CN115652352B - 一种用于碱性电解水制氢的气液扩散件及其应用 - Google Patents

一种用于碱性电解水制氢的气液扩散件及其应用 Download PDF

Info

Publication number
CN115652352B
CN115652352B CN202211412049.9A CN202211412049A CN115652352B CN 115652352 B CN115652352 B CN 115652352B CN 202211412049 A CN202211412049 A CN 202211412049A CN 115652352 B CN115652352 B CN 115652352B
Authority
CN
China
Prior art keywords
gas
plate
liquid
electrode
liquid diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211412049.9A
Other languages
English (en)
Other versions
CN115652352A (zh
Inventor
汪文彪
高小平
戴晋同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huashang Xiageng Hydrogen Energy Technology Xiamen Co ltd
Original Assignee
Tan Kah Kee Innovation Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tan Kah Kee Innovation Laboratory filed Critical Tan Kah Kee Innovation Laboratory
Priority to CN202211412049.9A priority Critical patent/CN115652352B/zh
Publication of CN115652352A publication Critical patent/CN115652352A/zh
Application granted granted Critical
Publication of CN115652352B publication Critical patent/CN115652352B/zh
Priority to PCT/CN2023/116260 priority patent/WO2024098909A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供了一种用于碱性电解水制氢的气液扩散件,设置于极板与隔膜之间形成气液扩散层,由编织网或板网制成,并被成型为具有在气液扩散件两侧交替相间的多个流道,在与流道垂直的方向上,气液扩散件的横截面为由多个流道形成的波浪形状。通过使用气液扩散件,有效地减少了接触电阻、提高了电解效率、降低了接触位置的应力集中、避免了压坏隔膜、减小了流体的流动阻力,避免了在内部流场形成滞流或回流、降低了氢气和氧气互窜的风险、并有利于提高电极表面与碱性电解液之间的接触面积。

Description

一种用于碱性电解水制氢的气液扩散件及其应用
技术领域
本发明涉及电化学制氢技术领域,具体来说涉及一种用于碱性电解水制氢的气液扩散件。
背景技术
发展氢能可从根本上缓解我国大量进口油气资源带来的能源安全问题,其可作为储能介质的特殊属性可促进大规模可再生能源的快速发展,是我国实现“双碳目标”的重要手段。
碱性电解水制氢技术在我国广泛应用,技术成熟有几十年的历史,商业化程度高,是最具前景的电解水制氢技术之一。碱性电解水制氢技术的核心部件是碱性电解槽。碱性电解槽采用隔膜将电解池分为两个室,利用金属或合金作为电极分布在两个室内,电解液是浓度为20~30wt%的氢氧化钾溶液,工作液的温度为70~100℃,压力100~3000kPa,主要的反应是水的分解。目前,碱性电解水工业中普遍采用双极式电解槽,这种电解槽由多个单元小室有规律叠压成电解槽的槽体,每个电解小室主要由极框、双极性主极板(即双极板)、隔膜、阴/阳极以及密封垫片组成。双极板一面是阴极,另一面是是阳极,焊接到极框内,构成一个整体。每个小室分为阴极小室和阳极小室,隔膜位于阴极和阳极之间,主要作用是防止氢气和氧气混合。
CN205803608U公开了一种高电流密度的碱性水电解槽,包含若干电解小室,每个电解小室包含阴极框、阳极框和它们之间的密封垫片,隔膜设置在析氧用的阳极和析氢用的阴极之间,在阴极的外侧设置焊接到阴极框上的双极板,而在阳极的外侧同样设置焊接到阳极框上的双极板,在阴/阳极与双极板之间设置有呈三维网孔结构的导电集流网。该文献通过引用并入本文。
目前,碱性水电解槽大部分采用乳凸板加热喷涂镍丝网的结构,即双极板采用冲压乳头状凹凸起的圆板,双极板的凹凸部分充当扩散层,而电极采用镍丝网或热喷涂镍丝网。图1展示了这种乳凸板及其截面示意图,其通过在用作双极板的圆形板上交替冲压出凸部和凹部而形成,两相邻的凸部(或凹部)之间的距离通常为约4~5cm,凸部的高度(或凹部的深度)通常为约0.4~0.5cm。这种结构相对简单,成本较低。
然而,碱性水电解槽安装时需要将两块用作双极板(即阴极侧的双极板和阴极侧的双极板)的乳凸板的凸点对齐,这不仅工艺难度高,而且导致乳凸板无法压紧电极组件(即阴极、阳极和夹置其中的隔膜)。由于乳凸板与电极仅在凸点位置处进行点接触,这导致电极和乳凸板之间的接触电阻大,造成电解槽的电压损失大、电解效率(即产氢效率)低。此外,冲压成型乳凸板的冲压模具成本高,并且加工后的凸点部分高度一致性差,这会导致凸点尺寸超高位置会形成较高的压力,甚至会压破电极组件的隔膜。另一方面,乳凸板结构内部凸点多,导致电解槽内部气液混合物流体的流场混乱,增加了流体的内部阻力,在局部位置会产生滞留和回流现象(特别是在流体流动被凸点阻挡的位置),气体不容易排出,容易造成局部温度过高、隔膜破损、小室内氢气与氧气互窜、气体覆盖在电极表面屏蔽电极与碱性电解液接触而增加无法产生电化学反应的电极表面。
因此,对碱性电解水制氢装置,特别是电解小室的结构存在改进的需求。
发明内容
本发明的目的是为了解决现有技术中碱性电解水制氢的电解槽中的至少一部分缺陷,例如乳凸板的冲压模具成本高、冲压成型后高度一致性差、对电极组件压力过大、凸点对位困难、接触电阻过大、内部流体的流场滞留和回流问题、内部温度不均匀等,通过设置扩散层,提供了一种改进的碱性电解水制的电解槽。
本发明第一方面提供了一种用于碱性电解水制氢的气液扩散件,设置于极板与隔膜之间形成气液扩散层,所述极板包括阳极板、阴极板和/或双极板,其中,所述气液扩散件由编织网或板网制成,并被成型为具有所述气液扩散件两侧交替相间的多个流道,在与所述多个流道垂直的方向上所述气液扩散件的横截面为由所述多个流道形成的波浪形状。
本发明第二方面提供了一种具有扩散层的电极,包括电极和本发明的气液扩散件,所述电极焊接在所述气液扩散件之上。
本发明第三方面提供了一种具有扩散层的极板,包括极板和本发明的气液扩散件,所述极板包括阳极板、阴极板和/或双极板,并且所述极板焊接在所述气液扩散件之上。
本发明第四方面提供了一种用于碱性电解水制氢的电解槽,包括设置于极板与隔膜之间的本发明的气液扩散件。
本发明具有以下有益效果:本发明使用气液扩散件,使其与电极或隔膜之间的接触变成面接触,不但有效地减少了接触电阻,提高电解效率,而且可以降低接触位置的应力集中,避免了压坏隔膜;气液扩散件两侧面上交替相间而形成波浪状的流道结构,可以使流体在气液扩散件两侧均可流动,提供更多的流通路径、更大的流道截面和更大的流量,减小了流体的流动阻力,避免了在内部流场形成滞流或回流,有利于气体的排出,因而电解槽不容易出现温度过高而引起隔膜破损,降低了氢气和氧气互窜的风险,并有利于提高电极表面与碱性电解液之间的接触面积。
附图说明
图1为现有技术中乳凸板双极板及其截面的结构示意图,上图为乳凸板的示意图,下图为乳凸板截面的示意图;
图2为本发明的具有流道的气液扩散件及其截面的结构示意图,上图为气液扩散件的示意图,中图为气液扩散件的截面示意图,下图为A部分的截面放大示意图。
具体实施方式
下面通过附图和实施例对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
此外,下面所描述的本发明不同实施方式中涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
目前传统的双极板采用乳凸板的形式,如图1所示,在圆形板上交替冲压出凸部和凹部而形成,安装成碱性电解水的电解槽时,在两块用作双极板的乳板板之间夹置电极组件,并需要将两块乳凸板的凸点对齐,从而使乳凸板的凹凸部分充当扩散层。
本发明设计了一种新的碱性电解水的电解槽,使用基本平板结构的极板和具有流道的气液扩散件,使二者结合起合来替代传统的乳凸板,从而形成具有全新的气液扩散层结构的电解槽。
基于此,在本发明的一种实施方式中,提供了一种用于碱性电解水制氢的气液扩散件,设置于极板与隔膜之间形成气液扩散层,所述极板包括阳极板、阴极板和/或双极板。其中,所述气液扩散件由编织网或板网制成,并被成型为具有所述气液扩散件两侧交替相间的多个流道,在与所述多个流道垂直的方向上所述气液扩散件的横截面为由所述多个流道形成的波浪形状。在本发明中,通过编织网或板网制成气体扩散件,利用其弹性,不但可以通过变形产生的面接触降低接触位置的应力集中,避免了压坏隔膜,而且同样可以通过变形产生的面接触提高气体扩散件的导电性能。在本发明中,通过在气体扩散件两侧交替相间的多个流道,比仅在气体扩散件单侧形成流道的结构提供更多的流道,提高了流道截面积,不但避免了在内部流场形成滞流或回流,而且有效地提升了气液传输的质量。
在本发明中,气液扩散件可以用于各种电解槽中,既可以使用在单极式电解槽中,通过将气液扩散件设置在基本平板结构的极板的一个表面上,从而构成阳极板或阴极板;也可以使用在双极式电解槽中,通过在基本平板结构的极板的两个表面上均设置气液扩散件,从而构成双极板。
气液扩散件由编织网或板网制成,该编织网或板网要求在碱性条件下稳定的金属和/或合金制成,优选由选自镍、不锈钢、镀镍碳钢或钛的材料制成。金属编织网是采用一定直径的金属丝(例如0.5mm的镍丝)通过编织或其他类似的手法制成。金属板网是一种具有网孔的金属薄板,网孔是在专用机器上冲压而成,或是将金属薄板冲缝后拉制而成。在本发明中,金属编织网或金属板网被成型为具有所述气液扩散件两侧交替相间的多个流道,这些流道交替形成在金属编织网或板网的两侧,相邻的流道位于不同的侧面上,形状基本相同,但方向相反,从而使得在与所述多个流道垂直的方向上气液扩散件的横截面为由所述多个流道形成的波浪形状。气液扩散件上的这些流道在电解槽中可以为氢气或氧气的气液混合物流体提供更多的流通路径和更大的流量,减小流体的流动阻力,避免在内部流场形成滞流或回流,有利于气体的排出,因而使得电解槽不容易出现温度过高而引起隔膜破损,降低氢气和氧气互窜的风险,并且有利于提高电极表面与碱性电解液之间的接触面积。
在本发明的一种实施方式中,如图2所示,可以将金属编织网或板网通过折弯的方式成型为交替的等腰梯形状,从而在气液扩散件的两面均形成多个等腰梯形的流道。通过梯形结构,可以进一步提高气体扩散件与隔膜之间面接触的面积,进一步提高气体扩散件的导电性能并避免压坏隔膜。由气液扩散件形成的扩散层的需要满足电解小室中气液混合物流体的容积需求,并且流道宽度可以根据氢气产量及流体流速的需要进行调节。例如,在本发明的优选实施方式中,选择等腰梯形的上下底边为0.2~3.6cm,高为0.2~0.8cm,优选上下底边为0.2~3.2cm,高为0.2~0.8cm,可以获得较好的流场效果。
在本发明的一种实施方式中,可以在气液扩散件与所述隔膜之间还设置有电极。电极可以采用镍网、热喷涂镍丝网或其他适宜的电极材料制成。在这种情形下,气液扩散件将被设置在基本平板结构的极板和电极之间。如果需要,可以将气液扩散件焊接到极板和/或所述电极上,这样有利于电解槽的组装。
本发明使用气液扩散件替代了乳凸板上的凸点,使得气液扩散件与电极或隔膜之间的接触变成面接触,既避免了安装时复杂的凸点对齐,又避免了乳凸板与电极之间的点接触。通过这种面接触,可以使得接触面积增加了数十倍甚至数百倍,不但有效地减少了接触电阻,提高了导电性和电解效率,而且可以降低接触位置的应力集中,避免压坏隔膜。
在本发明的一种实施方式中,气液扩散件需满足在安装压力下的力学性能和弹性要求,例如,气液扩散件在与其平面垂直的方向上的弹性模量在50~20000N/cm2,优选为100~10000N/cm2,弹性模量过小的话,在电解槽的安装压力下,气液扩散件极易变形,无法压紧电极或隔膜,可能会导致气液扩散件与电极或隔膜之间的接触不良;而弹性模量过大的话,气液扩散件又难于变形,可能会造成接触位置的压力过大,从而压坏隔膜。
根据本发明的另一种实施方式,提供了一种具有扩散层的电极,包括电极和本发明的气液扩散件,所述电极焊接在所述气液扩散件之上。
根据本发明的还一种实施方式,提供了一种具有扩散层的极板,包括极板和本发明的气液扩散件,所述极板包括阳极板、阴极板和/或双极板,并且所述极板焊接在所述气液扩散件之上。
根据本发明的再一种实施方式,提供了一种用于碱性电解水制氢的电解槽,包括设置于极板与隔膜之间的本发明的气液扩散件。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上结合了优选的实施方式对本发明进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本发明进行多种替换和改进,这些均落入本发明的保护范围内。

Claims (10)

1.一种用于碱性电解水制氢的气液扩散件,其特征在于,所述气液扩散件设置于极板与隔膜之间形成气液扩散层,所述极板包括阳极板、阴极板和/或双极板,其中,所述气液扩散件由编织网或板网制成,所述编织网或板网通过折弯的方式被成型为具有在所述气液扩散件两侧交替相间的多个等腰梯形的流道,在与所述多个流道垂直的方向上所述气液扩散件的横截面为由所述多个流道的横截面形成的波浪形状。
2.如权利要求1所述的气液扩散件,其特征在于,所述编织网或板网由在碱性条件下稳定的金属和/或合金制成。
3.如权利要求2所述的气液扩散件,其特征在于,所述编织网或板网由选自镍、不锈钢、镀镍碳钢或钛的材料制成。
4.如权利要求1所述的气液扩散件,其特征在于,所述等腰梯形的上下底边为0.2~3.6cm,高为0.2~0.8 cm。
5.如权利要求1至4任一项所述的气液扩散件,其特征在于,在所述气液扩散件与所述隔膜之间还设置有电极。
6.如权利要求1至4任一项所述的气液扩散件,其特征在于,所述气液扩散件焊接到所述极板和/或电极上,所述电极由镍网制成。
7.如权利要求1至4任一项所述的气液扩散件,其特征在于,所述气液扩散件在与其平面垂直的方向上的弹性在50~20000 N/cm2
8.一种具有扩散层的电极,其特征在于,包括电极和如权利要求1至7任一项所述的气液扩散件,所述电极焊接在所述气液扩散件之上。
9.一种具有扩散层的极板,其特征在于,包括极板和如权利要求1至7任一项所述的气液扩散件,所述极板包括阳极板、阴极板和/或双极板,并且所述极板焊接在所述气液扩散件之上。
10.一种用于碱性电解水制氢的电解槽,其特征在于,包括设置于极板与隔膜之间的如权利要求1至7任一项所述的气液扩散件。
CN202211412049.9A 2022-11-11 2022-11-11 一种用于碱性电解水制氢的气液扩散件及其应用 Active CN115652352B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211412049.9A CN115652352B (zh) 2022-11-11 2022-11-11 一种用于碱性电解水制氢的气液扩散件及其应用
PCT/CN2023/116260 WO2024098909A1 (zh) 2022-11-11 2023-08-31 一种用于碱性电解水制氢的气液扩散件及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211412049.9A CN115652352B (zh) 2022-11-11 2022-11-11 一种用于碱性电解水制氢的气液扩散件及其应用

Publications (2)

Publication Number Publication Date
CN115652352A CN115652352A (zh) 2023-01-31
CN115652352B true CN115652352B (zh) 2023-07-04

Family

ID=85020796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211412049.9A Active CN115652352B (zh) 2022-11-11 2022-11-11 一种用于碱性电解水制氢的气液扩散件及其应用

Country Status (2)

Country Link
CN (1) CN115652352B (zh)
WO (1) WO2024098909A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652352B (zh) * 2022-11-11 2023-07-04 嘉庚创新实验室 一种用于碱性电解水制氢的气液扩散件及其应用
CN117448858B (zh) * 2023-10-18 2024-04-19 三一氢能有限公司 流场结构及电解槽
CN117468024B (zh) * 2023-10-31 2024-06-14 温州高企氢能科技有限公司 一种用于碱性电解水制氢的阵列式流场结构及电解槽

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
CN1248347C (zh) * 2002-04-03 2006-03-29 中国科学院大连化学物理研究所 一种用于质子交换膜燃料电池的流场分配板
DE102005037345A1 (de) * 2005-08-04 2007-02-08 Hüttenberger Produktionstechnik Martin GmbH Bipolarplatte für Brennstoffzellen oder Elektrolyseur-Stapel sowie ein Verfahren zur Herstellung einer Bipolarplatte für Brennstoffzellen oder Elektrolyseur-Stapel
JP5589946B2 (ja) * 2011-04-20 2014-09-17 トヨタ自動車株式会社 燃料電池及びその製造方法
CN205803608U (zh) * 2016-02-26 2016-12-14 派新(上海)能源技术有限公司 一种高电流密度的碱性水电解槽
EP3861584A4 (en) * 2018-10-01 2022-08-17 Giner, Inc. HIGH TEMPERATURE ALKALINE WATER ELECTROLYSIS USING A COMPOSITE ELECTROLYTE CARRIER MEMBRANE
US10914012B2 (en) * 2018-11-30 2021-02-09 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
CN111621806A (zh) * 2020-04-28 2020-09-04 北京科技大学 异型集电器、pem电解水制氢装置及电解水制氢的方法
CN212783525U (zh) * 2020-09-29 2021-03-23 未势能源科技有限公司 气体扩散组件、膜电极组件、燃料电池单元和燃料电池堆
CN114540851A (zh) * 2022-02-17 2022-05-27 武汉理工大学 一种新型阳极扩散层及质子交换膜水电解池
CN115012001B (zh) * 2022-06-06 2024-08-20 武汉大学 一种用于水电解气液传输的气体扩散层及其制备方法
CN115652352B (zh) * 2022-11-11 2023-07-04 嘉庚创新实验室 一种用于碱性电解水制氢的气液扩散件及其应用

Also Published As

Publication number Publication date
CN115652352A (zh) 2023-01-31
WO2024098909A1 (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
CN115652352B (zh) 一种用于碱性电解水制氢的气液扩散件及其应用
CN114574887B (zh) 电解槽极板及电解槽
CN104157895A (zh) 聚合物电解质膜燃料电池轻型电堆及其制造方法
CN219907875U (zh) 一种压滤式水电解槽结构
CN219174633U (zh) 一种aem电解水制氢阴极内流道导气结构
CN217757689U (zh) 一种轴向非等距波纹板电极结构
CN116288445A (zh) 一种碱性水电解槽用多孔传输层
CN115216782B (zh) 碱性水电解槽电压监测与超声波强化装置及其控制方法
CN103618092A (zh) 一种强化反应气体分布的燃料电池双极板
WO2023244644A1 (en) Gas diffusion electrode suitable for use in carbon dioxide electrolyzer
JP2023024663A (ja) 弾性マット及び電解槽
CN215517654U (zh) 电极流场板和电解水槽
CN216765076U (zh) 一种用于spe电解槽的气体扩散件
CN218969380U (zh) 用于碱性电解水制氢的流道形双极板及电解槽
CN116200765A (zh) 一种促进co2高效电还原的新型电极杆
CN117165958A (zh) 一种采用毛细吸液结构供液的大尺寸制氢水电解槽
CN112626542A (zh) 电极流场板和电解水槽
JP2014517153A (ja) 高温水電解装置のための、容易に製造される相互接続モジュール
CN220767194U (zh) 一种水电解槽用带流场结构的极板
CN220317972U (zh) 一种碱性水电解槽用多孔传输层
CN111463448A (zh) 用于燃料电池和电解装置的气体分配器结构
CN115216797B (zh) 一种立体波纹网板及其加工方法和电解槽
CN220926974U (zh) 一种电解槽用板网式主极板及电解槽
KR20240131580A (ko) 수전해용 도전성 탄성체 및 이를 포함하는 전극 구조체
CN221681222U (zh) 一种用于电解槽的镍板支撑网和电解槽

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240816

Address after: Unit 303, No. 106 Anling 2nd Road, Huli District, Xiamen City, Fujian Province 361000

Patentee after: Jiageng Laboratory Technology Industry Development (Xiamen) Co.,Ltd.

Country or region after: China

Address before: Room 410, yixuanguan, 422 Siming South Road, Siming District, Xiamen City, Fujian Province, 361000

Patentee before: Jiageng Innovation Laboratory

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240926

Address after: Room 402-42, No. 86 Huandeng North Road, Dadeng Street, Xiang'an District, Xiamen City, Fujian Province 361000

Patentee after: Huashang Xiageng Hydrogen Energy Technology (Xiamen) Co.,Ltd.

Country or region after: China

Address before: Unit 303, No. 106 Anling 2nd Road, Huli District, Xiamen City, Fujian Province 361000

Patentee before: Jiageng Laboratory Technology Industry Development (Xiamen) Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address

Address after: Room 402-42, No. 86 Huandeng North Road, Dadeng Street, Xiang'an District, Xiamen City, Fujian Province 361000

Patentee after: Huashang Xiageng Hydrogen Energy Technology (Xiamen) Co.,Ltd.

Country or region after: China

Address before: Room 402-42, No. 86 Huandeng North Road, Dadeng Street, Xiang'an District, Xiamen City, Fujian Province 361000

Patentee before: Huashang Xiageng Hydrogen Energy Technology (Xiamen) Co.,Ltd.

Country or region before: China