传递函数H传递到重建平面周围K个距离处,得到O(x,y,z),其中,角谱传输的表达式为:
Figure BDA0003884226620000021
其中,(fx,fy)为频域坐标,k=-K/2:K/2,z为O(x,y,z0)经角谱传输距离kΔz后的轴向距离,Δz为传输间隔,
Figure BDA0003884226620000022
Figure BDA0003884226620000023
分别为傅里叶变换和傅里叶逆变换;传输间隔Δz的表达式为:Δz=λ(2z/D)2,其中λ表示波长,D表示CCD的物理尺寸;传递函数H的表达式为:
Figure BDA0003884226620000031
其中i为虚数单位;
S212、利用全变分函数计算O(x,y,z)的清晰度S(z),全变分函数的表达式为:
Figure BDA0003884226620000032
其中,
Figure BDA0003884226620000033
Figure BDA0003884226620000034
分别为函数在x方向和y方向的一阶偏导,0<q≤0.01;
S213、计算清晰度偏值Δ,
Figure BDA0003884226620000035
所述步骤二中依据清晰度偏值Δ的正负号确定修正方向,并在修正方向上根据二分法将搜索范围缩小1/2。
所述轴向距离的搜索范围为:[Ldown,Lup],初始距离设定为Lm=(Ldown+Lup)/2。
所述第一终止条件为:ΔMSE(i)<σ1,其中0<σ1≤0.01。
所述第二终止条件为:ΔMSE(i)<σ2,其中,0<σ2≤0.01,且σ2≤σ1
有益效果:本发明利用全变分算法来计算物体的清晰度偏值,解决了过往校正算法只对振幅型样品有效的问题,同时结合二分法按指数形式缩小校正步长的特性,本发明不需要一步一步地计算清晰度偏值,能够精准校正轴向距离误差的同时节省大量时间。
附图说明
图1为本发明的流程图;
图2在USAF分辨率板实验中,本发明的方法(fzPIE)与自聚焦叠层成像方法(zPIE)的校正对比图,其中,图2(a)为fzPIE的振幅,图2(b)为zPIE的振幅,图2(c)为fzPIE和zPIE校正过程的对比,图2(d)为fzPIE和zPIE的校正时间和总时间对比;
图3在USAF分辨率板实验中,本发明校正方法的距离变化图;
图4在蕨茎实验中,本发明的方法与自聚焦叠层成像方法的校正对比图,其中,图4(a)为fzPIE的振幅,图4(b)为zPIE的振幅,图4(c)为fzPIE的相位图,图4(d)为zPIE的相位图,图4(e)为fzPIE和zPIE的轴向距离与校正次数对比图,图4(f)为fzPIE和zPIE耗费的时间对比图。
具体实施方式
如图1所示,本发明的校正方法包括以下步骤:
步骤一:预准备阶段,确定轴向距离的搜索范围[Ldown,Lup],设定初始距离Lm,将实验采集到的衍射图样和初始距离Lm带入叠层成像算法中,当迭代满足第一终止条件时,获得重建物函数Oi(x,y,Lm)。具体为:
初始猜测物函数O0(x,y)和探针函数P0(x,y),其中(x,y)是物平面坐标,确定轴向距离的搜索范围[Ldown,Lup],要求搜索范围包含真实距离,初始距离设定为Lm=(Ldown+Lup)/2,并利用叠层成像算法迭代计算直至达到第一终止条件:ΔMSE(i)<σ1,其中0<σ1≤0.01,其阈值表达式如下:
Figure BDA0003884226620000041
Figure BDA0003884226620000042
其中,Ij(x,y)为第j个实验采集的衍射图样,Ψj(x,y)为第j个恢复的记录平面波前,i为迭代次数。
步骤二:轴向距离误差校正阶段,利用全变分函数,计算物函数Oi(x,y,Lm)的清晰度偏值Δ,依据清晰度偏值Δ的正负号确定修正方向。依据修正方向,根据二分法将搜索范围缩小1/2,并将新的搜索范围的中间值代入叠层成像算法中,重建新的物函数,再次计算其清晰度偏值,然后确定修正方向,计算新的搜索范围,依次往复计算,直至相邻计算的轴向距离满足收敛条件,则输出最佳轴向距离,此时已校正轴向距离误差。具体包括以下步骤:
S21:截取物函数Oi(x,y,Lm)的有效区域并计算清晰度偏值Δ,清晰度偏值Δ的计算过程为:
S211、利用角谱传输,将在z0=Lm处重建的物函数O(x,y)经传递函数H传递到重建平面周围K个距离处,得到O(x,y,z),其中,角谱传输的表达式:
Figure BDA0003884226620000043
其中,(fx,fy)为频域坐标,k=-K/2:K/2,z为O(x,y,z0)经角谱传输距离kΔz后的轴向距离,Δz为传输间隔,
Figure BDA0003884226620000044
Figure BDA0003884226620000045
分别为傅里叶变换和傅里叶逆变换;
传输间隔Δz的表达式:Δz=λ(2z/D)2,其中λ表示波长,D表示CCD的物理尺寸;
传递函数H的表达式:
Figure BDA0003884226620000046
其中i为虚数单位。
S212、利用全变分函数计算O(x,y,z)的清晰度S(z),全变分函数的表达式为:
Figure BDA0003884226620000051
其中,
Figure BDA0003884226620000052
Figure BDA0003884226620000053
分别为函数在x方向和y方向的一阶偏导,0<q≤0.01。
S213、计算清晰度偏值Δ,
Figure BDA0003884226620000054
S22:如果在轴向距离Lm处的清晰度偏值Δ>0,则Lup=Lm,否则,Ldown=Lm
S23:在更新后的搜索范围[Ldown,Lup]中选取中间值L(i)=(Ldown+Lup)/2;
S24:将更新后的轴向距离L(i)代入叠层成像算法中迭代s次,得到一个新的更新物函数Oi(x,y,L(i)),其中i=i+s,前ξ次校正轴向距离中s是大于1的整数,在ξ次校正之后s等于1,ξ的选取公式如下:
Figure BDA0003884226620000055
其中
Figure BDA0003884226620000056
是向上取整函数;
S25:计算上一步重建物函数Oi(x,y,L(i))的清晰度偏值Δ,如果Δ>0,则Lup=L(i),否则,Ldown=L(i),更新轴向距离L(i+1)=(Lup+Ldown)/2;
S26:重复步骤S24至S25,直至达到轴向距离的收敛条件|L(i+1)-L(i)|<ε,其中0.0001≤ε≤0.01。
步骤三:输出结果阶段,将校正后的轴向距离L(i+1)和重建物函数Oi(x,y,L(i))继续带入叠层成像算法中进行迭代计算,直至满足第二终止条件:ΔMSE(i)<σ2,其中,0<σ2≤0.01,且σ2≤σ1,输出最终重建结果。本发明的校正方法可大幅缩短计算时间,并且该方法对振幅型和生物型样品都有效。
实施例:
使用氦氖激光器(632.8nm)作为光源并利用半径为2mm的光阑制造圆形探针,将待测样品(USAF分辨率板)放置在x-y二维位移台上,样品步进为0.2mm,选择8位CCD相机(3672×5496个像素,像素大小2.4μm×2.4μm)采集7×7的衍射图样,设定参数:σ1=σ2=0.001,s=2,K=10,ε=0.0001,搜索范围[Ldown,Lup]=[28mm,31mm]。
zPIE(自聚焦叠层成像方法)作为对比算法,在USAF分辨率板实验中,fzPIE(本发明的基于二分法的叠层成像轴向距离误差快速校正方法)的搜索范围为[28mm,31mm],zPIE的初始距离为28mm,zPIE的校正过程由于其步长太小会导致消耗大量时间,因此zPIE的比例因子c提高了10倍,图2展示了fzPIE算法和zPIE算法的校正结果对比,在预准备阶段中,fzPIE的初始距离Lm=29.5mm,当达到第一终止条件时,fzPIE迭代了79次,计算时间为4013.5s。将预准备阶段中的重建结果Oi(x,y,Lm)代入第一次校正计算中,计算得到重建结果Oi(x,y,Lm)的清晰度偏值Δ>0,则Lup=Lm,得到新的轴向距离L(i)=28.75mm,计算得到ξ=5,将L(i)和Oi(x,y,Lm)代入叠层成像算法中迭代2次得到Oi(x,y,L(i)),其中i=i+2,计算Oi(x,y,L(i))的清晰度偏值Δ<0,则Ldown=Lm,L(i+1)=29.125mm,第一次校正的时间为106.4s。
将第一次校正中的L(i+1)和Oi(x,y,L(i))代入第二次校正中迭代2次,计算得到更新后的物函数Oi(x,y,L(i))的清晰度偏值Δ<0,根据偏值得到新的轴向距离L(i+1)=29.3125mm,第二次校正耗时102.8s。以此类推,在第5次校正之后,叠层成像算法只迭代1次。在校正阶段中fzPIE总共迭代了19次,耗时993s,校正的轴向距离为29.1720mm,最后将校正阶段中得到的轴向距离和重建结果代入输出结果阶段,当达到第二终止条件时,停止所有计算,fzPIE在输出结果阶段迭代了27次,并且耗时1475.2s。相比之下,zPIE在预准备阶段迭代了80次,耗时4278.4s,在校正阶段迭代了276次,耗时14608.2s,最终校正的轴向距离为29.1657mm,在输出结果阶段,zPIE需要11次迭代计算,耗时600.6s。
从图2(a)和2(b)可以看出,当达到第二终止条件时,fzPIE重建的振幅和zPIE重建的振幅非常接近。图2(c)展示了fzPIE和zPIE校正过程的对比,当fzPIE校正阶段结束时,zPIE的校正距离仍然距离真实距离很远。图2(d)展示了fzPIE和zPIE的校正时间和总时间,总时间包括预准备阶段的时间,校正阶段的时间和输出结果阶段的时间,其中预准备阶段和输出结果阶段的步骤是一致的,fzPIE的校正速度是zPIE的14.71倍(zPIE校正的时间/fzPIE校正的时间),fzPIE耗费的总时间比zPIE缩短了66.74%(|zPIE的总时间-fzPIE的总时间|/zPIE的总时间)。
从图3中看出fzPIE的初始距离Lm与实际距离偏差很大,经过5次校正之后,校正距离和实际距离的偏差大大减小。在校正过程中,搜索范围在不断缩小1/2,同时选取搜索范围的中间值作为新的轴向距离,校正轴向距离的范围和步长呈指数形式变化。
在蕨茎实验中,fzPIE的搜索范围为[19mm,21mm],zPIE的初始距离为19mm,其它参数与USAF分辨率板实验中的参数一致。图4展示了fzPIE算法和zPIE算法的校正结果对比,其中,图4(a)和图4(c)分别为fzPIE重建的振幅和相位,图4(b)和图4(d)分别为zPIE重建的振幅和相位,通过对比发现,fzPIE和zPIE最终重建的精度是非常接近的。图4(e)表明fzPIE在校正过程迭代了18次并且最终的轴向距离为19.5019mm,zPIE迭代了419次达到了收敛条件并且最终的轴向距离为19.6332mm。图4(f)展示了fzPIE和zPIE耗费的时间,fzPIE的校正速度是zPIE的24.80倍,fzPIE耗费的总时间比zPIE缩短了71.43%。

Claims (7)

1.一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,包括以下步骤:
步骤一、预准备阶段:确定轴向距离的搜索范围,设定初始距离,将衍射图样和初始距离带入叠层成像算法中迭代,当迭代满足第一终止条件时,获得重建物函数Oi(x,y,Lm);
步骤二、轴向距离误差校正阶段:计算物函数Oi(x,y,Lm)的清晰度偏值Δ,依据清晰度偏值Δ确定修正方向,在修正方向上将搜索范围缩小,并将新的搜索范围的中间值代入叠层成像算法中,重建新的物函数,依次往复计算,直至相邻计算的轴向距离满足收敛条件,输出最佳轴向距离;
步骤三、输出结果阶段:将校正后的轴向距离和重建物函数继续带入叠层成像算法中进行迭代计算,直至满足第二终止条件时输出最终重建结果。
2.根据权利要求1所述的一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,所述步骤二具体包括:
S21:截取物函数Oi(x,y,Lm)的有效区域并计算清晰度偏值Δ;
S22:如果在轴向距离Lm处的清晰度偏值Δ>0,则Lup=Lm,否则,Ldown=Lm
S23:在更新后的搜索范围[Ldown,Lup]中选取中间值L(i)=(Ldown+Lup)/2;
S24:将更新后的轴向距离L(i)代入叠层成像算法中迭代s次,得到一个新的更新物函数Oi(x,y,L(i)),其中i=i+s;
S25:计算上一步重建物函数Oi(x,y,L(i))的清晰度偏值Δ,如果Δ>0,则Lup=L(i),否则,Ldown=L(i),更新轴向距离L(i+1)=(Lup+Ldown)/2;
S26:重复步骤S24至S25,直至达到轴向距离的收敛条件|L(i+1)-L(i)|<ε,其中0.0001≤ε≤0.01。
3.根据权利要求2所述的一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,所述清晰度偏值Δ的计算过程为:
S211、利用角谱传输,将在z0=Lm处重建的物函数O(x,y)经传递函数H传递到重建平面周围K个距离处,得到O(x,y,z),其中,角谱传输的表达式为:
Figure FDA0003884226610000011
其中,(fx,fy)为频域坐标,k=-K/2:K/2,z为O(x,y,z0)经角谱传输距离kΔz后的轴向距离,Δz为传输间隔,
Figure FDA0003884226610000012
Figure FDA0003884226610000013
分别为傅里叶变换和傅里叶逆变换;传输间隔Δz的表达式为:Δz=λ(2z/D)2,其中λ表示波长,D表示CCD的物理尺寸;传递函数H的表达式为:
Figure FDA0003884226610000021
其中i为虚数单位;
S212、利用全变分函数计算O(x,y,z)的清晰度S(z),全变分函数的表达式为:
Figure FDA0003884226610000022
其中,
Figure FDA0003884226610000023
Figure FDA0003884226610000024
分别为函数在x方向和y方向的一阶偏导,0<q≤0.01;
S213、计算清晰度偏值Δ,
Figure FDA0003884226610000025
4.根据权利要求3所述的一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,所述步骤二中依据清晰度偏值Δ的正负号确定修正方向,并在修正方向上根据二分法将搜索范围缩小1/2。
5.根据权利要求1所述的一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,所述轴向距离的搜索范围为:[Ldown,Lup],初始距离设定为Lm=(Ldown+Lup)/2。
6.根据权利要求1所述的一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,所述第一终止条件为:ΔMSE(i)<σ1,其中0<σ1≤0.01。
7.根据权利要求1所述的一种基于二分法的叠层成像轴向距离误差快速校正方法,其特征在于,所述第二终止条件为:ΔMSE(i)<σ2,其中,0<σ2≤0.01,且σ2≤σ1
CN202211238906.8A 2022-10-11 2022-10-11 一种基于二分法的叠层成像轴向距离误差快速校正方法 Active CN115755378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211238906.8A CN115755378B (zh) 2022-10-11 2022-10-11 一种基于二分法的叠层成像轴向距离误差快速校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211238906.8A CN115755378B (zh) 2022-10-11 2022-10-11 一种基于二分法的叠层成像轴向距离误差快速校正方法

Publications (2)

Publication Number Publication Date
CN115755378A true CN115755378A (zh) 2023-03-07
CN115755378B CN115755378B (zh) 2023-07-21

Family

ID=85351772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211238906.8A Active CN115755378B (zh) 2022-10-11 2022-10-11 一种基于二分法的叠层成像轴向距离误差快速校正方法

Country Status (1)

Country Link
CN (1) CN115755378B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488211A (zh) * 2015-08-28 2017-03-08 深圳创锐思科技有限公司 立体显示设备的校正方法及系统
US20170371141A1 (en) * 2014-12-23 2017-12-28 Canon Kabushiki Kaisha Illumination systems and devices for fourier ptychographic imaging
CN107655405A (zh) * 2017-08-29 2018-02-02 南京理工大学 利用自聚焦迭代算法消除物体与ccd间轴向距离误差的方法
CN109374580A (zh) * 2018-09-30 2019-02-22 北京工业大学 一种太赫兹叠层成像探针位置误差校正方法
CN109884101A (zh) * 2019-03-06 2019-06-14 上海科技大学 样品成像系统、样品成像方法、计算机存储介质及计算机装置
CN113766718A (zh) * 2020-10-20 2021-12-07 宽腾(北京)医疗器械有限公司 基于ct球管中灯丝电流校准的ct系统及其校准方法
CN113888444A (zh) * 2021-10-21 2022-01-04 中国科学院大学 一种基于叠层自聚焦实验的图像重建方法及系统
CN115144373A (zh) * 2022-06-29 2022-10-04 华中科技大学 基于角度自校准的反射式叠层衍射成像方法、装置和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170371141A1 (en) * 2014-12-23 2017-12-28 Canon Kabushiki Kaisha Illumination systems and devices for fourier ptychographic imaging
CN106488211A (zh) * 2015-08-28 2017-03-08 深圳创锐思科技有限公司 立体显示设备的校正方法及系统
CN107655405A (zh) * 2017-08-29 2018-02-02 南京理工大学 利用自聚焦迭代算法消除物体与ccd间轴向距离误差的方法
CN109374580A (zh) * 2018-09-30 2019-02-22 北京工业大学 一种太赫兹叠层成像探针位置误差校正方法
CN109884101A (zh) * 2019-03-06 2019-06-14 上海科技大学 样品成像系统、样品成像方法、计算机存储介质及计算机装置
CN113766718A (zh) * 2020-10-20 2021-12-07 宽腾(北京)医疗器械有限公司 基于ct球管中灯丝电流校准的ct系统及其校准方法
CN113888444A (zh) * 2021-10-21 2022-01-04 中国科学院大学 一种基于叠层自聚焦实验的图像重建方法及系统
CN115144373A (zh) * 2022-06-29 2022-10-04 华中科技大学 基于角度自校准的反射式叠层衍射成像方法、装置和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RUI MA等: "Sharpness-statistics-based auto-focusing algorithm for optical ptychography", OPTICS AND LASERS IN ENGINEERING *
窦健泰: "《基于自适应照明光场校正的快速收敛叠层成像方法》", 江苏科技大学学报, vol. 35, no. 2, pages 105 - 109 *
窦健泰等: "《基于非全局轴向多光强限制的快速收敛叠层成像方法》", 中国激光, vol. 48, no. 21, pages 2109002 - 1 *

Also Published As

Publication number Publication date
CN115755378B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN107655405B (zh) 利用自聚焦迭代算法消除物体与ccd间轴向距离误差的方法
CN110095066B (zh) 基于Mean-shift的光谱共焦信号峰值波长快速高精度提取方法
CN111551117B (zh) 显微图像焦点漂移距离的测量方法及系统、计算机设备
CN109990985B (zh) 一种品字型线列红外探测器调制传递函数测试方法
CN109242774A (zh) 一种基于多维空间不变特征的平板类零件点云拼接方法
CN112906300A (zh) 基于双通道卷积神经网络的极化sar土壤湿度反演方法
CN112255776B (zh) 一种点光源扫描照明方法及检测装置
CN111694016B (zh) 一种非干涉合成孔径超分辨成像重构方法
CN112304997A (zh) 基于空间耦合模型的土壤重金属含量检测系统及检测方法
CN113888444A (zh) 一种基于叠层自聚焦实验的图像重建方法及系统
CN110956601B (zh) 一种基于多传感器样态系数的红外图像融合方法和装置以及计算机可读存储介质
CN106679586B (zh) 基于入瞳扫描调制ePIE相位恢复算法
CN109978957B (zh) 基于量子行为粒子群的双目系统标定方法
Jin et al. Using distortion correction to improve the precision of camera calibration
CN115755378A (zh) 一种基于二分法的叠层成像轴向距离误差快速校正方法
CN111986315B (zh) 一种基于深度学习的超分辨白光干涉图三维重建方法
CN109443250A (zh) 一种基于s变换的结构光三维面形垂直测量方法
CN116299247B (zh) 一种基于稀疏卷积神经网络的InSAR大气校正方法
CN117760571B (zh) 基于哈特曼探测器的无监督学习波前探测方法
CN111882543B (zh) 一种基于AA R2Unet和HMM的香烟滤棒计数方法
CN114170321A (zh) 一种基于测距的相机自标定方法及系统
CN111208081B (zh) 一种基于多级阶梯微反射镜的ifts的图谱处理方法
CN111623957A (zh) 一种用于x射线聚焦镜拼接干涉检测的点云配准拼接方法
CN115326366B (zh) 一种基于单幅干涉图的快速测量透镜焦距的装置及方法
CN113189101A (zh) 一种带有负反馈调节的无透镜成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant