WO2023066409A1 - 一种矿井水害监测装置和方法 - Google Patents

一种矿井水害监测装置和方法 Download PDF

Info

Publication number
WO2023066409A1
WO2023066409A1 PCT/CN2022/133217 CN2022133217W WO2023066409A1 WO 2023066409 A1 WO2023066409 A1 WO 2023066409A1 CN 2022133217 W CN2022133217 W CN 2022133217W WO 2023066409 A1 WO2023066409 A1 WO 2023066409A1
Authority
WO
WIPO (PCT)
Prior art keywords
mine
armored
electrode
electric field
chains
Prior art date
Application number
PCT/CN2022/133217
Other languages
English (en)
French (fr)
Inventor
李晓斌
海四洋
赵秋芳
毕忠伟
Original Assignee
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学 filed Critical 河南理工大学
Priority to SE2350728A priority Critical patent/SE2350728A1/en
Publication of WO2023066409A1 publication Critical patent/WO2023066409A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present application relates to the technical field of geological monitoring, in particular to a mine water damage monitoring device and method.
  • the main geophysical methods currently used for mine detection include: mine direct current method, mine transient electromagnetic method, radio wave perspective, audio frequency perspective, layer reflection and refraction Seismic exploration, Rayleigh wave exploration, microgravity measurement, infrared temperature measurement, radioactivity measurement and other geophysical exploration methods.
  • the success of geophysical methods depends on many factors such as the effectiveness of the method used, signal acquisition technology, resolution, signal-to-noise ratio, and physical property differences.
  • the application of geophysical methods mainly uses detection, and cannot monitor water temperature and geology in real time. Dynamic changes in conditions.
  • the purpose of the present application is to provide a mine water hazard monitoring device and method to solve or alleviate the above-mentioned problems in the prior art.
  • the application provides a mine water disaster monitoring device, including: armored electrode chains, the armored electrode chains are multiple, and the multiple armored electrode chains are respectively buried along multiple different directions of the mine, each A plurality of intelligent electrodes are arranged along the length direction of the armored electrode chain in the armored electrode chain, and multiple smart electrodes of at least one of the armored electrode chains are buried in different monitoring formations of the mine, Coupling with the corresponding monitoring formation; composite modem, the composite modem is connected with the armored electrode chain, and collects the earth electric field of the armored electrode chain in real time; the composite modem is connected with the reference electrode, and collects the mine The background electric field; wherein, the reference electrode is coupled with any one of the monitoring formations; the control unit is connected with the composite modem, and according to the ground electric field and the background electric field collected by the composite modem, the mine of the mine Forecasting of water damage.
  • the embodiment of the present application also provides a mine water hazard monitoring method, using the mine water hazard monitoring device described in any of the above-mentioned embodiments to predict the mine water hazard in the mine, the mine water hazard monitoring method includes: step S101, multiple Armored electrode chains are buried in the mine to be monitored along multiple directions; step S102, based on the plurality of armored electrode chains, collecting the geoelectric field in multiple different directions of the mine and the background electric field of the mine ; Step S103, predict the mine water damage in the mine according to the geoelectric field and the background electric field.
  • multiple smart electrodes on at least one armored electrode chain are embedded in different monitoring strata of the mine, and are coupled with corresponding monitoring strata, thereby realizing the monitoring of the geoelectric field of different monitoring strata Real-time measurement; multiple armored electrode chains are buried along multiple different directions of the mine to realize real-time measurement of the geoelectric field in multiple directions of the mine; through the composite modem connected with the armored electrode chain, the measurement of the armored electrode chain is completed The data acquisition of the geoelectric field; and, through the arrangement of the reference electrode coupled with any monitoring formation at infinity, the data acquisition of the background electric field of the mine is completed; then, the composite modem sends the collected data of the geoelectric field and the background electric field To the control unit, the control unit analyzes the potential risks and possibilities of mine safety accidents and disasters induced underground according to the geoelectric field and background electric field, and realizes the prediction of mine water damage.
  • Fig. 1 is the layout schematic diagram of the mine water damage monitoring device in the mine
  • Fig. 2 is the structural representation of mine water hazard monitoring device
  • FIG. 3 is a schematic structural diagram of a power supply
  • Fig. 4 is the schematic diagram of geoelectric field potential measurement
  • Fig. 5 is a schematic cross-sectional view of an electrode chain cable
  • Fig. 6 is a schematic flowchart of a mine water damage monitoring method.
  • 201 H bridge
  • 202 power port
  • 203 reference port
  • 204 signal port
  • the geophysical method used in mine water disaster monitoring is mainly based on detection, and cannot monitor the dynamic change of hydrogeological conditions in real time. Therefore, it is necessary to establish a real-time, dynamic and continuous geophysical method to monitor mine hydrogeological conditions in real time. Change is an urgent problem to be solved in order to effectively prevent the occurrence of mine water damage and avoid causing people's life safety and economic losses.
  • the scheme for dynamic monitoring of mine water damage disclosed in this application based on the armored electrode chain 100 integrating power supply and potential measurement, real-time dynamic monitoring of changes in mine hydrogeological conditions can prevent the occurrence of mine water damage accidents.
  • the mine water damage monitoring device includes: armored electrode chain 100, there are many armored electrode chains 100, and multiple armored electrode chains 100 are respectively buried along multiple different directions of the mine, each In the armored electrode chain 100, a plurality of smart electrodes 101 are arranged along the length direction of the armored electrode chain 100, and the plurality of smart electrodes 101 of at least one armored electrode chain 100 are buried in different monitoring formations of the mine, and the corresponding monitoring formations Coupling; Composite modem 200, composite modem 200 is connected with armored electrode chain 100, collects the ground electric field of armored electrode chain 100 in real time; Composite modem 200 is connected with reference electrode 400, collects the background electric field of mine; Wherein, reference electrode 400 is connected with any 1. Monitoring stratum coupling; the control unit 300 is connected with the composite modem 200, and predicts the mine water damage according to the geoelectric field and the background electric field collected by the composite modem 200.
  • a plurality of smart electrodes 101 of one armored electrode chain 100 are correspondingly embedded in different monitoring formations, and by individually controlling the conduction of each smart electrode 101, the smart electrodes 101 can be used in the corresponding Artificial geoelectric fields are established in different monitoring formations, and changes in mine hydrogeological conditions will lead to changes in the potential distribution of the excitation electric field. Then, through the armored electrode chain 100, the potential difference between different positions of the geoelectric field space and the reference electrode 400 buried at infinity is monitored.
  • each smart electrode 101 has a unique address; thus, using the unique address of the smart electrode 101, the formation corresponding to each smart electrode 101 and the formed
  • the artificial geoelectric field can be effectively identified, and then quickly identify and locate different monitoring strata of the mine.
  • the unique address of the smart electrode 101 can be used to quickly locate the monitoring stratum where the hydrogeological conditions change, and improve the mine water damage. Forecast accuracy and forecast efficiency.
  • the composite modem 200 controls the switching on or off of the smart electrode 101 through the H bridge 201 . That is, the composite modem 200 sends an instruction to the smart electrode 101 to turn on or off the positive pole of the ground electric field power supply 500, that is to say, the composite modem 200 controls the switch of the smart electrode 101 through the H bridge 201, so that the smart electrode 101 is turned on or off. is turned off, and the direction of the current flow of the smart electrode 101 is reversed by the control of the H-bridge 201 .
  • the composite modem 200 sends alternating positive and negative square waves to the monitoring formation corresponding to the smart electrode 101 through the H-bridge 201 , so that the power supply 500 can couple the monitoring formation through the smart electrode 101 to establish an artificial ground electric field.
  • changes in hydrogeological conditions will lead to changes in the excitation electric field of the monitored formation, and the modem obtains the background electric field of the mine by monitoring the potential difference between the geoelectric field of the formation and the reference electrode 400 .
  • the potential difference between the smart electrodes 101 of all armored electrode chains 100 and infinity is measured, thereby forming the background electric field of the hydrogeological conditions of the mine.
  • the three armored electrode chains 100 respectively measure the geoelectric fields in three mutually orthogonal directions of the mine.
  • one armored electrode chain 100 is buried along the depth direction of the monitoring strata of the mine, and two armored electrode chains 100 are buried orthogonally along two different horizontal directions in the plane, so as to realize the three-dimensional monitoring of mine hydrogeology.
  • the smart electrode 101 includes a power terminal 111, a reference terminal 121 and a signal terminal 131, the power terminal 111 is connected to the power port 202 of the composite modem 200; the reference terminal 121 is connected to the reference port 203 of the composite modem 200, and It is connected with the reference electrode 400 ; the signal terminal 131 is connected with the signal port 204 of the composite modem 200 .
  • the armored electrode chain 100 is composed of a series of smart electrodes 101.
  • the armored electrode chain 100 is connected to the composite modem 200 through the electrode chain cable, and the composite modem 200 is connected to the ground electric field power supply 500 through the electrode chain cable.
  • the reference electrode 400 is connected.
  • the wire core (+) and wire core (-) of the electrode chain cable are connected to the power supply 500 through the H-bridge 201
  • the two poles of the power supply, the wire core (G) is connected to the reference electrode 400 buried in infinity, and the signal line embedded in the electrode chain cable is connected to the control unit 300; between the composite modem 200 and the smart electrode 101, the smart electrode
  • the power terminal 111 of 101 and the power port 202 of the composite modem 200 are connected through (power interface 102) (core (+) and core (-)), and the reference terminal 121 of the smart electrode 101 is connected to the reference terminal 121 of the composite modem 200.
  • the ports 203 are connected through the signal interface 103 (wire core (G)), and the signal terminal 131 of the smart electrode 101 is connected with the signal port 204 of the composite modem 200 through a signal line.
  • the reference port 203 of the composite modem 200 is connected to the reference electrode 400, and the power supply 500 provides the power supply voltage and current, and the composite modem 200 sends an on or off command to the armored electrode chain 100, and The data of the earth electric field returned by the armored electrode chain 100 is demodulated and sent to the control unit 300 .
  • the control unit 300 processes the geoelectric fields and background electric fields in three mutually orthogonal directions monitored in real time to realize the prediction of mine hydrological disasters.
  • the smart electrode 101 of the present application measures the potential of the monitoring stratum through the installed potentiometer (V), so as to realize real-time monitoring of changes in the hydrogeological conditions of the monitoring stratum, and provide a basis for hydrological disaster prediction of mines.
  • V potentiometer
  • Fig. 6 is a schematic flow chart of a mine water hazard monitoring method provided according to some embodiments of the present application; as shown in Fig. Forecasting, the mine water damage monitoring method includes:
  • Step S101 burying multiple armored electrode chains 100 in the mine to be monitored along multiple directions;
  • one armored electrode chain 100 is buried vertically in the vertical shaft of the mine; two armored electrode chains 100 are buried at the wellhead of the vertical shaft along two The armored electrode chains 100 are buried perpendicular to each other in the mine roadway or working face where the vertical shaft passes.
  • drill a vertical well in a mine where hydrological disaster monitoring or potential hydrological disasters occur pass through different monitoring formations and their aquifers, and slowly lower an armored electrode chain 100 into the drilled well hole , and make the exposed metal of the armored electrode chain and the surrounding stratum complete coupling (current connection and conduction), and then pour cement slurry in the well hole to permanently fix the armored electrode chain 100 downhole.
  • the error between the length of the two armored electrode chains 100 buried at the wellhead of the vertical well along the two mutually orthogonal directions and the length of the armored electrode chain 100 buried in the vertical well is less than or equal to the preset threshold; or
  • the error between the length of the two armored electrode chains 100 buried vertically in the mine roadway or working face through which the vertical shaft passes and the length of the armored electrode chain 100 buried in the vertical shaft is less than or equal to a preset threshold.
  • the error of the lengths of the two shallow trenches excavated in two directions orthogonal to each other on the ground of the borehole wellhead is not more than 10%, corresponding to the length of the two armored electrode chains 100 buried and the length of the two shallow trenches. Equivalent in length.
  • the length error of excavating two mutually perpendicular shallow trenches or horizontal wells at the mine roadway or working face where the vertical shaft passes is not more than 10%, corresponding to the length of the buried two armored electrode chains 100 and the shallow trench or horizontal well of equal length.
  • the length error of the three armored electrode chains 100 is not greater than 10%, which not only ensures the collection effect of the signal (ground electric field, background electric field), but also makes the signal easy to be imaged.
  • Step S102 based on a plurality of armored electrode chains 100, collecting multiple geoelectric fields in different directions of the mine and the background electric field of the mine;
  • the electrode chain cable of the armored electrode chain 100 is connected to the composite modem 200 at the wellhead, that is, the power port 202 of the composite modem 200 is connected to the wire core (+) and the wire core ( -), the reference port 203 of the composite modem 200 is connected to the core (G) of the electrode chain cable, and the signal port 204 of the composite modem 200 is connected to the signal line of the electrode chain cable. Meanwhile, the composite modem 200 is connected with the reference terminal 121 , the power supply 500 and the control unit 300 .
  • Start the composite modem 200 to supply power to the smart electrodes 101 or combinations of the smart electrodes 101 of the armored electrode chain 100 respectively, and collect the change data of the geoelectric field measured by the armored electrode chain 100 along three mutually orthogonal directions in real time.
  • the power supply 500 for the earth electric field is turned off, and the armored electrode chain 100 is searched separately.
  • the smart electrodes 101 in the armored electrode chain 100 are turned on, and the smart electrodes 101 in the armored electrode chain 100 are turned on sequentially, the electric fields in multiple different directions of the mine are collected.
  • the monitoring signal-to-noise ratio of the corresponding monitoring stratum can be effectively improved; by applying an artificial electric field in a single monitoring stratum, it can effectively improve the corresponding monitoring stratum's single-stratum hydrological condition change. sensitivity.
  • the composite modem 200 make all the smart electrodes 101 of the armored electrode chain 100 in the vertical well conduct with the power supply 500, and measure the other two armored electrode chains 100 (along the mutual positive direction) simultaneously
  • the potential difference between the electrodes 400 is to record the background electric field of the armored electrode chain 100 under the mine hydrogeological conditions under the excitation condition of the power supply 500; similarly, through the composite modem 200, the armored electrode chain in the vertical shaft is sequentially connected
  • the smart electrode 101 of 100 measures the potential difference between the other two armored electrode chains 100 and the reference electrode 400 at the same time, that is, records the background electric field under different monitoring formations or depth hydrogeological conditions under single-electrode excitation conditions.
  • Step S103 predict the mine water damage in the mine according to the geoelectric field and the background electric field.
  • the resistivity of the mine formation (monitoring formation) will become smaller. (strength) is relatively large, and the potential measured by the smart electrode 101 of the armored electrode chain 100 is relatively high.
  • the resistivity of the formation (monitoring formation) caused by the water source surging to the mine through the cracks gradually decreases, and the potential measured by the smart electrode 101 of the armored electrode chain 100 gradually changes.
  • the multiple smart electrodes 101 of the armored electrode chain 100 measure the potentials of multiple monitored formations at the same time, which can more accurately obtain the spatial distribution of mine fractures or hydrogeological conditions. Due to the excitation electric field of the armored electrode chain 100 vertically arranged along the depth direction of the monitoring formation and the measurement potential of a horizontal armored electrode chain 100, the change of the earth electric field intensity of the vertical plane with time can be obtained, through two armored electrode chains 100 Measuring the potential can obtain the change of the geoelectric field intensity of the mutually orthogonal vertical planes with time, and then obtain the change of the formation resistivity with time of the three-dimensional hydrogeological conditions of the observation area of the mine or the target area through the interpolation method.
  • the smart electrodes 101 of the armored electrode chains 100 arranged vertically are all turned on (energized)
  • the potentials of all the smart electrodes 101 of other armored electrode chains 100 arranged orthogonally to each other are measured; then, the armored electrode chains 101 arranged vertically
  • the smart electrodes 101 of the electrode chain 100 are all turned off, and then turned on sequentially according to the arrangement sequence of the smart electrodes 101 in the vertical direction (the smart electrodes 101 have a unique address), and measure all the smart electrodes of other armored electrode chains 100 that are arranged orthogonally 101 potential.
  • the monitoring In response to the intensity of the excitation electric field of the smart electrode 101 monitoring the formation being enhanced relative to its historical measurement potential, or, relative to the change in the intensity of the excitation electric field of other smart electrodes 101 monitoring the formation (greater than or less than a preset threshold), the monitoring Abnormal changes in hydrogeology or fractures of the formation. Accordingly, by comparing the geoelectric field with the background electric field, the inverse calculation of the time, space, and abnormal size of the underground hydrogeological conditions of the mine can be performed to predict the mine water hazard.
  • the geoelectric field of the monitored formation is measured through three armored electrode chains 100 in mutually orthogonal directions, and the background electric field of the monitored formation is obtained in combination with the reference electrode 400, and the established hydrogeological physical model of the mine is used , based on the method of geophysical forward modeling, the excitation electric field (strength) and the change of the potential measured by the smart electrode 101 of the armored electrode chain 100 when the hydrogeological conditions of the simulated mine are changed; at the same time, according to the actual measurement of the armored electrode chain 100
  • the value is corrected to the hydrogeological physical model of the mine, so that the simulated value (electric field strength, potential) of the hydrogeological physical model of the mine is close to the actual measured value of the armored electrode chain 100, so that it can be quickly obtained through the hydrogeological physical model of the mine Changes in hydrogeological conditions, that is, the method of geophysical inversion calculation is used to obtain the dynamic changes in space over time in the mine's hydrogeological conditions.
  • the geoelectric fields recorded on three armored electrode chains 100 in mutually orthogonal directions are compared with the background electric field, and the time, three-dimensional spatial position, and abnormal magnitude of the geoelectric field caused by changes in underground hydrogeological conditions are calculated inversely According to the inversion results, analyze the abnormal strata or well sections of mine hydrogeological changes, identify the potential risk and possibility of mine water damage caused by abnormal mine hydrogeological conditions, and provide timely early warning information for mine water damage.
  • the geoelectric field under the natural conditions of the mine and the excitation conditions of the power supply 500 can be monitored in a real-time, dynamic and continuous manner, and the changes in the hydrogeological conditions of the mine can be analyzed inversely, and the potential risk and possibility of mine water damage can be analyzed , provide early warning information in time, and improve the early warning and prevention and control of mine water disasters.

Abstract

一种矿井水害监测装置和方法,装置包括:铠装电极链(100)有多条,多条铠装电极链(100)分别沿矿井的多个不同方向埋设,每条铠装电极链(100)中沿铠装电极链(100)的长度方向布设有多个智能电极(101),至少一条铠装电极链(100)的多个智能电极(101)埋设于矿井的不同监测地层中,与对应的监测地层耦合;复合调制解调器(200)与铠装电极链(100)连接,实时采集铠装电极链(100)的地电场;复合调制解调器(200)与参考电极(400)连接,采集矿井的背景电场;参考电极(400)与任一监测地层耦合;控制单元(300)与复合调制解调器(200)连接,根据复合调制解调器(200)采集的地电场和背景电场,对矿井的矿井水害进行预测,进而,通过地电场和背景电场分析地下诱发矿井安全事故灾害的潜在风险和可能性,实现对矿井水害的预测。

Description

一种矿井水害监测装置和方法 技术领域
本申请涉及地质监测技术领域,特别涉及一种矿井水害监测装置和方法。
背景技术
随着矿井开采深度和开采条件不断变化,巷道采掘即工作面的复杂地质构造经常导致煤矿生产工作无法正常进行,煤矿安全高效生产受到严重威胁,甚至造成设备损坏和人员伤亡,如透水事故等深部动力灾害频度和强度明显增加。水害是矿井生产主要安全隐患之一,由于矿井水文地址条件等状况不明,不能有效地进行预防,造成的煤矿事故频频发生,严重危机财产和人民生命安全。
防治水是煤矿生产作业中一项非常重要的工作,目前用于矿井谁还探测的主要地球物理方法包括:矿井直流电法、矿井瞬变电磁法、无线电波透视、音频电透视、层反射和折射地震勘探、瑞雷波勘探、微重力测量、红外测温、放射性测量等地球物理勘探手段。地球物理方法成功与否取决于所采用方法的有效性、信号采集技术、分辨率、信噪比以及物性差异等多种因素,目前地球物理方法的应用主要采用探测为主,不能实时监测水温地质条件的动态变化。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本申请的目的在于提供一种矿井水害监测装置和方法,以解决或缓解上述现有技术中存在的问题。
为了实现上述目的,本申请提供如下技术方案:
本申请提供了一种矿井水害监测装置,包括:铠装电极链,所述铠装电极链有多条,多条所述铠装电极链分别沿所述矿井的多个不同方向埋设,每条所述铠装电极链中沿所述铠装电极链的长度方向布设有多个智能电极,至 少一条所述铠装电极链的多个所述智能电极埋设于所述矿井的不同监测地层中,与对应的所述监测地层耦合;复合调制解调器,所述复合调制解调器与所述铠装电极链连接,实时采集所述铠装电极链的地电场;所述复合调制解调器与参考电极连接,采集所述矿井的背景电场;其中,所述参考电极与任一所述监测地层耦合;控制单元,与所述复合调制解调器连接,根据所述复合调制解调器采集的所述地电场和背景电场,对所述矿井的矿井水害进行预测。
本申请实施例还提供一种矿井水害监测方法,采用上述任一实施例所述的矿井水害监测装置对所述矿井的矿井水害进行预测,所述矿井水害监测方法包括:步骤S101、将多条铠装电极链沿多个方向埋设于待监测的所述矿井中;步骤S102、基于多条所述铠装电极链,采集所述矿井的多个不同方向的地电场以及所述矿井的背景电场;步骤S103、根据所述地电场和背景电场,对所述矿井的矿井水害进行预测。
有益效果:
本申请实施例提供的技术方案中,至少一条铠装电极链上的多个智能电极埋设于矿井的不同监测地层中,与对应的监测地层耦合,籍此,实现对不同监测地层的地电场的实时测量;多条铠装电极链沿矿井的多个不同方向埋设,实现矿井多个方向上的地电场的实时测量;通过与铠装电极链连接的复合调制解调器,完成对铠装电极链测量的地电场的数据采集;以及,通过布设在无穷远处与任一监测地层耦合的参考电极,完成对矿井的背景电场的数据采集;而后,复合调制解调器将采集到的地电场、背景电场的数据发送至控制单元,由控制单元根据地电场、背景电场分析地下诱发矿井安全事故灾害的潜在风险和可能性,实现对矿井水害的预测。
附图说明
图1为矿井水害监测装置在矿井中的布设示意图;
图2为矿井水害监测装置的结构示意图;
图3为供电电源的结构示意图;
图4为地电场电位测量的示意图;
图5为电极链线缆的横截面示意图;
图6为矿井水害监测方法的流程示意图。
附图标记说明:
100、铠装电极链;200、复合调制解调器;300、控制单元;400、参考电极;500、供电电源;
101、智能电极;111、电源端子;121、参考端子;131、信号端子;102、电源接口;103、信号接口;
201、H桥;202、电源端口;203、参考端口;204、信号端口。
具体实施方式
目前,矿井水害监测所采用的地球物理方法主要是以探测为主,不能实时监测水文地质条件的动态变换,因此,建立一种实时、动态、连续的地球物理方法实时动态监测矿井水文地质条件的变化是亟待解决的问题,以有效防止矿井水害的发生,避免造成人们生命安全和经济损失。本申请公开的用于矿井水害动态监测的方案中,基于的供电和电位测量一体的铠装电极链100,实时动态监测矿井水文地质条件变化,防止矿井水害事故的发生。
如图1-图5所示,该矿井水害监测装置包括:铠装电极链100,铠装电极链100有多条,多条铠装电极链100分别沿矿井的多个不同方向埋设,每条铠装电极链100中沿铠装电极链100的长度方向布设有多个智能电极101,至少一条铠装电极链100的多个智能电极101埋设于矿井的不同监测地层中,与对应的监测地层耦合;复合调制解调器200,复合调制解调器200与铠装电极链100连接,实时采集铠装电极链100的地电场;复合调制解调器200与参考电极400连接,采集矿井的背景电场;其中,参考电极400与任一监测地层耦合;控制单元300,与复合调制解调器200连接,根据复合调制解调器200采集的地电场和背景电场,对矿井的矿井水害进行预测。
在本申请实施例中,其中一条铠装电极链100的多个智能电极101分别对应埋设在不同的监测地层中,通过单独控制每个智能电极101的导通,利用智能电极101能够在对应的不同监测地层中建立人工地电场,而矿井水文地质条件的变化将导致激励电场的电位分布变化。继而,通过铠装电极链100监测地电场空间不同位置与埋设于无穷远处的参考电极400的电位差,在人 工地电场单位电流的作用下,若矿井水文地质条件发生变化,势必导致空间不同位置与无穷远参考电极400的电位差发生变化,籍此,实现对矿井不同深度的地层的区别、实时监测。
在本申请实施例中,多个智能电极101并联设置,且每个智能电极101具有唯一地址;籍此,利用智能电极101的唯一地址可以对每个智能电极101对应的监测地层、以及形成的人工地电场进行有效识别,进而快速识别、定位矿井的不同监测地层,在矿井水文地质条件发生变化时,可以通过智能电极101的唯一地址快速定位水文地质条件发生变化的监测地层,提高矿井水害的预测精度和预测效率。
在本申请实施例中,复合调制解调器200通过H桥201控制智能电极101的导通或断开。即,复合调制解调器200向智能电极101发送指令,导通或断开地电场供电电源500的正极,也就是说,复合调制解调器200通过H桥201控制智能电极101的开关,使智能电极101导通或断开,以及通过H桥201的控制反转智能电极101的电流方向。同时,复合调制解调器200通过H桥201向智能电极101对应的监测地层发送正负交替的方波,使得供电电源500能够通过智能电极101耦合监测地层建立人工地电场。
在本申请实施例中,水文地质条件发生变化会导致监测地层的激发电场变化,调制解调器通过监测地层的地电场与参考电极400的电位差,获取矿井的背景电场。具体的,在无供电电源500的人工地电场激励的条件下,测量所有铠装电极链100的智能电极101与无穷远处的电位差,籍此,形成矿井水文地质条件的背景电场。
在本申请实施例中,铠装电极链100有三条,三条铠装电极链100分别对矿井的三个相互正交方向的地电场进行测量。具体的,一条铠装电极链100沿矿井的监测地层的深度方向埋设,两条铠装电极链100在平面内沿两个不同的水平方向正交埋设,实现对矿井水文地质的立体监测。
在本申请实施例中,智能电极101包括电源端子111、参考端子121和信号端子131,电源端子111与复合调制解调器200的电源端口202连接;参考端子121与复合调制解调器200的参考端口203连接,且与参考电极400相连接;信号端子131与复合调制解调器200的信号端口204相连接。
在本申请实施例中,铠装电极链100由一系列智能电极101组成,铠装 电极链100通过电极链线缆与复合调制解调器200连接,复合调制解调器200通过电极链线缆与地电场供电电源500、参考电极400连接。具体的,在复合调至解调器与供电电源500、参考电极400和控制单元300之间,电极链线缆的线芯(+)和线芯(-)通过H桥201接入供电电源500的电源两极,线芯(G)与埋设在无穷远处的参考电极400连接,镶嵌在电极链线缆中的信号线与控制单元300连接;在复合调制解调器200与智能电极101之间,智能电极101的电源端子111与复合调制解调器200的电源端口202之间通过(电源接口102)(线芯(+)和线芯(-))接通,智能电极101的参考端子121与复合调制解调器200的参考端口203之间通过信号接口103(线芯(G))接通,智能电极101的信号端子131与复合调制解调器200的信号端口204之间通过信号线接通。
在本申请实施例中,复合调制解调器200的参考端口203与的参考电极400连接,并由供电电源500提供供电电压和电流,复合调制解调器200对铠装电极链100发送导通或断开指令,以及对铠装电极链100传回的地电场的数据进行解调,并发送至控制单元300。由控制单元300对实时监测到的三个相互正交方向的地电场和背景电场进行处理,实现对矿井的水文灾害的预测。
需要说明的是,本申请的智能电极101通过设置的电位计(V)对监测地层的进行电位测量,实现对监测地层的水文地质条件变化的实时监测,为矿井的水文灾害预测提供依据。
图6为根据本申请的一些实施例提供的一种矿井水害监测方法的流程示意图;如图6所示,该矿井水害监测方法采用上述任一实施例的矿井水害监测装置对矿井的矿井水害进行预测,该矿井水害监测方法包括:
步骤S101、将多条铠装电极链100沿多个方向埋设于待监测的矿井中;
在本申请实施例中,将一条铠装电极链100沿垂直方向埋设于矿井的直井中;将两条铠装电极链100沿相互正交的两个方向埋设于直井井口,或者,将两条铠装电极链100相互垂直埋设于直井穿过的矿井巷道或工作面。
具体的,在需要进行水文灾害监测或潜在的水文灾害发生的矿井钻一口直井,穿过不同的监测地层及其含水层,将一条铠装电极链100缓慢的下入到完钻的井孔里,并使得铠装电极连的裸露金属与周围地层完成耦合(电流 接通导电),随后在井孔中灌注水泥浆,将该铠装电极链100永久固定在井下。
在钻孔井口地面处相互正交的两个方向分别开挖两条浅沟,在两条浅沟中对应铺设两条铠装电极链100;或者,在直井穿过的矿井巷道或工作面处分别开挖两条相互垂直的浅沟或水平井,在浅沟或水平井中对应铺设两条铠装电极链100。在浅沟或水平井中的铠装电极链100铺设完毕后,用水泥高压泵将水泥泵入孔中,使铠装电极链100与钻孔之间的环空取充实水泥浆,水泥浆固结后,铠装监测电极链和监测地层岩石永久性的固定耦合在一起。
在本申请实施例中,沿相互正交的两个方向埋设于直井井口的两条铠装电极链100的长度与埋设于直井中的铠装电极链100的长度误差小于等于预设阈值;或者,相互垂直埋设于直井穿过的矿井巷道或工作面的两条铠装电极链100的长度与埋设于直井中的铠装电极链100的长度误差小于等于预设阈值。
具体的,在钻孔井口地面处相互正交的两个方向分别开挖的两条浅沟的长度误差不大于10%,对应埋设的两条铠装电极链100的长度与两条浅沟的长度相当。在直井穿过的矿井巷道或工作面处分别开挖两条相互垂直的浅沟或水平井的长度误差不大于10%,对应埋设的两条铠装电极链100的长度与浅沟或水平井的长度相当。在此,三条铠装电极链100的长度误差不大于10%,既保证了信号(地电场、背景电场)的采集效果,同时使信号易于进行成像处理。
步骤S102、基于多条铠装电极链100,采集矿井的多个不同方向的地电场以及矿井的背景电场;
在本申请实施例中,在井口处把铠装电极链100的电极链线缆连接到复合调制解调器200,即复合调制解调器200的电源端口202接电极链线缆的线芯(+)和线芯(-),复合调制解调器200的参考端口203接电极链线缆的线芯(G),复合调制解调器200的信号端口204接电极链线缆的信号线。同时,复合调制解调器200与参考端子121、供电电源500和控制单元300连接。启动复合调制解调器200,分别对铠装电极链100的智能电极101或智能电极101组合供电,实时采集沿三个相互正交方向的铠装电极链100测量的地电场的变化数据。
在本申请实施例中,在基于多条铠装电极链100,采集矿井的多个不同 方向的地电场以及矿井的背景电场时,分别对地电场供电电源500关闭、苏搜铠装电极链100中的智能电极101全部导通、铠装电极链100中的智能电极101依次导通时,矿井的多个不同方向地电场进行采集。
在本申请实施例中,水文地质条件发生变化将导致地电场的异常变化,通过三个正交的铠装电极链100记录关闭地电场供电电源500、直井中铠装电极链100的所有智能电极101与供电电源500导通、直井中铠装电极链100的智能电极101与供电电源500依次导通三种条件下,矿井水文地质条件变化而导致的地电场变化。对应的,通过在部分或全部监测地层施加人工电场,可有效提高对应的监测地层的监测信噪比;通过在单一监测地层施加人工电场,可有效提高对应的监测地层的单一地层水文条件变化的敏感度。
具体的,关闭地电场的供电电源500,利用复合调制解调器200记录铠装电极链100与埋设于无穷远处的参考电极400的电位差,即记录矿井水文地质条件的背景电场。然后,打开地电场的供电电源500,利用复合调制解调器200,使直井中的铠装电极链100的所有智能电极101与供电电源500导通,同时测量另外两个铠装电极链100(沿相互正交的两个方向埋设于直井井口的两条铠装电极链100,或者,相互垂直埋设于直井穿过的矿井巷道或工作面的两条铠装电极链100)与埋设于无穷远处的参考电极400之间的电位差,即记录铠装电极链100在供电电源500激励条件下的矿井水文地质条件下的背景电场;同理,通过复合调制解调器200,依次导通直井中的铠装电极链100的的智能电极101,同时测量另外两个铠装电极链100与参考电极400之间的电位差,即记录单电极激励条件下不同监测地层或深度水文地质条件下的背景电场。
步骤S103、根据地电场和背景电场,对矿井的矿井水害进行预测。
在本申请实施例中,水源通过裂隙向矿井涌出或变大时,会导致矿井地层(监测地层)的电阻率变小,在单位电压小的情况下,其电流较大,相应的地电场(强度)就比较大,铠装电极链100的智能电极101测量到的电位较高。当矿井开采产生的裂隙随时间推移逐渐变大时,水源通过裂隙向矿井涌动导致的地层(监测地层)的电阻率逐渐变小,铠装电极链100的智能电极101测量的电位则逐渐变强,在t 1、t 2、t 3、...、t n(其中,n为正整数)间隔时间得到的智能电极101的电位的测量曲线形态和电位随时间的拟合函 数,进而预测矿井水害的发生趋势。
在本申请中,铠装电极链100的多个智能电极101对多个监测地层的电位同时进行测量,能够更加准确的获取矿井的裂隙或水文地质条件的空间展布形态。由于沿监测地层的深度方向垂直布设的铠装电极链100的激励电场和一条水平铠装电极链100测量电位,可获得垂直面的地电场强度随时间的变化,通过两条铠装电极链100测量电位,可获得相互正交的垂直面的地电场强度随时间的变化,进而通过插值方法即可获得矿井的观测区域或目标区域的立体水文地质条件的地层电阻率随时间的变化。
在本申请实施例中,当沿监测地层的深度方向垂直布设的铠装电极链100的智能电极101全部通电时,矿井水文地质条件或裂隙在垂直方向的分辨率较低,通过如下步骤获取矿井水文地质条件或裂隙随时变的变化:
首先,测量垂直布设的铠装电极链100的智能电极101全部导通(通电)条件下,其它相互正交布设的铠装电极链100的全部智能电极101的电位;然后,将垂直布设的铠装电极链100的智能电极101全部关闭,再按智能电极101在垂直方向的布设顺序(智能电极101具有唯一地址)依次导通,测量其它相互正交布设的铠装电极链100的全部智能电极101的电位。
响应于监测地层的智能电极101的激励电场的强度相对于其历史测量电位增强,或者,相对于其它监测地层的智能电极101的激励电场的强度变化(大于或小于预设阈值),则该监测地层的水文地质或裂隙变化异常。据此,通过对地电场和背景电场进行比较,反演计算矿井的地下水文地质条件变化的时间、空间位置和地电场异常大小,对矿井的矿井水害进行预测。
在本申请实施例中,通过三个相互正交方向的铠装电极链100对监测地层的地电场进行测量,并结合参考电极400获取到监测地层的背景电场,利用建立的矿井水文地质物理模型,基于地球物理正演的方法,模拟矿井的水文地质条件变化时铠装电极链100的智能电极101测量到的激励电场(强度)以及电位的变化;同时,根据铠装电极链100的实际测量值对矿井水文地质物理模型进行修正,使矿井的水文地质物理模型的模拟值(电场强度、电位)与铠装电极链100的实际测量值相近,从而可快速的通过矿井的水文地质物理模型获取水文地质条件的变化,即采用地球物理反演计算的方法获取矿井的水文地质条件中空间随时间的动态变化。
在本申请实施例中,三个相互正交方向的铠装电极链100上记录的地电场与背景电场进行比较,反演计算地下水文地质条件变化产生的时间、三维空间位置和地电场异常大小,根据反演结果对矿井水文地质变化异常地层或井段进行分析,判别矿井水文地质条件异常诱发的矿井水害的潜在风险和可能性,及时提供矿井水害可能发生的预警信息。
在本申请实施例中,可以实时、动态、连续的监测矿井天然条件下和供电电源500激励条件下的地电场,反演分析矿井水文地质条件的变化,分析矿井水害发生的潜在风险和可能性,及时提供预警信息,提高对矿井水害的预警和防控。

Claims (10)

  1. 一种矿井水害监测装置,其特征在于,包括:
    铠装电极链,所述铠装电极链有多条,多条所述铠装电极链分别沿所述矿井的多个不同方向埋设,每条所述铠装电极链中沿所述铠装电极链的长度方向布设有多个智能电极,至少一条所述铠装电极链的多个所述智能电极埋设于所述矿井的不同监测地层中,与对应的所述监测地层耦合;
    复合调制解调器,所述复合调制解调器与所述铠装电极链连接,实时采集所述铠装电极链的地电场;所述复合调制解调器与参考电极连接,采集所述矿井的背景电场;其中,所述参考电极与任一所述监测地层耦合;
    控制单元,与所述复合调制解调器连接,根据所述复合调制解调器采集的所述地电场和背景电场,对所述矿井的矿井水害进行预测。
  2. 根据权利要求1所述的矿井水害监测装置,其特征在于,多个所述智能电极并联设置,且每个所述智能电极具有唯一地址;
    对应的,
    所述复合调制解调器通过H桥控制所述智能电极的导通或断开。
  3. 根据权利要求1所述的矿井水害监测装置,其特征在于,所述调制解调器通过所述智能电极对应的监测地层的地电场与所述参考电极的电位差,获取所述矿井的背景电场。
  4. 根据权利要求1所述的矿井水害监测装置,其特征在于,
    所述铠装电极链有三条,三条所述铠装电极链分别对所述矿井的三个相互正交方向的地电场进行测量。
  5. 根据权利要求1-4任一所述的矿井水害监测装置,其特征在于,所述智能电极包括电源端子、参考端子和信号端子,所述电源端子与所述复合调制解调器的电源端口连接;所述参考端子与所述复合调制解调器的参考端口连接,且与所述参考电极相连接;所述信号端子与所述复合调制解调器的信 号端口相连接。
  6. 一种矿井水害监测方法,其特征在于,采用权利要求1-5任一所述的矿井水害监测装置对所述矿井的矿井水害进行预测,所述矿井水害监测方法包括:
    步骤S101、将多条铠装电极链沿多个方向埋设于待监测的所述矿井中;
    步骤S102、基于多条所述铠装电极链,采集所述矿井的多个不同方向的地电场以及所述矿井的背景电场;
    步骤S103、根据所述地电场和背景电场,对所述矿井的矿井水害进行预测。
  7. 根据权利要求6所述的矿井水害监测方法,其特征在于,在步骤S101中,
    将一条所述铠装电极链沿垂直方向埋设于所述矿井的直井中;
    将两条所述铠装电极链沿相互正交的两个方向埋设于所述直井井口,或者,将两条所述铠装电极链相互垂直埋设于所述直井穿过的矿井巷道或工作面。
  8. 根据权利要求7所述的矿井水害监测方法,其特征在于,在步骤S101中,
    沿相互正交的两个方向埋设于所述直井井口的两条铠装电极链的长度与埋设于所述直井中的铠装电极链的长度误差小于等于预设阈值;
    或者,
    相互垂直埋设于所述直井穿过的矿井巷道或工作面的两条铠装电极链的长度与埋设于所述直井中的铠装电极链的长度误差小于等于所述预设阈值。
  9. 根据权利要求6所述的矿井水害监测方法,其特征在于,在步骤S102中,
    分别对地电场供电电源关闭、所述铠装电极链中的智能电极全部导通、所述铠装电极链中的智能电极依次导通时,所述矿井的多个不同方向的地电 场进行采集。
  10. 根据权利要求6所述的矿井水害监测方法,其特征在于,在步骤S103中,
    对所述地电场和所述背景电场进行比较,反演计算所述矿井的地下水文地质条件变化时的时间、空间位置和地电场,以对所述矿井的矿井水害进行预测。
PCT/CN2022/133217 2022-02-28 2022-11-21 一种矿井水害监测装置和方法 WO2023066409A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE2350728A SE2350728A1 (en) 2022-02-28 2022-11-21 Mine water hazard monitoring apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210193140.XA CN114545514A (zh) 2022-02-28 2022-02-28 一种矿井水害监测装置和方法
CN202210193140.X 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023066409A1 true WO2023066409A1 (zh) 2023-04-27

Family

ID=81661825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133217 WO2023066409A1 (zh) 2022-02-28 2022-11-21 一种矿井水害监测装置和方法

Country Status (3)

Country Link
CN (1) CN114545514A (zh)
SE (1) SE2350728A1 (zh)
WO (1) WO2023066409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117114206A (zh) * 2023-10-23 2023-11-24 北京联创高科信息技术有限公司 一种煤矿水害指标数据趋势的计算方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545514A (zh) * 2022-02-28 2022-05-27 河南省许昌新龙矿业有限责任公司 一种矿井水害监测装置和方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050078011A1 (en) * 2003-10-09 2005-04-14 Scintrex Limited Identically programmed intelligent electrodes for use in geoelectrical surveys
CN106443794A (zh) * 2016-08-30 2017-02-22 安徽惠洲地质安全研究院股份有限公司 一种三维并行电法观测系统及地质体探查方法
CN210347952U (zh) * 2019-09-12 2020-04-17 东华理工大学 一种分布式三维电阻率动态变密度自适应网格智能采集装置
CN112031743A (zh) * 2020-09-28 2020-12-04 中油奥博(成都)科技有限公司 基于分布式光纤传感技术的井下流体识别装置及测量方法
CN112415615A (zh) * 2020-12-04 2021-02-26 中油奥博(成都)科技有限公司 基于分布式光纤传感的时频电磁压裂监测系统及监测方法
CN112780256A (zh) * 2021-03-03 2021-05-11 中油奥博(成都)科技有限公司 基于分布式光纤传感的水平井微地震监测系统及监测方法
CN113568037A (zh) * 2021-08-17 2021-10-29 中油奥博(成都)科技有限公司 基于光纤传感技术的地震和地质灾害监测系统及监测方法
CN113653534A (zh) * 2021-08-31 2021-11-16 中煤科工集团重庆研究院有限公司 一种矿井水害预警系统及方法
CN113818929A (zh) * 2021-08-26 2021-12-21 四川省煤炭设计研究院 一种矿井地下水动态监测系统、控制方法及应用
CN114545514A (zh) * 2022-02-28 2022-05-27 河南省许昌新龙矿业有限责任公司 一种矿井水害监测装置和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050078011A1 (en) * 2003-10-09 2005-04-14 Scintrex Limited Identically programmed intelligent electrodes for use in geoelectrical surveys
CN106443794A (zh) * 2016-08-30 2017-02-22 安徽惠洲地质安全研究院股份有限公司 一种三维并行电法观测系统及地质体探查方法
CN210347952U (zh) * 2019-09-12 2020-04-17 东华理工大学 一种分布式三维电阻率动态变密度自适应网格智能采集装置
CN112031743A (zh) * 2020-09-28 2020-12-04 中油奥博(成都)科技有限公司 基于分布式光纤传感技术的井下流体识别装置及测量方法
CN112415615A (zh) * 2020-12-04 2021-02-26 中油奥博(成都)科技有限公司 基于分布式光纤传感的时频电磁压裂监测系统及监测方法
CN112780256A (zh) * 2021-03-03 2021-05-11 中油奥博(成都)科技有限公司 基于分布式光纤传感的水平井微地震监测系统及监测方法
CN113568037A (zh) * 2021-08-17 2021-10-29 中油奥博(成都)科技有限公司 基于光纤传感技术的地震和地质灾害监测系统及监测方法
CN113818929A (zh) * 2021-08-26 2021-12-21 四川省煤炭设计研究院 一种矿井地下水动态监测系统、控制方法及应用
CN113653534A (zh) * 2021-08-31 2021-11-16 中煤科工集团重庆研究院有限公司 一种矿井水害预警系统及方法
CN114545514A (zh) * 2022-02-28 2022-05-27 河南省许昌新龙矿业有限责任公司 一种矿井水害监测装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117114206A (zh) * 2023-10-23 2023-11-24 北京联创高科信息技术有限公司 一种煤矿水害指标数据趋势的计算方法
CN117114206B (zh) * 2023-10-23 2024-01-26 北京联创高科信息技术有限公司 一种煤矿水害指标数据趋势的计算方法

Also Published As

Publication number Publication date
CN114545514A (zh) 2022-05-27
SE2350728A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2023066409A1 (zh) 一种矿井水害监测装置和方法
CN104181611B (zh) 一种矿井工作面顶底板采动破坏裂隙发育动态监测方法
Bin et al. Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: a case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China
CN104730585B (zh) 一种采动工作面底板破坏深度实时监测方法
Bu et al. Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study
CN104459808A (zh) 采煤工作面顶、底板突水灾害的监测预报方法及其装置
CN111123365B (zh) 基于自然电位法的采空区滞后突水预警系统及其使用方法
CN103529488A (zh) 矿井顶底板突水监测预报系统及方法
CN104198539A (zh) 煤层底板注浆加固效果检测评价方法
Song et al. Evaluation of coal seam hydraulic fracturing using the direct current method
CN105652311A (zh) 一种监测底板突水的微震监测方法
CN110609335A (zh) 一种基于多手段的残采区复杂条件探测方法
Gao et al. Dynamic monitoring of water in a working face floor using 2D electrical resistivity tomography (ERT)
CN105807336A (zh) 适用于多地球物理探测方法的综合孤石探测模型试验装置及试验方法
Feng‐Shan et al. APPLICATION OF HIGH‐DENSITY RESISTIVITY METHOD IN DETECTING WATER‐BEARING STRUCTURES AT A SEABED GOLD MINE
Luo et al. Application of comprehensive geophysical prospecting method in the exploration of coal mined-out areas
WO2021134929A1 (zh) 构造活化双参数监测系统及监测方法
CN204256186U (zh) 采煤工作面顶、底板突水灾害的监测预报装置
Shi et al. Application of three-dimensional high-density resistivity method in roof water advanced detection during working stope mining
Meng et al. In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: a case study
CN111102008B (zh) 一种承压水体上无煤柱开采的底板破坏深度的探查方法
CN113818929A (zh) 一种矿井地下水动态监测系统、控制方法及应用
Li et al. Prevention and control of water inrushes from subseam karstic Ordovician limestone during coal mining above ultra-thin aquitards
CN113219551A (zh) 一种煤矿底板破坏深度的确定方法
Wang et al. Detection of shallow buried water-filled goafs using the fixed-loop transient electromagnetic method: A case study in Shaanxi, China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883013

Country of ref document: EP

Kind code of ref document: A1