CN115656273A - 一种电阻率检测防渗墙渗漏的弓形装置及方法 - Google Patents

一种电阻率检测防渗墙渗漏的弓形装置及方法 Download PDF

Info

Publication number
CN115656273A
CN115656273A CN202211192113.7A CN202211192113A CN115656273A CN 115656273 A CN115656273 A CN 115656273A CN 202211192113 A CN202211192113 A CN 202211192113A CN 115656273 A CN115656273 A CN 115656273A
Authority
CN
China
Prior art keywords
hole
cable
ground
electrode
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211192113.7A
Other languages
English (en)
Other versions
CN115656273B (zh
Inventor
谭磊
张平松
江晓益
胡雄武
席超强
徐虎
江树海
梁东辉
许时昂
欧元超
孙斌杨
刘福达
汪椰伶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Zhejiang Institute of Hydraulics and Estuary
Original Assignee
Anhui University of Science and Technology
Zhejiang Institute of Hydraulics and Estuary
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology, Zhejiang Institute of Hydraulics and Estuary filed Critical Anhui University of Science and Technology
Priority to CN202211192113.7A priority Critical patent/CN115656273B/zh
Publication of CN115656273A publication Critical patent/CN115656273A/zh
Priority to ZA2023/05732A priority patent/ZA202305732B/en
Application granted granted Critical
Publication of CN115656273B publication Critical patent/CN115656273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种电阻率检测防渗墙渗漏的弓形装置及方法,该装置包括:孔中电极结构部分包括:孔中电缆和多个孔中电极;孔中电缆的一端与固定的拖曳绳连接,另一端通过通讯电缆与时移并行电法监测系统连接;地面电极结构部分包括:地面电缆和多个地面电极;地面电极的顶部与地面电缆连接;地面电缆与时移并行电法监测系统连接;时移并行电法监测系统,对地面电缆、孔中电缆进行采样参数的设置,并采集电缆的相关数据,进行分析处理后对防渗墙隐患等级进行评价。该电阻率检测防渗墙渗漏的弓形装置,具有无损、高效的检测优势,有效规避了地面探测深度的不确定性问题,并通过深入防渗墙底部能有效提高对深部隐患的空间分辨力。

Description

一种电阻率检测防渗墙渗漏的弓形装置及方法
技术领域
本发明涉及水库大坝安全保障技术领域,特别涉及以防渗墙纵剖面为断面而建立的电阻率层析成像动态监测技术领域,具体是一种电阻率检测防渗墙渗漏的弓形装置及方法。
背景技术
混凝土防渗墙是水库大坝除险加固施工过程中的重要防渗措施,在具体施工时,是通过向孔内灌注混凝土防渗材料从而在大坝坝体内部形成板状防渗建筑物,但受施工环境、施工速率、成孔质量以及墙体连接等复杂因素的影响,有些防渗墙在施工结束或运行一段时间后存在质量隐患问题,主要表现为孔洞、裂缝、夹泥夹砂、渗漏以及断裂等现象,在长期动静水压力的作用下易发生安全事故,造成严重的经济损失及不良的社会危害。工程实践表明,防渗墙隐患问题是攸关工程施工质量成败的关键,因此开展相应的检测工作是评价和维护防渗墙的重要环节。
防渗墙质量评价按照检测方法对墙体有无损伤可划分为钻探和物探两大类,钻探取样对防渗墙内部结构的隐患具有可见即所得的优势,通常是根据样品直接判读出隐患的深度、范围以及组合关系等信息,但在实际检测中受钻孔数量的限制,随机抽样检测的结果并不能完全反映出防渗墙的全部特征,甚至可能存在对隐患体的漏检情况,钻探在具体工程检测中存在反映隐患不全面的问题;
物探方法是根据隐患体与周围质量优良防渗墙之间的物性差异为研究切入点,间接揭示出隐患体的空间分布,当前应用于防渗墙检测的物探方法较多,包括地质雷达法、高密度电法、地震映像法、瑞雷面波法、钻孔电视、声波以及跨孔CT等,该类方法具有无损、透视、大面积扫侧的优势,快速勘探的特点助推物探技术在长线路防渗墙检测中得到推广应用,然而当防渗墙缺陷较小或者埋深过大时,物探成果的可靠度大大降低,故地面物探方法在精准查明隐患还存在不足,以致于检测成果可能存在误判、漏判、错判等恶劣现象,而跨孔CT、钻孔电视以及声波测试等技术手段以钻孔为检测空间,向单孔或多孔发射及接收地球物理信号,相对于地面物探手段更接近隐患体,并且有效压制了地表的干扰信号,从而提升了探测精度和分辨力,但该类技术要依赖于一定数量的钻孔,从技术、经济、安全生产的角度上来说,该技术可以作为精准探测的辅助手段,不宜作为常规的防渗墙普查方法。
综上,当前工程规范和生产实践中的防渗墙渗漏检测方法在应用中都存在一定的问题:
(1)钻孔检测法会对防渗墙体带来损伤,并且当防渗墙深度过大时,钻探方向的不稳定可能导致钻孔穿出墙体,同时检测结果只对随机抽查的检测孔中的防渗墙质量负责,并不能全面、科学的评价全部防渗墙体的质量以及渗漏问题;其他与钻孔相结合的注水、压水以及物探CT法等(发明专利CN109632577B、发明专利CN105758775B、专利CN103015467B、专利CN102621191B),除了需对防渗墙进行钻孔以外,检测方法在工作效率、抗干扰能力方面也存在各自不完善的地方;
(2)物探方法对防渗墙的不良隐患是根据可感知异常信号的差异而推断的,物探的多解性、探测精度以及空间分辨率与实际的工程需要还存在一定的距离,并且各种物探方法探测成果中深度的确定主要还是依靠工程经验和钻孔校正;
(3)当前水库大坝防渗墙渗漏评价主要针对施工完成后的墙体做质量检测或者暴露出隐患的墙体做应急探测,而忽视了防渗墙隐患的形成、发展以及恶化是一个动态变化的过程,单次的检测或探测难以掌握隐患时空特征,不利于对缺陷进行超前治理。
发明内容
本发明针对当前防渗墙渗漏体隐患安全检测方法在无损伤、高精度、可靠度等方面的不完善、且不能连续监测渗漏隐患体动态变化过程的问题,提出了一种电阻率检测防渗墙渗漏的弓形装置及方法,可实现更加全面、透视化、精准化诊断出防渗墙内部的渗漏隐患及跟踪监测缺陷部位的动态变化过程。
为实现上述目的,本发明采取的技术方案为:
第一方面,本发明提供一种电阻率检测防渗墙渗漏的弓形装置,包括:
孔中电极结构部分、地面电极结构部分和时移并行电法监测系统:
其中:
所述孔中电极结构部分包括:孔中电缆和多个孔中电极;多个所述孔中电极按照第一等间距依次排列分别位于防渗墙底部对应的定向钻孔内;所述孔中电极与孔中电缆中对应的电导线采用熔焊连接成一体;所述孔中电缆的一端与固定的拖曳绳连接,另一端通过通讯电缆与所述时移并行电法监测系统连接;
所述地面电极结构部分包括:地面电缆和多个地面电极;多个所述地面电极按照第二等间距依次固定排列在防渗墙顶部;所述地面电极的顶部与所述地面电缆连接;所述地面电缆与所述时移并行电法监测系统连接;
所述时移并行电法监测系统,对地面电缆、孔中电缆进行采样参数的设置,并采集电缆的相关数据,进行分析处理后对防渗墙隐患等级进行评价。
进一步地,所述孔中电极与孔中电缆接触部位采用聚氨酯压塑而成。
进一步地,所述孔中电极的材质为紫铜,形状为半圆形;所述孔中电极的厚度为0.4~1cm,长度为1cm~5cm。
进一步地,所述孔中电缆表皮采用聚氨酯;所述孔中电缆内包裹若干根电导线,所述电导线的数量与孔中电极数量相等;所述孔中电缆上固定的孔中电极间距为0.5~4.0m。
进一步地,所述地面电极由铜棒与钢棒通过钎焊组成一体,所述钢棒部分固定在混凝土防渗墙上;所述地面电极的顶端与培厚的粘土盖层齐平。
进一步地,所述地面电极中的钢棒部分顶端通过磁铁棒与所述地面电缆连接。
进一步地,所述地面电极的间距相等,间距为0.5~2.0m;所述地面电极的间距与所述孔中电极的横向水平间距相等。
进一步地,所述时移并行电法监测系统,包括:时移电法采集单元、传输单元和监控平台;
其中,所述时移电法采集单元通过航空插头与所述地面电缆、孔中电缆相连接;
所述时移电法采集单元接收监控平台经所述传输单元下发的数据采集指令,按照指令中的采集模式进行供电测量,并触发电极转化器切换电极的电流和电压状态,当一次供电、采集工作结束时,测量数据储存在时移电法采集单元中;当测量工作结束时,所有数据通过传输单元发送到监控平台,供所述监控平台分析处理后对防渗墙隐患等级进行评价。
进一步地,所述监控平台包括:
数据采集控制模块,用于对供电波形、供电时间、采样时间、供电方式、供电电极以及供电电压的采用参数进行设置,并对监测数据的采样间隔、回收时刻参数进行设置;
数据预处理模块,用于对地面电极、孔中电极进行空间坐标赋值、数据噪声压制、视电阻率成像处理;
深度处理模块,用于对地面电极、孔中电极所测到的激励电流、电位数据进行组合反演,参与组合反演为地面联合电阻率和孔中联合电阻率;
隐患等级评价模块,用于根据深度处理模块的反演图像中的电阻率值的变化评价防渗墙隐患的优劣程度,划分为健康型、微损型以及破坏型,并采用不同颜色表示三种类型。
第二方面,本发明实施例还提供一种电阻率检测防渗墙渗漏的方法,该方法包括:
(1)根据防渗墙场地的特点,确定定向钻的安全作业范围以及定向钻施工参数;
(2)计算定向钻孔路径和长度,确定地面电极、孔中电极数量和间距;定制出通讯电缆、拖曳绳、地面电缆和孔中电缆的长度;
(3)安装定向钻孔中的孔中电缆,并采用水泥粘土耦合孔中电极与周围的岩土体;
(4)在防渗墙顶部安装地面电极,并在其上部加粘土盖层至地面电极齐平;
(5)将地面电缆与地面电极连接、地面电缆和孔中电缆与时移并行电法采集单元相连接;
(6)利用传输单元把时移电法采集单元和监控平台相连接,并按照监控平台下发的指令进行数据的采集和回收;
(7)监控平台的预处理模块对地面电极测量到的温纳三极数据体进行视电阻率成像;
(8)深度处理模块对地面电极、孔中电极测量的激励电流、一次场电位数据联合反演;
(9)根据电阻率等值线的形态,将防渗墙的安全状态划分为健康、微损及破坏类型;
(10)根据电阻率值的相对变化,判断出防渗墙的安全状态,并采用不同颜色表示防渗墙的安全状况。
与现有技术相比,本发明具有如下有益效果:
本发明实施例提供的一种电阻率检测防渗墙渗漏的弓形装置,具有无损、高效的检测优势,有效规避了地面探测深度的不确定性问题,并通过深入防渗墙底部能有效提高对深部隐患的空间分辨力;主要适用于水库、堤防、基坑、围堰、填埋场等地下防渗墙工程渗漏隐患的静态检测及长期运维监测。
本发明实施例还提供的一种电阻率检测防渗墙渗漏的方法,具有如下优势:
(1)本发明相对于钻探等有损的防渗墙检测方法,不仅具有无损、高效、经济的优势,还可以弥补钻探成果的一孔之见,更科学、全面的评价防渗墙的质量;
(2)本发明相对于地面物探手段,利用定向钻孔建立起地面-钻孔的多维度探测系统,有效规避了地面探测深度的不确定性问题,并通过深入防渗墙底部能有效提高对深部隐患的空间分辨力;
(3)本发明还可以通过一次性布设实现对防渗墙服役期的长期性监测,在防渗墙隐患的超前预测方面具有独特的优势。
附图说明
图1为本发明实施例提供的电阻率检测防渗墙渗漏的弓形装置的示意图;
图2为本发明实施例提供的孔中电极结构示意图;
图3为本发明实施例提供的墙顶上地面电极结构示意图;
图4为本发明实施例提供的墙顶、孔中电极的电场线平面分布图;
图5为本发明实施例提供的电阻率检测防渗墙渗漏方法的流程示意图;
图6为本发明实施例提供的地面观测的反演图像示意图;
图7为本发明实施例提供的电阻率检测防渗墙渗漏的弓形装置的反演图像示意图;
附图中,1―岩体;2―防渗墙;3―粘土盖层;4―定向钻孔;5―孔中电缆;6―孔中电极;7―拖曳绳;8―通讯电缆;9―地面电极;9-1―铜棒;9-2―钢棒;10―地面电缆;11―磁铁棒;12―时移电法采集单元;13―传输单元;14―监控平台;15―电导线;16―聚氨脂压膜。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
本发明提供的一种电阻率检测防渗墙渗漏的弓形装置,参照图1所示,为现场对防渗墙渗漏检测的场景示意图,根据岩体1埋深和场地工况、以及防渗墙2的长度,进行布置该电阻率检测防渗墙渗漏的弓形装置,主要包括孔中电极结构部分、地面电极结构部分和时移并行电法监测系统。
下面分别对上述三个部分进行详细说明:
一、孔中电极结构部分:
孔中电极结构部分是位于防渗墙底部定向钻孔4内的多个孔中电极6顺次按编号排列而成,孔中电极6与孔中电缆5中对应序号的电导线采用熔焊连接成一体,孔中电极6与孔中电缆5接触部位采用聚氨酯压塑而成,保证孔中电极6与孔中电缆5融为一体;
定向钻孔4为半圆弧状,定向钻孔4的直径为15cm;定向钻孔4的入土角、出土角不大于30°;定向钻孔4穿过防渗墙2与基岩接触部位,定向钻埋深与防渗墙深度有关;定向钻孔4穿越地层的长度与大坝长度正相关。
该孔中电极6的材质为紫铜,具有较强的导电性和稳定性;孔中电极6的形状为半圆形,厚度0.4~1cm,可优选0.5cm;长度为1cm~5cm,可优选3cm。孔中电极6的半径与孔中电缆5线半径有关,较孔中电缆5线的半径大1cm;孔中电极6的数量与定向钻孔4的路径长度有关,但孔中电极6不低于16个;
如图2所示,孔中电缆5是表皮采用聚氨酯的铠装电缆,使用功能上具有抗压防渗的特性;孔中电缆5内包裹若干根电导线15,电导线15的数量与孔中电极6相等,并且电导线15的编号与孔中电极6按照约定的方式对应编码;
孔中电缆5线的直径与导电线15的数量有关,孔中电缆5上固定的孔中电极6间距为0.5~4.0m,孔中电极6的间距相等或不等;
如图1所示,孔中电缆5的一端与拖曳绳7相连接,拖曳绳7用于固定孔中电缆5在定向钻孔4内不发生滑动,从而有利于计算孔中电极的空间坐标;
孔中电缆5的另一端与通讯电缆8相连接,通讯电缆8用于延长孔中电缆与时移并行电法监测系统相连接。
孔中电极结构部分与定向钻孔4之间的空隙采用水泥粘土浆液加压充满,保障了孔中电极6与地质体之间的耦合,则孔中电极6经凝固后的水泥粘土浆液与防渗墙构成可传导电信号的人工地质体;
二、地面电极结构部分:
如图1所示,上述地面电极结构部分是由位于防渗墙顶部的地面电缆10、以及多个地面电极9依次按编号排列而成,地面电极9由铜棒与钢棒通过钎焊组成一体,如图3所示,铜棒9-1部分固定在混凝土防渗墙2上,铜棒9-1与钢棒9-2的顶端与培厚的粘土盖层齐平;
地面电极9中的钢棒9-2顶端与地面电缆10中对应序号的电导线通过磁铁棒11相连接,磁铁棒采用铁镍钴材质,具有较强的磁性和导电性。
地面电极9的间距相等,地面电极9间距一般为0.5~2.0m;
地面电极间距=孔中电极间距*cosα;α为定向钻孔与水平面的夹角,α小于60°;
如图3所示,其中,铜棒9-1长度40cm,直径为2cm;铜棒9-1进入防渗墙深度为10cm;钢棒9-2长度20cm,钢棒9-2直径为1cm;磁铁棒11的直径1cm,长度2cm;在磁铁棒11与地面电缆之间还具有裸露出的电导线长度为0.5m。
地面电极9的电极间距与孔中电极6的水平横向间距相等,方便计算每个电极的坐标,有利于后期数据的反演成图。地面电极9的第一个电极位于定向钻孔的进口处;如图4所示,地面电极9的编号顺序起始于地面大坝左岸的第一个电极,终止于地面大坝右岸的最后一个电极。
孔中电极6的第一个电极起始于大坝的右岸孔中的第一个电极,终止于大坝左岸孔中的最后一个电极,并且孔中的第一个电极是接续地面大坝右岸的最后一个电极。在具体实施时,一般主要只关注水位以下防渗墙的隐患情况,因此孔中电极6起始电极的高程略低于水库正常蓄水位。
图1中的粘土覆盖层3厚度为30cm,通讯电缆8、拖曳绳7穿过粘土铺盖向大坝两坝头延伸;
三、时移并行电法监测系统:
如图1所示,时移并行电法监测系统包括时移电法采集单元12、传输单元13和监控平台14;
时移电法采集单元12通过航空插头与地面电缆10、孔中电缆5相连接,时移电法采集单元12采用集中式测量系统,时移电法采集单元12的电极通道数一般不低于96道;其中,通道数与电极对应,每一个电极对应一个通道,根据地面和孔中的电极选择的通道数量;。
时移电法采集单元12具有探测和监测的双重功能,在探测时利用内置锂电池供电,最大电压可达到110v;在监测时可利用交流电,通过内部降压、稳压转化成最大110v的电压;时移电法采集单元12执行监控平台14下发的指令,当接收到数据采集指令时,时移电法采集单元12内部的控制器按照指令中的采集模式进行供电测量,并触发电极转化器切换电极的电流和电压状态,当一次供电、采集工作结束时,测量数据储存在时移电法采集单元12中,当测量工作结束时,所有数据通过传输单元13远程发送到监控平台14中。
其中,时移电法采集单元12采集的地电参数包括自然电位、激励电流、电压时域衰减信号;
该时移电法采集单元12采用便携式集成化封装而成,适用于单次探测或者固定在现场进行地电场数据的采集;
该传输单元13是把监控平台14的指令传达给时移电法采集单元12,并把时移电法采集单元12的数据体传输到时移电法采集单元12;上述传输单元为一般可为因特网、4G移动网、卫星通信、GPRS等。
进一步地,上述监控平台14包括:数据采集控制模块、数据预处理模块、深度处理模块以及隐患等级评价模块;
数据采集控制模块,可对供电波形、供电时间、采样时间、供电方式、供电电极以及供电电压的采样参数进行设置,并支持对监测数据的采样间隔、回收时刻等参数进行设置;
上述供电波形为单正方波,供电时间为1s,采样间隔为0.5s,供电方式为点电源稳流供电,供电电压为96s。
数据预处理模块,包括对孔中电极、地面电极进行空间坐标赋值、数据噪声压制、视电阻率成像等处理;
上述视电阻率成像是指地面电极所测得电流、电压信号组成的温纳三极数据体,通过地表所测得防渗墙部位二维视电阻率的纵横向分布,大致确定出电性异常区,同时可结合连续测量的数据体,以此追踪视电阻率的时空变化;
上述视电阻率是二维数据体,视电阻率图像显示具有快速成像的特点,采集数据结束后即可给出视电阻率图。
深度处理模块,包括对地面电极、孔中电极所测到的激励电流、电位数据进行组合反演,参与组合反演为地面联合电阻率和孔中联合电阻率;反演主要步骤包括坐标归一化、反演参数设置、反演图像显示等;
上述地面联合电阻率是指供电电极是地面电极,测量电极是孔中电极所组合的激励电流、电位数据体;该孔中联合电阻率是指供电电极是孔中电极,测量电极是地面电极和孔中电极所组合的激励电流、电位数据体;在深度处理模块中,反演采用算法的是有限单元法。
隐患等级评价模块,是根据反演图像中的电阻率值的变化评价防渗墙隐患的优劣程度,划分为健康型、微损型以及破坏型,比如可采用蓝、黄、红的颜色表示;
健康型:则在高水位下,电阻率等值线成层状分布,相对变化比值在1左右;
微损型:则在高水位下,电阻率等值线存在局部的弯曲变形,相对变化值在0.6以上;
破坏型:则在高水位下,电阻率等值线成局部低阻闭合异常现象,相对变化值低于0.6。
本发明实施例提供的一种电阻率检测防渗墙渗漏的弓形装置,是在地面、定向钻孔内固定布设不同类型的电极传感器排列,利用时移并行电法监测系统采集地面电极与定向钻孔内电极的电流、电位数据体,通过对供电与测量电极信号的分类组合,从而获取全防渗墙内部的电阻率分布,根据电阻率的空间差异性可判断出渗漏隐患的深度、位置、范围等空间参数信息,根据不同时刻、相同位置电阻率变化的幅度可评价隐患体的发展态势。该电阻率检测防渗墙渗漏的弓形装置,具有无损、高效的检测优势,有效规避了地面探测深度的不确定性问题,并通过深入防渗墙底部能有效提高对深部隐患的空间分辨力;主要适用于水库、堤防、基坑、围堰、填埋场等地下防渗墙工程渗漏隐患的静态检测及长期运维监测。
实施例2:
基于同一发明构思,参照图5所示,本发明实施例还提供一种电阻率检测防渗墙渗漏方法,具体包括:
(1)根据防渗墙2的长度、岩体1埋深以及场地工况等特点,明确定向钻的安全作业范围,根据防渗墙的施工剖面确定定向钻的穿越轨迹和埋藏深度,标定出定向钻的入土点和出土点的位置,并确定出入土角、出土角的大小以及圆弧过渡段曲率半径等参数;
(2)进一步计算出定向钻孔4的路径和长度,确定出地面电极9和孔中电极6的数量、电极间距,从而定制出通讯电缆8、拖曳绳7、地面电缆10和钻孔电缆5的长度;同时,需要注意孔中电极6的电极间距在水平方向上分量的长度与地面电极9的电极间距相等;
(3)当定向钻孔4贯通后,把孔中电缆5一端固定在定向钻杆上,另一端固定在拖曳绳7上,通过定向钻杆的回拉而使孔中电缆5拖入定向钻孔4内;取下固定在定向钻杆上的孔中电缆5,利用防水航空插口把孔中电缆5与通讯电缆8相连接,通过调整拖曳绳7和通讯电缆8的长度从而保证孔中电极6位于正常蓄水位以下;
(4)把通讯电缆8、拖曳绳7固定在大坝坝顶,为保证孔中电极与周围防渗墙2、岩体1之间的充分耦合,是通过向定向钻孔4内持续不断注入水泥粘土浆液并加强充填浆液的养护,最终保证凝固后的浆液与防渗墙2的墙顶高程相同;
(5)利用冲击钻在防渗墙2顶部钻进钻孔,把地面电极9中的铜棒9-1部分固定在钻孔内,地面电极9上的钢棒9-2与铜棒9-1固定成一体,在防渗墙2上部铺盖30cm的粘土盖层3,从而保证地面电极9的顶部与压实后的粘土盖层3齐平;
(6)探测时,把地面电缆10上的磁铁棒11与地面电极9中的钢棒9-2相连接,再把地面电缆10、孔中电缆5与时移电法采集单元12相连接,打开时移电法采集单元12中的供电电源开关,从而通过传输单元13把监控平台14与时移电法采集单元12连接起来;
(7)在监控平台14上设置供电波形、供电时间、采样时间、供电方式、供电电极以及供电电压的采样参数,并通过传输单元13向时移电法采集单元12下达数据采集及回收指令,最终所采集的数据以时间命名存储于监控平台14上,并把所有电极的地电数据体解编成激励电流和一次场电位数据;
(8)在预处理模块上,如图4所示,地面上的电极自左岸第一个电极为原点(0,0),其余电极顺次向右岸逐个增加,所有电极的垂向坐标为0,横坐标是最小电极间距的X倍(其中,X=地面电极个数-1),并根据一次场的电位的衰减趋势剔除畸变值,从而有效压制噪声的干扰;通过提取地面电极中的供电电极、测量电极M、测量电极N为等间距排列的温纳三极数据体,并把记录点标记在测量电极M的下方,排列的深度系数为0.35,通过把地面电极所测到的温纳三极数据体经网格化处理后得到了视电阻率成像;
(9)在深度处理模块,以地面上的电极自左岸第一个电极为原点(0,0),其余电极顺次向右岸逐个增加,所有电极的垂向坐标为0,横坐标是最小电极间距的X倍(其中,X=地面电极个数-1),孔中电极则以横向上距离原点(0,0)的长度为横坐标,并且孔中电极编号是以右岸的第一个电极接续地面电极右岸的最后一次电极进行排序,竖直方向则相对于原点(0,0)的深度为垂距,从而建立起以坐标为原点的地面电极和孔中电极的二维平面坐标系;
参与深度处理的地面联合电阻率,则是提取供电电极是地面电极,测量电极是孔中电极所组合的激励电流、电位数据体;
参与深度处理的孔中联合电阻率,则是提取供电电极是孔中电极,测量电极是地面电极和孔中电极所组合的激励电流、电位数据体;
通过对供电电极、测量电极的序号作归一化的空间坐标,并按照供电电极、测量电极、激励电流、一次场电位构成反演数据体,基于用圆滑约束的最小二乘法算法对数据体进行模型重构计算,结合低电流、低电位、电阻率范围的约束条件而获取防渗墙的二维电阻率反演图像;
(10)在高水位情况下,电阻率等值线成层状分布,则防渗墙处于健康型;在高水位情况下,电阻率等值线存在局部的弯曲变形,则防渗墙处于微损型;在高水位情况下,电阻率等值线存在局部低阻闭合异常现象,则防渗墙处于破坏型;
当把电阻率检测防渗墙渗漏的弓形装置用于防渗墙的长期动态监控时,在重复5-10探测步骤的基础上,把监测不同时间序列的电阻率图像与第一次探测背景图进行比值处理得到电阻率的相对变化图,在高水位情况下相对变化比值在1左右,则防渗墙处于健康型;在高水位情况下,相对变化值在0.6以上,则防渗墙处于微损型;在高水位情况下,相对变化值低于0.6,则防渗墙处于破坏型;并采用蓝、黄、红的颜色表示防渗墙的安全状况。
例1,图4是深度处理模块所需地面、孔中电极的测量模式示意图(供电电极D1~D21,测量电极K22~K40),其中地面联合电阻率是指供电电极是地面电极,测量电极是孔中电极所组合的激励电流、电位数据体,则图中当供电电极为D11,孔中电极K22~K40都作为测量电极;其中孔中联合电阻率是指供电电极是孔中电极,测量电极是地面电极和孔中电极所组合的激励电流、电位数据体,则图中当供电电极为K31时,则地面电极D1~D21都作为测量电极,并且孔中电极(除K31以外)全部也作为测量电极。
地面电极的最小电极间距为2m,正常蓄水位距坝顶高差为2.5m,取地面电极D1(0,0)为坐标原点,自左岸向右岸横轴为正方向,自地面向下纵轴为负方向,则所有电极的坐标记作:
表1地面电极、钻孔电极的空间坐标:
Figure BDA0003869452560000151
Figure BDA0003869452560000161
如图6所示,经过对预设地面模型的正反演处理得到重构后的电阻率分布图像,从图中可以看出在测线的中部存在明显的低阻异常,可见地面观测系统能反映出低阻异常的存在,但低阻区的横向位置较预设模型有一定程度的扩大,难以有效刻画出隐患的真实形态,并且在深度方向上低阻区的埋深与预设模型存在较大的出入。
图7中地面与钻孔的联合反演提高了对隐患体的纵横向分辨率,较地面观测方式反演结果更加收敛;在钻孔测量数据的约束下,有效规避了常规探测深度的模糊性问题,低阻异常区的深度与预设模型吻合度较高。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,包括:孔中电极结构部分、地面电极结构部分和时移并行电法监测系统:
其中:
所述孔中电极结构部分包括:孔中电缆和多个孔中电极;多个所述孔中电极按照第一等间距依次排列分别位于防渗墙底部对应的定向钻孔内;所述孔中电极与孔中电缆中对应的电导线采用熔焊连接成一体;所述孔中电缆的一端与固定的拖曳绳连接,另一端通过通讯电缆与所述时移并行电法监测系统连接;
所述地面电极结构部分包括:地面电缆和多个地面电极;多个所述地面电极按照第二等间距依次固定排列在防渗墙顶部;所述地面电极的顶部与所述地面电缆连接;所述地面电缆与所述时移并行电法监测系统连接;
所述时移并行电法监测系统,对地面电缆、孔中电缆进行采样参数的设置,并采集电缆的相关数据,进行分析处理后对防渗墙隐患等级进行评价。
2.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述孔中电极与孔中电缆接触部位采用聚氨酯压塑而成。
3.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述孔中电极的材质为紫铜,形状为半圆形;所述孔中电极的厚度为0.4~1cm,长度为1cm~5cm。
4.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述孔中电缆表皮采用聚氨酯;所述孔中电缆内包裹若干根电导线,所述电导线的数量与孔中电极数量相等;所述孔中电缆上固定的孔中电极间距为0.5~4.0m。
5.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述地面电极由铜棒与钢棒通过钎焊组成一体,所述钢棒部分固定在混凝土防渗墙上;所述地面电极的顶端与培厚的粘土盖层齐平。
6.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述地面电极中的钢棒部分顶端通过磁铁棒与所述地面电缆连接。
7.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述地面电极的间距相等,间距为0.5~2.0m;所述地面电极的间距与所述孔中电极的横向水平间距相等。
8.根据权利要求1所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述时移并行电法监测系统,包括:时移电法采集单元、传输单元和监控平台;
其中,所述时移电法采集单元通过航空插头与所述地面电缆、孔中电缆相连接;
所述时移电法采集单元接收监控平台经所述传输单元下发的数据采集指令,按照指令中的采集模式进行供电测量,并触发电极转化器切换电极的电流和电压状态,当一次供电、采集工作结束时,测量数据储存在时移电法采集单元中;当测量工作结束时,所有数据通过传输单元发送到监控平台,供所述监控平台分析处理后对防渗墙隐患等级进行评价。
9.根据权利要求8所述的一种电阻率检测防渗墙渗漏的弓形装置,其特征在于,所述监控平台包括:
数据采集控制模块,用于对供电波形、供电时间、采样时间、供电方式、供电电极以及供电电压的采用参数进行设置,并对监测数据的采样间隔、回收时刻参数进行设置;
数据预处理模块,用于对地面电极、孔中电极进行空间坐标赋值、数据噪声压制、视电阻率成像处理;
深度处理模块,用于对地面电极、孔中电极所测到的激励电流、电位数据进行组合反演,参与组合反演为地面联合电阻率和孔中联合电阻率;
隐患等级评价模块,用于根据深度处理模块的反演图像中的电阻率值的变化评价防渗墙隐患的优劣程度,划分为健康型、微损型以及破坏型,并采用不同颜色表示三种类型。
10.一种电阻率检测防渗墙渗漏的方法,其特征在于,该方法包括:
(1)根据防渗墙场地的特点,确定定向钻的安全作业范围以及定向钻施工参数;
(2)计算定向钻孔路径和长度,确定地面电极、孔中电极数量和间距;定制出通讯电缆、拖曳绳、地面电缆和孔中电缆的长度;
(3)安装定向钻孔中的孔中电缆,并采用水泥粘土耦合孔中电极与周围的岩土体;
(4)在防渗墙顶部安装地面电极,并在其上部加粘土盖层至地面电极齐平;
(5)将地面电缆与地面电极连接、地面电缆和孔中电缆与时移并行电法采集单元相连接;
(6)利用传输单元把时移电法采集单元和监控平台相连接,并按照监控平台下发的指令进行数据的采集和回收;
(7)监控平台的预处理模块对地面电极测量到的温纳三极数据体进行视电阻率成像;
(8)深度处理模块对地面电极、孔中电极测量的激励电流、一次场电位数据联合反演;
(9)根据电阻率等值线的形态,将防渗墙的安全状态划分为健康、微损及破坏类型;
(10)根据电阻率值的相对变化,判断出防渗墙的安全状态,并采用不同颜色表示防渗墙的安全状况。
CN202211192113.7A 2022-09-28 2022-09-28 一种电阻率检测防渗墙渗漏的弓形装置及方法 Active CN115656273B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211192113.7A CN115656273B (zh) 2022-09-28 2022-09-28 一种电阻率检测防渗墙渗漏的弓形装置及方法
ZA2023/05732A ZA202305732B (en) 2022-09-28 2023-05-29 Bow apparatus and method for detecting seepage of anti-seepage wall with resistivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211192113.7A CN115656273B (zh) 2022-09-28 2022-09-28 一种电阻率检测防渗墙渗漏的弓形装置及方法

Publications (2)

Publication Number Publication Date
CN115656273A true CN115656273A (zh) 2023-01-31
CN115656273B CN115656273B (zh) 2023-06-06

Family

ID=84984587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211192113.7A Active CN115656273B (zh) 2022-09-28 2022-09-28 一种电阻率检测防渗墙渗漏的弓形装置及方法

Country Status (2)

Country Link
CN (1) CN115656273B (zh)
ZA (1) ZA202305732B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719092A (zh) * 2023-08-01 2023-09-08 北京建工环境修复股份有限公司 一种水体渗漏探测用的快速扫描装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285729A (ja) * 2006-04-12 2007-11-01 Dia Consultant:Kk 地層内の比抵抗測定方法
CN106226360A (zh) * 2016-08-30 2016-12-14 浙江广川工程咨询有限公司 快速测试心墙坝表层裂缝空间特征的装置及其使用方法
US20160369626A1 (en) * 2015-02-27 2016-12-22 Halliburton Energy Services, Inc. Formation resistivity measurement apparatus, systems, and methods
CN208476736U (zh) * 2018-03-09 2019-02-05 浙江省水利河口研究院 一种土石坝渗流场监控系统
CN110632131A (zh) * 2019-10-16 2019-12-31 黄河勘测规划设计研究院有限公司 监测渠道堤防工程渗漏的方法
CN113092534A (zh) * 2021-04-09 2021-07-09 浙江省水利河口研究院(浙江省海洋规划设计研究院) 一种既有坝顶硬化的并行电法远程巡测系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285729A (ja) * 2006-04-12 2007-11-01 Dia Consultant:Kk 地層内の比抵抗測定方法
US20160369626A1 (en) * 2015-02-27 2016-12-22 Halliburton Energy Services, Inc. Formation resistivity measurement apparatus, systems, and methods
CN106226360A (zh) * 2016-08-30 2016-12-14 浙江广川工程咨询有限公司 快速测试心墙坝表层裂缝空间特征的装置及其使用方法
CN208476736U (zh) * 2018-03-09 2019-02-05 浙江省水利河口研究院 一种土石坝渗流场监控系统
CN110632131A (zh) * 2019-10-16 2019-12-31 黄河勘测规划设计研究院有限公司 监测渠道堤防工程渗漏的方法
CN113092534A (zh) * 2021-04-09 2021-07-09 浙江省水利河口研究院(浙江省海洋规划设计研究院) 一种既有坝顶硬化的并行电法远程巡测系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719092A (zh) * 2023-08-01 2023-09-08 北京建工环境修复股份有限公司 一种水体渗漏探测用的快速扫描装置及方法
CN116719092B (zh) * 2023-08-01 2023-10-27 北京建工环境修复股份有限公司 一种水体渗漏探测用的快速扫描装置及方法

Also Published As

Publication number Publication date
CN115656273B (zh) 2023-06-06
ZA202305732B (en) 2024-01-31

Similar Documents

Publication Publication Date Title
CN108267394A (zh) 一种土石坝渗流场监控系统及其预警方法
CN107045147A (zh) 一种探查河道溶洞的多维探测装置及方法
CN107829453A (zh) 一种垂直铺塑防渗帷幕渗漏检测的方法及装置
CN206960673U (zh) 一种探查河道溶洞的多维探测装置
KR101269517B1 (ko) 실시간 전기비저항 측정 시스템
CN108844684A (zh) 一种监测地下连续墙接缝处渗漏情况的方法
CN208476736U (zh) 一种土石坝渗流场监控系统
CN104678447A (zh) 一种高效矿井直流电法数据采集系统及方法
CN107272068A (zh) 一种利用无线缆抗干扰跨孔电阻率法探测地下空间的方法
CN115656273B (zh) 一种电阻率检测防渗墙渗漏的弓形装置及方法
CN114325815A (zh) 基于分布式光纤声学传感的岛礁地质灾害监测方法及系统
CN112540410A (zh) 水库大坝并行电法和瞬变电磁技术联合诊断系统及方法
CN106443189A (zh) 一种接地极极址及其周边土壤电阻率三维探测方法和系统
WO2023066409A1 (zh) 一种矿井水害监测装置和方法
CN103353611B (zh) 地下溶洞多方位探测法
CN112014887A (zh) 一种土石坝渗漏全方位电阻率法监测预警系统及方法
CN206096020U (zh) 快速测试心墙坝表层裂缝空间特征的装置
CN113092534B (zh) 一种既有坝顶硬化的并行电法远程巡测系统及方法
CN216767359U (zh) 一种压裂监测实验装置
CN201649139U (zh) 钻孔灌注桩载荷试验内力测试装置
CN116148932A (zh) 一种基于充电-激电法的掌子面注浆效果评价系统及方法
CN205427206U (zh) 断裂构造探测装置
CN205134393U (zh) 用于检测地下连续墙渗漏的钻孔布置结构
CN214845814U (zh) 一种既有坝顶硬化的并行电法远程巡测系统
CN112540409A (zh) 一种基于瞬变电磁法的土石坝渗漏诊断装置及使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant