CN115667904A - Ph传感器 - Google Patents

Ph传感器 Download PDF

Info

Publication number
CN115667904A
CN115667904A CN202180038672.XA CN202180038672A CN115667904A CN 115667904 A CN115667904 A CN 115667904A CN 202180038672 A CN202180038672 A CN 202180038672A CN 115667904 A CN115667904 A CN 115667904A
Authority
CN
China
Prior art keywords
electrode
fluid
gate
temperature
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180038672.XA
Other languages
English (en)
Inventor
S·R·萨默费尔特
E·G·穆勒纳
S·迈耶
M·赫菲勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN115667904A publication Critical patent/CN115667904A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/227Sensors changing capacitance upon adsorption or absorption of fluid components, e.g. electrolyte-insulator-semiconductor sensors, MOS capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4167Systems measuring a particular property of an electrolyte pH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

为了感测流体的pH,半导体管芯(102、105、107)的加热装置将流体(114)的温度控制到第一温度。当流体的温度处于第一温度时测量半导体管芯的浮栅晶体管(120)的栅极(122)的第一电压。此外,加热装置将流体的温度控制到不同于第一温度的第二温度。当流体的温度处于第二温度时测量栅极的第二电压。基于第一电压和第二电压、第一温度和第二温度确定流体的pH。

Description

PH传感器
背景技术
传感器可用于检测水或其他流体(例如液体)的pH。一些pH传感器使用电解质-绝缘体-半导体场效应晶体管(ISFET)和化学参考物,例如银(Ag)/氯化银(AgCl)。这些传感器使用位于感测的流体内的参考电极来获得可用于表征感测的流体的pH的电测量值。然而,参考物是复杂的并且制造成本高。此外,参考物包含液体,诸如涂覆有AgCl并悬浮在包括氯化钾(KCl)+AgCl的溶液中的银线,在参考物和感测的流体之间有玻璃料。使用更简化且更具成本效益的参考物(例如铂(Pt)、金(Au)、氧化铱(IrOx)、氧化钌(RuO2)等)是有问题的,因为电极和流体之间的电压会随着时间的推移而不规律地漂移。
发明内容
在一个方面中,一种传感器包括半导体管芯、晶体管、第一电极、第二电极、第三电极、金属电阻器和加热器电路。半导体管芯具有感测侧面、半导体衬底、金属化结构和电介质层。金属化结构包括在半导体衬底上的第一层级,以及在第一层级和感测侧面之间的第二层级。电介质层位于感测侧面与第二层级之间。第一电极具有通过电介质层中的第一开口暴露以耦合到流体的第一表面。第二电极具有通过电介质层中的第二开口暴露以耦合到流体的第二表面。第三电极耦合到晶体管栅极,并由电介质层与感测侧面分离,以在流体与栅极之间形成电容器。加热器电路具有耦合到金属电阻器的输出端,并且加热器电路被配置为将电流信号传送到金属电阻器以选择性地加热流体。
在另一方面,一种传感器包括半导体管芯、晶体管、加热装置、流体电势感测电路和控制器。半导体管芯具有感测侧面、半导体衬底、金属化结构和电介质层。金属化结构包括第一电极、第二电极和第三电极。第一电极具有通过电介质层中的第一开口暴露的第一表面。第二电极具有通过电介质层中的第二开口暴露的第二表面。第三电极与第一电极和第二电极隔开,并通过电介质层与感测侧面分离。晶体管具有栅极、漏极和源极。栅极耦合到第三电极以通过由在流体和第三电极之间的电介质层形成的电容器感测流体的电势。加热装置具有在金属化结构中的金属电阻器和在半导体管芯中的加热器电路。加热器电路具有耦合到金属电阻器的输出端,并且加热器电路被配置为将电流信号传送到金属电阻器以选择性地加热流体。流体电势感测电路耦合到晶体管以提供表示流体电势的输出信号。控制器被配置为控制加热器电路以将流体的温度控制到第一温度,在流体的温度处于第一温度时从流体电势感测电路接收输出信号的第一样本,控制加热器电路以将流体温度控制到不同于第一温度的第二温度,在流体温度处于第二温度时接收来自流体电势感测电路的输出信号的第二样本,并提供pH信号,该pH信号表示基于输出信号的第一样本和第二样本、第一温度和第二温度的流体的pH。
在另一方面,一种方法包括使用半导体管芯的加热装置将流体的温度控制到第一温度,并且在流体的温度处于第一温度时测量半导体管芯的浮栅晶体管的栅极的第一电压。该方法还包括使用半导体管芯的加热装置将流体的温度控制到与第一温度不同的第二温度,在流体温度处于第二温度时测量浮栅晶体管的栅极的第二电压,以及基于栅极的第一电压和第二电压、第一温度和第二温度确定流体的pH。
附图说明
图l是无参考物pH传感器的局部剖面侧视图和示意图。
图2是图1的pH传感器的俯视图。
图3是使用图1和图2的pH传感器感测pH的方法的流程图。
图4是图1和图2的pH传感器中的电容耦合的示意图。
图5是图1和图2的pH传感器中的示例流体电势感测电路的示意图。
图6是图1和图2的pH传感器中的第一金属化层级中的金属电阻器结构的俯视图。
图7是图1和图2的pH传感器的第二金属化层级中的电极结构的俯视图。1和图2。
图8是某些电极的感测侧面和表面的俯视平面图,这些电极通过图1和图2的pH传感器中的电介质层中的相应开口暴露。
图9是图1和图2的pH传感器中的示例门控电路的示意图。
图10是图1和图2的pH传感器中的另一个示例门控电路的示意图。
具体实施方式
在附图中,相同的附图标记自始至终指代相同的元件,并且各种特征部不一定按比例绘制。此外,术语“耦合”包括间接或直接电或机械连接或其组合。例如,如果第一设备耦合到第二设备或与第二设备耦合,则该连接可以是通过直接电连接,或者通过经由一个或多个中间设备和连接的间接电连接。下文在功能的背景下描述各种电路、系统和/或部件的一个或多个操作特性,这些功能在某些情况下是在电路通电和操作时由各种结构的配置和/或互连产生的。
最初参考图1和图2,图1示出了无参考物(例如,没有参考物)传感器100,其包括示意性电路部件和沿图2中的线1-1截取的局部截面侧立面结构视图,并且图2示出了图1的pH传感器的俯视图。在一个示例中,传感器100被用于感测流体的pH值。传感器100可以在其他应用中用于感测流体的pH或另一电气状况。传感器100包括具有感测侧面101的半导体管芯。在所图示示例中,感测侧面101是传感器100的顶部上的大致平面的感测侧面。传感器100包括具有半导体衬底102的半导体管芯,例如,具有轻掺杂n-或p-硅结构、相反掺杂的阱103和在其顶侧上的电介质层104。半导体管芯还包括形成在电介质层104上方的金属化结构。金属化结构包括第一层级105,其具有在电介质层104上面的半导体衬底上延伸的金属前电介质(PMD)106。金属化结构还包括设置在第一层级105和感测侧面101之间的第二层级107。在另一示例中,金属化结构包括多于两个层级。图1中的第二层级107包括第一层间电介质(ILD)层108,例如二氧化硅(SiO2)。所图示示例包括具有图案化特征部109的单个ILD层级107,该图案化特征部109由导电铝在下PMD层106的顶侧面上形成并且覆盖有ILD材料108。在其他示例中,金属化结构包括任意整数层级,具有用于信号路由和/或部件互连的导电路由特征部和导电触点或通孔。
导电图案化电极层110在ILD层108的顶侧面上延伸以形成如下文进一步描述的各种导电电极特征部。在一个示例中,图案化电极层110是铂或包括铂。在操作中,流体的电势通过与图案化电极层110的一个或多个电极的接触来设置,并且暴露的一个或多个电极优选地是与流体不发生反应的材料或包括与流体不发生反应的材料,例如金(Au)、铂(Pt)、铱(Ir)、氧化铱(IrOx)、钯(Pd)等。理想情况下,溶液电势连接在加热器的外部,以便加热感测电极的电压电势不会改变。图案化电极层110的某些电极具有暴露的上表面或侧面,例如,如图1和图2中的111和112所示。图案化电极层110的其余部分和ILD层108的顶侧面被电介质层113覆盖,电介质层113在感测侧面101和金属化结构的第二层级107之间延伸。在一个示例中,电介质层113是或包括当与流体114直接接触时稳定的一种或多种材料。用于水pH感测应用的合适的示例包括五氧化二钽(Ta2O5)、氮化硅(SiN)、氧化铝(AlOx)、氧化锆(ZrOx)、二氧化钛(TiO2)、氧氮化硅(SiON)和二氧化硅(SiO2)、氮化铝(AlN)。
在安装在pH感测应用中使用时,电介质层113的顶侧面或表面在覆盖的电极和流体114之间形成绝缘屏障。感测侧面101耦合到流体114,例如水或用于感测pH或其他流体特性的其他液体或气体,并且传感器100可以包括封装结构,例如保护半导体管芯并允许流体114耦合(例如,直接暴露)到传感器100的感测侧面101的外壳(未示出)。
金属化结构的第二层级107还包括导电通孔以在图案化电极层110的选择特征部和PMD层106顶侧面上的选择图案化特征部109之间形成电连接。图1示出了两个示例,其包括将电极特征部110与路由特征部109电互连的通孔115,以及将浮栅电极特征部110与晶体管栅极路由特征部109互连的另一个通孔116。第一层级105的PMD层106包括导电通孔(例如钨(W)),其将选择的部件端子(例如晶体管栅极、漏极和源极)电互连到相应的图案化特征部109以用于路由到和耦合到半导体芯片中的电极、其他部件或电路。
图1示出了传感器100的三个部分117、118和119的选择截面侧视图,它们的位置在图2的顶视图中沿着对应的截面线1-1指示。部分117示出了传感器100的温度感测区域的特征部和方面(在图1中标记为“温度感测”并且在图2中标记为“温度感测(热敏电阻))。部分118示出了传感器100的流体电势感测区域(在图1和图2中标记为“流体电势感测”)的特征部和方面。部分119示出了传感器100的流体电势感测区域的特征部和方面。如图2进一步所示,此外,示例传感器100包括具有两个部分119的流体电势感测区域的两个实例,每个部分具有通常如图1所示的特征部并在下面进一步描述。
如在图1中最佳地所示,传感器100的流体电势感测部分119包括场效应晶体管(FET)120,其具有栅极电介质121、位于栅极电介质121上方的栅极122、漏极124和源极126。在该示例中,漏极124和源极126包括多个重掺杂注入区,其中掺杂剂的极性与衬底102的下划线部分的极性相反。在图示的示例中,晶体管120是n沟道晶体管。在其他示例中,晶体管120是p沟道晶体管。在一个示例中,晶体管120是扩展栅极ISFET。金属化结构的第一层级105包括钨触点,其形成与对应于第二层级107中的图案化特征部109的晶体管122的相应栅极122、漏极124和源极126的电连接。在传感器100的操作中,测量晶体管栅极122的栅极电压VG以用于感测流体114的pH,如下文进一步描述。如图1所示,传感器100的部分118包括图案化电极特征部110,其具有通过电介质层113中的第三开口暴露的第三表面130,以便耦合到流体114。
金属化结构包括形成用于感测流体114的pH的各种电极131、132、133、134、135和136的图案化特征部110。在温度感测部分117中,第一电极131与第二层级107中的第一电极131间隔开并且包括通过电介质层113中的第一开口暴露以耦合到流体114的第一表面111。
第二电极132与在图1所示的流体电势感测部分119中的第二层级107中的第一电极131间隔开。第二电极132包括通过电介质层113中的第二开口暴露以耦合到流体114的第二表面112。在流体电势感测部分119中,第三电极133与第二层级107中的第一电极131和第二电极132间隔开。第三电极133耦合到栅极122以感测流体114的电势。第三电极133通过电介质层113与感测侧面101分离,以在流体114和栅极122之间形成电容器138。第三电极133与流体114没有直接接触。在该示例中,第三电极133上面的流体114形成上电容器板,并且第三电极133形成下电容器板,以及电容器板被层113的居间电介质材料分开以形成电容器138。
第四电极134位于温度感测部分117中的第二层级107中。第四电极134操作为通过导电通孔115耦合到温度感测电路的热敏电阻,如图1所示。第四电极134与第一电极131、第二电极132和第三电极133间隔开。第四电极134通过电介质层113与感测侧面101分离,并且第四电极134与流体114没有直接接触。
在部分118中,第五电极135与金属化结构的第二层级107中的相应第一电极131、第二电极132和和第四电极134间隔开。第五电极135例如通过第一层级105和第二层级107中的导电互连路由迹线和通孔(未示出)电耦合到第三电极133,如图1和图2中的虚线137所示。第五电极135通过电介质层113与感测侧面101分离,并且第五电极135与流体114没有直接接触。第六电极136与流体电势感测部分118中的第二层级107中的相应第一电极131、第二电极132和第三电极133、第四电极134和第五电极135间隔开。第六电极136具有第三表面130,第三表面130通过电介质层113中的第三开口暴露以耦合到流体114。
传感器100包括半导体管芯中的流体电势感测电路140。流体电势感测电路140耦合到晶体管120并且被配置为提供表示流体114的电势的输出信号。晶体管栅极122耦合到第三电极133以通过在流体114和第三电极133之间由电介质层113形成的电容器138来感测流体114的电势。流体电势感测电路140具有耦合到晶体管120的漏极124的第一输入端141、耦合到晶体管120的源极126的第二输入端142、耦合到晶体管120的体连接的第三输入端143以及输出端。流体电势感测电路的输出端耦合到控制器,如下文进一步描述,并且输出端被配置为提供表示流体114的电势的输出信号。
传感器100包括具有加热器电路150的加热装置,该加热器电路150在半导体管芯中具有输出端151、152和153。加热装置还包括在金属化结构的第二层级107中的金属电阻器154。加热器电路150的输出端151、152和153耦合到金属电阻器154。加热器电路150被配置为将电流信号传送到金属电阻器154以选择性地间接加热流体114。在一个示例中,金属电阻器154由互连的铝加热翅片结构109形成,该铝加热翅片结构109在金属化结构的第二层级107的相应温度感测和流体电势感测部分117和118中延伸。金属电阻器特征部与金属化结构的第二层级107中的电极131、134、135和136的部分间隔开,但在其下方和附近延伸。
如下面结合图6进一步示出和描述的,加热器电路150包括耦合到金属电阻器154的相应的纵向区段的抽头的第一输出端151。加热电路150的第二输出端152耦合到金属电阻器154的相应的纵向区段的第一端,并且第三输出端153耦合到金属电阻器154的相应的纵向区段的第二端。在该示例中,加热器电路150的第二输出端152被配置为提供相对于加热器电路150的第一输出端151的电压VM为正的第一电压信号VP。此外,加热器电路150的第三输出端153被配置为提供相对于第一输出端151的电压VM为负的第二电压信号VN。金属电阻器154靠近感测侧面101的定位允许加热器电路150控制流体114的温度,特别是在感测侧面101附近。进一步,温度控制允许通过在流体温度处于不同温度时测量和采样浮栅122的栅极电压VG来准确估计流体114的pH。
传感器100具有温度传感装置,其包括用作热敏电阻操作的第四电极134和温度感测电路160。如图1所示,温度感测电路160包括输入端161,其通过导体(例如铝)路由传感器100的温度感测部分117中的特征部109和导电通孔115耦合到第四电极134。在一个示例中,加热(例如,温度升高)在流体114和半导体管芯中都是非常局部的。在一个实施方式中,加热器/温度传感器组合确定给定控制信号的温度升高或确定实现目标温度升高的所需的控制信号。在一个示例中,流体电势感测电路140使用该信息来获得加热和不加热的不同电势。此外,在一个示例中,加热以短脉冲发生以减轻或避免芯片和流体114的永久热量上升并降低功耗。在一个示例中,加热器默认状态在加热器关断的情况下闭合传输门。在一个示例中,传感器实施两个阶段,其包括采用温度传感器来确定ΔT或加热器控制值(加热器接通与加热器关断)的第一阶段,以及在传输门断开时感测流体电势的第二阶段,并且传感器根据两个潜在样品和温度变化计算流体pH。在操作中,温度感测电路160感测第四电极134的电阻以确定第四电极134的温度。在一个示例中,温度感测电路160包括电流源,该电流源选择性地将预定电流施加到第四电极134的一端并且感测第四电极134的第一端和第二端之间的电压以确定电极电阻。在该示例中,温度感测电路160包括电压感测电路,并且提供可以与第四电极134的温度相关的输出电压信号。由于第四电极134接近流体114,所以输出电压信号表示流体114的温度。
在一个实施方式中,来自温度感测电路160的输出电压信号被提供给控制器,该控制器验证流体温度以便控制流体电势感测电路140的输出的采样定时以便在两个或多个已知温度下对流体电势感测输出进行采样。在另一实施方式中,来自温度感测电路160的输出电压信号作为温度反馈信号提供给控制器,并且控制器修改加热器电路150的操作以调节第四电极134的温度和闭环方式。
在一个示例中,传感器100还包括门控电路170(在图1中标记为“浮栅控制”。门控电路170包括耦合到栅极122的输出端171,并且门控电路170被配置为向栅极122提供调整信号。在一个示例中,门控电路170还包括耦合到晶体管120的体连接的输出端172,如图1所示。在操作中,门控电路170在某些示例中用于在流体电势感测测量之前或之后重置或稳定晶体管栅极122的栅极电压VG。门控电路170的示例实施方式在下文结合图9和图10进一步图示和描述。
传感器100还包括在半导体管芯中的控制器180。控制器180通过电连接可操作地耦合到流体电势感测电路140、加热器电路150、温度感测电路160和门控电路170。在一个示例中,控制器180包括逻辑电路,例如,以实施状态机或执行其他逻辑操作以向电路140、150、160和/或170发送控制信号和从电路140、150、160和/或170接收数字信号。在一个示例中,控制器180还包括一个或多个模拟接口电路,例如缓冲器、放大器、模数转换器等。控制器180通过逻辑电路配置和/或编程来配置以执行如下进一步描述的各种操作和功能。在一个实施方式中,控制器180控制电路140、150、160和/或170和/或与电路140、150、160和/或170交接以通过在不同温度下重复一系列浮栅电压测量来连续感测流体114的pH。该实施方式中的控制器180在输出端181处提供pH信号(在图1中标记为“PH”)。
从图1中的侧视图示出了传感器100,图1具有第一横向方向X和垂直方向Z。图2示出了pH传感器100在第一横向方向X和第二横向方向Y的平面中的一个示例的俯视图。图2的向下俯视图示出了包括电介质层113的顶表面以及通过电介质层113中的相应第一开口、第二开口和第三开口暴露的电极131、132和136的电极表面的感测侧面。图2还以虚线示出了被电介质层113覆盖的下方特征部和结构。图2中的这些虚线结构包括第三电极133、在区域202和204中的第四电极134和在区域201和区域203中的第五电极135,以及图案化的铝特征部109,其具有与加热器电路150的输出端151、152和153的数字指定连接。
图2中的传感器实施方式包括由第二电极132横向围绕的四个大致正方形的内部区域201、202、203和204。在此示例中,区域203是区域201的第二实例,并且区域204是区域202的第二实例。其他实施方式包括四个这样的区域或不同数量的区域的布置。尽管区域201-204通常是正方形的,但在不同示例中可以使用其他形状。在该示例中,相应的第一电极131和第四电极134位于第二层级107中的第一区域201(和第三区域203)中。此外,第五电极135和第六电极136位于金属化结构的第二层级107中的第二区域202(和区域201)中。如图2所示,区域201-204都彼此间隔开,其中第二区域202与第一区域201间隔开。第二电极132横向围绕区域201-204,并且具有大致矩形形状,尽管不是所有可能的实施方式的严格要求。
在该示例中,相应的第一电极131和第六电极136具有围绕相应的第五电极135和第四电极136的外矩形结构。例如,第一电极131在第二区域202和第四区域204的第二金属化层级107中横向围绕第四电极134。类似地,第六电极136横向围绕区域201和区域203的第二层级107中的第五电极135。此外,相应的第四电极134和第五电极135具有沿着第一方向X延伸的细长区段的蛇形形状。第一电极131和第六电极136具有在相应的蛇形电极134和135的分支之间沿第一方向X延伸的相反地设置的向内延伸的分支部分。例如,第一电极131具有在区域202和204中的第四电极134的相邻的细长区段之间沿第一方向X延伸的向内延伸的分支部分,并且第六电极136具有在区域201和203中的第一电极131的相邻的细长区段之间沿着第一方向X延伸的向内延伸的分支部分。如图2所示,某些实施方式包括流体电势感测部分119的两个或更多个实例,每个实例具有浮栅晶体管120和相关联的电路,如上面结合图1所描述的。围绕电极131和136与相应的围绕蛇形电极134和135基本相等地间隔开。在其他示例中,电极以不同的量间隔开。图1和图2中的电极131、134、135和136的横向宽度通常相等。在其他示例中,电极131和134-136具有不同的宽度。
图3是显示使用图1和图2的传感器100感测pH的方法300的流程图。在一个示例中,控制器180被配置为使用图1中的电路140、150、160和/或170中的一个或多个来执行方法300。在半导体管芯102、105、107的感测侧面101耦合到流体114的情况下,如图1所示,控制器180在一个或多个测量周期中实施方法300,其中一个在图3中示出。在一个实施方式中,方法300包括在测量栅极122的电压VG之前或之后设置或调整在302和304VG处的浮栅电压。在图3的示例中,控制器302在302处使用门控电路170将栅极电压VG设置为目标值。在一个示例中,控制器180在302处使门控电路闭合传输门(例如,下文结合图10进一步描述)以将晶体管栅极122临时耦合到电压参考,以便将栅极电压VG设置为目标水平。该示例中的控制器180然后在304处关断传输门,使晶体管栅极122电浮动。
然后控制器180在两个相应温度下实施一系列两个浮栅电压测量,并基于两个温度和相应栅极电压测量值来计算流体的pH值。在一个示例中,在306处,控制器180使用加热装置(例如,加热器电路150)将流体114的温度控制到第一温度T1。在一个示例中,这包括例如通过关断加热电源将流体温度设置为T1。在另一实施方式中,控制器180控制由加热器电路150施加的功率到非零水平以将流体114的温度设置为第一温度T1。在图3中的308处,控制器180在一个示例中使用温度感测电路160来验证流体的温度是否114处于或接近期望的第一温度T1。在该示例中,如果温度不在T1附近的预定可接受范围内(在308处为否),则控制器180在308处继续监测测量的温度。
一旦温度在第一温度Tl的可接受范围内(在308处为是),控制器180在310处使用流体电势感测电路140来测量浮栅电压VG。在一个示例中,控制器180在流体114的温度处于T1时接收来自流体电势感测电路140的输出信号的第一样本。在一个示例中,这包括在流体114的温度处于第一温度T1时测量栅极122的第一电压VG。在一个实施方式中,例如使用缓冲放大器电路直接感测栅极电压。在另一示例中,流体电势感测电路140通过晶体管120的沟道提供电流信号并测量晶体管漏极124和源极126之间产生的漏极-源极电压以确定漏极-源极阻抗,并基于感测到的漏极-源极阻抗来计算相应的浮栅电压VG。
在一个示例中,控制器180然后使加热器电路150将流体114的温度控制到第二温度T2。在一个实施方式中,这包括在312处使加热器电路150接通加热电源,并在314处使用温度感测电路160确定测量的热敏电阻温度是否等于不同的第二温度T2。在一个示例中,控制器180在314处使用温度感测电路160来验证流体114的温度是否处于或接近期望的第二温度T2。在该示例中,如果温度不在Tl附近的预定可接受范围内(在314处为否),则控制器180在314处继续监测测量的温度。当温度在T2的可接受范围内时(在314为是),控制器180使用流体电势感测电路140在316测量第二栅极电压VG,同时流体114的温度处于第二温度T2。
在318处,控制器基于栅极122的第一电压和第二电压VG、第一温度T1和第二温度T2计算流体114的pH。此后,方法300返回到302,并且控制器180为下一个测量周期重复方法300。在一个实施方式中,控制器180通常连续工作以重复方法300。在另一实施方式中,控制器180根据需要实施如图3所示的测量周期,例如,响应于来自主电路(未显示)的请求信号。在一个示例中,控制器180在图1中的输出端181处提供输出信号PH,其中,在一个示例中,输出信号PH是模拟电压或电流信号,其幅度表示流体114的pH。在另一实施方式中,输出信号PH是表示流体114的pH的数字值。在一个示例中,传感器100包括提供pH值的连续读数的显示器或其他用户界面(未示出),其根据需要更新或用在318处计算的最近的pH值连续更新。
在一个示例的操作中,控制器180包括计算电路(例如,预编程或配置或可编程逻辑、算术逻辑单元(ALU)或其组合)以计算流体114的pH。传感器100包括位于感测第三电极134下面的片上加热装置,其耦合到晶体管栅极122以沿感测侧面101的一部分改变电介质层113的感测电介质界面处的流体114的局部温度。通过在两个不同温度下测量相同流体114的晶体管电压,控制器180使用Nernst方程基于两个温度T1和T2以及相应的第一和第二栅极电压VG来算出或计算pH。Nernst方程将还原电势与标准电极电势、温度和浓度相关,其中电池电势Ecell=E0cell-R*T*LN(XH+/X0H+)/F,其中X是浓度,X0是参考浓度,其不随XH+而变化。因此,在一个示例中,控制器180根据以下方程计算流体pH:pH=LOG(XH+)=LOG(e)*LN(XH+)并在输出端181处根据计算的pH提供输出信号(例如,模拟电压或电流或数字值)。传感器100的某些实施方式提供了不需要昂贵且复杂的参考物的pH感测溶液,并且传感器100使用扩展栅极ISFET或其他晶体管120在两个温度下测量溶液电势。在一个实施方式中,样本之间的时间很短,例如,允许两个温度之间的转变。在一个示例中,传感器100使用铂(Pt)电极131-136作为用于感测流体电势的参考物,其中浮栅122由电容器144和电介质层113电容地耦合。此外,在所示示例中,流体114的电势由通过电介质层113中的相应开口暴露于流体114的围绕的第一电极131和第六电极136感测。
在以上示例中,控制器180操作加热器电路150以控制流体114的温度为第一预定温度值T1和第二预定温度值T2。在所示示例中,控制器180还使用温度感测电路160和由第四电极134实现的热敏电阻,以便验证感测的温度何时达到期望值和/或使用加热器电路150提供温度反馈信号用于闭环控制,以便将感测到的流体温度控制到期望值T1或T2。
在另一种可能的实施方式中,第一温度和第二温度不是预先确定的,并且控制器180使用来自温度感测电路160的温度反馈。结合加热器电路150的改变控制,以便在两种不同的温度下测量第一栅极电压值和第二栅极电压值VG。在该实施方式中,来自温度感测电路160的反馈用于确定给定测量周期的不同温度T1和T2的实际值,并且这些值与相应的第一栅极电压值和第二栅极电压值VG一起用于在318处计算流体pH。在一个示例中,控制器180基于来自流体电势感测电路140的输出信号的第一样本和第二样本、第一温度T1和第二温度T2在输出端181处提供表示流体114的pH的信号PH。
在某些实施方式中,控制器180使用门控电路170在测量周期之间稳定或设置浮栅晶体管120的栅极电压VG,并且每个测量周期包括在两个或更多个不同温度下的测量,例如,在每个pH测量周期开始处。在另一示例中,控制器180使用门控电路170在给定pH测量周期结束时设置或调整栅极电压VG。在另一种可能的实施方式中,控制器180使用门控电路170以不同的间隔设置或调整栅极电压VG,例如,在每整数N个pH测量周期之后。
此外,在一些实施方式中,控制器180使用来自温度感测电路160的感测流体温度信号或信息,以便在各个测量循环期间通过加热器电路150提供闭环控制和/或流体温度的验证。在这点上,在某些示例中,当来自温度感测电路160的反馈在包括期望值的某个非零容差范围内时,控制器180确定流体温度处于期望值。
在所示示例中,控制器180通过以第一模式(例如,图3中的306)控制加热器电路150来实施接通或关断温度控制,以制止将电流信号传送到金属电阻器154(未施加加热功率),并当加热器电路150制止将电流信号传送到金属电阻器154时,接收来自流体电势感测电路140的输出信号。在第二模式(例如,图3中的312)中,控制器180控制加热器电路150以将电流信号传送到金属电阻器154,并在加热器电路150将电流信号传送到金属电阻器154时,接收来自流体电势感测电路140的输出信号。在其他实施方式中,加热器电路实施不同的加热控制技术,例如通过施加两个不同幅度的电流信号来实现两个不同的流体温度,使用电流信号的脉冲宽度调制来实现两个不同的流体温度等,是在采样之前使用具有温度验证的开环控制(例如,图3中的308和314)还是使用控制器180的闭环控制。在一个示例中,控制器180在第一模式或第二模式中的至少一个模式中从温度感测电路160接收温度反馈信号,并执行以下操作之一:(a)基于温度反馈信号控制到金属电阻器154的电流信号的幅度或定时;(b)基于温度反馈信号控制来自流体电势感测电路140的输出信号的采样或第二输出信号的采样;(c)基于输出信号、来自流体电势感测电路140的第二输出信号和温度反馈信号提供pH信号。
此外,在某些实施方式中,控制器180基于在两个或更多个不同温度下获得的感测流体电势信号样本并基于不同温度值来计算流体114的pH。例如,在另一实施方式中,控制器180将流体温度设置或控制为三个或更多不同的温度值并测量第一、第二和第三(或更多)相应的栅极电压值VG,并使用三个或更多不同的温度值和对应的栅极电压值以在318处计算流体pH值。
以这种方式,传感器100感测流体114的pH而不需要流体114中的外部参考物。与使用外部参考物的pH传感器相比,这有利地降低了成本和复杂性。在某些示例中,选择性地使用门控电路170通过抵消漂移和其他影响来促进流体电势随时间的稳定性。
图4示出了图1和图2的pH传感器中的电容耦合的示意图。如示意性表示的,流体电势感测电容器144比到晶体管120的浮栅122的其他电容耦合大。感测电容器144提供在浮栅122和流体电势之间的电容耦合,在图4所表示为电压源402。流体114由通过电介质层113中的相应开口的直接连接保持在暴露电极131和136的电势,这在图4中表示为电极电压源404(例如,铂电极131和136的电压VPt)。在一个实施方式中,加热器电路150向金属电阻器154的一端(在图4中表示为第一电压源406)提供正的第一加热器电压VH+,并且向金属电阻器154的另一端(表示为第二电压源408)提供负的第二加热器电压VH-。这些电压通过小电容器电容耦合到晶体管120的浮栅122。
如图4进一步所示,另一个小电容器表示将电压Vss耦合到浮栅122的半导体管芯的寄生电容(表示为另一个电压源410)。在一个示例中,传感器构造减轻或防止耦合到浮栅122的加热器电容。所示示例中的金属电阻器154位于具有大耦合电容的铂/流体感测电容器144的正下方。在一个实施方式中,加热器电路150向金属电阻器154提供伏特范围内的电压阶跃(VH+,VH-),而检测到的信号在mV范围内。如下面结合图6进一步描述的,在一个示例中,加热器电路150有利地施加对称电压阶跃VH+和VH-以在加热期间将电流信号传送到金属电阻器154。
图5示出了示例流体电势感测电路540,该流体电势感测电路540可以用作图1和图2的pH传感器100中的流体电势感测电路140。该示例提供具有恒定沟道电荷的缓冲电路以提供表示浮栅122的电压VG的输出电压信号。缓冲电路包括第一电路支路501和第二电路支路502,它们耦合到具有供电电压VS的供电电压端子503。第一电路分支501包括第一电流镜晶体管504,在该示例中为p沟道FET,以及在电源电压端子503和尾电流端子之间的感测晶体管120,第一电流镜晶体管504与第一级联晶体管(例如,n沟道FET)串联耦合。第二电路支路502包括第二p沟道电流镜晶体管508和n沟道晶体管500,第二p沟道电流镜晶体管508与第二级联晶体管510(例如n沟道FET)串联耦合在电源电压端子503和尾电流端子之间,n沟道晶体管500被构建以具有作为感测晶体管120的半导体管芯中的匹配尺寸。级联电压参考512向级联晶体管506和510的栅极提供参考电压VCAS。流体电势感测电路540包括输入端541、542和543,它们对应于图1和图2中的流体电势感测电路140的相应输入端141、142和143,用于与感测晶体管120的漏极124、源极126和体连接互连。该示例流体电势感测电路540减轻了从感测放大器返回到浮栅122的电容耦合。在这个示例中,改变晶体管120的操作条件(例如,漏电流Id、漏源电压Vds)会导致沟道电荷的变化,这可以反映在浮栅中并导致错误。示例缓冲器电路540和图5通过作为具有负反馈的差分放大器操作,为感测晶体管120提供大致恒定的漏极电流Id和大致恒定的漏源电压Vds。以这种方式,恒定尾电流ITAIL基本上均等地分布在浮栅感测晶体管120和参考晶体管500之间,从而通过感测晶体管120提供大致恒定的漏极电流Id。级联晶体管506和510用于将漏-源电压Vds调节到晶体管120和500二者两端的恒定值。参考电压源512设置恒定的漏源电压Vds。该电路镜像晶体管504和508的输出设置浮栅电压,并且设备参数变化通过良好匹配被完全或基本上消除,以减轻传感器100的制造和操作中的工艺、温度和电压变化。
参考图6-8,图6示出了在图1和图2的pH传感器100的第一金属化层级105中图1和图2的金属电阻器154的示例结构的俯视图。图7示出了电极结构131、132、133、134、135和136以及第二金属化层级107的俯视图,并且图8示出了通过图1和图2的pH传感器中的电介质层中的相应开口暴露的某些电极的感测侧面和表面的俯视图。在该示例中的示例区域201-204中的每一个中,金属电阻器154(图6)被构造为六匝导电金属(例如铝)图案化特征部109和第一金属化层级105的蛇形图案。这些图案中的每一个具有耦合到具有电压VP的加热器电路150的第二输出端152的第一端、耦合到第三输出端153(具有电压VN)的第二端以及耦合到具有中间电压VM的第一输出端151的中心抽头或中间连接。金属电阻器154(例如,图1)位于用于加热的铂电极的正下面,包括与第三电极133和感测电容器138相关联的感测区域的正下面。实际上,在一个示例中,流体114(例如,水)仅需要在传感器100的感测侧面101附近被加热,例如,在距离感测区域的表面大约10nm内。为金属电阻器154的匝的间距使用细间距给出更均匀的热分布。铂电极和感测区域的导热性也有助于均匀的热量分布。在导电金属的蛇形图案的匝之间间隔开的更细的间距可以与将加热器分成平行的加热器段相结合,以保持在给定的电源电压内。在一个示例中,中间抽头有助于低电容耦合到栅极122的浮动节点中。
如上文结合图2所述,示例金属电阻器154包括具有相应的第一端和第二端以及在第一端和第二端之间的抽头的纵向区段。相应的纵向区段在第二层级107中沿第二方向Y延伸。加热器电路150包括耦合到相应纵向区段的接头的第一输出端151、耦合到相应纵向区段的第一端的第二输出端152以及耦合到相应纵向区段的第二端的第三输出端153。加热器电路150的第二输出端152提供相对于第一输出端151的电压(VM)为正的第一电压信号(VP),以及加热器电路150的第三输出端153提供相对于第一输出端151的电压VM为负的第二电压信号(VN)。这种加热器配置减轻了金属电阻器154和晶体管120的浮栅122的电容耦合的影响。
在一个实施方式中,加热器电路150分别在第二输出端152和第三输出端153处施加在VH+处的正电压阶跃和在VH-处相同大小的负电压阶跃。本示例中的对称电压阶跃是通过在第一输出端151处使用中间抽头并在正(VH+)和负(VH-)引脚处使用上拉和下拉晶体管来实现的。当上拉和下拉晶体管关断时,耦合电容器的电压由中间电压VM决定。当上拉和下拉晶体管以对称方式接通时,中间节点只需要汲取由缺陷引起的少量电流,并且对于VH+和VH-,半导体管芯制造中的任何此类缺陷都具有相同的耦合电容,例如通过使用铂电极和金属电阻器布局,其中金属电阻器154的蛇形匝部分和铂电极的感测区域相对于彼此正交。在该示例中,金属电阻器154的匝通常沿Y方向延伸,而蛇形感测电极134和135的细长部分沿X方向延伸。
以这种方式,默认情况下在正支路和负支路的耦合电容器之间的差异被最小化。可以通过在VH-处施加正电压阶跃和在VH+处施加负电压阶跃并平均两个结果来执行第二测量,从而消除在耦合电容之间的任何不对称的影响。即使耦合实际上是分布的,不对称抵消仍然成立。
图9示出了示例门控电路970,其可以用作上文图1和图2的pH传感器中的门控电路170。门控电路970以第一控制晶体管901和第二控制晶体管902的形式实施模拟浮栅结构,第一控制晶体管901和第二控制晶体管902通过在半导体芯片中的感测晶体管120的薄栅极氧化物121(图1)中的隧穿效应来设置或调整浮栅电压VG。在该示例中,控制器180控制门控电路970以便在对来自流体电势感测电路140的输出信号进行采样之前或之后设置或调整栅极电压VG。图9中的门控电路970包括第一控制晶体管901、第二控制晶体管902、第一电压源910和第二电压源920。第一控制晶体管901具有第一控制栅极911、第一控制漏极912和第一控制源极913。如图9所示,第一控制栅极911耦合到浮栅晶体管120的浮栅122,并且第一控制漏极912耦合到第一电压源910。第二控制晶体管902具有第二控制栅极921、第二控制漏极922和第二控制源极923。第二控制栅极921耦合到栅极122,第二控制漏极922耦合到第二电压源920。在一个示例中,栅极电介质或栅极氧化物121具有大约70nm的厚度,并且半导体管芯包括如图9所示耦合的第一控制晶体管901和第二控制晶体管902,其中控制晶体管的栅极耦合到浮栅122。隧穿效应从浮栅122增加或减少电荷。在所示示例中,电压源920的正编程电压progp将电荷添加到浮栅122,而电压源910的负编程电压progn从浮栅122减去电荷。在一个实施方式中,浮栅电压VG的预期稳定性在编程电压的绝对值约为12V的年范围内。
图10示出了可以用作上文在图1和图2的pH传感器中的门控电路170的另一个示例门控电路1070。该实施方式使用传输门1000将浮栅122选择性地耦合到处于目标电压值的电压参考,以设置或调整浮栅电压VG。传输门1000包括p沟道晶体管1001和n沟道晶体管1002。p沟道晶体管1001具有第一栅极1011、第一漏极1012、第一源极1013和第一体连接1014。
n沟道晶体管1002具有第二栅极1021、第二漏极1022、第二源极1023和第二体连接1024。n沟道晶体管1002的第二栅极1021耦合到从控制器180接收控制信号的控制输入端1040,具有使晶体管1001和1002导通的活动高状态和使晶体管1001和1002关断的低状态。p沟道晶体管1001的第一漏极1012耦合到栅极122,并且n沟道晶体管1002的第二漏极1022耦合到栅极122。该示例中的门控电路1070还包括电压源1030,其输出端1031耦合到p沟道晶体管1001的第一源极1013和n沟道晶体管1002的第二源极1023。电路1070还包括反相器1042,其输入端1043耦合到控制输入端1040,并且输出端1044耦合到p沟道晶体管1001的第二栅极1011。当传输门1000接通时,电压源1030的输出端1031耦合浮栅122以设置或调整浮栅电压VG。在pH测量周期期间,控制器180关断传输门1000以断开电压源1030与浮栅122的连接。
此外,在图示的示例中,传输门1000的晶体管1001和1002的背栅或体连接被连接到晶体管1001和1002的源极。在使能信号en=0时的非活动状态下,背栅互连产生反并联二极管,这些二极管被配置为当浮栅电压VG与目标电压VTARGET不同时导通。对于大约+/-10mV范围内的Δ温度测量的预期浮栅电压变化,产生的二极管电流小于背栅连接到电源和接地的泄漏电流。
如上文结合图2所述,某些实施方式包括多个感测晶体管和相关联的流体电势感测部分119。这有助于同时测量多个传感器,例如,以减少噪声。在一个示例中,控制器180从耦合到感测部分119的相应感测晶体管的两个流体电势感测电路140获得测量样本信号。在一个示例中,控制器180在一个测量周期中在温度T1处测量第一传感器并在温度T2处测量第二传感器,然后在下一个测量周期中在温度T1处测量第二传感器并在温度T2处测量第一传感器,以减轻或消除噪声和/或偏移效果。
一些示例提供了无参考物pH传感器100,其具有成本效益且低复杂性并且在比基于参考物的传感器小的信号水平下操作。所描述的示例可以实施快速感测以收集额外的数据,从而利用降噪技术的优点。在图1和图2的示例中,感测晶体管120与金属电阻器154横向间隔开,并且感测晶体管120的温度不会受到加热器温度变化的强烈影响。使用第一感测晶体管和第二感测晶体管120(例如,上文在图2中示出的多个流体电势感测部分119)允许在感测晶体管旁边使用匹配的参考晶体管以帮助补偿由加热引起的局部温度差异,即使感测晶体管120没有被横向间隔开远离金属电阻器154。在某些实施方式中,可以使用布局配置和架构来确保感测电极133处的热量最小地耦合到感测晶体管。
在一个实施方式中,可以通过冷却第三电极133与浮栅122的互连来减轻热影响,例如,通过在互连导电结构附近放置冷金属或通过在加热器区域外的半导体管芯的多晶硅上和/或场氧化物上路由导电互连结构,尽管延长电互连可能会增加寄生互连电容。所示示例包括金属化结构的第二层级107中的金属电阻器154。在其他示例中,半导体管芯包括多层金属化结构,例如,具有在PMD或多晶硅层级、第一利用层级、第二金属化层级级、第三金属化层级等处的加热器金属,其中金属电阻器154优选地位于感测电介质层113附近和下面。此外,耦合在金属电阻器154和感测电极133之间的寄生电容取决于两层之间的空间,并且可以通过更厚的电介质层108或在两层之间使用多个空金属层来增加耦合。
在一个示例中,图案化电极层110是铂或包括铂。在操作中,流体的电势通过与图案化电极层110的多个电极之一接触来设置,并且暴露的一个或多个电极优选地是或包括与流体不反应的材料,例如金(Au)、铂(Pt)、铱(Ir)、氧化铱(IrOx)、钯(Pd)等。流体114的电势理想地连接在加热器区域之外,使得加热感测电极的电压电势不改变。多个电极接触流体114(例如,如上文在图1、2和8中所示)增强了流体114的ESD抗性。某些实施方式包括位于加热器下面并靠近感测电极133的电极,以促进对传感器100的改进的ESD保护。在一个示例中,这样的附加电极使用ESD单元连接,使得对于小电压,该电极是浮动的,但对于大电压是连接到地,以便保护浮栅122免受ESD事件的影响。在某些示例中,用于感测pH值的信号水平相对较小,因为传感器正在测量相对较小的温度差异(例如,1℃到30℃)的差异。例如,与使用外部参考物的传感器生成的信号相比,在T1和T2之间10℃的差异将在每个pH生成大约5%的信号。
在用于感测水流体114的pH值的一个示例中,水具有靠近浮栅电介质层113的内置电势,该电势应该是稳定的。水接触铂电极的暴露部分(例如,上文图8中的服务111、112和130),并且水电势理想地稳定。在水和铂之间的接触会在水和铂之间生成局部电势。水/铂电压随时间漂移,但在短时间内(例如,秒到分钟的范围)是稳定的。改变Pt电极电势将使水电势移位。在某些实施方式中,Pt电极还连接到ESD电路以保护浮栅122。所描述的示例有利于在不同温度下的pH测量,并且可以包括具有相同或相似布局(例如,如上文在图2中所示的梳状/蛇形)和在这些区域下面具有正交金属电阻器结构的分开的温度传感器和pH感测区域。某些实施方式提供具有不同布局(例如蛇形和正方形)的分开的温度传感器和pH感测区域或区(例如,温度感测区域202和204、流体电势感测区域201和203以及上文在图2中的流体电势感测部分119)和每个下面的加热器。某些实施方式提供了组合的pH传感区域和温度传感器(例如平行蛇形+梳状)。施加到金属电阻器结构的末端和中心抽头的受控阶跃信号的使用减轻或防止加热器功率改变浮栅电压VG。此外,描述的示例使用正交蛇形结构进行加热和感测(例如,感测温度和pH值),以及使用中心抽头驱动的差分加热器,以减轻在加热装置和感测电极之间的电容耦合。电极131和136的梳状结构有助于控制感测电极附近的感测流体电势,例如,使用与感测蛇形结构和正交加热结构交错的梳状结构。这允许控制感测的流体电势以及促进浮栅122的ESD保护。
某些示例使用由加热器电路150提供的短加热器脉冲,例如在毫秒范围内,以结合温度控制促进快速感测。某些实施还采用了同时测量的多个pH传感器,这些传感器可以被独立加热,以促进对共模噪声信号(例如电解质电势、光等)的免疫。一些示例还允许以更低的成本和更高的灵活性进行衬底隔离。此外,给定设计的隔离电压能力可以通过半导体两端的布局(例如,沟槽宽度)来改变,而背面隔离可以通过改变聚合物的厚度来改变。与使用特殊金属/电介质堆叠的标准连接相比,对于通过晶圆的隔离,电容连接成本更低。
在权利要求的范围内,对所描述的示例进行修改是可能的,并且其他实施方式也是可能的。

Claims (20)

1.一种传感器,其包括:
半导体管芯,其具有感测侧面、半导体衬底、金属化结构和电介质层,所述金属化结构包括在所述半导体衬底上的第一层级,以及在所述第一层级和所述感测侧面之间的第二层级,以及所述电介质层在所述感测侧面与所述第二层级之间;
晶体管,具有栅极、漏极和源极;
在所述第二层级中的第一电极,所述第一电极具有通过在所述电介质层中的第一开口暴露于所述感测侧面上的流体的第一表面;
在所述第二层级中的第二电极,所述第二电极具有通过在所述电介质层中的第二开口暴露于所述感测侧面上的所述流体的第二表面,所述第二电极与所述第一电极间隔开;
在所述第二层级中的所述第三电极,所述第三电极与所述第一电极和所述第二电极间隔开,所述第三电极耦合到所述栅极,并且所述第三电极通过所述电介质层与所述感测侧面分开以在所述流体和所述栅极之间形成电容器;
在所述金属化结构中的金属电阻器;以及
加热器电路,其具有耦合到所述金属电阻器的输出端,其中所述加热器电路被配置为将电流信号传送到所述金属电阻器以选择性地加热所述流体。
2.根据权利要求1所述的传感器,其还包括:
在所述第二层级中的第四电极,所述第四电极与所述第一电极、第二电极和第三电极间隔开,并且所述第四电极通过所述电介质层与所述感测侧面分开;
温度感测电路,其耦合所述第四电极。
3.根据权利要求2所述的传感器,其中所述第一电极、第二电极、第三电极和第四电极是铂或包括铂。
4.根据权利要求1所述的传感器,其还包括:
流体电势感测电路,其具有输入端和输出端,所述流体电势感测电路的输入端耦合到所述晶体管,并且所述流体电势感测电路的输出端被配置为提供表示所述流体的电势的输出信号;
控制器,其具有控制器输入和控制器输出,所述控制器输入耦合到所述流体电势感测电路的所述输出端,并且所述控制器被配置为响应于所述控制器输入在所述控制器输出处提供pH信号,其中所述pH信号表示所述流体的pH。
5.根据权利要求4所述的传感器,其还包括:
门控电路,其具有耦合到所述栅极的输出端,其中所述门控电路被配置为向所述栅极提供调整信号。
6.根据权利要求5所述的传感器,其中:
所述控制器耦合到所述加热器电路;
所述控制器被配置为:在第一模式下控制所述加热器电路以制止将所述电流信号传送到所述金属电阻器,并在所述加热器电路制止将所述电流信号传送到金属电阻器时接收来自所述流体电势感测电路的所述输出信号;在第二模式下控制所述加热器电路以将所述电流信号传送到所述金属电阻器,并在所述加热器电路将所述电流信号传送到所述金属电阻器时接收来自所述流体电势感测电路的第二输出信号;并且基于来自所述流体电势感测电路的所述输出信号和所述第二输出信号提供所述pH信号。
7.根据权利要求6所述的传感器,其还包括:
在所述第二层级的第四电极,所述第四电极与所述第一电极、所述第二电极和所述第三电极间隔开,所述第四电极通过所述电介质层与所述感测侧面分开;
温度感测电路,其具有耦合到所述第四电极的输入端;
其中所述控制器耦合到所述温度感测电路并且被配置为:在所述第一模式或所述第二模式中的至少一个下从所述温度感测电路接收温度反馈信号;以及以下中的一项(a)基于所述温度反馈信号来控制流向所述金属电阻器的所述电流信号的幅度或时序,(b)基于所述温度反馈信号来控制对来自所述流体电势感测电路的所述输出信号的采样或所述第二输出信号的采样,或(c)基于所述输出信号、来自所述流体电势感测电路的所述第二输出信号和所述温度反馈信号提供所述pH信号。
8.根据权利要求1所述的传感器,其还包括:
门控电路,其具有耦合到所述栅极的输出端,其中所述门控电路被配置为向所述栅极提供调整信号。
9.根据权利要求8所述的传感器,其中所述门控电路包括:
第一控制晶体管,其具有第一控制栅极、第一控制漏极和第一控制源极,所述第一控制栅极耦合到所述栅极,并且所述第一控制漏极耦合第一电压源;以及
第二控制晶体管,其具有第二控制栅极、第二控制漏极和第二控制源极,所述第二控制栅极耦合到所述栅极,并且所述第二控制漏极耦合到第二电压源。
10.根据权利要求8所述的传感器,其中所述门控电路包括:
控制输入端;
传输门,其具有p沟道晶体管和n沟道晶体管;所述p沟道晶体管具有第一栅极、第一漏极、第一源极和第一体连接;所述n沟道晶体管具有第二栅极、第二漏极、第二源极和第二体连接;所述n沟道晶体管的所述第二栅极耦合到所述控制输入端;所述p沟道晶体管的所述第一漏极耦合到所述栅极;并且所述n沟道晶体管的所述第二漏极耦合到所述栅极;
具有输出端的电压源,所述电压源的所述输出端耦合到所述p沟道晶体管的所述第一源极,所述电压源的所述输出端耦合到所述n沟道晶体管的所述第二源极;
反相器,其具有耦合到所述控制输入端的输入端,以及耦合到所述p沟道晶体管的所述第二栅极的输出端。
11.根据权利要求1所述的传感器,其还包括:
在所述第二层级中的第四电极,所述第四电极与所述第一电极、所述第二电极和所述第三电极间隔开,并且所述第四电极通过所述电介质层与所述感测侧面分开;
温度感测电路,其耦合到所述第四电极;
在所述第二层级中的第五电极,所述第五电极与是第一电极、所述第二电极和所述第四电极间隔开,所述第五电极通过所述电介质层与所述感测侧面分开,并且所述第五电极耦合到所述第三电极;并且
在所述第二层级中的第六电极,所述第六电极与第一电极、所述第二电极、所述第三电极、所述第四电极和第五电极间隔开,所述第六电极具有第三表面,所述第三表面通过所述电介质层中的第三开口暴露以耦合到所述流体;
所述第四电极和所述第五电极具有蛇形形状,其具有在所述第二层级中沿第一方向延伸的细长区段;
所述第一电极横向围绕所述第二层级中的所述第四电极;
所述第一电极具有向内延伸的分支部分,所述分支部分在所述第四电极的相邻的所述细长区段之间沿所述第一方向延伸;
所述第六电极横向围绕所述第二层级中的所述第五电极;
所述第六电极具有向内延伸的分支部分,所述分支部分在所述第一电极的相邻的所述细长区段之间沿所述第一方向延伸。
12.根据权利要求11所述的传感器,其中:
所述第一电极和所述第四电极在所述第二层级的第一区域中;
所述第五电极和所述第六电极在所述第二层级的第二区域中,所述第二区域与所述第一区域间隔开;以及
所述第二电极横向围绕所述第一区域和所述第二区域。
13.根据权利要求11所述的传感器,其中:
所述金属电阻器包括纵向区段,所述纵向区段具有相应的第一端和第二端以及在所述第一端和所述第二端之间的抽头,相应的纵向区段在所述第二层级中沿着第二方向延伸,所述第二方向与所述第一方向正交;以及
所述加热器电路包括耦合到所述相应的纵向区段的所述接头的第一输出端、耦合到所述相应的纵向区段的所述第一端的第二输出端和耦合到所述相应的纵向区段的所述第二端的第三输出端;
其中所述加热器电路的所述第二输出端被配置为提供相对于所述加热器电路的所述第一输出端的电压为正的第一电压信号,并且所述加热器电路的所述第三输出端被配置为提供相对于所述加热器电路的所述第一输出端的所述电压为负的第二电压信号。
14.一种传感器,其包括:
半导体管芯,其具有感测侧面、半导体衬底、金属化结构和电介质层,所述感测侧面适于耦合到流体,所述金属化结构包括:第一电极,其具有通过所述电介质层中的第一开口暴露的第一表面;第二电极,其具有通过所述电介质层中的第二开口暴露的第二表面;所述第二电极与所述第一电极间隔开;并且第三电极与所述第一电极和所述第二电极间隔开,并通过所述电介质层与所述感测侧面分开;
在所述半导体管芯中的晶体管,所述晶体管具有栅极、漏极和源极,所述栅极耦合到所述第三电极,以感测通过由在所述流体和所述第三电极之间的所述电介质层形成的电容器的所述流体的电势;
加热装置,其具有在所述金属化结构中的金属电阻器,以及在所述半导体管芯中的加热器电路,所述加热器电路具有耦合到所述金属电阻器的输出端,其中所述加热装置被配置为将电流信号传送到所述金属电阻器以选择性地加热所述流体;
在所述半导体管芯中的流体电势感测电路,所述流体电势感测电路耦合到所述晶体管,并且所述流体电势感测电路被配置为提供表示所述流体的电势的输出信号;以及
在所述半导体管芯中的控制器,所述控制器被配置为:控制所述加热器电路以将所述流体的温度控制到第一温度;当所述流体的所述温度处于所述第一温度时接收来自所述流体电势感测电路的所述输出信号的第一样本;控制所述加热器电路以将所述流体的所述温度控制到不同于所述第一温度的第二温度;当所述流体的所述温度处于所述第二温度时,接收来自所述流体电势感测电路的所述输出信号的第二样本;并且基于所述输出信号的所述第一样本和所述第二样本、所述第一温度和所述第二温度提供表示所述流体的pH的pH信号。
15.根据权利要求14所述的传感器,其还包括:
温度感测装置,其包括:在所述金属化结构中的第四电极,所述第四电极与所述第一电极、所述第二电极和所述第三电极间隔开,并且所述第四电极通过所述电介质层与所述感测侧面分开;以及耦合到所述第四电极的温度感测电路;
其中所述控制器被配置为:基于来自所述温度感测电路的温度反馈信号验证或控制所述流体的所述温度。
16.根据权利要求15所述的传感器,其还包括:
门控电路,其具有耦合到所述栅极的输出端,其中所述门控电路被配置为向所述栅极提供调整信号;
其中所述控制器被配置为控制所述门控电路以在对来自所述流体电势感测电路的所述输出信号进行采样之前或之后设置或调整所述栅极的电压。
17.根据权利要求14所述的传感器,其还包括:
门控电路,其具有耦合到所述栅极的输出端,其中所述门控电路被配置为向所述栅极提供调整信号;
其中所述控制器被配置为控制所述门控电路以在对来自所述流体电势感测电路的所述输出信号进行采样之前或之后设置或调整所述栅极的电压。
18.一种感测流体的pH的方法,所述方法包括:
将半导体管芯的感测侧面耦合到流体,
使用所述半导体管芯的加热装置,将所述流体的温度控制到第一温度;
在所述流体的所述温度处于所述第一温度时测量所述半导体管芯的浮栅晶体管的栅极的第一电压;
使用所述半导体管芯的所述加热装置,将所述流体的所述温度控制到不同于所述第一温度的第二温度;
在所述流体的所述温度处于所述第二温度时测量所述浮栅晶体管的所述栅极的第二电压;以及
基于所述栅极的所述第一电压和所述第二电压、所述第一温度和所述第二温度确定所述流体的pH。
19.根据权利要求18所述的方法,其还包括:使用门控电路,在测量所述栅极的电压之前或之后设置或调整所述栅极的电压。
20.根据权利要求18所述的方法,其还包括:
基于来自所述半导体管芯的电极的温度反馈信号来验证或控制所述流体的所述温度。
CN202180038672.XA 2020-05-26 2021-05-25 Ph传感器 Pending CN115667904A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063030062P 2020-05-26 2020-05-26
US63/030,062 2020-05-26
US17/105,142 2020-11-25
US17/105,142 US11567026B2 (en) 2020-05-26 2020-11-25 PH sensor
PCT/US2021/033975 WO2021242720A1 (en) 2020-05-26 2021-05-25 Ph sensor

Publications (1)

Publication Number Publication Date
CN115667904A true CN115667904A (zh) 2023-01-31

Family

ID=78704786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180038672.XA Pending CN115667904A (zh) 2020-05-26 2021-05-25 Ph传感器

Country Status (4)

Country Link
US (1) US11567026B2 (zh)
JP (1) JP2023527852A (zh)
CN (1) CN115667904A (zh)
WO (1) WO2021242720A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544752B (en) * 2002-05-20 2003-08-01 Univ Nat Yunlin Sci & Tech Method for producing SnO2 gate ion sensitive field effect transistor (ISFET), and method and device for measuring the temperature parameters, drift and hysteresis values thereof
TWI302197B (en) 2006-01-04 2008-10-21 Univ Nat Yunlin Sci & Tech Reference ph sensor, the preparation and application thereof
EP2335061B1 (en) 2008-08-25 2019-02-27 Nxp B.V. Reducing capacitive charging in an electrode comprising a heater
WO2015134042A1 (en) * 2014-03-07 2015-09-11 Hewlett-Packard Development Company, Lp Fluid ejection device with ground electrode exposed to fluid chamber
US11137370B2 (en) 2018-07-31 2021-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Sensor with nanowire heater

Also Published As

Publication number Publication date
WO2021242720A1 (en) 2021-12-02
US20210372960A1 (en) 2021-12-02
JP2023527852A (ja) 2023-06-30
US11567026B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
EP2335061B1 (en) Reducing capacitive charging in an electrode comprising a heater
US7053439B2 (en) Chemoreceptive semiconductor structure
US10378961B2 (en) Thermal pattern sensor
US10295644B2 (en) Sensors, systems and methods for compensating for thermal EMF
US10948444B2 (en) Conductivity sensor
US6948847B2 (en) Temperature sensor for a MOS circuit configuration
JP2007010651A (ja) 熱感知
JP2002523902A (ja) パワートランジスタ装置
CN108700540B (zh) 用于生成测量信号的传感器装置和方法
EP3290914A1 (en) Methods and varactor based sensor devices for sensing fluid properties
CN105703754A (zh) 电路和用于测量电流的方法
US7617723B2 (en) Thermal type flow rate measuring apparatus having decrease in coupling capacitance between wiring portions of detection element
US10475919B2 (en) Method of producing an integrated power transistor circuit having a current-measuring cell
US20110182324A1 (en) Operating temperature measurement for an mos power component, and mos component for carrying out the method
US7112987B2 (en) Semiconductor sensor with a field-effect transistor
CN115667904A (zh) Ph传感器
US6955749B2 (en) Sensor for measuring an ion concentration or gas concentration
US9194895B2 (en) Thermoelectric power measurement cell and corresponding measurement method
US20070047172A1 (en) Monolithic arrangement, especially an integrated circuit, with a floating electrode
CN108291843A (zh) 具有第一温度测量元件的半导体构件以及用于确定流过半导体构件的电流的方法
JP2007511093A (ja) マイクロ波トランジスタ用統合熱センサ
US20220187238A1 (en) Ion sensing device
CN111739886A (zh) 具有负载晶体管和感测晶体管的晶体管布置
CN116298456A (zh) 电流测量电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination