CN115652120B - A two-step method for preparing aluminum-based alloy refinement materials - Google Patents
A two-step method for preparing aluminum-based alloy refinement materials Download PDFInfo
- Publication number
- CN115652120B CN115652120B CN202211688567.3A CN202211688567A CN115652120B CN 115652120 B CN115652120 B CN 115652120B CN 202211688567 A CN202211688567 A CN 202211688567A CN 115652120 B CN115652120 B CN 115652120B
- Authority
- CN
- China
- Prior art keywords
- melt
- tib
- aluminum
- temperature
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 80
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 239000000956 alloy Substances 0.000 title claims abstract description 69
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 title claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 40
- 239000000155 melt Substances 0.000 claims abstract description 20
- 230000007704 transition Effects 0.000 claims abstract description 5
- 238000003723 Smelting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 10
- 238000005266 casting Methods 0.000 claims description 4
- 238000007670 refining Methods 0.000 abstract description 34
- 229910033181 TiB2 Inorganic materials 0.000 abstract description 29
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 abstract description 25
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 239000002184 metal Substances 0.000 abstract description 14
- 238000010790 dilution Methods 0.000 abstract description 5
- 239000012895 dilution Substances 0.000 abstract description 5
- -1 ferrous metals Chemical class 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 31
- 238000003756 stirring Methods 0.000 description 21
- 239000002994 raw material Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 13
- 230000006911 nucleation Effects 0.000 description 12
- 238000010899 nucleation Methods 0.000 description 12
- 229910000838 Al alloy Inorganic materials 0.000 description 9
- 229910010038 TiAl Inorganic materials 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 229910000676 Si alloy Inorganic materials 0.000 description 7
- 238000005275 alloying Methods 0.000 description 7
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 231100000572 poisoning Toxicity 0.000 description 7
- 230000000607 poisoning effect Effects 0.000 description 7
- 238000005054 agglomeration Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于有色金属或合金的制造技术领域,尤其涉及铝合金的加工和制备,具体涉及一种两步法制备铝基合金细化材料的方法。The invention belongs to the technical field of manufacturing non-ferrous metals or alloys, in particular to the processing and preparation of aluminum alloys, and in particular to a two-step method for preparing aluminum-based alloy refinement materials.
背景技术Background technique
铝以其资源丰富、重量轻、机械性能好、优异的耐腐蚀性和导电性,被广泛应用于包装领域、建筑领域、运输领域和电气材料等许多领域。添加晶粒细化剂降低晶粒尺寸是同时提高铝合金强度和塑性的首选方法。Aluminum is widely used in many fields such as packaging, construction, transportation and electrical materials due to its abundant resources, light weight, good mechanical properties, excellent corrosion resistance and electrical conductivity. The addition of grain refiners to reduce the grain size is the preferred method to simultaneously improve the strength and ductility of aluminum alloys.
目前铸造铝合金在工业生产中,细化晶粒尺寸的通常做法是在熔炼时添加A1-Ti-B中间合金杆的方式细化α-Al晶粒,以提高铸造铝合金的性能。目前使用最为广泛的Al-5Ti-1B中间合金细化剂,但在Si含量较高的A356合金中Al-5Ti-1B难以达到国标A类250μm以下的细化效果。原因在于Al-Ti-B的细化相TiAl3,尤其是TiB2粒子表面的TiAl3 二维化合物易被Si元素侵蚀。工业生产中需要提高Al-5Ti-1B用量以进一步降低A356晶粒尺寸。为克服Al-5Ti-1B的Si元素中毒问题。近几年出现了Al-Nb-B中间合金细化剂,Nb与Ti元素作用相似,形成的NbAl3相稳定性较高,能抵御Si元素的侵蚀,在铸造铝硅合金中能发挥细化作用。但Al-Nb-B由于其第二相NbAl3、NbB2相对原子质量较大,容易在铝熔体中团聚沉降,抗衰退性较差,不满足铸造铝硅合金长保温时间的工艺要求,且Nb元素成本高,难以应用于工业生产。At present, in the industrial production of cast aluminum alloys, the usual practice of refining the grain size is to refine the α-Al grains by adding Al-Ti-B intermediate alloy rods during smelting, so as to improve the performance of cast aluminum alloys. Currently the most widely used Al-5Ti-1B master alloy refiner, but in the A356 alloy with high Si content, Al-5Ti-1B is difficult to achieve the refinement effect of the national standard A class below 250μm. The reason is that the fine phase TiAl 3 of Al-Ti-B, especially the TiAl 3 two-dimensional compound on the surface of TiB 2 particles is easily corroded by Si element. In industrial production, it is necessary to increase the amount of Al-5Ti-1B to further reduce the grain size of A356. In order to overcome the Si element poisoning problem of Al-5Ti-1B. In recent years, Al-Nb-B master alloy refiner has appeared. Nb has similar effect with Ti element, and the formed NbAl 3 phase has high stability, can resist the erosion of Si element, and can play a role in refinement in cast aluminum-silicon alloy. effect. However, due to the relative atomic mass of the second phase NbAl 3 and NbB 2 of Al-Nb-B, it is easy to agglomerate and settle in the aluminum melt, and its resistance to decay is poor. Moreover, the cost of Nb element is high, and it is difficult to be applied in industrial production.
考虑到Ti、Nb原子性质相似,细化相TiAl3与NbAl3、TiB2与NbB2晶体结构相同,理论上可以将TiB2形核粒子、Nb元素一起加入铝熔体,结合Al-Ti-B细化效果优秀和Al-Nb-B抗Si中毒的优点,制备铸造铝合金用高效Al-Nb-TiB2中间合金细化剂。传统做法为将所有组分同时进行熔炼进行细化剂的制备,但在实际应用中发现,上述做法获得的细化剂中,在熔炼过程中,Nb元素对TiB2形核粒子的表面改性不够充分,难以获得良好的细化性能。Considering that the atomic properties of Ti and Nb are similar, and the crystal structure of the refined phase TiAl 3 and NbAl 3 , TiB 2 and NbB 2 is the same, it is theoretically possible to add TiB 2 nucleation particles and Nb elements to the aluminum melt together, combining Al-Ti- The excellent refining effect of B and the advantages of Al-Nb-B anti-Si poisoning, the preparation of high-efficiency Al-Nb-TiB master alloy refining agent for casting aluminum alloys. The traditional method is to melt all components at the same time to prepare the refiner, but in practical application, it is found that in the refiner obtained by the above method, the surface modification of TiB 2 nucleation particles by Nb element during the smelting process Insufficient, it is difficult to obtain good thinning performance.
发明内容Contents of the invention
为解决上述技术问题,本发明提供了一种两步法制备铝基合金细化材料的方法。采用两步法:先使用Nb元素浓度较高的Al-Nb熔体对TiB2形核粒子进行改性,保证Nb元素在TiB2形核粒子表面的富集改性效果,再分步定量补充Al元素,充分发挥Al-Nb-TiB2体系抗衰退、抗Si中毒的特点并提高细化效率。In order to solve the above technical problems, the present invention provides a two-step method for preparing aluminum-based alloy refined materials. A two-step method is adopted: first, the TiB 2 nucleation particles are modified by using Al-Nb melt with a high concentration of Nb elements to ensure the enrichment and modification effect of Nb elements on the surface of TiB 2 nucleation particles, and then quantitative supplementation is carried out step by step. Al element, give full play to the anti-recession and anti-Si poisoning characteristics of the Al-Nb-TiB 2 system and improve the refining efficiency.
为实现上述目的,本发明完整的技术方案包括:To achieve the above object, the complete technical solution of the present invention includes:
一种两步法制备铝基合金细化材料的方法,包括如下步骤:A two-step method for preparing aluminum-based alloy refined materials, comprising the steps of:
步骤(1):在第一温度下熔炼得到Al-Nb熔体并保温第一时间,所述Al-Nb熔体中,Nb具有第一浓度;Step (1): Melting at a first temperature to obtain an Al-Nb melt and keeping it warm for a first time, wherein Nb has a first concentration in the Al-Nb melt;
步骤(2):在步骤(1)制备的Al-Nb熔体中加入TiB2粒子,并在第二温度下继续熔炼第二时间对TiB2粒子进行改性;Step (2): adding TiB 2 particles into the Al-Nb melt prepared in step (1), and continuing to smelt at a second temperature for a second time to modify the TiB 2 particles;
步骤(3):对步骤(2)得到的带有改性TiB2粒子的Al-Nb熔体,添加铝进行稀释,并在第三温度下保持第三时间使Nb的浓度达到第二浓度,所述第二浓度小于第一浓度;Step (3): adding aluminum to the Al-Nb melt with modified TiB2 particles obtained in step (2) for dilution, and maintaining at a third temperature for a third time so that the concentration of Nb reaches the second concentration, the second concentration is less than the first concentration;
步骤(4):在第四温度下浇注步骤(3)得到的熔体得到所述铝基合金细化材料。Step (4): pouring the melt obtained in step (3) at a fourth temperature to obtain the aluminum-based alloy refined material.
进一步的,步骤(1)中,Al-Nb熔体中Nb的质量百分比不低于5%。Further, in step (1), the mass percentage of Nb in the Al-Nb melt is not less than 5%.
进一步的,步骤(3)中,添加铝进行稀释后,熔体中Nb的质量百分比为1.5~3.5%。Further, in step (3), after adding aluminum for dilution, the mass percentage of Nb in the melt is 1.5-3.5%.
进一步的,步骤(2)中,TiB2粒子的质量占步骤(1)中所得Al-Nb熔体质量的4.3%-8%。Further, in step (2), the mass of TiB 2 particles accounts for 4.3%-8% of the mass of the Al-Nb melt obtained in step (1).
进一步的,步骤(2)中,所述第二温度为850℃~900℃,所述第二时间为60~120min。Further, in step (2), the second temperature is 850°C-900°C, and the second time is 60-120min.
进一步的,步骤(2)中,在TiB2的(0001)面上形成改性过渡层NbAl3 ’。Further, in step (2), a modified transition layer NbAl 3 ′ is formed on the (0001) plane of TiB 2 .
进一步的,步骤(1)中,所述第一温度为850℃~900℃,所述第一时间为30~60min;步骤(3)中,所述第三温度为750℃~800℃,第三时间为30min;步骤(4)中,所述第四温度为720℃。Further, in step (1), the first temperature is 850°C~900°C, and the first time is 30~60min; in step (3), the third temperature is 750°C~800°C, and the first time is 30~60min; The third time is 30 minutes; in step (4), the fourth temperature is 720°C.
所述方法制备的铝基合金细化材料,述铝基合金细化材料各元素组分和质量百分比如下:Al为94~96%,Ti为3~5%,Nb为1.5~3.5%,B为0.5~1.5%,总和为100%。The aluminum-based alloy refined material prepared by the method, the components and mass percentages of each element of the aluminum-based alloy refined material are as follows: Al is 94-96%, Ti is 3-5%, Nb is 1.5-3.5%, B 0.5~1.5%, the sum is 100%.
进一步的,所述铝基合金细化材料含有铝基体和第二相TiB2和NbAl3;其中TiB2相质量分数为3~4%,尺寸在3μm以下,NbAl3相质量分数为5~7%,尺寸在10μm以下。Further, the aluminum-based alloy refinement material contains an aluminum matrix and second phases TiB 2 and NbAl 3 ; wherein the TiB 2 phase mass fraction is 3-4%, the size is below 3 μm, and the NbAl 3 phase mass fraction is 5-7% %, the size is below 10 μm.
进一步的,第二相弥散分布于铝基体中。Further, the second phase is dispersed in the aluminum matrix.
本发明制备的Al-Nb-TiB2细化剂对Al-7Si有显著细化效果:添加Al-Nb-TiB2后,在最佳的细化工艺下(细化剂添加量0.5wt.%,细化温度750℃,细化时间10min),晶粒尺寸由原来的1400μm细化至330.48μm;该技术方案提供了提高Al-Nb-B细化剂细化效率同时规避Al-Ti-B细化剂受铸造铝硅合金Si中毒的问题,兼顾两类细化剂的优点,对提高铸造铝硅合金的合金质量及性能有实用价值。The Al-Nb- TiB refiner prepared by the present invention has a significant refinement effect on Al-7Si: after adding Al-Nb-TiB 2 , under the best refinement process (refiner addition 0.5wt.% , refinement temperature 750°C, refinement time 10min), the grain size was refined from the original 1400μm to 330.48μm; The refining agent is poisoned by Si in cast aluminum-silicon alloy, taking into account the advantages of the two types of refining agents, it has practical value for improving the alloy quality and performance of cast aluminum-silicon alloy.
1、本发明制备的Al-Nb-TiB2细化剂以TiB2相为形核粒子,保证Al-Ti-B体系对铝合金的高效细化作用,引入Nb对TiB2进行表面改性,规避了TiB2表面的TiAl3 二维化合物受Si元素侵蚀而破坏的问题。1. The Al-Nb- TiB2 refining agent prepared by the present invention uses the TiB2 phase as nucleation particles to ensure the efficient refining effect of the Al-Ti-B system on aluminum alloys, and Nb is introduced to modify the surface of TiB2 . The problem that the TiAl 3 two-dimensional compound on the surface of TiB 2 is destroyed by Si element corrosion is avoided.
2、本发明制备的Al-Nb-TiB2细化剂能将Si含量为7wt.%的铝硅合金从1400μm细化至330.48μm,细化效果优于市售Al-5Ti-1B的549.06μm。2. The Al-Nb-TiB 2 refining agent prepared by the present invention can refine the aluminum-silicon alloy with a Si content of 7wt.% from 1400 μm to 330.48 μm, and the refining effect is better than that of the commercially available Al-5Ti-1B at 549.06 μm .
3、本发明制备的Al-Nb-TiB2只需要0.5wt.%添加量,就可以细化Si含量为7wt.%的铝硅合金至330.48μm,相比常规制备的Al-Nb-TiB2细化效率更高。3. The Al-Nb-TiB 2 prepared by the present invention only needs 0.5wt.% addition to refine the aluminum-silicon alloy with a Si content of 7wt.% to 330.48 μm. Compared with the conventionally prepared Al-Nb-TiB 2 The refinement efficiency is higher.
4、本发明中的制备工艺,能实现TiB2形核粒子的原位生成、TiB2形核粒子的表面改性,得到的Al-Nb-TiB2细化剂第二相结构独特,成分组织均匀,利于TiB2、NbAl3相充分发挥细化效果。4. The preparation process in the present invention can realize the in- situ generation of TiB2 nucleation particles and the surface modification of TiB2 nucleation particles. Uniformity is good for TiB 2 and NbAl 3 phases to give full play to the refinement effect.
附图说明Description of drawings
图1为发明实施例1中Al-2.8Nb-2.2Ti-1B中间合金细化剂的金相组织图。Fig. 1 is a metallographic structure diagram of Al-2.8Nb-2.2Ti-1B master alloy refiner in Example 1 of the invention.
图2为发明实施例1中制备的Al-2.8Nb-2.2Ti-1B在不同细化时间下对Al-7Si合金的α-Al晶粒细化效果组织图。Fig. 2 is a structure diagram of the effect of Al-2.8Nb-2.2Ti-1B prepared in Invention Example 1 on the α-Al grain refinement effect of Al-7Si alloy at different refinement times.
图3为发明实施例1中制备的Al-2.8Nb-2.2Ti-1B在不同细化时间下对Al-7Si合金的α-Al晶粒细化效果对比图。Fig. 3 is a comparison chart of the refining effect of Al-2.8Nb-2.2Ti-1B prepared in Example 1 on the α-Al grain refinement of Al-7Si alloy under different refining times.
图4为对比例1中常规方法制备的Al-2.8Nb-2.2Ti-1B对Al-7Si合金的α-Al晶粒细化组织图。FIG. 4 is a microstructure diagram of α-Al grain refinement of Al-2.8Nb-2.2Ti-1B and Al-7Si alloy prepared by the conventional method in Comparative Example 1. FIG.
图5为对比例2中采用市售Al-5Ti-1B细化剂对Al-7Si合金的α-Al晶粒细化效果组织图。Fig. 5 is a microstructure diagram of the α-Al grain refinement effect of the Al-7Si alloy using a commercially available Al-5Ti-1B refiner in Comparative Example 2.
图6为实施例1两步法制备的Al-2.8Nb-2.2Ti-1B与对比例1常规制备的Al-2.8Nb-2.2Ti-1B、以及对比例2市售Al-5Ti-1B对Al-7Si合金的细化效果对比图。Fig. 6 is the Al-2.8Nb-2.2Ti-1B prepared by the two-step method of Example 1 and the conventionally prepared Al-2.8Nb-2.2Ti-1B of Comparative Example 1, and the commercially available Al-5Ti-1B of Comparative Example 2 to Al Comparison of refinement effect of -7Si alloy.
具体实施方式Detailed ways
下面结合本发明的附图,对本发明的技术方案进行进一步的详细说明,显然,所描述的实施例仅作为例示,并非用于限制本次申请。The technical solutions of the present invention will be further described in detail below in conjunction with the accompanying drawings of the present invention. Obviously, the described embodiments are only for illustration and are not intended to limit this application.
本发明公开的两步法制备铝基合金细化材料的方法,包括以下步骤:The two-step method for preparing aluminum-based alloy refinement materials disclosed by the present invention comprises the following steps:
(1)形成高Nb浓度的Al-Nb熔体(1) Formation of Al-Nb melt with high Nb concentration
(1a)称量原料:以Al-10Nb中间合金作原料,称取250~350g的Al-10Nb中间合金,以纯铝锭作原料,称取与Al-10Nb合金等量的铝锭;(1a) Weighing raw materials: use Al-10Nb master alloy as raw material, weigh 250~350g of Al-10Nb master alloy, use pure aluminum ingot as raw material, weigh aluminum ingot equivalent to Al-10Nb alloy;
(1b)合金化:将称取好的金属原料放入石墨坩埚中并随坩埚一起放入感应熔炼炉内,升温至850~900℃;待铝锭完全熔化后保温10~60min,期间用石墨搅拌棒持续搅拌,加速Nb的溶解与均匀分布。加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣,得到纯净的Al-Nb熔体。(1b) Alloying: Put the weighed metal raw material into the graphite crucible and put it into the induction melting furnace together with the crucible, and raise the temperature to 850~900°C; after the aluminum ingot is completely melted, keep it warm for 10~60min, during which graphite The stirring bar is continuously stirred to accelerate the dissolution and uniform distribution of Nb. Add 0.1wt.% refining agent to refine the molten aluminum, and then skim off the scum on the surface of the molten aluminum to obtain a pure Al-Nb melt.
(2)TiB2粉末制备与改性(2) Preparation and modification of TiB 2 powder
(2a)称量原料:以平均粒径D50=0.3~3.0μm,分布宽度σ=2.5~20μm的TiB2粉末作为原料,使用行星球磨机按200~400rpm的转速对TiB2粉末原料进行2-4h球磨,保证TiB2分散均匀,尽量减少团聚。按需选取适宜粒度分布的TiB2粉末原料作为引入的形核粒子,按如下成分称取:TiB2为30~40g。(2a) Weighing raw materials: using TiB 2 powder with average particle size D 50 =0.3~3.0μm and distribution width σ=2.5~20μm as raw material, use a planetary ball mill at a speed of 200~400rpm to carry out 2- 4h ball milling to ensure uniform dispersion of TiB 2 and minimize agglomeration. Select TiB2 powder raw material with suitable particle size distribution as the nucleation particles introduced as required, and weigh according to the following composition: TiB2 is 30~40g.
(2b)引入TiB2形核粒子:将称取好的TiB2粉末用铝箔包裹,在175℃预热30min,然后加入(1b)中得到的850~900℃保温的Al-Nb熔体中,同时用石墨搅拌棒将裹有TiB2粉末铝箔团块按压至熔体中下部,等待约2min,待铝箔完全熔化,TiB2粉末散出,然后使用石墨搅拌棒持续搅拌60~120min。(2b) Introduce TiB2 nucleation particles: Wrap the weighed TiB2 powder with aluminum foil, preheat at 175°C for 30min, and then add it into the Al-Nb melt kept at 850~900°C obtained in (1b), At the same time, use a graphite stirring rod to press the aluminum foil block wrapped with TiB 2 powder to the middle and lower part of the melt, wait for about 2 minutes, until the aluminum foil is completely melted and the TiB 2 powder is scattered, and then use a graphite stirring rod to continue stirring for 60~120 minutes.
TiB2与铝熔体润湿性差,直接将TiB2加入纯铝熔体,往往会出现TiB2沉底而不能均匀分散在铝熔体中的情况,故需要先完成Al-Nb合金化。TiB2在高浓度Nb的Al-10Nb合金中,由于NbAl3与TiAl3结构相似,可以在TiB2的(0001)面上形成改性过渡层NbAl3 ’,NbAl3 ’可以降低TiB2与铝熔体的润湿角,使TiB2微粒更好的分散在Al-Nb熔体中,得到均质稳定的Al-Nb-TiB2熔体;TiB 2 has poor wettability with aluminum melt. If TiB 2 is directly added to pure aluminum melt, TiB 2 will sink to the bottom and cannot be evenly dispersed in aluminum melt. Therefore, Al-Nb alloying needs to be completed first. TiB 2 in the Al-10Nb alloy with high concentration of Nb, due to the similar structure of NbAl 3 and TiAl 3 , can form a modified transition layer NbAl 3 ' on the (0001) surface of TiB 2 , and NbAl 3 ' can reduce the relationship between TiB 2 and aluminum The wetting angle of the melt enables better dispersion of TiB 2 particles in the Al-Nb melt, resulting in a homogeneous and stable Al-Nb-TiB 2 melt;
(3)补充溶剂Al(3) Supplementary solvent Al
补充Al稀释熔体:选取99.7wt.%及以上的铝锭作原料,称量200~400g铝锭,待(2b)中得到的Al-Nb-TiB2熔体降低温至750~800℃,将称量好的铝锭加入Al-Nb-TiB2熔体中,以稀释Nb元素浓度,待铝合金在750℃完全熔化后保温30min,期间使用石墨搅拌棒对熔体进行搅拌,保证Al、Nb元素分布均匀,同时防止TiB2粒子沉降,然后加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣,得到Al稀释后的纯净的Al-Nb-TiB2熔体。Supplement Al dilution melt: select 99.7wt.% and above aluminum ingots as raw materials, weigh 200~400g aluminum ingots, and lower the temperature of the Al-Nb-TiB 2 melt obtained in (2b) to 750~800°C, Add the weighed aluminum ingot into the Al-Nb-TiB 2 melt to dilute the Nb element concentration. After the aluminum alloy is completely melted at 750°C, keep it warm for 30 minutes. During this period, use a graphite stirring rod to stir the melt to ensure that Al, The Nb element is evenly distributed, while preventing the TiB2 particles from settling, then adding 0.1wt.% refining agent to refine the molten aluminum, and then skimming off the scum on the surface of the molten aluminum to obtain pure Al-Nb- TiB2 molten aluminum diluted with Al body.
(4)浇注制备(4) Pouring preparation
待Al-Nb-TiB2熔体冷却至720℃,将熔体浇注至175℃预热1h的锥形金属型模具内,冷却凝固后得到Al-Nb-TiB2合金。所用的热作模具钢模具的材质为:H13热作模具钢,锥形模具的尺寸为Φ50mm×80mm。After the Al-Nb-TiB 2 melt is cooled to 720°C, the melt is poured into a conical metal mold preheated at 175°C for 1 hour, and the Al-Nb-TiB 2 alloy is obtained after cooling and solidification. The material of the hot work die steel mold used is: H13 hot work die steel, and the size of the tapered die is Φ50mm×80mm.
本发明细化材料的制备思路是首先得到高Nb浓度的Al-Nb熔体,并加入TiB2粒子,在富Nb环境下对TiB2粒子进行充分改性后,加入Al进行稀释,从而得到目标成分的Al-Nb-TiB2细化材料,在该过程中,Nb元素的第一浓度,以及加入的TiB2粒子与质量比关系,以及改性时间之间有重要关系,过低的Nb浓度会导致改性不充分,影响细化效果;但过高的Nb浓度会显著提高成本,并且Nb元素比重大,会导细化过程中在铝熔体中团聚沉降,同样影响细化效果。因此本发明对各步骤中上述关系进行分析,优选的采用如下关系:w 1 =k(w t ) n ,式中,w 1 为初始制备的Al-Nb熔体中Nb质量百分比,即第一浓度,w t 为加入的TiB2粒子质量占初始制备Al-Nb熔体的质量百分比,n为指数因子,取值范围为0.5~0.8,k为系数,取值范围为0.18~0.22。The idea of preparing the refined material of the present invention is to firstly obtain Al-Nb melt with high Nb concentration, and add TiB2 particles, after fully modifying TiB2 particles in Nb-rich environment, add Al to dilute, so as to obtain the target Composition of Al-Nb- TiB2 refinement material, in the process, there is an important relationship between the first concentration of Nb element, the relationship between the added TiB2 particles and the mass ratio, and the modification time, too low Nb concentration It will lead to insufficient modification and affect the refinement effect; but too high Nb concentration will significantly increase the cost, and the Nb element has a large proportion, which will lead to agglomeration and settlement in the aluminum melt during the refinement process, which also affects the refinement effect. Therefore, the present invention analyzes the above-mentioned relationship in each step, and preferably adopts the following relationship: w 1 =k ( w t ) n , where w 1 is the mass percentage of Nb in the initially prepared Al-Nb melt, that is, the first Concentration, wt is the mass percentage of the added TiB 2 particles in the initial prepared Al-Nb melt, n is the exponential factor, the value range is 0.5~0.8, k is the coefficient, the value range is 0.18~0.22.
本方法得到的铝基合金细化材料,为一种Al-Nb-TiB2合金,各元素组分和质量百分比如下:Al为94~96%,Ti为3~5%,Nb为1.5~3.5%,B为0.5~1.5%,总和为100%。该合金含有第二相TiB2、NbAl3。TiB2相质量分数为3~4%,尺寸在3μm以下,NbAl3相质量分数为5~7%,尺寸在10μm以下,所有的第二相都均匀弥散分布与铝基体中。The refined aluminum-based alloy material obtained by the method is an Al-Nb- TiB alloy, and the components and mass percentages of each element are as follows: Al is 94-96%, Ti is 3-5%, and Nb is 1.5-3.5% %, B is 0.5~1.5%, and the sum is 100%. The alloy contains secondary phases TiB 2 , NbAl 3 . The mass fraction of TiB 2 phase is 3~4%, the size is below 3μm, the mass fraction of NbAl 3 phase is 5~7%, the size is below 10μm, and all the second phases are uniformly dispersed in the aluminum matrix.
实施例1:一种两步法制备铸造铝硅合金用Al-Nb-TiB2细化剂,包括以下步骤:Embodiment 1: a kind of two-step method prepares Al-Nb- TiB refiner for cast aluminum-silicon alloy, comprises the following steps:
步骤1:以Al-10Nb中间合金作原料,称取260g的Al-10Nb中间合金和260g的纯铝锭;将称取好的金属原料放入石墨坩埚中并随坩埚一起放入感应熔炼炉内,升温至900℃;待铝锭完全熔化后保温30min,期间用石墨搅拌棒持续搅拌,加速Nb的溶解与均匀分布。加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣,得到纯净的Al-5Nb熔体。Step 1: Using Al-10Nb master alloy as raw material, weigh 260g of Al-10Nb master alloy and 260g of pure aluminum ingot; put the weighed metal raw material into a graphite crucible and put it into an induction melting furnace together with the crucible , the temperature was raised to 900 ° C; after the aluminum ingot was completely melted, it was kept for 30 minutes, and a graphite stirring rod was used to continuously stir during this period to accelerate the dissolution and uniform distribution of Nb. Add 0.1wt.% refining agent to refine the molten aluminum, and then skim off the scum on the surface of the molten aluminum to obtain a pure Al-5Nb melt.
步骤2:以平均粒径D50=0.3μm,分布宽度σ=20μm的TiB2粉末作为原料,使用行星球磨机按400rpm的转速对TiB2粉末原料进行4h球磨,保证TiB2分散均匀,尽量减少团聚。按需选取适宜粒度分布的TiB2粉末原料作为引入的形核粒子,按如下成分称取:TiB2为30g。Step 2: Using TiB 2 powder with average particle size D 50 =0.3 μm and distribution width σ=20 μm as the raw material, use a planetary ball mill to mill the TiB 2 powder raw material at a speed of 400 rpm for 4 hours to ensure uniform dispersion of TiB 2 and minimize agglomeration . Select TiB2 powder raw material with suitable particle size distribution as the nucleation particles introduced as required, and weigh according to the following composition: TiB2 is 30g.
步骤3:将称取好的TiB2粉末用铝箔包裹,在175℃预热30min,然后加入步骤1中得到的900℃保温的Al-5Nb熔体中,同时用石墨搅拌棒将裹有TiB2粉末铝箔团块按压至熔体中下部,等待约2min,待铝箔完全熔化,TiB2粉末散出,然后使用石墨搅拌棒持续搅拌120min。TiB2与铝熔体润湿性差,直接将TiB2与加入纯铝熔体,往往会出现TiB2沉底而不能均匀分散在铝熔体中的情况,故需要先完成Al-Nb合金化。TiB2在高浓度Nb的Al-10Nb合金中,由于NbAl3与TiAl3结构相似,可以在TiB2的(0001)面上形成改性过渡层NbAl3 ’,NbAl3 ’可以降低TiB2与铝熔体的润湿角,使TiB2微粒更好的分散在Al-Nb熔体中,得到均质稳定的Al-Nb-TiB2熔体;Step 3: Wrap the weighed TiB 2 powder with aluminum foil, preheat it at 175°C for 30 minutes, then add it into the Al-5Nb melt at 900°C obtained in Step 1, and use a graphite stirring rod to wrap the TiB 2 Press the powdered aluminum foil agglomerate to the middle and lower part of the melt, wait for about 2 minutes, until the aluminum foil is completely melted, and the TiB 2 powder is scattered, then use a graphite stirring rod to continue stirring for 120 minutes. TiB 2 has poor wettability with aluminum melt. When TiB 2 is directly added to pure aluminum melt, TiB 2 sinks to the bottom and cannot be evenly dispersed in aluminum melt. Therefore, Al-Nb alloying needs to be completed first. TiB 2 in the Al-10Nb alloy with high concentration of Nb, due to the similar structure of NbAl 3 and TiAl 3 , can form a modified transition layer NbAl 3 ' on the (0001) surface of TiB 2 , and NbAl 3 ' can reduce the relationship between TiB 2 and aluminum The wetting angle of the melt enables better dispersion of TiB 2 particles in the Al-Nb melt, resulting in a homogeneous and stable Al-Nb-TiB 2 melt;
步骤4:选取99.7wt.%及以上的铝锭作原料,称量380g铝锭,待(1d)中得到的Al-Nb-TiB2熔体降低温至750℃,将称量好的铝锭加入Al-Nb-TiB2熔体中,以稀释Nb元素浓度,待铝合金在750℃完全熔化后保温30min,期间使用石墨搅拌棒对熔体进行搅拌,保证Al、Nb元素分布均匀,同时防止TiB2粒子沉降,然后加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣,得到Al稀释后的纯净的Al-Nb-TiB2熔体,待熔体冷却至720℃,将熔体浇注至175℃预热1h的锥形金属型模具内,冷却凝固后得到Al-2.8Nb-2.2Ti-1B合金,其金相组织如图1所示。Step 4: Select aluminum ingots with 99.7wt.% or more as raw materials, weigh 380g of aluminum ingots, cool down the Al-Nb-TiB 2 melt obtained in (1d) to 750°C, and place the weighed aluminum ingots Add it to the Al-Nb-TiB 2 melt to dilute the concentration of Nb elements. After the aluminum alloy is completely melted at 750°C, keep it warm for 30 minutes. During this period, use a graphite stirring rod to stir the melt to ensure that the Al and Nb elements are evenly distributed, and at the same time prevent TiB 2 particles settle down, then add 0.1wt.% refining agent to refine the molten aluminum, then skim off the scum on the surface of the molten aluminum to obtain pure Al-Nb-TiB 2 melt after Al dilution, and wait for the melt to cool to At 720°C, the melt was poured into a conical metal mold preheated at 175°C for 1h, and after cooling and solidification, the Al-2.8Nb-2.2Ti-1B alloy was obtained, and its metallographic structure is shown in Figure 1.
步骤5:将称量好的530g纯铝锭和460gAl-15Si合金放入坩埚中并与坩埚一起放入电阻熔炼炉中,升温至750℃,控制铝合金的成分为:Al-7Si;待铝合金在750℃完全熔化后保温30min,加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣;将金属液浇至175℃预热1h的锥形金属型模具内,得到未细化的Al-7Si合金;Step 5: Put 530g of pure aluminum ingot and 460g of Al-15Si alloy weighed into the crucible and put them into the resistance melting furnace together with the crucible, raise the temperature to 750°C, and control the composition of the aluminum alloy to be: Al-7Si; After the alloy is completely melted at 750°C, keep it warm for 30 minutes, add 0.1wt.% refining agent to refine the molten aluminum, and then skim off the scum on the surface of the molten aluminum; pour the molten metal into a conical metal mold preheated at 175°C for 1 hour , to obtain unrefined Al-7Si alloy;
步骤6:将称量好的Al-7Si合金放入坩埚中并与坩埚一起放入电阻熔炼炉中,升温至750℃,制备的Al-2.8Nb-2.2Ti-1B中间合金加入铝熔体中,添加量为Al-7Si合金的0.5wt.%,用石墨搅拌棒对熔体进行2min的人工搅拌,在750℃分别保温10、30、60、120min;将到达相应保温时间的金属液浇注至175℃预热1h的锥形金属型模具内,冷却凝固后得到细化时间分别为10、30、60、120min的Al-2.8Nb-2.2Ti-1B细化的Al-7Si合金。切取距离试样底部3cm位置处的铸件试样,进行阳极覆膜处理,用偏光显微镜进行观察,如图2所示,图2为不同细化时间下Al-2.8Nb-2.2Ti-1B对Al-7Si合金的细化效果组织图,细化时间:图2中的(a)为10min;图2中的(b)为30min;图2中的(c)为60min;图2中的(d)为120min。图3为不同细化时间下Al-2.8Nb-2.2Ti-1B对Al-7Si合金的细化效果,从左往右依次为10min,30min,60min和120min。使用国家标准GB/T 3246.1-2012中规定的截线法对铝晶粒进行测量,细化时间为10min时细化效果最好,Al-7Si中α-Al晶粒平均尺寸为330.48μm。抗衰退性较好,即使细化时间到达120min,制备的Al-2.8Nb-2.2Ti-1B对Al-7Si中的α-Al晶粒仍然有412.87μm的细化效果。Step 6: Put the weighed Al-7Si alloy into the crucible and put it into the resistance melting furnace together with the crucible, raise the temperature to 750°C, and add the prepared Al-2.8Nb-2.2Ti-1B master alloy into the aluminum melt , the addition amount is 0.5wt.% of the Al-7Si alloy, the melt is artificially stirred with a graphite stirring rod for 2 minutes, and kept at 750°C for 10, 30, 60, and 120 minutes respectively; the molten metal that reaches the corresponding holding time is poured into In a conical metal mold preheated at 175°C for 1 hour, after cooling and solidification, Al-2.8Nb-2.2Ti-1B refined Al-7Si alloys with refining times of 10, 30, 60 and 120 minutes were obtained. Cut the casting sample at the position 3cm from the bottom of the sample, carry out anodic coating treatment, and observe it with a polarizing microscope, as shown in Figure 2. Figure 2 shows the effect of Al-2.8Nb-2.2Ti-1B on Al Microstructure diagram of -7Si alloy, refining time: (a) in Figure 2 is 10min; (b) in Figure 2 is 30min; (c) in Figure 2 is 60min; (d) in Figure 2 ) is 120min. Figure 3 shows the refinement effect of Al-2.8Nb-2.2Ti-1B on Al-7Si alloy under different refinement times, which are 10min, 30min, 60min and 120min from left to right. The aluminum grains were measured using the intercept method specified in the national standard GB/T 3246.1-2012. The refining effect was the best when the refining time was 10 minutes. The average size of α-Al grains in Al-7Si was 330.48 μm. The anti-fading performance is good. Even if the refining time reaches 120min, the prepared Al-2.8Nb-2.2Ti-1B still has a refining effect of 412.87μm on the α-Al grains in Al-7Si.
对比例1:常规制备Al-2.8Nb-2.2Ti-1B中间合金对Al-7Si进行细化,包括以下步骤:Comparative Example 1: The conventional preparation of Al-2.8Nb-2.2Ti-1B master alloy to refine Al-7Si includes the following steps:
步骤1:以Al-10Nb中间合金作Nb源,按如下成分比称取原料:Al-10Nb中间合金200g,纯铝锭520g。将称量好的合金锭放置于坩埚中并随坩埚一起放入感应式熔炼炉内,升温至900℃;待铝锭完全熔化后保温10min,加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣,得到均质稳定的Al-2.8Nb熔体;Step 1: Al-10Nb master alloy is used as Nb source, and the raw materials are weighed according to the following composition ratio: 200g of Al-10Nb master alloy and 520g of pure aluminum ingot. Place the weighed alloy ingot in the crucible and put it into the induction melting furnace together with the crucible, and raise the temperature to 900°C; after the aluminum ingot is completely melted, keep it warm for 10 minutes, and add 0.1wt.% refining agent to refine the aluminum liquid , and then skim off the scum on the surface of the molten aluminum to obtain a homogeneous and stable Al-2.8Nb melt;
步骤2:以平均粒径D50=0.3μm,分布宽度σ=20μm的TiB2粉末作为原料,使用行星球磨机按400rpm的转速对TiB2粉末原料进行4h球磨,保证TiB2分散均匀,尽量减少团聚。按需选取适宜粒度分布的TiB2粉末原料作为引入的形核粒子,按如下成分称取:TiB2为23.8g;Step 2: Using TiB 2 powder with average particle size D 50 =0.3 μm and distribution width σ=20 μm as the raw material, use a planetary ball mill to mill the TiB 2 powder raw material at a speed of 400 rpm for 4 hours to ensure uniform dispersion of TiB 2 and minimize agglomeration . Select TiB2 powder raw material with suitable particle size distribution as the nucleation particles introduced as required, and weigh according to the following composition: TiB2 is 23.8g;
步骤3:将称取好的TiB2粉末用铝箔包裹,在175℃预热30min,然后加入步骤1中得到的900℃保温的Al-2.8Nb熔体中,同时用石墨搅拌棒将裹有TiB2粉末铝箔团块按压至熔体中下部,等待约2min,待铝箔完全熔化,TiB2粉末散出,然后使用石墨搅拌棒持续搅拌120min,得到均质稳定的Al-2.8Nb-2.2Ti-1B熔体,待熔体冷却至720℃,将熔体浇注至175℃预热1h的锥形金属型模具内,冷却凝固后得到Al-2.8Nb-2.2Ti-1B合金;Step 3: Wrap the weighed TiB 2 powder with aluminum foil, preheat it at 175°C for 30min, then add it into the Al-2.8Nb melt at 900°C obtained in step 1, and use a graphite stirring rod to wrap the TiB 2. Press the powdered aluminum foil agglomerate to the middle and lower part of the melt, wait for about 2 minutes, until the aluminum foil is completely melted, and the TiB 2 powder is scattered, then use a graphite stirring rod to continue stirring for 120 minutes to obtain a homogeneous and stable Al-2.8Nb-2.2Ti-1B Melt, after the melt is cooled to 720°C, pour the melt into a conical metal mold preheated at 175°C for 1 hour, and obtain Al-2.8Nb-2.2Ti-1B alloy after cooling and solidification;
步骤4:将称量好的Al-7Si合金放入坩埚中并与坩埚一起放入电阻熔炼炉中,升温至750℃,把常规制备的Al-2.8Nb-2.2Ti-1B中间合金加入铝熔体中,添加量为Al-7Si合金的0.5wt.%,用石墨搅拌棒对熔体进行2min的人工搅拌,在750℃保温10min;将金属液浇注至175℃预热1h的金属型模具内,冷却凝固后得到细化时间为10min的Al-2.8Nb-2.2Ti-1B细化的Al-7Si合金。切取距离试样底部3cm位置处的铸件试样,进行阳极覆膜处理,用偏光显微镜进行观察,如图4所示,图4为Al-2.8Nb-2.2Ti-1B对Al-7Si合金的细化效果,并使用国家标准GB/T 3246.1-2012中规定的截线法对铝晶粒进行测量,细化时间为10min时,Al-7Si中α-Al晶粒平均尺寸为580.37μm。Step 4: Put the weighed Al-7Si alloy into the crucible and put it into the resistance melting furnace together with the crucible, raise the temperature to 750°C, add the conventionally prepared Al-2.8Nb-2.2Ti-1B master alloy into the aluminum melting % of the Al-7Si alloy, artificially stir the melt with a graphite stirring rod for 2 minutes, and keep it at 750°C for 10 minutes; pour the molten metal into a metal mold preheated at 175°C for 1 hour After cooling and solidification, the Al-2.8Nb-2.2Ti-1B refined Al-7Si alloy with a refining time of 10min was obtained. Cut the casting sample at the position 3cm away from the bottom of the sample, carry out anodic coating treatment, and observe it with a polarizing microscope, as shown in Figure 4, Figure 4 is the microstructure of Al-2.8Nb-2.2Ti-1B on Al-7Si alloy The refinement effect was measured, and the aluminum grains were measured using the intercept method specified in the national standard GB/T 3246.1-2012. When the refinement time was 10 minutes, the average size of α-Al grains in Al-7Si was 580.37 μm.
对比例2:市售Al-5Ti-1B中间合金对Al-7Si的细化效果,包括以下步骤:Comparative example 2: The refinement effect of commercially available Al-5Ti-1B master alloy on Al-7Si, including the following steps:
步骤1.将称量好的Al-7Si放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至750℃;待铝锭完全熔化后保温30min,加入0.1wt.%的精炼剂对铝液进行精炼,然后撇去铝液表面浮渣;将市售的Al-5Ti-1B中间合金加入Al-7Si熔体中,添加量为Al-7Si的0.5wt.%,用石墨搅拌棒对熔体进行搅拌,在750℃保温10min;Step 1. Put the weighed Al-7Si in the crucible and put it into the crucible-type resistance melting furnace together with the crucible, and heat up to 750°C; after the aluminum ingot is completely melted, keep it warm for 30 minutes, and then add 0.1wt.% refining agent Refining the molten aluminum, then skimming off the scum on the surface of the molten aluminum; adding the commercially available Al-5Ti-1B master alloy to the Al-7Si melt, the addition amount is 0.5wt.% of Al-7Si, and using a graphite stirring rod Stir the melt and keep it warm at 750°C for 10 minutes;
步骤2.将铝熔体浇注至175℃预热1h的锥形金属型模具内,冷却凝固后得到Al-5Ti-1B中间合金细化的Al-7Si试样。切取距离试样底部3cm位置处的试样,进行阳极覆膜处理,用偏光显微镜进行观察,如图5所示,并使用国家标准GB/T 3246.1-2012中规定的截线法对铝晶粒进行测量,细化时间为10min时市售Al-5Ti-1B中间合金对Al-7Si中α-Al晶粒的细化效果有限,α-Al晶粒的平均尺寸为549.06μm。Step 2. Pouring the aluminum melt into a conical metal mold preheated at 175°C for 1 hour, cooling and solidifying to obtain a refined Al-7Si sample of the Al-5Ti-1B master alloy. Cut the sample at a position 3cm from the bottom of the sample, carry out anodic coating treatment, observe with a polarizing microscope, as shown in Figure 5, and use the intercept method specified in the national standard GB/T 3246.1-2012 to analyze the aluminum grains. According to measurements, the commercially available Al-5Ti-1B master alloy has a limited refining effect on α-Al grains in Al-7Si when the refining time is 10 min, and the average size of α-Al grains is 549.06 μm.
对比实施例1与对比例1、2中两步法制备的Al-2.8Nb-2.2Ti-1B、常规制备的Al-2.8Nb-2.2Ti-1B、市售Al-5Ti-1B对Al-7Si合金的细化效果,如图6所示,本发明制备的Al-2.8Nb-2.2Ti-1B在保温120min后对Al-7Si仍有412.87μm左右的细化效果,而常规直接制备的Al-2.8Nb-2.2Ti-1B即便在保温10min时也只能细化Al-7Si中的α-Al至580.37μm。与之相比,本发明制备的Al-2.8Nb-2.2Ti-1B不仅细化效果远远好于常规制备的Al-2.8Nb-2.2Ti-1B。而对于市售Al-5Ti-1B细化时间10min下对Al-7Si的细化效果也较差,为549.06μm,远不如本发明制备Al-2.8Nb-2.2Ti-1B达到的330.48μm。所以根据本发明制备的Al-4Ti-1Nb-1B对Al-7Si既有较好的细化效果,还有优异的抗衰退性。Comparing Example 1 with the Al-2.8Nb-2.2Ti-1B prepared by the two-step method in Comparative Example 1 and 2, the conventionally prepared Al-2.8Nb-2.2Ti-1B, the commercially available Al-5Ti-1B to Al-7Si The refinement effect of the alloy, as shown in Figure 6, the Al-2.8Nb-2.2Ti-1B prepared by the present invention still has a refinement effect of about 412.87 μm on Al-7Si after 120 minutes of heat preservation, while the conventionally prepared Al- 2.8Nb-2.2Ti-1B can only refine α-Al in Al-7Si to 580.37μm even when it is held for 10 minutes. In contrast, the Al-2.8Nb-2.2Ti-1B prepared by the present invention not only has a far better refinement effect than the conventionally prepared Al-2.8Nb-2.2Ti-1B. And for commercially available Al-5Ti-1B, the refinement effect on Al-7Si is also poor at 549.06 μm under the refinement time of 10 minutes, which is far inferior to the 330.48 μm achieved by the preparation of Al-2.8Nb-2.2Ti-1B in the present invention. Therefore, the Al-4Ti-1Nb-1B prepared according to the present invention not only has a better refining effect on Al-7Si, but also has excellent decay resistance.
本发明首先针对Al-Ti-B细化剂由于Si中毒而细化效果降低的问题。当铝硅合金的Si含量大于3wt.%,Si原子对Al-Ti-B合金中TiB2表面的TiAl3二维化合物发生侵蚀与改性,形成TiAlSi相,使得α-Al与TiB2界面的自由能、错配度提高,α-Al铝晶粒难以在TiB2上异质形核,导致Al-Ti-B细化剂的细化效果减弱。Al-Nb-B中NbB2表面的NbAl3层稳定性高于TiAl3,不易受Si原子侵蚀,同时由于NbAl3晶体结构与TiAl3相同,NbAl3可以在TiB2表面偏聚、改性,形成NbAl3 ’结构,使细化剂具备抗Si中毒能力。The present invention first aims at the problem that the refining effect of the Al-Ti-B refining agent is reduced due to Si poisoning. When the Si content of the aluminum-silicon alloy is greater than 3wt.%, Si atoms will erode and modify the TiAl 3 two-dimensional compound on the surface of TiB 2 in the Al-Ti-B alloy, forming a TiAlSi phase, making the interface between α-Al and TiB 2 The free energy and the degree of mismatch increase, and it is difficult for α-Al aluminum grains to nucleate heterogeneously on TiB 2 , which leads to the weakening of the refining effect of Al-Ti-B refiner. The NbAl 3 layer on the surface of NbB 2 in Al-Nb-B is more stable than TiAl 3 , and is not easily corroded by Si atoms. At the same time, because the crystal structure of NbAl 3 is the same as that of TiAl 3 , NbAl 3 can be segregated and modified on the surface of TiB 2 , The NbAl 3 ' structure is formed, so that the refiner has the ability to resist Si poisoning.
本发明同时针对Al-Nb-TiB2中间合金制备中TiB2难以加入的问题。由于TiB2颗粒与Al熔体润湿性一般,直接添加容易造成TiB2团聚、沉淀等问题。本发明采用机械预合金化,使Nb粉减少团聚,用Nb元素提高TiB2与Al熔体的润湿性,有助于后续合金化过程,最终得到均质稳定的Al-Nb-TiB2中间合金。The invention also aims at the problem that TiB 2 is difficult to add in the preparation of Al-Nb-TiB 2 master alloy. Since the wettability of TiB 2 particles and Al melt is average, direct addition is likely to cause problems such as TiB 2 agglomeration and precipitation. The invention adopts mechanical pre-alloying to reduce the agglomeration of Nb powder, and uses Nb element to improve the wettability of TiB2 and Al melt, which is helpful to the subsequent alloying process, and finally obtains a homogeneous and stable Al-Nb- TiB2 intermediate alloy.
本发明同时解决了Al-Nb-TiB2中间合金制备中TiB2的Nb改性问题。目前学界认为不论是Al-5Ti-1B的高细化效率还是Al-Nb-B抗Si中毒的特点,都取决于形核粒子表面特定的元素富集情况。然而直接在Al-Nb熔体中对TiB2进行改性的工艺,难以保证Nb改性效果。本发明采用机械预合金化和合金熔体合金化两步,为TiB2始终提供Nb元素环境,改善Nb元素在TiB2表面的富集情况,提高Al-Nb-TiB2中间合金的抗Si中毒能力。The invention simultaneously solves the problem of Nb modification of TiB2 in the preparation of Al-Nb- TiB2 master alloy. At present, the academic circles believe that both the high refinement efficiency of Al-5Ti-1B and the anti-Si poisoning characteristics of Al-Nb-B depend on the specific element enrichment on the surface of nucleation particles. However, it is difficult to ensure the effect of Nb modification in the process of directly modifying TiB2 in Al-Nb melt. The present invention adopts two steps of mechanical pre-alloying and alloy melt alloying to provide TiB2 with an environment of Nb elements all the time, improve the enrichment of Nb elements on the surface of TiB2 , and improve the Si poisoning resistance of Al-Nb- TiB2 master alloy ability.
以上申请的仅为本申请的一些实施方式。对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出若干变型和改进,这些都属于本申请的保护范围。The above applications are only some embodiments of the present application. Those skilled in the art can make several modifications and improvements without departing from the inventive concept of the present application, and these all belong to the protection scope of the present application.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211688567.3A CN115652120B (en) | 2022-12-28 | 2022-12-28 | A two-step method for preparing aluminum-based alloy refinement materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211688567.3A CN115652120B (en) | 2022-12-28 | 2022-12-28 | A two-step method for preparing aluminum-based alloy refinement materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115652120A CN115652120A (en) | 2023-01-31 |
CN115652120B true CN115652120B (en) | 2023-03-10 |
Family
ID=85023653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211688567.3A Active CN115652120B (en) | 2022-12-28 | 2022-12-28 | A two-step method for preparing aluminum-based alloy refinement materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115652120B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2133439A5 (en) * | 1971-04-13 | 1972-11-24 | London Scandinavian Metall | Aluminium refining alloy - consisting of dispersion of fine transition metal diboride particles in aluminium |
GB201214650D0 (en) * | 2012-08-16 | 2012-10-03 | Univ Brunel | Master alloys for grain refining |
CN105568022B (en) * | 2015-12-31 | 2017-04-19 | 北京航空航天大学 | Low-cooling-rate sensitive high-nucleation-capacity AlNbTiBRE composite refining modifier used for aluminum alloy and preparation method of low-cooling-rate sensitive high-nucleation-capacity AlNbTiBRE composite refining modifier used for aluminum alloy |
CN109913685A (en) * | 2017-12-13 | 2019-06-21 | 青岛安格科技有限公司 | A kind of high-performance wheel hub aluminium alloy and preparation method thereof |
CN109385542B (en) * | 2018-09-17 | 2020-11-24 | 上海大学 | Preparation method of aluminum-niobium-boron alloy rod for grain refinement |
CN109439935A (en) * | 2018-11-09 | 2019-03-08 | 济南大学 | A kind of preparation method and applications of aluminium niobium boron Master alloy refiners |
CN112048629A (en) * | 2020-01-17 | 2020-12-08 | 上海大学 | Preparation method of Al-Ti-Nb-B refiner for casting aluminum-silicon alloy |
CN113373340B (en) * | 2021-05-31 | 2022-11-18 | 西北工业大学 | A kind of preparation method of Al-Nb-B refiner master alloy for cast aluminum-silicon alloy |
-
2022
- 2022-12-28 CN CN202211688567.3A patent/CN115652120B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115652120A (en) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109385542B (en) | Preparation method of aluminum-niobium-boron alloy rod for grain refinement | |
CN110205527A (en) | A kind of increasing material manufacturing Al-Mg-Si alloy wire rod and preparation method thereof | |
WO2023241681A1 (en) | Aluminum alloy additive, and preparation method therefor and use thereof | |
CN110527870B (en) | High-thermal-conductivity cast aluminum alloy containing Mn-Fe-Cu and preparation method thereof | |
CN115679161B (en) | Refiner with growth-limiting elements for aluminum-silicon alloy and preparation method thereof | |
CN111945040A (en) | A kind of Al-Si-Cu-Mg-Zr aluminum alloy and its short flow heat treatment process | |
CN113774246B (en) | A kind of grain refinement method | |
CN115627376B (en) | Al-Nb-TiB for casting aluminum-silicon alloy 2 Preparation method of refiner | |
CN114959348A (en) | High-dispersity Al-xMB 2 Preparation method and application method of refiner | |
CN115652120B (en) | A two-step method for preparing aluminum-based alloy refinement materials | |
Wang et al. | Effect of Al-5Ti-1B-1Re on the microstructure and hot crack of as-cast Al-Zn-Mg-Cu alloy | |
CN108149083B (en) | A kind of semisolid pressure casting aluminium alloy and the method for preparing semisolid pressure casting aluminium alloy castings | |
CN106756178B (en) | Aluminium and its alloy Al-Ti-B-Fe grain refiner and preparation method thereof | |
CN117737512A (en) | Brazing cast aluminum alloy and preparation method and application thereof | |
CN107604228B (en) | High thermal conductivity and corrosion-resistant die-casting magnesium alloy and preparation method thereof | |
CN110396614A (en) | A kind of Al-V(C,N) master alloy and preparation method thereof | |
CN113528897B (en) | A kind of refining agent for aluminum-silicon alloy with low cooling rate sensitivity, its preparation method, aluminum-silicon alloy and its refining method | |
CN108866460A (en) | A kind of aging technique of Al-Si-Mg-Zr-Ti-Sc alloy | |
JPH0681068A (en) | Method for casting heat resistant mg alloy | |
CN114277277A (en) | AlN/Al particle reinforced magnesium-aluminum rare earth based composite material and preparation method thereof | |
CN111893353A (en) | A kind of high-strength heat-resistant aluminum alloy material and preparation method thereof | |
CN106048273B (en) | A kind of aluminium silicon lanthanum boron quaternary intermediate alloy and preparation method thereof | |
CN115558821B (en) | A preparation method of Al-Ti-B refiner with controllable TiB2 size | |
CN103014391A (en) | Preparation method of alloy for improving 2618 aluminium alloy microscopic structure | |
CN112210685B (en) | Method for preparing Al-Mg-Si-O intermediate alloy in situ by melt method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |