CN115613130A - 一种在常压下化学气相沉积制备六方氮化硼薄膜的方法 - Google Patents

一种在常压下化学气相沉积制备六方氮化硼薄膜的方法 Download PDF

Info

Publication number
CN115613130A
CN115613130A CN202211036731.2A CN202211036731A CN115613130A CN 115613130 A CN115613130 A CN 115613130A CN 202211036731 A CN202211036731 A CN 202211036731A CN 115613130 A CN115613130 A CN 115613130A
Authority
CN
China
Prior art keywords
substrate
boron nitride
nitride film
hexagonal boron
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211036731.2A
Other languages
English (en)
Other versions
CN115613130B (zh
Inventor
王洁琼
高广存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202211036731.2A priority Critical patent/CN115613130B/zh
Publication of CN115613130A publication Critical patent/CN115613130A/zh
Application granted granted Critical
Publication of CN115613130B publication Critical patent/CN115613130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/032Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,通过超声清洗、电化学抛光、化学腐蚀、高温退火后的铜箔表面表面平整,粗糙度较低,具有较少的成核位点,为生长大尺寸高质量六方氮化硼薄膜H‑BN提供必要条件,通过多种处理方式合理搭配,将基片处理为适合H‑BN生长的状态,并通过对化学气相沉积过程中的热力学和动力学的分析,分析并调整在H‑BN的合适生长参数,在常压环境和低气流条件下得到大尺寸、高质量的H‑BN,低气流的生长降低了气流的使用,提高了经济效益,且在常压下进行H‑BN的生长,降低了对生长设备的要求,提高了安全系数。

Description

一种在常压下化学气相沉积制备六方氮化硼薄膜的方法
技术领域
本发明涉及纳米材料领域,特别涉及一种在常压下化学气相沉积制备六方氮化硼薄膜的方法。
背景技术
石墨烯研究的巨大成功引发了人们对开发各种具有独特结构和电子性质的互补的、原子薄的二维材料的巨大兴趣。六方氮化硼(H-BN)在结构上与石墨烯极其相似,且具有较宽的带隙等条件,具有优异的化学惰性和电绝缘性、高的弹性模量和热导率等性能,在深紫外发射器、内场效应隧道晶体管的隧道势垒以及量子光子发射器等方向得到广泛应用。但由于生长条件苛刻,较难获得表面平整,且高纯度、高结晶质量的六方氮化硼薄膜。
目前通过化学气相沉积法生长H-BN的方法得到广泛的应用,化学气相沉积法可以通过合理的设计实验方案和对生长参数的调整可以对H-BN的尺寸、形貌、层数等方面进行调控,从而实现H-BN的可控制备。为提高H-BN薄膜的质量,科研人员做了大量的工作,例如促进均匀性,降低缺陷,特别是扩大单个薄片的粒度。目前主要应用的是电化学抛光、长时间退火甚至熔化和溶解铜基底来用于H-BN的成核抑制。此外,在生长过程中,也可以通过降低原料浓度来抑制成核。通过改善基底状态和调控化学气相沉积法所涉及的生长参数,实现H-BN的大尺寸和多层次的均匀性生长。
发明内容
鉴以此,本发明提出一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,来解决上述问题。
本发明的技术方案是这样实现的:一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,包括以下步骤:
S1、预处理:将商用铜箔裁剪为0.5~2cm×1~1.2cm的基片,并通过压力设备将基片压平整。商用铜箔的使用降低了经济成本,相比于单晶铜,商用铜箔的制造工艺和成本相对较低,更适合大批量的生产。经过处理的商用铜箔成核位点减少,经过进行多种工艺处理后可以成为适合生长的基片,有利于六方氮化硼薄膜(H-BN)的大尺寸高质量生长;基片的裁剪可用剪刀或其他剪切机,基片的锻压可用各类压力机。
S2、超声清洗:将基片先后放置在丙酮、异丙醇、乙醇、超纯水中进行超声清洗,超声时间为8~12min,以除去基片表面的灰尘和有机物,从而获得表面干净的基片。
S3、电化学抛光:将磷酸、异丙醇、乙醇、超纯水加尿素配成电解液,将基片通过电化学工作站恒流模式进行抛光,以除去基片表面的氧化层;电化学工作站的恒流模式相对于其他模式抛光出来的铜箔表面更加平整;
S4、化学腐蚀:抛光后的基片放入弱酸水中浸泡10~60s,除去基片上的天然氧化物,用乙醇冲洗掉表面的试剂,最后用N2吹干基片,从而得到未被氧化的基片,备用;
S5、高温退火:生长设备为三温区管式炉,使用闭式石英舟称取10~100mg 的氨硼烷络合物,放置在管式炉第一温区,将处理干净的基片倒置在开式石英舟上,基片与石英舟的间隙保持在0.3~0.8cm,基片放置在第三温区,基片的温度变化主要包括四部分,分别是升温、退火、生长和冷却,以得到尺寸大且均匀的六方氮化硼薄膜;在高温退火过程中,铜原子重排会改善基底的形貌,并释放铜箔内部应力,退火后的衬底晶界尺寸由几微米增加到了几百微米,有利于大尺寸H-BN的生长。退火后的铜表面的杂质减少,表面粗糙度降低,使其表面更平整,铜箔表面平整度的增加有助于减少成核点,进而为制备大尺寸的单晶h-BN提供了一种可能性。平整的表面相对高能区域减少,这样分子在其表面吸附位点减少,有利于减少成核点,制备大尺寸高质量H-BN。
进一步的,所述S2中丙酮、异丙醇、乙醇、超纯水的体积比为1:1~1.2: 1~3:2~4。
进一步的,所述S3中电解液分别由25ml磷酸、5ml异丙醇、25ml乙醇、 50ml超纯水、0.5g尿素配制而成。
进一步的,所述S3中电化学工作站选择恒流模式为起始电压2.8~3.2V,最高电压3.5~4V,抛光时间60~100s。
进一步的,所述S4中弱酸水的pH至在3.5~6.5之间,取1-10μl硝酸与10-20L 超纯水混合而成,配好的弱酸水溶液可重复利用100-200次。
进一步的,所述S5中药品升华温度控制在100~150℃,基片的退火温度 950~1050℃,升温速率15~25℃/min,退火时间20~40min,退火过程需通入混合气Ar/H2,流速为90~120sccm,退火完成后在950~1050℃下继续进行生长,生长时间为10~30min,生长过程继续通入Ar/H2,混合气Ar/H2中,Ar和H2比值为8~10:1N/m3,流速为50~100sccm,退火完成将气体换成流速为50sccm的 Ar,直到降至室温;在适合H-BN生长的温度范围,温度越高,越容易形核。在高温下,环硼吖嗪的分解和聚合速度随之加快,铜的催化活性增强,导致H-BN 的生长速率增加。此外,随着温度升高,铜表面的条纹、点缺陷以及氧化铜、氧化亚铜进一步消除,高温下进行的重结晶形成更为平坦的尺寸大的铜晶粒,有利于大尺寸高质量的H-BN的生长。
进一步的,在整个过程中气流始终保持低气速,腔室内始终保持在常压环境,在降低操作难度的同时降低了生产成本。压力对表面自由能的影响与氨硼烷分解生成硼吖嗪并迁移到表面区时的摩尔分子体积变化有关,根据热力学定律可以推出表面自由能随压力的增大而增大。适当增大管式炉内的气压能增大 H-BN在形核过程中所需的最大能力△Gmax,可以抑制形核;同时使临界晶核半径rc增大,形核数目减小,使沉积的H-BN尺寸更大。此外,气体流速的增加,可以将产生的前驱体迅速输送到铜的表面,硼吖嗪在运输过程中也会分解,这样通过气象输运的前驱体也随之增多,在铜表面参与脱氢反应的前驱体浓度就会比低流量大,使H-BN更容易生长。
与现有技术相比,本发明的有益效果是:
本发明的目的是通过超声清洗、电化学抛光、化学腐蚀、高温退火结合的方式处理商用铜箔得到适合H-BN生长的基片,其表面平整,粗糙度较低,具有较少的成核位点,为生长大尺寸高质量H-BN提供必要条件,并通过构造合适的模型实现在常压环境下通过低气速实现高质量生长,较大的降低生产成本。
附图说明
图1是实施例3H-BN薄膜的光学显微镜图片;
图2是实施例3H-BN薄膜的XPS图片,图中,Binding Energy:结合能;
图3是实施例3H-BN薄膜的拉曼图;
图4是实施例3H-BN薄膜的AFM图。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。
本发明实施例所用的实验方法如无特殊说明,均为常规方法。
本发明实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,包括以下步骤:
S1、预处理:将铜箔裁剪为0.5~2cm×1cm的基片,并通过压力设备将基片压平整。
S2、超声清洗:将基片先后放置在丙酮、异丙醇、乙醇、超纯水中进行超声清洗,丙酮、异丙醇、乙醇、超纯水的体积比1:1:2:3,超声时间为8min,从而获得表面干净的基片。
S3、电化学抛光:由25ml磷酸、5ml异丙醇、25ml乙醇、50ml超纯水、 0.5g尿素配制而成电解液,基片通过电化学工作站恒流模式进行抛光,电化学工作站选择恒流模式为起始电压2.8V,最高电压3.5V,抛光时间60s;
S4、化学腐蚀:抛光后的基片放入pH值为3.5的弱酸水中浸泡10s,弱酸水为5μl硝酸与15L超纯水混合而成,配好的弱酸水溶液可重复利用100次,用乙醇冲洗掉基片表面的试剂,最后用N2吹干基片,从而得到未被氧化的基片,备用;
S5、高温退火:生长设备为三温区管式炉,称取10mg的氨硼烷络合物,放置在管式炉第一温区,将处理干净的基片放置在管式炉第三温区,基片的温度变化主要包括四部分,分别是升温、退火、生长和冷却,升华温度控制在100℃,基片的退火温度950℃,升温速率15℃/min,退火时间20min,退火过程需通入混合气Ar/H2,Ar和H2比值为9:1,流速为90sccm,退火完成后在950℃下继续进行生长,生长时间为10min,生长过程继续通入Ar/H2,流速为50sccm,退火完成将气体换成流速为50sccm的Ar,直到降至室温以得到尺寸大且均匀的六方氮化硼薄膜。
实施例2
一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,包括以下步骤:
S1、预处理:将铜箔裁剪为0.5~2cm×1cm的基片,并通过压力设备将基片压平整。
S2、超声清洗:将基片先后放置在丙酮、异丙醇、乙醇、超纯水中进行超声清洗,丙酮、异丙醇、乙醇、超纯水的体积比1:1:2:3,超声时间为12min,从而获得表面干净的基片。
S3、电化学抛光:由25ml磷酸、5ml异丙醇、25ml乙醇、50ml超纯水、 0.5g尿素配制而成电解液,基片通过电化学工作站恒流模式进行抛光,电化学工作站选择恒流模式为起始电压3.2V,最高电压4V,抛光时间100s;
S4、化学腐蚀:抛光后的基片放入pH值为6.5的弱酸水中浸泡60s,弱酸水为1μl硝酸与10超纯水混合而成,配好的弱酸水溶液可重复利用100次,用乙醇冲洗掉基片表面的试剂,最后用N2吹干基片,从而得到未被氧化的基片,备用;
S5、高温退火:生长设备为三温区管式炉,称取10~100mg的氨硼烷络合物,放置在管式炉第一温区,将处理干净的基片放置在管式炉第三温区,基片的温度变化主要包括四部分,分别是升温、退火、生长和冷却,升华温度控制在150℃,基片的退火温度1050℃,升温速率25℃/min,退火时间40min,退火过程需通入混合气Ar/H2,Ar和H2比值为9:1,流速为120sccm,退火完成后在1050℃下继续进行生长,生长时间为30min,生长过程继续通入Ar/H2,流速为100sccm,退火完成将气体换成流速为50sccm的Ar,直到降至室温以得到尺寸大且均匀的六方氮化硼薄膜。
实施例3
一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,包括以下步骤:
S1、预处理:将铜箔裁剪为0.5~2cm×1cm的基片,并通过压力设备将基片压平整。
S2、超声清洗:将基片先后放置在丙酮、异丙醇、乙醇、超纯水中进行超声清洗,丙酮、异丙醇、乙醇、超纯水的体积比1:1:2:3,超声时间为10min,从而获得表面干净的基片。
S3、电化学抛光:由25ml磷酸、5ml异丙醇、25ml乙醇、50ml超纯水、 0.5g尿素配制而成电解液,基片通过电化学工作站恒流模式进行抛光,电化学工作站选择恒流模式为起始电压3V,最高电压3.8V,抛光时间80s;
S4、化学腐蚀:抛光后的基片放入pH值为5的弱酸水中浸泡30s,弱酸水为10μl硝酸与20L超纯水混合而成,配好的弱酸水溶液可重复利用200次,用乙醇冲洗掉基片表面的试剂,最后用N2吹干基片,从而得到未被氧化的基片,备用;
S5、高温退火:生长设备为三温区管式炉,称取50mg的氨硼烷络合物,放置在管式炉第一温区,将处理干净的基片放置在管式炉第三温区,基片的温度变化主要包括四部分,分别是升温、退火、生长和冷却,升华温度控制在130℃,基片的退火温度1000℃,升温速率20℃/min,退火时间30min,退火过程需通入混合气Ar/H2,Ar和H2比值为9:1,流速为100sccm,退火完成后在1000℃下继续进行生长,生长时间为20min,生长过程继续通入Ar/H2,流速为80sccm,退火完成将气体换成流速为50sccm的Ar,直到降至室温以得到尺寸大且均匀的六方氮化硼薄膜。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:包括以下步骤:
S1、预处理:将铜箔裁剪为0.5~2cm×1~1.2cm的基片,并通过压力设备将基片压平整;
S2、超声清洗:将基片先后放置在丙酮、异丙醇、乙醇、超纯水中进行超声清洗,超声时间为8~12min,从而获得表面干净的基片;
S3、电化学抛光:将磷酸、异丙醇、乙醇、超纯水加尿素配成电解液,基片通过电化学工作站恒流模式进行抛光;
S4、化学腐蚀:抛光后的基片放入弱酸水中浸泡10~60s,用乙醇冲洗掉表面的试剂,最后用N2吹干基片,从而得到未被氧化的基片,备用;
S5、高温退火:生长设备为三温区管式炉,称取氨硼烷络合物放置在管式炉第一温区,将处理干净的基片放置在管式炉第三温区,基片的温度变化主要包括四部分,分别是升温、退火、生长和冷却,以得到尺寸大且均匀的六方氮化硼薄膜。
2.如权利要求1所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述S2中丙酮、异丙醇、乙醇、超纯水的体积比为1:1~1.2:1~3:2~4。
3.如权利要求1所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述S3中电解液分别由25ml磷酸、5ml异丙醇、25ml乙醇、50ml超纯水、0.5g尿素配制而成。
4.如权利要求1所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述S3中电化学工作站选择恒流模式为起始电压2.8~3.2V,最高电压3.5~4V,抛光时间60~100s。
5.如权利要求1所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述S4中弱酸水的pH值在3.5~6.5之间,取1-10μl硝酸与10-20L超纯水混合而成,配好的弱酸水溶液可重复利用100-200次。
6.如权利要求1所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述S5中氨硼烷络合物称取重量为10~100mg。
7.如权利要求1所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述S5中药品升华温度控制在100~150℃,基片的退火温度950~1050℃,升温速率15~25℃/min,退火时间20~40min,退火过程需通入混合气Ar/H2,流速为90~120sccm,退火完成后在950~1050℃下继续进行生长,生长时间为10~30min,生长过程继续通入Ar/H2,流速为50~100sccm,退火完成将气体换成流速为50sccm的Ar,直到降至室温。
8.如权利要求6所述的在常压下化学气相沉积制备六方氮化硼薄膜的方法,其特征在于:所述混合气Ar/H2中,Ar和H2比值为8~10:1N/m3
CN202211036731.2A 2022-08-29 2022-08-29 一种在常压下化学气相沉积制备六方氮化硼薄膜的方法 Active CN115613130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211036731.2A CN115613130B (zh) 2022-08-29 2022-08-29 一种在常压下化学气相沉积制备六方氮化硼薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211036731.2A CN115613130B (zh) 2022-08-29 2022-08-29 一种在常压下化学气相沉积制备六方氮化硼薄膜的方法

Publications (2)

Publication Number Publication Date
CN115613130A true CN115613130A (zh) 2023-01-17
CN115613130B CN115613130B (zh) 2024-06-04

Family

ID=84856499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211036731.2A Active CN115613130B (zh) 2022-08-29 2022-08-29 一种在常压下化学气相沉积制备六方氮化硼薄膜的方法

Country Status (1)

Country Link
CN (1) CN115613130B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022482A1 (en) * 1992-05-04 1993-11-11 Case Western Reserve University Growth of diamond crystals
US20150167148A1 (en) * 2013-12-17 2015-06-18 Brookhaven Science Associates, Llc Method for Synthesis of Uniform Bi-Layer and Few-Layer Hexagonal Boron Nitride Dielectric Films
CN107964680A (zh) * 2016-10-20 2018-04-27 中国人民大学 一种制备单层六方氮化硼大单晶的方法
US20190016600A1 (en) * 2016-01-08 2019-01-17 Nanyang Technological University Boron nitride material and method of preparation thereof
US20190345603A1 (en) * 2017-01-06 2019-11-14 Japan Science And Technology Agency Hexagonal boron nitride thin film and method for producing the same
US20210222295A1 (en) * 2018-05-18 2021-07-22 Cambridge Enterprise Limited Synthesis of hexagonal boron nitride films and transfer method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022482A1 (en) * 1992-05-04 1993-11-11 Case Western Reserve University Growth of diamond crystals
US20150167148A1 (en) * 2013-12-17 2015-06-18 Brookhaven Science Associates, Llc Method for Synthesis of Uniform Bi-Layer and Few-Layer Hexagonal Boron Nitride Dielectric Films
US20190016600A1 (en) * 2016-01-08 2019-01-17 Nanyang Technological University Boron nitride material and method of preparation thereof
CN107964680A (zh) * 2016-10-20 2018-04-27 中国人民大学 一种制备单层六方氮化硼大单晶的方法
US20190345603A1 (en) * 2017-01-06 2019-11-14 Japan Science And Technology Agency Hexagonal boron nitride thin film and method for producing the same
US20210222295A1 (en) * 2018-05-18 2021-07-22 Cambridge Enterprise Limited Synthesis of hexagonal boron nitride films and transfer method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
姚茜;陈珊珊;: "常压化学气相沉积法制备二维六方氮化硼", 曲靖师范学院学报, no. 03, 26 May 2017 (2017-05-26), pages 29 - 35 *
张鑫宇;徐志威;朱家光;徐紫巍;: "化学气相沉积法制备六方氮化硼薄膜的研究进展", 广东化工, no. 05, 15 March 2018 (2018-03-15), pages 130 - 132 *
蔡志海;张平;谭俊;: "立方氮化硼薄膜的形核与生长过程试验研究", 中国表面工程, no. 06, 30 December 2005 (2005-12-30), pages 13 - 18 *

Also Published As

Publication number Publication date
CN115613130B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
Wang et al. Direct CVD graphene growth on semiconductors and dielectrics for transfer‐free device fabrication
CN104159736B (zh) 借助于化学气相沉积的高品质大规模单层和多层石墨烯生产
Miao et al. Chemical vapor deposition of graphene
US8932673B2 (en) Methods of fabricating large-area graphene
CN102229426B (zh) 一种单层、有序排布的等角六边形石墨烯的制备方法
US8865105B2 (en) Graphene and its growth
CN107539976B (zh) 一种二氧化碳制备超洁净石墨烯的方法
CN111088523B (zh) 一种大尺寸单晶金刚石异质外延生长的方法
CN102583337A (zh) 多孔结构石墨烯材料的制备方法
JPH1179846A (ja) 炭化珪素成形体
Wang et al. Effect of ZnO seed layers on the solution chemical growth of ZnO nanorod arrays
JPH11199323A (ja) ダミーウエハ
CN110817852A (zh) 基于水处理辅助机制的石墨烯制备方法
Fan et al. Phase-controlled synthesis of nickel silicide nanostructures
CN115613130B (zh) 一种在常压下化学气相沉积制备六方氮化硼薄膜的方法
CN113808919A (zh) 一种mocvd脉冲式生长硒化钨薄膜的制备方法
CN116902928B (zh) 纳米花结构的钛掺杂二硒化铪及其制备方法
CN104609406B (zh) 一种常压二段过程催化固体碳源合成石墨烯的方法
CN115341273B (zh) 一种大尺寸二维热电材料碲化铋单晶的制备
CN107244666B (zh) 一种以六方氮化硼为点籽晶生长大晶畴石墨烯的方法
CN108396377B (zh) 一种高质量单层多晶石墨烯薄膜的制备方法
CN112830479B (zh) 一种利用硫束流解耦技术制备易剥离近自由态石墨烯的方法
CN108609588B (zh) 一种规则六边形六方氮化硼纳米片的制备方法
CN112144116B (zh) 一种简易、选择性制备单晶铜箔的方法
CN110323126B (zh) 一种Si/SiC/石墨烯材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant